Previsão de Preço Glorious Looking - Projeção GLG
Previsão de Preço Glorious Looking até $0.021811 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0073068 | $0.021811 |
| 2027 | $0.007034 | $0.018478 |
| 2028 | $0.012694 | $0.031093 |
| 2029 | $0.027886 | $0.091733 |
| 2030 | $0.023716 | $0.06857 |
| 2031 | $0.028039 | $0.062597 |
| 2032 | $0.04280076 | $0.116114 |
| 2033 | $0.099459 | $0.309286 |
| 2034 | $0.07996 | $0.179122 |
| 2035 | $0.094538 | $0.21105 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Glorious Looking hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.73, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Glorious Looking para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Glorious Looking'
'name_with_ticker' => 'Glorious Looking <small>GLG</small>'
'name_lang' => 'Glorious Looking'
'name_lang_with_ticker' => 'Glorious Looking <small>GLG</small>'
'name_with_lang' => 'Glorious Looking'
'name_with_lang_with_ticker' => 'Glorious Looking <small>GLG</small>'
'image' => '/uploads/coins/glorious-looking.jpg?1749780948'
'price_for_sd' => 0.02114
'ticker' => 'GLG'
'marketcap' => '$306.64K'
'low24h' => '$0.02103'
'high24h' => '$0.02114'
'volume24h' => '$115.68'
'current_supply' => '14.5M'
'max_supply' => '14.5M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02114'
'change_24h_pct' => '0.5018%'
'ath_price' => '$0.3827'
'ath_days' => 191
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 de jun. de 2025'
'ath_pct' => '-94.47%'
'fdv' => '$306.64K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.04'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.021329'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018691'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0073068'
'current_year_max_price_prediction' => '$0.021811'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.023716'
'grand_prediction_max_price' => '$0.06857'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.021549538256742
107 => 0.02162999641011
108 => 0.021811272737944
109 => 0.020262286364188
110 => 0.020957735770154
111 => 0.021366247141362
112 => 0.019520577904474
113 => 0.021329764194827
114 => 0.020235321957605
115 => 0.019863851824321
116 => 0.020363987421319
117 => 0.020169084092771
118 => 0.020001517655993
119 => 0.019908012705114
120 => 0.020275257089598
121 => 0.02025812470011
122 => 0.01965724160803
123 => 0.018873414109541
124 => 0.019136492346295
125 => 0.01904091355651
126 => 0.018694523692423
127 => 0.018927948637546
128 => 0.017900063312886
129 => 0.016131640036637
130 => 0.017299914621197
131 => 0.017254937320529
201 => 0.017232257725975
202 => 0.018110183787533
203 => 0.018025791453915
204 => 0.017872618542025
205 => 0.018691710551777
206 => 0.018392730949875
207 => 0.019314115634482
208 => 0.019920999179189
209 => 0.019767073881626
210 => 0.020337850788745
211 => 0.019142553137526
212 => 0.019539583070243
213 => 0.019621410389116
214 => 0.018681603083521
215 => 0.018039599083393
216 => 0.017996784735965
217 => 0.016883638273344
218 => 0.017478272128672
219 => 0.01800152531374
220 => 0.01775092764418
221 => 0.01767159590839
222 => 0.018076884541588
223 => 0.01810837893945
224 => 0.017390303330572
225 => 0.017539613988154
226 => 0.018162264251107
227 => 0.017523924799084
228 => 0.016283735515962
301 => 0.015976151426789
302 => 0.015935114039394
303 => 0.015100921594756
304 => 0.015996705666398
305 => 0.015605671913605
306 => 0.016840942853373
307 => 0.016135362717469
308 => 0.016104946568035
309 => 0.016058968097087
310 => 0.015340944199931
311 => 0.015498145800609
312 => 0.016020707863742
313 => 0.016207163894951
314 => 0.016187715003307
315 => 0.01601814702455
316 => 0.016095774376897
317 => 0.015845709627827
318 => 0.015757406560283
319 => 0.015478697789441
320 => 0.015069072891566
321 => 0.015126033745991
322 => 0.014314459639117
323 => 0.013872270992194
324 => 0.013749879002678
325 => 0.013586211319185
326 => 0.013768365703032
327 => 0.014312160551641
328 => 0.013656228591706
329 => 0.012531679254674
330 => 0.012599266585968
331 => 0.012751115252528
401 => 0.012468146266973
402 => 0.012200339869932
403 => 0.01243317580434
404 => 0.011956689425567
405 => 0.012808696354962
406 => 0.012785651955244
407 => 0.013103227450767
408 => 0.013301813925423
409 => 0.012844136394476
410 => 0.012729031733134
411 => 0.012794600579449
412 => 0.011710893606266
413 => 0.013014665470866
414 => 0.013025940544091
415 => 0.01292939652184
416 => 0.013623614790299
417 => 0.015088631868854
418 => 0.014537433513726
419 => 0.014323992850562
420 => 0.013918241993863
421 => 0.014458880919313
422 => 0.014417368285119
423 => 0.014229632410097
424 => 0.014116089167112
425 => 0.014325296073738
426 => 0.014090166116191
427 => 0.014047930314877
428 => 0.013792027311916
429 => 0.013700681582704
430 => 0.013633052841373
501 => 0.013558600242231
502 => 0.013722824123507
503 => 0.013350671203085
504 => 0.012901891263658
505 => 0.012864580067561
506 => 0.012967599560419
507 => 0.012922021103729
508 => 0.012864361855446
509 => 0.012754274647912
510 => 0.012721614125077
511 => 0.012827744979656
512 => 0.01270792943265
513 => 0.012884723798948
514 => 0.012836645513793
515 => 0.012568084121185
516 => 0.012233357191833
517 => 0.012230377420048
518 => 0.012158261052182
519 => 0.012066410014935
520 => 0.01204085915764
521 => 0.012413567011376
522 => 0.013185061114402
523 => 0.013033598361689
524 => 0.013143045723051
525 => 0.01368141841692
526 => 0.013852550906869
527 => 0.013731085118999
528 => 0.013564815256878
529 => 0.013572130286977
530 => 0.014140324739155
531 => 0.014175762330175
601 => 0.014265301690085
602 => 0.014380385071389
603 => 0.013750684316469
604 => 0.013542471438048
605 => 0.013443808625042
606 => 0.013139965348296
607 => 0.013467634272713
608 => 0.013276715622637
609 => 0.013302477071242
610 => 0.013285699894043
611 => 0.013294861367261
612 => 0.012808458201661
613 => 0.012985677950608
614 => 0.012691015745648
615 => 0.012296496130592
616 => 0.012295173562506
617 => 0.012391731679375
618 => 0.012334295133142
619 => 0.012179734864056
620 => 0.012201689420776
621 => 0.012009344402241
622 => 0.012225043588545
623 => 0.0122312290694
624 => 0.012148173133458
625 => 0.012480487490712
626 => 0.012616636954021
627 => 0.012561967757754
628 => 0.012612801217474
629 => 0.013039892322877
630 => 0.013109526808349
701 => 0.013140453847
702 => 0.013099015712256
703 => 0.012620607658858
704 => 0.012641827090375
705 => 0.012486132981222
706 => 0.012354587865629
707 => 0.01235984898039
708 => 0.012427480269473
709 => 0.01272283007542
710 => 0.013344376330213
711 => 0.013367963556238
712 => 0.013396551962268
713 => 0.013280268547562
714 => 0.013245196357004
715 => 0.01329146562925
716 => 0.013524885723201
717 => 0.01412530557778
718 => 0.013913077100478
719 => 0.013740532044898
720 => 0.013891900576455
721 => 0.013868598577487
722 => 0.0136719062559
723 => 0.013666385757537
724 => 0.013288870306073
725 => 0.013149311439277
726 => 0.013032685604383
727 => 0.012905333237272
728 => 0.012829834485159
729 => 0.012945834881974
730 => 0.012972365545202
731 => 0.012718728650227
801 => 0.012684158878662
802 => 0.012891284242232
803 => 0.012800136092137
804 => 0.012893884224875
805 => 0.012915634595826
806 => 0.01291213228515
807 => 0.012816963148152
808 => 0.01287762111809
809 => 0.012734146936176
810 => 0.01257814031247
811 => 0.012478617806101
812 => 0.01239177121955
813 => 0.012439958753322
814 => 0.012268178994121
815 => 0.01221322319191
816 => 0.012857071562722
817 => 0.013332689276778
818 => 0.013325773606851
819 => 0.013283676244732
820 => 0.013221128103762
821 => 0.013520309937101
822 => 0.013416080968695
823 => 0.013491916251832
824 => 0.013511219514187
825 => 0.013569644675565
826 => 0.013590526648946
827 => 0.013527406821927
828 => 0.013315568973014
829 => 0.012787689194462
830 => 0.012541959732562
831 => 0.012460864917187
901 => 0.012463812559705
902 => 0.012382503420206
903 => 0.012406452605808
904 => 0.012374174870813
905 => 0.012313048649554
906 => 0.012436184381408
907 => 0.012450374627416
908 => 0.012421633276239
909 => 0.012428402904893
910 => 0.012190436792738
911 => 0.012208528839409
912 => 0.012107790024514
913 => 0.012088902711145
914 => 0.011834243759421
915 => 0.011383078513037
916 => 0.011633067855204
917 => 0.011331115883687
918 => 0.011216762096755
919 => 0.01175809513843
920 => 0.011703760315287
921 => 0.011610762716847
922 => 0.011473199886355
923 => 0.011422176494401
924 => 0.011112174516928
925 => 0.011093857946303
926 => 0.011247503297096
927 => 0.011176601254318
928 => 0.011077027933556
929 => 0.010716383459339
930 => 0.010310899665038
1001 => 0.010323138672007
1002 => 0.01045211552268
1003 => 0.01082713311091
1004 => 0.010680607251319
1005 => 0.010574301058995
1006 => 0.010554393104725
1007 => 0.010803582832538
1008 => 0.011156238504256
1009 => 0.0113216966552
1010 => 0.011157732652653
1011 => 0.010969379634976
1012 => 0.010980843810418
1013 => 0.011057109833594
1014 => 0.011065124314286
1015 => 0.010942525862782
1016 => 0.010977036608756
1017 => 0.010924611629892
1018 => 0.010602879631377
1019 => 0.010597060519747
1020 => 0.010518102298682
1021 => 0.010515711475128
1022 => 0.010381383844046
1023 => 0.010362590479894
1024 => 0.010095874815275
1025 => 0.010271427873417
1026 => 0.010153676098964
1027 => 0.0099761964000293
1028 => 0.0099455988330368
1029 => 0.0099446790332253
1030 => 0.010126911000297
1031 => 0.010269298386781
1101 => 0.010155724441495
1102 => 0.010129865855692
1103 => 0.010405967900492
1104 => 0.010370831398566
1105 => 0.010340403414503
1106 => 0.011124662056815
1107 => 0.01050386014496
1108 => 0.010233155077257
1109 => 0.0098981061504764
1110 => 0.010007199770499
1111 => 0.010030187399157
1112 => 0.0092244551273581
1113 => 0.0088975696450368
1114 => 0.0087853948659236
1115 => 0.0087208366946254
1116 => 0.0087502566639565
1117 => 0.0084560213900244
1118 => 0.008653752360309
1119 => 0.0083989694841724
1120 => 0.008356254305853
1121 => 0.008811837649927
1122 => 0.0088752294107756
1123 => 0.0086047804647191
1124 => 0.0087784524697946
1125 => 0.0087154765865327
1126 => 0.0084033370053126
1127 => 0.0083914155692533
1128 => 0.0082347948996339
1129 => 0.0079897138794171
1130 => 0.0078777052767764
1201 => 0.0078193702240178
1202 => 0.0078434404037135
1203 => 0.0078312697842997
1204 => 0.0077518482601004
1205 => 0.0078358221330993
1206 => 0.0076213035879872
1207 => 0.0075358805748302
1208 => 0.0074972969815861
1209 => 0.0073068994255724
1210 => 0.0076099066073676
1211 => 0.0076696028393652
1212 => 0.0077294166913809
1213 => 0.0082500554365264
1214 => 0.0082240457961288
1215 => 0.0084591602781149
1216 => 0.0084500241616927
1217 => 0.0083829657028282
1218 => 0.0081000570954598
1219 => 0.0082128194239958
1220 => 0.0078657545039186
1221 => 0.008125799140161
1222 => 0.0080071256279036
1223 => 0.008085675506292
1224 => 0.0079444357423927
1225 => 0.0080226036593815
1226 => 0.007683759030556
1227 => 0.0073673506838314
1228 => 0.0074946826390888
1229 => 0.007633107036629
1230 => 0.0079332464003768
1231 => 0.0077544858714246
]
'min_raw' => 0.0073068994255724
'max_raw' => 0.021811272737944
'avg_raw' => 0.014559086081758
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0073068'
'max' => '$0.021811'
'avg' => '$0.014559'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013841880574428
'max_diff' => 0.00066249273794392
'year' => 2026
]
1 => [
'items' => [
101 => 0.0078187749173198
102 => 0.0076034173754273
103 => 0.0071590732526624
104 => 0.0071615881921416
105 => 0.0070932355294172
106 => 0.0070341688491711
107 => 0.0077750186685576
108 => 0.0076828822824144
109 => 0.0075360750096073
110 => 0.0077325823781487
111 => 0.0077845420453824
112 => 0.0077860212640618
113 => 0.0079293879675604
114 => 0.0080059028029174
115 => 0.0080193888742834
116 => 0.008244979479881
117 => 0.0083205944752652
118 => 0.0086320419398184
119 => 0.0079994110537168
120 => 0.0079863824369318
121 => 0.0077353476398104
122 => 0.0075761374027729
123 => 0.0077462489009507
124 => 0.007896944465801
125 => 0.0077400301710726
126 => 0.0077605198653225
127 => 0.0075498752450185
128 => 0.0076251707850266
129 => 0.0076900254474861
130 => 0.0076542165148568
131 => 0.0076006088095388
201 => 0.0078845891479928
202 => 0.0078685658643693
203 => 0.0081330148842175
204 => 0.0083391718061199
205 => 0.0087086418651269
206 => 0.0083230805976433
207 => 0.008309029212589
208 => 0.0084463837554082
209 => 0.0083205734470004
210 => 0.0084000812190899
211 => 0.0086958319338579
212 => 0.0087020806804231
213 => 0.0085974061244012
214 => 0.0085910366681544
215 => 0.0086111405616526
216 => 0.0087288896938051
217 => 0.0086877445289657
218 => 0.008735358755386
219 => 0.0087949010746196
220 => 0.0090411933523897
221 => 0.0091005735867415
222 => 0.0089563104023882
223 => 0.008969335752689
224 => 0.0089153773616279
225 => 0.0088632542319595
226 => 0.0089804194154822
227 => 0.0091945410912573
228 => 0.0091932090514252
301 => 0.0092428811182744
302 => 0.0092738264044158
303 => 0.0091409865829629
304 => 0.0090545127438526
305 => 0.0090876723162408
306 => 0.0091406951946111
307 => 0.0090704777114098
308 => 0.0086370628771891
309 => 0.0087685332512449
310 => 0.0087466501524291
311 => 0.0087154859586398
312 => 0.0088476804363832
313 => 0.0088349299565143
314 => 0.0084530035820095
315 => 0.0084774532693482
316 => 0.0084544904484765
317 => 0.0085286880204642
318 => 0.0083165665346174
319 => 0.0083818136750039
320 => 0.0084227360698003
321 => 0.0084468396747161
322 => 0.0085339184236684
323 => 0.008523700737538
324 => 0.0085332832779523
325 => 0.0086623980747112
326 => 0.0093154164098701
327 => 0.0093509587570491
328 => 0.0091759352405372
329 => 0.0092458536831975
330 => 0.0091116255627722
331 => 0.0092017337992639
401 => 0.0092633835661705
402 => 0.0089848001240881
403 => 0.0089683042206396
404 => 0.0088335220930137
405 => 0.00890594637395
406 => 0.0087907141354904
407 => 0.0088189880961558
408 => 0.0087399316372557
409 => 0.0088822175232918
410 => 0.0090413152528715
411 => 0.0090815096223231
412 => 0.0089757755410601
413 => 0.0088992170980102
414 => 0.0087648056919334
415 => 0.0089883348557926
416 => 0.0090537015952329
417 => 0.0089879915121378
418 => 0.008972765050091
419 => 0.0089439109320259
420 => 0.0089788865876407
421 => 0.0090533455939317
422 => 0.0090182321016068
423 => 0.0090414251819075
424 => 0.0089530370764018
425 => 0.0091410305584712
426 => 0.0094396094510926
427 => 0.009440569431055
428 => 0.0094054557494553
429 => 0.0093910879874796
430 => 0.0094271167556772
501 => 0.009446660884447
502 => 0.0095631713142519
503 => 0.009688191647413
504 => 0.010271606991631
505 => 0.010107786297549
506 => 0.010625427098473
507 => 0.011034813764758
508 => 0.011157570925668
509 => 0.011044640113802
510 => 0.01065830990681
511 => 0.010639354703769
512 => 0.011216695137421
513 => 0.011053570021047
514 => 0.011034166807515
515 => 0.010827749397772
516 => 0.010949767652223
517 => 0.010923080470075
518 => 0.010880953447472
519 => 0.0111137557771
520 => 0.011549540955757
521 => 0.011481619748896
522 => 0.011430919718748
523 => 0.011208766945198
524 => 0.011342552534493
525 => 0.011294914048639
526 => 0.011499599215998
527 => 0.011378348257186
528 => 0.011052334187853
529 => 0.011104253002951
530 => 0.011096405578495
531 => 0.011257905017722
601 => 0.011209426894729
602 => 0.011086939446934
603 => 0.011548051489392
604 => 0.011518109438195
605 => 0.011560560421087
606 => 0.011579248656596
607 => 0.011859919431135
608 => 0.011974901267
609 => 0.012001004156782
610 => 0.01211022800784
611 => 0.011998286567867
612 => 0.012446132140652
613 => 0.012743923314041
614 => 0.013089823086125
615 => 0.013595275622234
616 => 0.013785330451509
617 => 0.013750998747715
618 => 0.014134227091943
619 => 0.014822879907833
620 => 0.013890195171144
621 => 0.014872314463613
622 => 0.01456138683473
623 => 0.013824183019997
624 => 0.01377671578539
625 => 0.014275958767839
626 => 0.015383231652556
627 => 0.015105872353519
628 => 0.015383685313008
629 => 0.01505960173886
630 => 0.015043508257813
701 => 0.01536794529718
702 => 0.016126010123801
703 => 0.015765881940308
704 => 0.015249549882218
705 => 0.015630801438895
706 => 0.015300526057335
707 => 0.014556323184423
708 => 0.015105660262091
709 => 0.014738334202473
710 => 0.014845539474797
711 => 0.015617604216485
712 => 0.015524707344135
713 => 0.015644924498975
714 => 0.015432744367314
715 => 0.015234534666607
716 => 0.014864561540992
717 => 0.014755030737952
718 => 0.014785301111406
719 => 0.014755015737458
720 => 0.014548019173905
721 => 0.014503318285714
722 => 0.014428814847005
723 => 0.014451906577998
724 => 0.014311818316475
725 => 0.01457619380968
726 => 0.014625264230888
727 => 0.014817654667757
728 => 0.014837629281143
729 => 0.015373433909315
730 => 0.015078321723949
731 => 0.015276308456653
801 => 0.015258598659757
802 => 0.01384016046206
803 => 0.014035608730716
804 => 0.0143396649017
805 => 0.01420268800881
806 => 0.01400903472992
807 => 0.013852649324185
808 => 0.013615709443267
809 => 0.013949197775632
810 => 0.014387699470161
811 => 0.014848750407754
812 => 0.015402672900019
813 => 0.015279043848114
814 => 0.014838395212062
815 => 0.014858162387981
816 => 0.014980355291417
817 => 0.014822104379072
818 => 0.014775433095596
819 => 0.014973943373754
820 => 0.01497531040494
821 => 0.014793223605025
822 => 0.014590867448452
823 => 0.014590019568767
824 => 0.014554012245234
825 => 0.015066007361726
826 => 0.015347552907252
827 => 0.015379831650314
828 => 0.015345380290661
829 => 0.015358639251666
830 => 0.015194814102157
831 => 0.015569269813095
901 => 0.015912907403284
902 => 0.015820805188367
903 => 0.015682730875105
904 => 0.015572748034032
905 => 0.015794896726315
906 => 0.015785004794742
907 => 0.015909906028716
908 => 0.015904239787279
909 => 0.015862240200066
910 => 0.015820806688304
911 => 0.015985085879008
912 => 0.015937776110329
913 => 0.015890392856511
914 => 0.015795358486966
915 => 0.015808275236141
916 => 0.015670224763356
917 => 0.015606356297886
918 => 0.014645927819092
919 => 0.014389269946653
920 => 0.014470019738075
921 => 0.014496604666079
922 => 0.014384906831077
923 => 0.01454505283365
924 => 0.014520094248785
925 => 0.014617193502209
926 => 0.014556530104229
927 => 0.014559019751243
928 => 0.0147374178699
929 => 0.014789207602707
930 => 0.014762866926607
1001 => 0.014781315033242
1002 => 0.015206443864178
1003 => 0.015146004139273
1004 => 0.015113896740026
1005 => 0.015122790709044
1006 => 0.015231420240213
1007 => 0.015261830577988
1008 => 0.015132979839939
1009 => 0.01519374659288
1010 => 0.015452483714453
1011 => 0.015543027063751
1012 => 0.015831997971437
1013 => 0.015709237993803
1014 => 0.015934569245676
1015 => 0.016627160692849
1016 => 0.017180450664534
1017 => 0.016671622340898
1018 => 0.017687668912843
1019 => 0.018478806912327
1020 => 0.018448441718197
1021 => 0.018310488508636
1022 => 0.017409798929715
1023 => 0.016580970950668
1024 => 0.017274320749036
1025 => 0.017276088240261
1026 => 0.017216528877679
1027 => 0.016846610791897
1028 => 0.017203656530138
1029 => 0.01723199752424
1030 => 0.017216134104022
1031 => 0.016932518774971
1101 => 0.016499490588385
1102 => 0.016584103259521
1103 => 0.016722700540893
1104 => 0.016460306972834
1105 => 0.016376456328852
1106 => 0.016532350629252
1107 => 0.017034674547009
1108 => 0.016939713120121
1109 => 0.016937233293496
1110 => 0.017343518547633
1111 => 0.017052705987516
1112 => 0.016585170496271
1113 => 0.016467111618696
1114 => 0.016048082137295
1115 => 0.016337507292631
1116 => 0.016347923188718
1117 => 0.016189407988993
1118 => 0.016598033131102
1119 => 0.01659426757848
1120 => 0.016982196335086
1121 => 0.017723770418329
1122 => 0.017504450471269
1123 => 0.017249405234782
1124 => 0.017277135723625
1125 => 0.01758127074156
1126 => 0.01739738376699
1127 => 0.017463510805151
1128 => 0.017581170650368
1129 => 0.017652157756317
1130 => 0.017266921771509
1201 => 0.017177104835483
1202 => 0.016993370905834
1203 => 0.016945438153145
1204 => 0.01709508560511
1205 => 0.017055658788639
1206 => 0.016347047772984
1207 => 0.016272993979173
1208 => 0.016275265103305
1209 => 0.016089053317703
1210 => 0.01580503564871
1211 => 0.016551417125009
1212 => 0.01649147224686
1213 => 0.016425297740749
1214 => 0.016433403740161
1215 => 0.016757382641808
1216 => 0.016569458517526
1217 => 0.017069085602087
1218 => 0.016966377293666
1219 => 0.016861034904688
1220 => 0.016846473377724
1221 => 0.016805925545358
1222 => 0.01666687194099
1223 => 0.01649895635789
1224 => 0.016388083945329
1225 => 0.015117141168726
1226 => 0.015353020755329
1227 => 0.015624378718616
1228 => 0.015718050400144
1229 => 0.015557818507007
1230 => 0.016673198872756
1231 => 0.016876989613651
]
'min_raw' => 0.0070341688491711
'max_raw' => 0.018478806912327
'avg_raw' => 0.012756487880749
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007034'
'max' => '$0.018478'
'avg' => '$0.012756'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00027273057640127
'max_diff' => -0.0033324658256171
'year' => 2027
]
2 => [
'items' => [
101 => 0.016259694166539
102 => 0.016144223392391
103 => 0.016680769117485
104 => 0.016357166455206
105 => 0.016502884714216
106 => 0.016187921541863
107 => 0.016827902391859
108 => 0.016823026810043
109 => 0.016574059804772
110 => 0.016784485012774
111 => 0.016747918454574
112 => 0.016466835318801
113 => 0.016836813228622
114 => 0.016836996733049
115 => 0.016597371403485
116 => 0.016317541479284
117 => 0.016267514498124
118 => 0.016229825888
119 => 0.016493615626479
120 => 0.016730128681151
121 => 0.017170220839336
122 => 0.017280870464235
123 => 0.01771274331658
124 => 0.017455584060516
125 => 0.017569579427959
126 => 0.017693337524948
127 => 0.017752671707698
128 => 0.017655989840955
129 => 0.018326866146605
130 => 0.018383508661921
131 => 0.01840250040735
201 => 0.018176284691728
202 => 0.018377217193648
203 => 0.018283207530185
204 => 0.018527794557879
205 => 0.018566148926866
206 => 0.018533664140831
207 => 0.018545838422929
208 => 0.017973363846747
209 => 0.017943678019928
210 => 0.017538909664841
211 => 0.017703855761436
212 => 0.017395496939924
213 => 0.017493280698673
214 => 0.017536382847812
215 => 0.017513868731128
216 => 0.017713181566254
217 => 0.017543724939474
218 => 0.017096501040154
219 => 0.016649155294981
220 => 0.01664353923355
221 => 0.016525760995154
222 => 0.016440628900955
223 => 0.016457028362521
224 => 0.016514822204095
225 => 0.016437269817819
226 => 0.016453819551437
227 => 0.016728655399792
228 => 0.01678377176914
229 => 0.01659646481074
301 => 0.015844400344497
302 => 0.01565984183807
303 => 0.015792498832536
304 => 0.015729097333386
305 => 0.012694609153756
306 => 0.013407517140361
307 => 0.012983931422788
308 => 0.013179139209687
309 => 0.012746767879035
310 => 0.012953118140546
311 => 0.01291501278195
312 => 0.014061347727929
313 => 0.01404344928448
314 => 0.014052016322194
315 => 0.013643089290777
316 => 0.014294521155404
317 => 0.014615439916651
318 => 0.01455604639492
319 => 0.014570994464757
320 => 0.014314137099643
321 => 0.014054503262951
322 => 0.013766529380699
323 => 0.014301549259276
324 => 0.014242064181872
325 => 0.014378501547381
326 => 0.014725500182649
327 => 0.014776597049811
328 => 0.014845271757451
329 => 0.014820656763361
330 => 0.015407085786327
331 => 0.015336065362263
401 => 0.015507204150288
402 => 0.015155158678989
403 => 0.014756785811752
404 => 0.014832503470024
405 => 0.014825211250649
406 => 0.014732372928392
407 => 0.01464856264214
408 => 0.014509042128932
409 => 0.014950505677873
410 => 0.014932583063993
411 => 0.015222729349948
412 => 0.015171443175575
413 => 0.014828941551254
414 => 0.014841174063772
415 => 0.014923443589195
416 => 0.01520817935602
417 => 0.015292708317903
418 => 0.015253551134862
419 => 0.015346233282674
420 => 0.015419485473348
421 => 0.015355432630012
422 => 0.016262285816161
423 => 0.015885697147688
424 => 0.016069243844415
425 => 0.016113018650064
426 => 0.016000890405878
427 => 0.016025207007031
428 => 0.0160620400319
429 => 0.016285682946257
430 => 0.016872586665131
501 => 0.017132522327032
502 => 0.017914551590859
503 => 0.01711093828879
504 => 0.017063255201128
505 => 0.017204122286564
506 => 0.017663256250636
507 => 0.018035341204255
508 => 0.018158783249466
509 => 0.018175098153547
510 => 0.018406683636636
511 => 0.018539424116729
512 => 0.018378563067686
513 => 0.018242250171476
514 => 0.017753994297032
515 => 0.017810511243975
516 => 0.018199856963257
517 => 0.01874983072409
518 => 0.019221765425902
519 => 0.019056510341912
520 => 0.020317289980846
521 => 0.020442291132223
522 => 0.020425020014874
523 => 0.020709791240377
524 => 0.020144578350405
525 => 0.019902938889458
526 => 0.018271722566854
527 => 0.018730027817057
528 => 0.01939620141355
529 => 0.019308030840031
530 => 0.018824237767386
531 => 0.019221398425474
601 => 0.019090084691548
602 => 0.018986512101389
603 => 0.019460998215442
604 => 0.018939281242225
605 => 0.019390996887649
606 => 0.018811666899993
607 => 0.019057265213216
608 => 0.018917851732377
609 => 0.019008069340353
610 => 0.018480659047572
611 => 0.018765236839396
612 => 0.018468819675827
613 => 0.018468679135497
614 => 0.018462135710182
615 => 0.018810869188606
616 => 0.018822241374817
617 => 0.018564526807355
618 => 0.018527386111925
619 => 0.018664714729155
620 => 0.018503938884801
621 => 0.018579164890463
622 => 0.018506217403879
623 => 0.018489795388139
624 => 0.018358941972753
625 => 0.018302566723515
626 => 0.018324672911352
627 => 0.018249213095742
628 => 0.018203745827336
629 => 0.018453091126101
630 => 0.018319875991532
701 => 0.018432673996155
702 => 0.018304126433644
703 => 0.017858524576475
704 => 0.017602254236263
705 => 0.016760553635384
706 => 0.016999258881667
707 => 0.017157520706911
708 => 0.017105215174612
709 => 0.017217587697544
710 => 0.017224486457801
711 => 0.017187953005093
712 => 0.017145651947083
713 => 0.017125062131439
714 => 0.017278521748331
715 => 0.017367610221149
716 => 0.017173404398344
717 => 0.017127904691289
718 => 0.017324257500543
719 => 0.017444032600758
720 => 0.018328384644931
721 => 0.018262868989079
722 => 0.018427300428469
723 => 0.0184087879718
724 => 0.018581138316264
725 => 0.018862858288771
726 => 0.01829004281452
727 => 0.018389463774381
728 => 0.018365088050989
729 => 0.018631215807332
730 => 0.018632046629139
731 => 0.018472489745143
801 => 0.018558988120472
802 => 0.018510707100322
803 => 0.018597957429304
804 => 0.018261993987553
805 => 0.018671161194593
806 => 0.018903132634833
807 => 0.018906353558506
808 => 0.01901630618014
809 => 0.019128024411747
810 => 0.019342457828709
811 => 0.019122043980132
812 => 0.018725540923397
813 => 0.018754167163396
814 => 0.018521697566307
815 => 0.018525605422233
816 => 0.018504744981036
817 => 0.018567348735371
818 => 0.018275731991115
819 => 0.018344173858116
820 => 0.018248354843519
821 => 0.018389255482557
822 => 0.018237669686662
823 => 0.018365076296277
824 => 0.018420060765391
825 => 0.018622954640151
826 => 0.018207702096392
827 => 0.017360974049541
828 => 0.017538966550575
829 => 0.017275701660537
830 => 0.01730006782843
831 => 0.017349291365421
901 => 0.017189741777095
902 => 0.017220178810562
903 => 0.017219091385544
904 => 0.017209720544218
905 => 0.017168215534196
906 => 0.01710802505815
907 => 0.017347805389068
908 => 0.017388548739718
909 => 0.017479116161178
910 => 0.017748583374976
911 => 0.017721657245843
912 => 0.017765574879613
913 => 0.01766970293168
914 => 0.017304515053128
915 => 0.017324346511905
916 => 0.017077047903175
917 => 0.01747279217975
918 => 0.017379074711488
919 => 0.017318654450031
920 => 0.017302168221903
921 => 0.017572303392802
922 => 0.017653132069785
923 => 0.0176027650625
924 => 0.017499460861118
925 => 0.017697835466918
926 => 0.017750912142677
927 => 0.017762794052987
928 => 0.018114275819906
929 => 0.017782437979282
930 => 0.017862314645705
1001 => 0.018485489595333
1002 => 0.017920355908285
1003 => 0.0182197198263
1004 => 0.018205067520328
1005 => 0.018358211970861
1006 => 0.018192505205432
1007 => 0.018194559339387
1008 => 0.018330541236558
1009 => 0.018139579186446
1010 => 0.018092294297334
1011 => 0.018026970561685
1012 => 0.018169602548653
1013 => 0.01825510397415
1014 => 0.018944182669781
1015 => 0.019389358932965
1016 => 0.019370032657311
1017 => 0.019546638639514
1018 => 0.019467076027006
1019 => 0.019210147363662
1020 => 0.019648693262878
1021 => 0.019509918990826
1022 => 0.019521359373203
1023 => 0.0195209335616
1024 => 0.019613206320657
1025 => 0.019547822614191
1026 => 0.019418944617247
1027 => 0.019504499846102
1028 => 0.01975856828925
1029 => 0.020547204532553
1030 => 0.020988535822345
1031 => 0.020520635834755
1101 => 0.020843386980764
1102 => 0.020649851301151
1103 => 0.020614680110977
1104 => 0.020817391681793
1105 => 0.02102045807238
1106 => 0.021007523621179
1107 => 0.020860107849188
1108 => 0.020776836420127
1109 => 0.021407395578953
1110 => 0.02187198082588
1111 => 0.021840299226659
1112 => 0.021980131502214
1113 => 0.022390683388094
1114 => 0.022428219107335
1115 => 0.02242349046946
1116 => 0.022330454272873
1117 => 0.022734695921421
1118 => 0.023071921416595
1119 => 0.022308919081438
1120 => 0.022599460382232
1121 => 0.022729893732814
1122 => 0.022921408589301
1123 => 0.02324452625381
1124 => 0.023595517740195
1125 => 0.023645151784796
1126 => 0.023609934054944
1127 => 0.023378445734516
1128 => 0.023762504807117
1129 => 0.023987477604554
1130 => 0.024121443757017
1201 => 0.02446115962982
1202 => 0.022730699244783
1203 => 0.021505793374792
1204 => 0.021314506635338
1205 => 0.021703495741997
1206 => 0.021806069067294
1207 => 0.021764721888483
1208 => 0.020385978968239
1209 => 0.0213072478392
1210 => 0.022298455681868
1211 => 0.022336532011926
1212 => 0.022832751383144
1213 => 0.022994340751131
1214 => 0.023393862385922
1215 => 0.023368872198888
1216 => 0.023466149359181
1217 => 0.023443787024635
1218 => 0.024183816723879
1219 => 0.025000179377618
1220 => 0.024971911334793
1221 => 0.024854549544554
1222 => 0.025028851816218
1223 => 0.025871425561616
1224 => 0.025793854873109
1225 => 0.025869208189538
1226 => 0.026862650120737
1227 => 0.028154265946762
1228 => 0.027554180719465
1229 => 0.028856192992828
1230 => 0.029675740702205
1231 => 0.031093063722758
]
'min_raw' => 0.012694609153756
'max_raw' => 0.031093063722758
'avg_raw' => 0.021893836438257
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012694'
'max' => '$0.031093'
'avg' => '$0.021893'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0056604403045852
'max_diff' => 0.012614256810431
'year' => 2028
]
3 => [
'items' => [
101 => 0.030915607900122
102 => 0.031467361351226
103 => 0.030597924941455
104 => 0.028601523202531
105 => 0.028285584985428
106 => 0.028918101296899
107 => 0.030473080928612
108 => 0.028869129454594
109 => 0.029193606748797
110 => 0.029100157266237
111 => 0.029095177740446
112 => 0.029285225986688
113 => 0.029009551093265
114 => 0.027886401984491
115 => 0.028401134602283
116 => 0.028202371619063
117 => 0.028422913967707
118 => 0.029613090064758
119 => 0.029086884841998
120 => 0.02853257038526
121 => 0.029227803726234
122 => 0.030113074677389
123 => 0.030057676012251
124 => 0.029950179447036
125 => 0.030556131956812
126 => 0.031556987975534
127 => 0.031827515335629
128 => 0.032027213102163
129 => 0.032054748050247
130 => 0.032338375128383
131 => 0.030813240846018
201 => 0.033233668120357
202 => 0.033651609047682
203 => 0.033573053475221
204 => 0.0340375772263
205 => 0.033900902554902
206 => 0.033702882399646
207 => 0.034439251352141
208 => 0.033595063770016
209 => 0.032396845777452
210 => 0.031739479688666
211 => 0.032605152382589
212 => 0.033133788488954
213 => 0.03348318332769
214 => 0.033588909994781
215 => 0.030931632678857
216 => 0.02949950758493
217 => 0.03041748335079
218 => 0.031537477140441
219 => 0.030807019223966
220 => 0.030835651791352
221 => 0.029794210763422
222 => 0.031629621562663
223 => 0.031362217647449
224 => 0.032749509632612
225 => 0.032418421266639
226 => 0.033549704026176
227 => 0.033251799362176
228 => 0.034488384966814
301 => 0.034981692443723
302 => 0.035810032474631
303 => 0.036419362773317
304 => 0.036777173179337
305 => 0.036755691584672
306 => 0.03817351467376
307 => 0.037337473933091
308 => 0.036287209723137
309 => 0.03626821375712
310 => 0.036812160473814
311 => 0.037952123567511
312 => 0.038247699411918
313 => 0.038412885985743
314 => 0.038159896997743
315 => 0.037252434693327
316 => 0.036860597071218
317 => 0.037194454077884
318 => 0.036786175647392
319 => 0.037490978761116
320 => 0.038458823974081
321 => 0.038258967764879
322 => 0.038927057108126
323 => 0.039618459293338
324 => 0.040607195471006
325 => 0.040865687720643
326 => 0.041292965579713
327 => 0.041732774850161
328 => 0.041874029734637
329 => 0.042143729137918
330 => 0.042142307688935
331 => 0.042955064993586
401 => 0.043851561469613
402 => 0.044189968135373
403 => 0.044968115603434
404 => 0.043635565333919
405 => 0.04464632002058
406 => 0.04555804604878
407 => 0.044471048691908
408 => 0.045969221310454
409 => 0.0460273919583
410 => 0.0469056996774
411 => 0.046015366540693
412 => 0.045486689566161
413 => 0.047012960182369
414 => 0.047751474456478
415 => 0.047529027946888
416 => 0.045836199025367
417 => 0.044850899984195
418 => 0.042272182343454
419 => 0.045326784781223
420 => 0.046814592524686
421 => 0.04583234596274
422 => 0.046327733994715
423 => 0.049030410467062
424 => 0.05005941468239
425 => 0.049845388998884
426 => 0.049881555816234
427 => 0.050436787813077
428 => 0.052898992258924
429 => 0.05142358228152
430 => 0.052551477926688
501 => 0.053149709709955
502 => 0.053705380730073
503 => 0.052340828326293
504 => 0.050565565698231
505 => 0.050003265503469
506 => 0.045734680900118
507 => 0.04551248253399
508 => 0.045387755857783
509 => 0.044601371807236
510 => 0.043983489352226
511 => 0.043492126283498
512 => 0.04220264285772
513 => 0.042637805660737
514 => 0.040582638216155
515 => 0.041897461516537
516 => 0.038617364651231
517 => 0.041349126789262
518 => 0.039862352855515
519 => 0.040860681565369
520 => 0.040857198490549
521 => 0.039018958815301
522 => 0.037958700533701
523 => 0.038634338376606
524 => 0.039358675776399
525 => 0.039476197082552
526 => 0.040415319428524
527 => 0.040677408288917
528 => 0.039883266806166
529 => 0.038549391934409
530 => 0.038859220644671
531 => 0.037952421864776
601 => 0.036363291882522
602 => 0.037504632779325
603 => 0.03789433674271
604 => 0.038066452213886
605 => 0.03650372538915
606 => 0.036012682692368
607 => 0.035751255680849
608 => 0.038347663525218
609 => 0.038489900607992
610 => 0.037762195582224
611 => 0.041051491302518
612 => 0.040307022376382
613 => 0.041138776566191
614 => 0.038831106936686
615 => 0.038919263024222
616 => 0.037826775239568
617 => 0.038438495398914
618 => 0.03800615130695
619 => 0.038389074455176
620 => 0.038618597011371
621 => 0.03971090552953
622 => 0.04136159919794
623 => 0.039547751062196
624 => 0.038757431454668
625 => 0.039247741294252
626 => 0.040553501009339
627 => 0.042531793818306
628 => 0.041360604658544
629 => 0.041880358519565
630 => 0.041993901615958
701 => 0.041130310089329
702 => 0.042563635669707
703 => 0.043331766492547
704 => 0.044119709774504
705 => 0.044803858848558
706 => 0.043804987900447
707 => 0.044873922997452
708 => 0.044012550001711
709 => 0.043239809377429
710 => 0.043240981305982
711 => 0.04275622982443
712 => 0.041816962746306
713 => 0.041643747486158
714 => 0.042544835144126
715 => 0.043267422112497
716 => 0.043326937836171
717 => 0.04372699910972
718 => 0.043963751250448
719 => 0.046284244078508
720 => 0.047217565490077
721 => 0.048358813245273
722 => 0.048803393563122
723 => 0.05014142092898
724 => 0.04906085516178
725 => 0.048827067960969
726 => 0.045581451236813
727 => 0.046112920793571
728 => 0.046963854833125
729 => 0.045595482825707
730 => 0.046463399908594
731 => 0.046634745125754
801 => 0.045548986068509
802 => 0.046128936893863
803 => 0.044588759445159
804 => 0.041395170857503
805 => 0.042567191046741
806 => 0.04343019240375
807 => 0.042198583059998
808 => 0.04440619513881
809 => 0.043116553736731
810 => 0.042707799325977
811 => 0.041113102638155
812 => 0.041865738089302
813 => 0.042883688313681
814 => 0.04225471342443
815 => 0.04355993076068
816 => 0.045408466597557
817 => 0.046725843317129
818 => 0.046826975143726
819 => 0.045979990170427
820 => 0.047337288995524
821 => 0.047347175435668
822 => 0.04581613681623
823 => 0.044878384186682
824 => 0.044665324816201
825 => 0.045197588896414
826 => 0.045843855751162
827 => 0.046862838456376
828 => 0.047478588364029
829 => 0.049084137554673
830 => 0.049518553130959
831 => 0.049995844142724
901 => 0.050633652125538
902 => 0.051399504139517
903 => 0.049723863532911
904 => 0.049790439857996
905 => 0.048230106525947
906 => 0.046562666586219
907 => 0.04782804565115
908 => 0.049482360452225
909 => 0.049102858809003
910 => 0.049060157121625
911 => 0.049131969515334
912 => 0.048845837669709
913 => 0.047551673936491
914 => 0.046901753011563
915 => 0.047740316817232
916 => 0.048185976159764
917 => 0.048877154934452
918 => 0.048791952561458
919 => 0.050572354857873
920 => 0.051264165353689
921 => 0.051087170624619
922 => 0.051119741914384
923 => 0.052372231771883
924 => 0.053765258087607
925 => 0.055070011058295
926 => 0.056397261820522
927 => 0.054797209223178
928 => 0.053984801191771
929 => 0.054822998906715
930 => 0.054378239400679
1001 => 0.056933959446603
1002 => 0.057110911957516
1003 => 0.059666447195791
1004 => 0.06209195444439
1005 => 0.060568536799021
1006 => 0.062005051022366
1007 => 0.063558758275637
1008 => 0.066556111647113
1009 => 0.065546708479763
1010 => 0.064773521472937
1011 => 0.064042863487499
1012 => 0.065563246766507
1013 => 0.067519195566235
1014 => 0.067940488203852
1015 => 0.068623143222965
1016 => 0.067905414941452
1017 => 0.068769839601357
1018 => 0.071821638498267
1019 => 0.070997015497348
1020 => 0.069825918271281
1021 => 0.07223502040251
1022 => 0.073106865098654
1023 => 0.079225927764807
1024 => 0.086951497146696
1025 => 0.08375306069377
1026 => 0.08176768797454
1027 => 0.08223429765723
1028 => 0.085055414068468
1029 => 0.085961467121999
1030 => 0.083498502587286
1031 => 0.084368463298925
1101 => 0.08916203235271
1102 => 0.091733628353957
1103 => 0.088241055572842
1104 => 0.078605185787191
1105 => 0.069720473779326
1106 => 0.072077099487608
1107 => 0.071809931266898
1108 => 0.076960023205272
1109 => 0.070977348511497
1110 => 0.071078081409916
1111 => 0.076334671795533
1112 => 0.074932303601424
1113 => 0.072660646728716
1114 => 0.069737059388462
1115 => 0.064332537790907
1116 => 0.059545602295717
1117 => 0.068933885167189
1118 => 0.068529045338287
1119 => 0.067942777272135
1120 => 0.069247453412525
1121 => 0.07558259041148
1122 => 0.075436544998817
1123 => 0.074507478596478
1124 => 0.075212167274236
1125 => 0.072537111396385
1126 => 0.073226534205997
1127 => 0.06971906639555
1128 => 0.071304588330667
1129 => 0.07265577277332
1130 => 0.07292704305481
1201 => 0.073538228850411
1202 => 0.068315713144519
1203 => 0.070660469371459
1204 => 0.072037793980839
1205 => 0.065814991288163
1206 => 0.071914789179441
1207 => 0.068224800765128
1208 => 0.066972363275544
1209 => 0.068658605359177
1210 => 0.068001475179261
1211 => 0.067436513238548
1212 => 0.067121254768352
1213 => 0.068359444850825
1214 => 0.06830168180352
1215 => 0.066275762506257
1216 => 0.063633033370012
1217 => 0.064520020012762
1218 => 0.064197769449907
1219 => 0.063029891838969
1220 => 0.063816900338661
1221 => 0.060351313201905
1222 => 0.054388950658662
1223 => 0.058327869986832
1224 => 0.058176225877417
1225 => 0.058099760040937
1226 => 0.061059749052323
1227 => 0.060775214407444
1228 => 0.060258781240817
1229 => 0.063020407138872
1230 => 0.062012376536972
1231 => 0.065118889330148
]
'min_raw' => 0.027886401984491
'max_raw' => 0.091733628353957
'avg_raw' => 0.059810015169224
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.027886'
'max' => '$0.091733'
'avg' => '$0.05981'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.015191792830735
'max_diff' => 0.060640564631199
'year' => 2029
]
4 => [
'items' => [
101 => 0.067165039572385
102 => 0.066646069684927
103 => 0.068570483877653
104 => 0.06454045439355
105 => 0.06587906853145
106 => 0.066154955050032
107 => 0.062986329103966
108 => 0.060821767794246
109 => 0.060677416232693
110 => 0.05692436521656
111 => 0.058929214775809
112 => 0.060693399421636
113 => 0.059848491882544
114 => 0.059581019396562
115 => 0.060947478319739
116 => 0.061053663880999
117 => 0.058632621831228
118 => 0.059136033137806
119 => 0.061235341971403
120 => 0.059083135941471
121 => 0.054901751186173
122 => 0.053864709954692
123 => 0.05372634953795
124 => 0.050913811469396
125 => 0.053934010008585
126 => 0.05261561240994
127 => 0.05678041462723
128 => 0.054401501936996
129 => 0.054298951765593
130 => 0.054143932140677
131 => 0.051723064440588
201 => 0.052253080612739
202 => 0.054014935092712
203 => 0.054643584619877
204 => 0.05457801132382
205 => 0.054006301044583
206 => 0.054268027082788
207 => 0.053424916322335
208 => 0.053127196364987
209 => 0.052187510285268
210 => 0.050806431342987
211 => 0.050998478840561
212 => 0.04826220007694
213 => 0.046771330181213
214 => 0.046358677043426
215 => 0.045806860021614
216 => 0.046421006244368
217 => 0.048254448542998
218 => 0.046042928144369
219 => 0.042251431541038
220 => 0.042479306947294
221 => 0.042991275328336
222 => 0.042037225637274
223 => 0.041134297672005
224 => 0.041919320280945
225 => 0.040312813187697
226 => 0.043185414035376
227 => 0.043107718232817
228 => 0.044178446188388
301 => 0.044847994352555
302 => 0.043304902602941
303 => 0.042916819200877
304 => 0.0431378891441
305 => 0.039484095422009
306 => 0.043879853289949
307 => 0.043917867986529
308 => 0.043592363075022
309 => 0.045932968435902
310 => 0.050872375800479
311 => 0.049013972062724
312 => 0.048294341964915
313 => 0.046926324622934
314 => 0.048749126506292
315 => 0.048609163761789
316 => 0.047976199151852
317 => 0.047593380180793
318 => 0.04829873587284
319 => 0.047505978804722
320 => 0.047363577851781
321 => 0.046500783010721
322 => 0.046192804507127
323 => 0.045964789484043
324 => 0.045713767347921
325 => 0.046267459629387
326 => 0.0450127200753
327 => 0.043499627176706
328 => 0.04337382987408
329 => 0.043721167286842
330 => 0.043567496337924
331 => 0.043373094156698
401 => 0.043001927450453
402 => 0.042891810217432
403 => 0.043249637803464
404 => 0.042845671321479
405 => 0.04344174587084
406 => 0.043279646575723
407 => 0.042374173090188
408 => 0.04124561787799
409 => 0.041235571369377
410 => 0.04099242600011
411 => 0.040682743815198
412 => 0.040596597315924
413 => 0.041853207866426
414 => 0.044454354098776
415 => 0.043943686853212
416 => 0.044312696273417
417 => 0.046127857398777
418 => 0.046704842536729
419 => 0.046295312152452
420 => 0.04573472170372
421 => 0.04575938483842
422 => 0.047675092104006
423 => 0.047794572416307
424 => 0.04809646061968
425 => 0.048484472274611
426 => 0.046361392215097
427 => 0.045659387958542
428 => 0.045326739396073
429 => 0.044302310574864
430 => 0.045407069230649
501 => 0.044763373672405
502 => 0.044850230194984
503 => 0.04479366477071
504 => 0.044824553317301
505 => 0.043184611084896
506 => 0.043782119841558
507 => 0.042788645644878
508 => 0.041458495218235
509 => 0.041454036087594
510 => 0.041779588520092
511 => 0.041585937194374
512 => 0.041064826456099
513 => 0.041138847776897
514 => 0.040490343117806
515 => 0.041217587984067
516 => 0.041238442764624
517 => 0.040958413877818
518 => 0.042078834934745
519 => 0.042537872355944
520 => 0.042353551343848
521 => 0.042524939902373
522 => 0.043964907382789
523 => 0.044199684912283
524 => 0.044303957582351
525 => 0.044164246017942
526 => 0.04255125986453
527 => 0.04262280265938
528 => 0.042097869100157
529 => 0.041654355558749
530 => 0.041672093774483
531 => 0.041900117387492
601 => 0.042895909878907
602 => 0.044991496471916
603 => 0.045071022451267
604 => 0.045167410258177
605 => 0.044775352606845
606 => 0.044657104267717
607 => 0.044813104349513
608 => 0.045600096493139
609 => 0.047624453952827
610 => 0.046908910824284
611 => 0.046327163122687
612 => 0.046837512695042
613 => 0.04675894837863
614 => 0.04609578648378
615 => 0.046077173738121
616 => 0.044804354036221
617 => 0.044333821573131
618 => 0.043940609428228
619 => 0.043511232031057
620 => 0.043256682717154
621 => 0.043647786153904
622 => 0.043737236137288
623 => 0.042882081637517
624 => 0.042765527239102
625 => 0.043463864863408
626 => 0.043156552511602
627 => 0.043472630886414
628 => 0.04354596378064
629 => 0.04353415549567
630 => 0.043213286105786
701 => 0.043417798686435
702 => 0.042934065465065
703 => 0.042408078241205
704 => 0.042072531162544
705 => 0.041779721832552
706 => 0.04194218946701
707 => 0.041363022015585
708 => 0.041177734691536
709 => 0.04334851442579
710 => 0.044952092755298
711 => 0.0449287760913
712 => 0.044786841895773
713 => 0.044575956471519
714 => 0.04558466891083
715 => 0.045233253666816
716 => 0.045488937618563
717 => 0.045554019915304
718 => 0.045751004426005
719 => 0.04582140945719
720 => 0.045608596553511
721 => 0.044894370455856
722 => 0.043114586927079
723 => 0.042286092889999
724 => 0.042012676058103
725 => 0.04202261424065
726 => 0.041748474800005
727 => 0.041829221151343
728 => 0.041720394514246
729 => 0.041514303191576
730 => 0.041929463908585
731 => 0.041977307313731
801 => 0.04188040384158
802 => 0.041903228117228
803 => 0.041100908755832
804 => 0.041161907354333
805 => 0.040822259406553
806 => 0.040758579510861
807 => 0.039899979075404
808 => 0.038378843947867
809 => 0.039221700468682
810 => 0.038203648315099
811 => 0.03781809653853
812 => 0.039643238683205
813 => 0.039460045033443
814 => 0.039146497137415
815 => 0.038682694450082
816 => 0.038510665521768
817 => 0.037465472211072
818 => 0.037403716614387
819 => 0.037921742641761
820 => 0.037682691454315
821 => 0.037346973051376
822 => 0.036131035027162
823 => 0.0347639181047
824 => 0.034805182771199
825 => 0.035240037228119
826 => 0.036504435209729
827 => 0.036010413044007
828 => 0.035651994294524
829 => 0.035584873236774
830 => 0.036425033801968
831 => 0.037614037020798
901 => 0.038171890728625
902 => 0.037619074646438
903 => 0.036984029296952
904 => 0.037022681564858
905 => 0.037279817786718
906 => 0.037306839167925
907 => 0.036893489929127
908 => 0.037009845318642
909 => 0.036833090842209
910 => 0.035748348946604
911 => 0.035728729405466
912 => 0.035462516250459
913 => 0.035454455421925
914 => 0.035001560435274
915 => 0.034938197295926
916 => 0.03403894681117
917 => 0.034630836203418
918 => 0.034233827874686
919 => 0.033635442678489
920 => 0.03353228084512
921 => 0.033529179675837
922 => 0.03414358747585
923 => 0.034623656490549
924 => 0.034240734004538
925 => 0.034153549977114
926 => 0.035084447297989
927 => 0.03496598212859
928 => 0.034863392055909
929 => 0.037507574823653
930 => 0.035414497834829
1001 => 0.034501796799044
1002 => 0.033372155950034
1003 => 0.033739972706615
1004 => 0.033817477101579
1005 => 0.031100894492778
1006 => 0.029998777266716
1007 => 0.029620572167144
1008 => 0.029402909785304
1009 => 0.029502101265941
1010 => 0.028510066497028
1011 => 0.029176730268478
1012 => 0.028317712013211
1013 => 0.028173694807228
1014 => 0.029709725859587
1015 => 0.02992345560716
1016 => 0.029011618103388
1017 => 0.029597165393892
1018 => 0.029384837806639
1019 => 0.028332437415666
1020 => 0.028292243461664
1021 => 0.027764185939136
1022 => 0.026937878168464
1023 => 0.02656023334447
1024 => 0.026363552641271
1025 => 0.026444706932642
1026 => 0.026403672839562
1027 => 0.026135897625691
1028 => 0.026419021401375
1029 => 0.025695757149323
1030 => 0.02540774749642
1031 => 0.025277660217977
1101 => 0.024635721564744
1102 => 0.025657331433453
1103 => 0.02585860144749
1104 => 0.026060268025631
1105 => 0.027815637904726
1106 => 0.02772794458619
1107 => 0.028520649477375
1108 => 0.028489846422994
1109 => 0.02826375414706
1110 => 0.02730990802527
1111 => 0.027690094088743
1112 => 0.026519940479404
1113 => 0.027396699126232
1114 => 0.026996583094136
1115 => 0.0272614194933
1116 => 0.026785219768268
1117 => 0.027048768357905
1118 => 0.025906330034444
1119 => 0.024839537202536
1120 => 0.02526884577972
1121 => 0.02573555330051
1122 => 0.026747494120446
1123 => 0.026144790516423
1124 => 0.026361545523176
1125 => 0.025635452534902
1126 => 0.024137315301884
1127 => 0.024145794595926
1128 => 0.02391533882132
1129 => 0.023716191384966
1130 => 0.026214018275511
1201 => 0.025903374016872
1202 => 0.025408403046846
1203 => 0.02607094135959
1204 => 0.026246127005376
1205 => 0.02625111429443
1206 => 0.026734485144819
1207 => 0.02699246025432
1208 => 0.027037929485498
1209 => 0.027798523962503
1210 => 0.028053465198712
1211 => 0.02910353207002
1212 => 0.026970572868651
1213 => 0.026926645977531
1214 => 0.026080264632347
1215 => 0.025543476202471
1216 => 0.026117018995383
1217 => 0.026625099613504
1218 => 0.026096052113421
1219 => 0.026165134548129
1220 => 0.025454931504037
1221 => 0.025708795674141
1222 => 0.025927457696631
1223 => 0.025806725380171
1224 => 0.025625983258921
1225 => 0.026583442796893
1226 => 0.026529419177447
1227 => 0.027421027511105
1228 => 0.028116099966716
1229 => 0.029361794066234
1230 => 0.028061847333885
1231 => 0.028014472108138
]
'min_raw' => 0.023716191384966
'max_raw' => 0.068570483877653
'avg_raw' => 0.04614333763131
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.023716'
'max' => '$0.06857'
'avg' => '$0.046143'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0041702105995247
'max_diff' => -0.023163144476304
'year' => 2030
]
5 => [
'items' => [
101 => 0.028477572539041
102 => 0.028053394300449
103 => 0.028321460305104
104 => 0.0293186044886
105 => 0.029339672573918
106 => 0.028986755000146
107 => 0.028965279933709
108 => 0.029033061614247
109 => 0.029430061034281
110 => 0.029291337238361
111 => 0.029451871927056
112 => 0.029652623013464
113 => 0.030483014623544
114 => 0.030683219229457
115 => 0.030196825831276
116 => 0.030240741709216
117 => 0.030058817226499
118 => 0.029883080455701
119 => 0.03027811105216
120 => 0.031000037231533
121 => 0.030995546166239
122 => 0.031163019007614
123 => 0.031267353200371
124 => 0.030819474467762
125 => 0.030527921881791
126 => 0.030639721695226
127 => 0.03081849203159
128 => 0.030581748884549
129 => 0.029120460510916
130 => 0.029563722056014
131 => 0.029489941660527
201 => 0.029384869405352
202 => 0.029830572316588
203 => 0.0297875831835
204 => 0.028499891746609
205 => 0.028582325574494
206 => 0.028504904820712
207 => 0.028755067114978
208 => 0.028039884715596
209 => 0.028259870004819
210 => 0.028397842715985
211 => 0.028479109702819
212 => 0.028772701784556
213 => 0.028738252142391
214 => 0.028770560346429
215 => 0.029205879898209
216 => 0.031407576807482
217 => 0.031527410312483
218 => 0.030937306306811
219 => 0.03117304121779
220 => 0.030720481738269
221 => 0.031024287948757
222 => 0.031232144442131
223 => 0.030292880917076
224 => 0.030237263826892
225 => 0.029782836473414
226 => 0.030027019993092
227 => 0.029638506455867
228 => 0.029733834088276
301 => 0.029467289717549
302 => 0.029947016516403
303 => 0.030483425619529
304 => 0.030618943742417
305 => 0.030262453905321
306 => 0.030004331769438
307 => 0.029551154329545
308 => 0.030304798511804
309 => 0.030525187037587
310 => 0.030303640904701
311 => 0.030252303824832
312 => 0.030155020151246
313 => 0.030272943016073
314 => 0.030523986754345
315 => 0.030405599163426
316 => 0.030483796252949
317 => 0.030185789584176
318 => 0.030819622734259
319 => 0.031826302316845
320 => 0.031829538956311
321 => 0.031711150727239
322 => 0.031662708814613
323 => 0.031784182322039
324 => 0.031850076716714
325 => 0.0322428997653
326 => 0.032664414547193
327 => 0.034631440112982
328 => 0.034079107205289
329 => 0.035824369306131
330 => 0.037204645033976
331 => 0.037618529372615
401 => 0.03723777525583
402 => 0.035935235990244
403 => 0.035871327199783
404 => 0.037817870780462
405 => 0.037267883061576
406 => 0.037202463772461
407 => 0.03650651306391
408 => 0.036917906127836
409 => 0.036827928429983
410 => 0.036685894232063
411 => 0.037470803540144
412 => 0.038940083695534
413 => 0.038711082604494
414 => 0.038540143913088
415 => 0.037791140326851
416 => 0.038242207781773
417 => 0.038081591300704
418 => 0.038771701633117
419 => 0.038362895560011
420 => 0.037263716363677
421 => 0.037438764273636
422 => 0.037412306134193
423 => 0.037956812769079
424 => 0.037793365392772
425 => 0.037380390410732
426 => 0.038935061855694
427 => 0.038834110139595
428 => 0.038977236592248
429 => 0.039040245283039
430 => 0.039986546395203
501 => 0.040374215682599
502 => 0.040462223397944
503 => 0.040830479237551
504 => 0.040453060857181
505 => 0.041963003473405
506 => 0.042967027205601
507 => 0.044133252437134
508 => 0.045837420952195
509 => 0.046478204078298
510 => 0.046362452341995
511 => 0.047654533460708
512 => 0.049976374509685
513 => 0.04683176280197
514 => 0.050143046565908
515 => 0.049094732356855
516 => 0.046609198225556
517 => 0.046449159130023
518 => 0.048132391701383
519 => 0.051865639539528
520 => 0.050930503298219
521 => 0.051867169087415
522 => 0.050774498690385
523 => 0.050720238395424
524 => 0.051814100525118
525 => 0.054369969014469
526 => 0.053155771700476
527 => 0.051414922117471
528 => 0.052700338358942
529 => 0.051586791850923
530 => 0.049077659906311
531 => 0.050929788217159
601 => 0.049691322761273
602 => 0.050052772821745
603 => 0.052655843002185
604 => 0.052342634711205
605 => 0.05274795524204
606 => 0.052032575114202
607 => 0.051364297269709
608 => 0.050116907045999
609 => 0.049747616296353
610 => 0.049849674973866
611 => 0.049747565721141
612 => 0.049049662355083
613 => 0.048898950189631
614 => 0.048647756644359
615 => 0.048725612027615
616 => 0.04825329467324
617 => 0.04914465510669
618 => 0.04931009945778
619 => 0.049958757247953
620 => 0.050026103051569
621 => 0.051832605764137
622 => 0.050837614427099
623 => 0.051505140519403
624 => 0.051445430702708
625 => 0.04666306728698
626 => 0.047322034770518
627 => 0.048347181379514
628 => 0.047885354221715
629 => 0.047232438671498
630 => 0.046705174357581
701 => 0.045906315006452
702 => 0.047030694202431
703 => 0.048509133280745
704 => 0.050063598706391
705 => 0.051931187062695
706 => 0.051514363082693
707 => 0.050028685441137
708 => 0.050095331854849
709 => 0.05050731376002
710 => 0.049973759760321
711 => 0.049816404269598
712 => 0.050485695531952
713 => 0.05049030457304
714 => 0.049876386214232
715 => 0.04919412830429
716 => 0.049191269618736
717 => 0.049069868413491
718 => 0.050796095695104
719 => 0.051745346158727
720 => 0.051854176194588
721 => 0.051738021030202
722 => 0.05178272454294
723 => 0.051230376613465
724 => 0.052492880186556
725 => 0.053651478313887
726 => 0.053340949265923
727 => 0.052875422078721
728 => 0.052504607251287
729 => 0.053253597077245
730 => 0.053220245739314
731 => 0.053641358969983
801 => 0.053622254841372
802 => 0.053480650300768
803 => 0.053340954323067
804 => 0.053894833084133
805 => 0.053735324895967
806 => 0.053575568947527
807 => 0.053255153935519
808 => 0.053298703657181
809 => 0.052833256849811
810 => 0.052617919859325
811 => 0.049379768188096
812 => 0.048514428251886
813 => 0.048786681811436
814 => 0.048876314752301
815 => 0.048499717703099
816 => 0.04903966113181
817 => 0.048955511520387
818 => 0.049282888432558
819 => 0.049078357550887
820 => 0.049086751569614
821 => 0.049688233282027
822 => 0.049862845982027
823 => 0.04977403655351
824 => 0.049836235633034
825 => 0.051269587168082
826 => 0.0510658104158
827 => 0.050957558077572
828 => 0.050987544715071
829 => 0.051353796763679
830 => 0.051456327340669
831 => 0.051021898081267
901 => 0.051226777431407
902 => 0.05209912770124
903 => 0.052404400924932
904 => 0.053378686515498
905 => 0.052964792680081
906 => 0.053724512727896
907 => 0.05605963314723
908 => 0.057925088916236
909 => 0.056209538697838
910 => 0.059635210653258
911 => 0.062302587654009
912 => 0.062200209281971
913 => 0.061735090404349
914 => 0.05869835260488
915 => 0.0559039012066
916 => 0.058241578459935
917 => 0.058247537680002
918 => 0.058046729130757
919 => 0.056799524477685
920 => 0.058003329112303
921 => 0.058098882752623
922 => 0.058045398123807
923 => 0.057089169240523
924 => 0.055629184476387
925 => 0.055914462004589
926 => 0.056381752415289
927 => 0.055497074180842
928 => 0.055214365880392
929 => 0.055739974398384
930 => 0.057433594558237
1001 => 0.05711342547749
1002 => 0.057105064568887
1003 => 0.058474883669141
1004 => 0.057494388818823
1005 => 0.055918060267805
1006 => 0.055520016519454
1007 => 0.054107229367204
1008 => 0.055083046485438
1009 => 0.05511816440631
1010 => 0.054583719343262
1011 => 0.055961427539176
1012 => 0.05594873171561
1013 => 0.057256660602827
1014 => 0.05975692939953
1015 => 0.05901747688559
1016 => 0.058157574064082
1017 => 0.058251069343299
1018 => 0.059276481790295
1019 => 0.058656494016952
1020 => 0.058879445942955
1021 => 0.059276144325853
1022 => 0.059515482309722
1023 => 0.058216632290622
1024 => 0.057913808219992
1025 => 0.057294336448289
1026 => 0.057132727826039
1027 => 0.057637274658389
1028 => 0.057504344393968
1029 => 0.055115212881044
1030 => 0.054865535344941
1031 => 0.054873192598516
1101 => 0.054245366562465
1102 => 0.053287781161975
1103 => 0.05580425842001
1104 => 0.055602150078113
1105 => 0.055379038110603
1106 => 0.055406368053563
1107 => 0.056498685539949
1108 => 0.05586508623449
1109 => 0.057549613832936
1110 => 0.05720332560023
1111 => 0.056848156381021
1112 => 0.056799061176207
1113 => 0.056662351328425
1114 => 0.056193522392887
1115 => 0.055627383280974
1116 => 0.055253569201159
1117 => 0.050968496895452
1118 => 0.051763781390272
1119 => 0.0526786837091
1120 => 0.052994504323319
1121 => 0.052454271308577
1122 => 0.056214854085068
1123 => 0.05690194879621
1124 => 0.054820694098081
1125 => 0.054431376321131
1126 => 0.056240377693711
1127 => 0.055149328724621
1128 => 0.055640628008596
1129 => 0.054578707682983
1130 => 0.056736447800778
1201 => 0.056720009436284
1202 => 0.055880599795691
1203 => 0.056590063075891
1204 => 0.056466776371922
1205 => 0.055519084955067
1206 => 0.056766491309059
1207 => 0.056767110007048
1208 => 0.055959196478316
1209 => 0.05501573035177
1210 => 0.054847060892019
1211 => 0.054719991111651
1212 => 0.055609376632145
1213 => 0.056406796908784
1214 => 0.057890598346357
1215 => 0.058263661282015
1216 => 0.059719750756096
1217 => 0.058852720369991
1218 => 0.059237063710228
1219 => 0.059654322774741
1220 => 0.059854372114462
1221 => 0.059528402450626
1222 => 0.061790308754212
1223 => 0.061981282949253
1224 => 0.06204531494493
1225 => 0.061282612865833
1226 => 0.061960070824715
1227 => 0.061643110680804
1228 => 0.062467752921198
1229 => 0.062597067354052
1230 => 0.062487542629919
1231 => 0.062528589071996
]
'min_raw' => 0.028039884715596
'max_raw' => 0.062597067354052
'avg_raw' => 0.045318476034824
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.028039'
'max' => '$0.062597'
'avg' => '$0.045318'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0043236933306293
'max_diff' => -0.0059734165236005
'year' => 2031
]
6 => [
'items' => [
101 => 0.0605984510695
102 => 0.060498363231782
103 => 0.059133658462581
104 => 0.059689785743419
105 => 0.058650132447767
106 => 0.058979817217434
107 => 0.059125139122551
108 => 0.059049231206263
109 => 0.059721228345471
110 => 0.059149893497199
111 => 0.057642046896464
112 => 0.056133789483931
113 => 0.056114854540716
114 => 0.055717756986951
115 => 0.055430728187623
116 => 0.055486020117267
117 => 0.055680876089173
118 => 0.055419402804307
119 => 0.055475201386665
120 => 0.056401829637821
121 => 0.05658765832518
122 => 0.055956139837579
123 => 0.053420501982179
124 => 0.052798250092297
125 => 0.053245512410953
126 => 0.053031749830018
127 => 0.042800761071197
128 => 0.045204380121681
129 => 0.043776231301074
130 => 0.044434387983577
131 => 0.042976617855082
201 => 0.043672342168678
202 => 0.043543867291741
203 => 0.04740881559666
204 => 0.047348469744942
205 => 0.047377354110728
206 => 0.045998628073931
207 => 0.04819497608704
208 => 0.049276976096418
209 => 0.04907672669118
210 => 0.049127125152274
211 => 0.048261112612583
212 => 0.047385739005122
213 => 0.046414814955415
214 => 0.048218671829931
215 => 0.048018113738348
216 => 0.048478121841915
217 => 0.049648051967391
218 => 0.0498203286225
219 => 0.050051870194023
220 => 0.049968879022883
221 => 0.051946065416982
222 => 0.051706615098761
223 => 0.052283621471115
224 => 0.051096675585603
225 => 0.049753533650207
226 => 0.050008821021508
227 => 0.04998423479476
228 => 0.049671223909506
229 => 0.04938865167796
301 => 0.048918248526669
302 => 0.050406673703921
303 => 0.050346246359908
304 => 0.051324494820373
305 => 0.051151579902787
306 => 0.049996811763692
307 => 0.05003805453369
308 => 0.050315431982528
309 => 0.051275438499997
310 => 0.05156043379661
311 => 0.05142841262012
312 => 0.051740896952327
313 => 0.05198787182749
314 => 0.051771913194155
315 => 0.054829432025724
316 => 0.053559737037388
317 => 0.054178577540222
318 => 0.054326167353728
319 => 0.053948119149912
320 => 0.054030104268428
321 => 0.054154289383373
322 => 0.054908317083381
323 => 0.056887103947873
324 => 0.057763495180099
325 => 0.060400161442632
326 => 0.057690723088217
327 => 0.057529956229037
328 => 0.058004899442612
329 => 0.059552901658188
330 => 0.060807412057458
331 => 0.061223605531337
401 => 0.061278612369515
402 => 0.062059418994531
403 => 0.062506962790808
404 => 0.061964608533001
405 => 0.061505020086367
406 => 0.059858831316742
407 => 0.060049382149249
408 => 0.061362088425056
409 => 0.063216363357647
410 => 0.064807524154235
411 => 0.064250355100823
412 => 0.06850116167831
413 => 0.06892261178748
414 => 0.068864381009506
415 => 0.069824507078381
416 => 0.067918852357938
417 => 0.067104148044627
418 => 0.06160438832508
419 => 0.063149596473989
420 => 0.065395647265321
421 => 0.06509837402083
422 => 0.063467231899055
423 => 0.064806286786668
424 => 0.064363553364705
425 => 0.064014351145777
426 => 0.065614114206869
427 => 0.063855109006553
428 => 0.065378099842879
429 => 0.063424848341968
430 => 0.064252900202126
501 => 0.063782857917939
502 => 0.064087032882024
503 => 0.062308832257299
504 => 0.06326830615102
505 => 0.062268914988863
506 => 0.062268441147327
507 => 0.062246379532031
508 => 0.063422158802331
509 => 0.063460500922123
510 => 0.062591598264868
511 => 0.062466375817147
512 => 0.062929388838113
513 => 0.062387321853864
514 => 0.062640951584065
515 => 0.062395004040015
516 => 0.062339636067402
517 => 0.061898454641533
518 => 0.061708381552733
519 => 0.061782914108431
520 => 0.061528496071666
521 => 0.061375200001812
522 => 0.062215885085331
523 => 0.061766740958346
524 => 0.062147047306237
525 => 0.061713640224328
526 => 0.060211262451954
527 => 0.059347229107706
528 => 0.056509376766185
529 => 0.057314188169895
530 => 0.057847778963193
531 => 0.057671427209191
601 => 0.058050299015856
602 => 0.058073558667716
603 => 0.057950383581228
604 => 0.057807762610781
605 => 0.057738342609802
606 => 0.058255742422361
607 => 0.058556110428429
608 => 0.057901331937824
609 => 0.0577479264988
610 => 0.058409943704113
611 => 0.058813773816919
612 => 0.061795428477338
613 => 0.061574537869476
614 => 0.062128929947616
615 => 0.062066513907457
616 => 0.062647605126932
617 => 0.063597443683301
618 => 0.061666156319166
619 => 0.062001361026687
620 => 0.06191917657341
621 => 0.062816444884369
622 => 0.062819246058095
623 => 0.062281288883799
624 => 0.062572924195344
625 => 0.062410141365036
626 => 0.062704311940821
627 => 0.061571587740738
628 => 0.062951123546418
629 => 0.063733231452914
630 => 0.063744091021955
701 => 0.064114803962442
702 => 0.064491469780223
703 => 0.065214447016774
704 => 0.064471306337492
705 => 0.063134468598751
706 => 0.063230983965528
707 => 0.062447196488434
708 => 0.062460372097527
709 => 0.062390039663598
710 => 0.062601112592195
711 => 0.061617906378904
712 => 0.061848662911959
713 => 0.061525602414374
714 => 0.062000658756258
715 => 0.061489576662017
716 => 0.061919136941579
717 => 0.062104520918088
718 => 0.062788591782442
719 => 0.061388538839151
720 => 0.05853373611253
721 => 0.059133850256803
722 => 0.058246234299474
723 => 0.058328386535717
724 => 0.05849434712736
725 => 0.05795641455092
726 => 0.058059035134301
727 => 0.058055368804933
728 => 0.058023774359148
729 => 0.057883837320074
730 => 0.057680900927718
731 => 0.058489337054338
801 => 0.058626706105663
802 => 0.058932060490332
803 => 0.059840588015251
804 => 0.059749804690957
805 => 0.059897876059444
806 => 0.059574637093422
807 => 0.058343380664279
808 => 0.058410243812135
809 => 0.057576459286964
810 => 0.05891073874542
811 => 0.05859476375803
812 => 0.05839105262812
813 => 0.058335468158953
814 => 0.059246247747877
815 => 0.059518767275604
816 => 0.05934895139403
817 => 0.059000654066601
818 => 0.059669487900126
819 => 0.059848439618144
820 => 0.059888500308323
821 => 0.061073545625163
822 => 0.059954731177323
823 => 0.060224040934977
824 => 0.062325118786336
825 => 0.060419731104078
826 => 0.061429057454586
827 => 0.061379656182009
828 => 0.061895993389188
829 => 0.061337301460267
830 => 0.061344227116312
831 => 0.061802699576574
901 => 0.06115885769208
902 => 0.06099943338711
903 => 0.060779189851613
904 => 0.061260083553922
905 => 0.061548357579505
906 => 0.063871634511763
907 => 0.065372577364302
908 => 0.065307417476618
909 => 0.06590285687585
910 => 0.065634605972896
911 => 0.064768353046246
912 => 0.066246941163748
913 => 0.065779054016616
914 => 0.065817626064542
915 => 0.065816190410992
916 => 0.06612729446043
917 => 0.065906848729136
918 => 0.065472327564464
919 => 0.065760782991827
920 => 0.066617392486392
921 => 0.069276334641511
922 => 0.070764313897813
923 => 0.069186756421919
924 => 0.070274934444455
925 => 0.069622415388408
926 => 0.069503833265164
927 => 0.07018728947904
928 => 0.070871941992544
929 => 0.070828332587268
930 => 0.07033131001976
1001 => 0.070050554582855
1002 => 0.072176528811069
1003 => 0.073742910407391
1004 => 0.073636093683677
1005 => 0.07410754796349
1006 => 0.075491752310552
1007 => 0.075618306608634
1008 => 0.075602363675893
1009 => 0.075288685643522
1010 => 0.076651614584853
1011 => 0.077788593886165
1012 => 0.075216078242058
1013 => 0.076195658522631
1014 => 0.076635423670686
1015 => 0.077281129380471
1016 => 0.078370543145719
1017 => 0.07955393544751
1018 => 0.079721280094219
1019 => 0.0796025410592
1020 => 0.078822062024877
1021 => 0.080116944002302
1022 => 0.080875455495959
1023 => 0.081327131732205
1024 => 0.082472507515565
1025 => 0.076638139510527
1026 => 0.072508283849656
1027 => 0.071863347252372
1028 => 0.073174851183828
1029 => 0.073520684311505
1030 => 0.073381279411376
1031 => 0.068732751395017
1101 => 0.071838873714401
1102 => 0.075180800159877
1103 => 0.075309177165071
1104 => 0.076982215420063
1105 => 0.077527025256044
1106 => 0.078874040341449
1107 => 0.078789784181104
1108 => 0.079117760918709
1109 => 0.079042364746499
1110 => 0.081537426544721
1111 => 0.084289850228423
1112 => 0.084194542548428
1113 => 0.083798849078697
1114 => 0.08438652135701
1115 => 0.087227317566238
1116 => 0.086965782574124
1117 => 0.087219841541465
1118 => 0.090569300372404
1119 => 0.094924073307586
1120 => 0.09290084406714
1121 => 0.097290669350378
1122 => 0.10005383167154
1123 => 0.10483243518966
1124 => 0.10423413049408
1125 => 0.10609440577667
1126 => 0.10316304021902
1127 => 0.096432032371915
1128 => 0.095366824614848
1129 => 0.097499397519853
1130 => 0.10274211991338
1201 => 0.097334285534415
1202 => 0.098428283386102
1203 => 0.098113211931219
1204 => 0.098096423112356
1205 => 0.098737184043305
1206 => 0.097807726893121
1207 => 0.094020951257124
1208 => 0.095756408215492
1209 => 0.095086264940378
1210 => 0.095829838866608
1211 => 0.099842600673257
1212 => 0.098068463026244
1213 => 0.096199553134354
1214 => 0.098543580883089
1215 => 0.10152833370255
1216 => 0.10134155323523
1217 => 0.10097912106044
1218 => 0.1030221322534
1219 => 0.10639658819805
1220 => 0.10730869008023
1221 => 0.10798198504255
1222 => 0.10807482104245
1223 => 0.10903108953859
1224 => 0.10388899282412
1225 => 0.1120496323684
1226 => 0.11345874938457
1227 => 0.11319389378745
1228 => 0.11476006804622
1229 => 0.11429925984929
1230 => 0.11363162107051
1231 => 0.11611434040549
]
'min_raw' => 0.042800761071197
'max_raw' => 0.11611434040549
'avg_raw' => 0.079457550738343
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.04280076'
'max' => '$0.116114'
'avg' => '$0.079457'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014760876355601
'max_diff' => 0.053517273051436
'year' => 2032
]
7 => [
'items' => [
101 => 0.11326810303306
102 => 0.10922822741422
103 => 0.10701187175004
104 => 0.10993054767694
105 => 0.11171288121775
106 => 0.11289089031051
107 => 0.11324735515021
108 => 0.1042881591544
109 => 0.099459649412442
110 => 0.10255466879806
111 => 0.10633080605534
112 => 0.103868016191
113 => 0.103964552891
114 => 0.10045326175425
115 => 0.10664147740818
116 => 0.10573990643849
117 => 0.1104172582241
118 => 0.10930097068237
119 => 0.11311516948979
120 => 0.11211076311607
121 => 0.11627999781776
122 => 0.11794321841778
123 => 0.12073602466484
124 => 0.12279042430895
125 => 0.12399680707437
126 => 0.12392438037816
127 => 0.12870466991227
128 => 0.1258859001846
129 => 0.12234486107363
130 => 0.12228081484795
131 => 0.12411476918043
201 => 0.12795823434051
202 => 0.12895478893638
203 => 0.12951172700299
204 => 0.12865875696682
205 => 0.12559918445049
206 => 0.12427807655032
207 => 0.12540369875744
208 => 0.12402715952395
209 => 0.12640345242965
210 => 0.12966661013796
211 => 0.12899278097512
212 => 0.13124529084038
213 => 0.13357640157998
214 => 0.13690999463435
215 => 0.13778151930135
216 => 0.13922211643479
217 => 0.14070496409661
218 => 0.14118121480172
219 => 0.1420905251697
220 => 0.14208573265521
221 => 0.14482600065274
222 => 0.14784860111305
223 => 0.14898956281346
224 => 0.15161314133055
225 => 0.14712035506119
226 => 0.15052818505591
227 => 0.15360213301466
228 => 0.14993724553424
301 => 0.15498843911674
302 => 0.1551845655173
303 => 0.15814584131373
304 => 0.15514402098225
305 => 0.15336154965156
306 => 0.15850747759492
307 => 0.1609974300315
308 => 0.16024743609369
309 => 0.15453994519525
310 => 0.15121794068655
311 => 0.14252361412048
312 => 0.15282241950495
313 => 0.15783866718745
314 => 0.15452695432559
315 => 0.15619718966228
316 => 0.16530945208364
317 => 0.1687788116384
318 => 0.16805720910366
319 => 0.16817914805345
320 => 0.17005115149586
321 => 0.17835264569066
322 => 0.17337819794201
323 => 0.17718097685685
324 => 0.17919795708135
325 => 0.18107144072138
326 => 0.17647075702203
327 => 0.17048533512665
328 => 0.16858950076146
329 => 0.1541976697482
330 => 0.15344851244341
331 => 0.15302798774644
401 => 0.15037663901644
402 => 0.14829340518019
403 => 0.1466367402881
404 => 0.14228915688924
405 => 0.1437563386617
406 => 0.13682719813509
407 => 0.14126021669035
408 => 0.13020114109992
409 => 0.13941146787384
410 => 0.13439870575297
411 => 0.13776464069933
412 => 0.13775289726939
413 => 0.1315551438625
414 => 0.12798040904121
415 => 0.13025836920009
416 => 0.13270052331512
417 => 0.13309675460389
418 => 0.13626307116076
419 => 0.13714672205204
420 => 0.13446921859776
421 => 0.12997196633946
422 => 0.13101657546766
423 => 0.12795924007057
424 => 0.12260137738589
425 => 0.12644948790533
426 => 0.12776340202615
427 => 0.12834370135394
428 => 0.12307485875824
429 => 0.12141927402253
430 => 0.12053785460094
501 => 0.12929182492364
502 => 0.12977138717889
503 => 0.12731787887777
504 => 0.13840796905004
505 => 0.13589794008841
506 => 0.13870225741057
507 => 0.13092178813835
508 => 0.13121901254234
509 => 0.12753561370131
510 => 0.12959807092749
511 => 0.12814039263613
512 => 0.12943144476521
513 => 0.13020529608818
514 => 0.1338880905197
515 => 0.13945351947049
516 => 0.133338003842
517 => 0.13067338610687
518 => 0.13232649996336
519 => 0.13672896000801
520 => 0.14339891233344
521 => 0.13945016631148
522 => 0.14120255274197
523 => 0.14158537121879
524 => 0.13867371209272
525 => 0.14350626935856
526 => 0.14609607605695
527 => 0.14875268184451
528 => 0.15105933821345
529 => 0.14769157507295
530 => 0.15129556438316
531 => 0.14839138518888
601 => 0.14578603622309
602 => 0.14578998746203
603 => 0.14415561399771
604 => 0.14098880946628
605 => 0.14040480212318
606 => 0.14344288207395
607 => 0.14587913448723
608 => 0.14607979590485
609 => 0.14742863042001
610 => 0.14822685679198
611 => 0.15605056037342
612 => 0.15919731867494
613 => 0.16304511516096
614 => 0.16454404874219
615 => 0.16905530142427
616 => 0.16541209849746
617 => 0.16462386862743
618 => 0.15368104524022
619 => 0.15547293195684
620 => 0.15834191548152
621 => 0.15372835372182
622 => 0.15665459676281
623 => 0.15723229912541
624 => 0.15357158665863
625 => 0.15552693135719
626 => 0.15033411555713
627 => 0.13956670866461
628 => 0.14351825656046
629 => 0.14642792588845
630 => 0.14227546899777
701 => 0.14971858725204
702 => 0.14537047122504
703 => 0.14399232719086
704 => 0.1386156959697
705 => 0.14115325894057
706 => 0.14458534919308
707 => 0.14246471644035
708 => 0.14686534781688
709 => 0.15309781545156
710 => 0.1575394430379
711 => 0.15788041605207
712 => 0.15502474707999
713 => 0.15960097483239
714 => 0.15963430765558
715 => 0.15447230405644
716 => 0.15131060559412
717 => 0.15059226105122
718 => 0.15238682655915
719 => 0.15456576038084
720 => 0.15800133171457
721 => 0.16007737551851
722 => 0.16549059671063
723 => 0.166955259156
724 => 0.16856447912556
725 => 0.17071489326995
726 => 0.17329701680516
727 => 0.1676474775105
728 => 0.16787194423873
729 => 0.16261117147074
730 => 0.156989281297
731 => 0.16125559516036
801 => 0.16683323301276
802 => 0.16555371672668
803 => 0.16540974500635
804 => 0.16565186550552
805 => 0.16468715201091
806 => 0.16032378862874
807 => 0.15813253485431
808 => 0.16095981127178
809 => 0.16246238286007
810 => 0.16479274035549
811 => 0.1645054746063
812 => 0.17050822525238
813 => 0.17284071263969
814 => 0.17224396255325
815 => 0.17235377893075
816 => 0.17657663593136
817 => 0.18127332141281
818 => 0.18567238714843
819 => 0.19014730575897
820 => 0.18475261671492
821 => 0.18201352631651
822 => 0.18483956843354
823 => 0.18334003070682
824 => 0.19195681927633
825 => 0.19255342702131
826 => 0.20116959249892
827 => 0.20934735953108
828 => 0.2042110505781
829 => 0.20905435857633
830 => 0.21429279105711
831 => 0.22439857721757
901 => 0.22099530396457
902 => 0.21838844998886
903 => 0.21592498557804
904 => 0.22105106395299
905 => 0.22764568189126
906 => 0.2290660994327
907 => 0.23136771849109
908 => 0.22894784747978
909 => 0.23186231557285
910 => 0.24215166862358
911 => 0.23937139460264
912 => 0.23542295854156
913 => 0.24354541457513
914 => 0.24648489983844
915 => 0.26711574683668
916 => 0.29316304338975
917 => 0.28237929158101
918 => 0.27568546884383
919 => 0.27725867596667
920 => 0.28677026691122
921 => 0.2898250880398
922 => 0.28152103115232
923 => 0.28445416443033
924 => 0.30061601717147
925 => 0.30928633263277
926 => 0.2975108796576
927 => 0.26502287192033
928 => 0.23506744507503
929 => 0.24301297318486
930 => 0.24211219687565
1001 => 0.25947609141381
1002 => 0.23930508598674
1003 => 0.2396447139867
1004 => 0.25736767547523
1005 => 0.25263949319857
1006 => 0.24498044345022
1007 => 0.23512336461421
1008 => 0.2169016427164
1009 => 0.2007621554812
1010 => 0.23241540665135
1011 => 0.23105046090319
1012 => 0.22907381718623
1013 => 0.23347262388314
1014 => 0.25483198058025
1015 => 0.25433957827489
1016 => 0.25120716603406
1017 => 0.25358307311092
1018 => 0.2445639354523
1019 => 0.24688837258888
1020 => 0.23506269998237
1021 => 0.24040839788422
1022 => 0.24496401056931
1023 => 0.24587861726284
1024 => 0.24793927284434
1025 => 0.23033119651752
1026 => 0.23823670584231
1027 => 0.24288045192456
1028 => 0.22189983818399
1029 => 0.24246573264873
1030 => 0.23002467908311
1031 => 0.22580199864458
1101 => 0.23148728155921
1102 => 0.22927172127826
1103 => 0.22736691265077
1104 => 0.22630399670786
1105 => 0.23047864101858
1106 => 0.23028388887171
1107 => 0.22345336051582
1108 => 0.21454321472351
1109 => 0.21753375211697
1110 => 0.21644726184549
1111 => 0.2125096809416
1112 => 0.21516313504549
1113 => 0.20347866605435
1114 => 0.18337614446095
1115 => 0.19665648598244
1116 => 0.1961452072801
1117 => 0.19588739737373
1118 => 0.20586720698545
1119 => 0.20490787856467
1120 => 0.20316668808717
1121 => 0.21247770261303
1122 => 0.20907905706027
1123 => 0.21955288183226
1124 => 0.22645162023161
1125 => 0.22470187702273
1126 => 0.23119017383181
1127 => 0.21760264805848
1128 => 0.22211587908347
1129 => 0.22304604974265
1130 => 0.21236280613909
1201 => 0.20506483655852
1202 => 0.20457814519044
1203 => 0.1919244716599
1204 => 0.19868396192303
1205 => 0.20463203362787
1206 => 0.20178336887026
1207 => 0.20088156670944
1208 => 0.20548867837205
1209 => 0.20584669040548
1210 => 0.19768397810292
1211 => 0.1993812644701
1212 => 0.20645923077163
1213 => 0.19920291787949
1214 => 0.18510508724204
1215 => 0.1816086303262
1216 => 0.18114213852114
1217 => 0.17165947005787
1218 => 0.18184228029627
1219 => 0.17739721074486
1220 => 0.19143913219766
1221 => 0.18341846197216
1222 => 0.18307270690945
1223 => 0.18255004742092
1224 => 0.17438792295048
1225 => 0.17617490947944
1226 => 0.18211512486742
1227 => 0.18423466063916
1228 => 0.18401357569333
1229 => 0.18208601457134
1230 => 0.18296844218228
1231 => 0.1801258353893
]
'min_raw' => 0.099459649412442
'max_raw' => 0.30928633263277
'avg_raw' => 0.20437299102261
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.099459'
'max' => '$0.309286'
'avg' => '$0.204372'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.056658888341245
'max_diff' => 0.19317199222728
'year' => 2033
]
8 => [
'items' => [
101 => 0.17912205176695
102 => 0.1759538345424
103 => 0.17129743046464
104 => 0.17194493201104
105 => 0.16271937711861
106 => 0.15769280517596
107 => 0.15630151631138
108 => 0.15444102669571
109 => 0.15651166356405
110 => 0.16269324228073
111 => 0.15523694685333
112 => 0.14245365134136
113 => 0.1432219491833
114 => 0.14494808632448
115 => 0.14173144118144
116 => 0.13868715650612
117 => 0.14133391504069
118 => 0.13591746421306
119 => 0.1456026385296
120 => 0.14534068170672
121 => 0.14895071576476
122 => 0.15120814414661
123 => 0.14600550257757
124 => 0.14469705229239
125 => 0.14544240504058
126 => 0.13312338440681
127 => 0.14794398896059
128 => 0.14807215816421
129 => 0.14697469562903
130 => 0.15486621001909
131 => 0.17151976680717
201 => 0.16525402885572
202 => 0.16282774573799
203 => 0.15821537975758
204 => 0.16436108357129
205 => 0.16388918940631
206 => 0.16175510503173
207 => 0.16046440414323
208 => 0.16284256010533
209 => 0.16016972430164
210 => 0.15968960954669
211 => 0.15678063650164
212 => 0.1557422654744
213 => 0.15497349690457
214 => 0.15412715824683
215 => 0.15599397043135
216 => 0.15176352842163
217 => 0.14666203007325
218 => 0.14623789568456
219 => 0.14740896802201
220 => 0.14689085568877
221 => 0.14623541516204
222 => 0.1449840006979
223 => 0.14461273275863
224 => 0.14581917344766
225 => 0.14445717224961
226 => 0.14646687920938
227 => 0.14592035011848
228 => 0.14286748304386
301 => 0.13906248035272
302 => 0.13902860784751
303 => 0.13820882625916
304 => 0.13716471115141
305 => 0.13687426221455
306 => 0.14111101241931
307 => 0.14988095854791
308 => 0.14815920827585
309 => 0.14940334929948
310 => 0.15552329176413
311 => 0.15746863744056
312 => 0.15608787715747
313 => 0.15419780732039
314 => 0.15428096080096
315 => 0.16073990159729
316 => 0.16114273781206
317 => 0.1621605749669
318 => 0.16346878335161
319 => 0.15631067070224
320 => 0.15394381433889
321 => 0.15282226648575
322 => 0.1493683331917
323 => 0.15309310413147
324 => 0.15092283961546
325 => 0.15121568244546
326 => 0.15102496816825
327 => 0.15112911105965
328 => 0.14559993132599
329 => 0.14761447381581
330 => 0.14426490619954
331 => 0.13978021116798
401 => 0.1397651768977
402 => 0.14086279965321
403 => 0.14020989068825
404 => 0.13845292945136
405 => 0.13870249750244
406 => 0.13651601876717
407 => 0.13896797560838
408 => 0.13903828895706
409 => 0.1380941520142
410 => 0.14187172983293
411 => 0.14341940654747
412 => 0.14279795538631
413 => 0.14337580387734
414 => 0.14823075477289
415 => 0.14902232360522
416 => 0.14937388619244
417 => 0.14890283889868
418 => 0.14346454346736
419 => 0.14370575499515
420 => 0.14193590485054
421 => 0.14044056798056
422 => 0.14050037361335
423 => 0.14126917114471
424 => 0.14462655505352
425 => 0.15169197156104
426 => 0.15196009895275
427 => 0.15228507717333
428 => 0.15096322742927
429 => 0.15056454489806
430 => 0.15109051006541
501 => 0.15374390902369
502 => 0.16056917153515
503 => 0.15815666791964
504 => 0.15619526492738
505 => 0.15791594414204
506 => 0.15765105906408
507 => 0.1554151624351
508 => 0.15535240826361
509 => 0.15106100777322
510 => 0.14947457472239
511 => 0.14814883252265
512 => 0.14670115664992
513 => 0.14584292586603
514 => 0.147161558409
515 => 0.14746314527318
516 => 0.14457993217222
517 => 0.1441869608804
518 => 0.14654145493712
519 => 0.14550532988714
520 => 0.14657101019571
521 => 0.14681825716853
522 => 0.14677844471133
523 => 0.14569661116095
524 => 0.14638613960522
525 => 0.14475519927619
526 => 0.14298179662769
527 => 0.14185047622484
528 => 0.14086324912548
529 => 0.14141102009818
530 => 0.13945831659952
531 => 0.13883360745014
601 => 0.14615254288318
602 => 0.15155911917938
603 => 0.15148050541879
604 => 0.15100196436904
605 => 0.15029094943762
606 => 0.15369189385281
607 => 0.15250707282259
608 => 0.15336912911719
609 => 0.15358855862455
610 => 0.1542527056554
611 => 0.15449008113356
612 => 0.15377256757069
613 => 0.15136450441677
614 => 0.14536383998898
615 => 0.14257051449936
616 => 0.14164867056127
617 => 0.14168217783759
618 => 0.14075789757365
619 => 0.14103013953471
620 => 0.14066322292971
621 => 0.13996837164649
622 => 0.14136811498948
623 => 0.14152942237025
624 => 0.14120270554831
625 => 0.1412796591872
626 => 0.1385745834441
627 => 0.13878024447773
628 => 0.13763509770833
629 => 0.13742039649402
630 => 0.1345255651803
701 => 0.12939695189555
702 => 0.13223870150184
703 => 0.1288062675879
704 => 0.12750635285484
705 => 0.13365994702296
706 => 0.13304229684262
707 => 0.13198514821995
708 => 0.13042140507793
709 => 0.12984139753545
710 => 0.12631745531537
711 => 0.12610924200951
712 => 0.12785580292822
713 => 0.12704982515972
714 => 0.12591792712511
715 => 0.12181830718239
716 => 0.11720897702925
717 => 0.11734810373336
718 => 0.11881424589543
719 => 0.12307725196788
720 => 0.12141162174462
721 => 0.12020318790674
722 => 0.11997688457429
723 => 0.12280954457798
724 => 0.12681835194382
725 => 0.12869919466787
726 => 0.12683533665038
727 => 0.12469423691714
728 => 0.124824555737
729 => 0.12569150846168
730 => 0.12578261293499
731 => 0.12438897711726
801 => 0.12478127743668
802 => 0.12418533737879
803 => 0.1205280543435
804 => 0.12046190569076
805 => 0.11956434945224
806 => 0.11953717180605
807 => 0.11801020473844
808 => 0.11779657149025
809 => 0.11476468569723
810 => 0.1167602821076
811 => 0.11542174080904
812 => 0.11340424334214
813 => 0.11305642601841
814 => 0.11304597020965
815 => 0.11511748900398
816 => 0.11673607520439
817 => 0.11544502530801
818 => 0.11515107827255
819 => 0.11828966358306
820 => 0.11789024999345
821 => 0.1175443604008
822 => 0.1264594072132
823 => 0.11940245201141
824 => 0.11632521674651
825 => 0.11251655375506
826 => 0.11375667363002
827 => 0.11401798510883
828 => 0.10485883717751
829 => 0.10114297200248
830 => 0.099867827103833
831 => 0.099133963186759
901 => 0.099468394189052
902 => 0.096123679704007
903 => 0.098371383154429
904 => 0.095475143132057
905 => 0.094989579067127
906 => 0.10016841500242
907 => 0.10088901976849
908 => 0.097814695962064
909 => 0.099788909533606
910 => 0.099073032248943
911 => 0.095524790854528
912 => 0.095389274132358
913 => 0.093608891327357
914 => 0.090822936987572
915 => 0.089549681097156
916 => 0.088886558374513
917 => 0.089160175733879
918 => 0.089021826424154
919 => 0.088119003595118
920 => 0.089073575171908
921 => 0.086635039249418
922 => 0.085663994596463
923 => 0.085225396254788
924 => 0.083061055266688
925 => 0.086505484265562
926 => 0.087184080170113
927 => 0.087864013118226
928 => 0.093782365221604
929 => 0.093486701075609
930 => 0.096159360961128
1001 => 0.096055506312683
1002 => 0.095293220419113
1003 => 0.092077261624086
1004 => 0.09335908548083
1005 => 0.089413830889427
1006 => 0.092369883880542
1007 => 0.091020864743121
1008 => 0.091913779153189
1009 => 0.090308238533041
1010 => 0.091196811003378
1011 => 0.087345000433331
1012 => 0.083748233919458
1013 => 0.085195677760801
1014 => 0.086769214751621
1015 => 0.090181043877489
1016 => 0.088148986597102
1017 => 0.088879791235722
1018 => 0.086431718031563
1019 => 0.081380643753842
1020 => 0.081409232285709
1021 => 0.080632234551716
1022 => 0.07996079506602
1023 => 0.088382392820194
1024 => 0.087335034013704
1025 => 0.085666204830493
1026 => 0.087899999008857
1027 => 0.088490649644696
1028 => 0.088507464637942
1029 => 0.090137183207903
1030 => 0.091006964300835
1031 => 0.091160266988311
1101 => 0.093724664370545
1102 => 0.09458421654785
1103 => 0.098124590317795
1104 => 0.090933169451922
1105 => 0.090785066871635
1106 => 0.087931433073886
1107 => 0.086121613405188
1108 => 0.08805535297497
1109 => 0.089768382252022
1110 => 0.087984661668575
1111 => 0.088217577920376
1112 => 0.085823078772424
1113 => 0.08667899954616
1114 => 0.087416233821481
1115 => 0.087009176387277
1116 => 0.08639979170647
1117 => 0.089627933386432
1118 => 0.089445788981659
1119 => 0.092451908728696
1120 => 0.094795394041197
1121 => 0.098995338669307
1122 => 0.094612477501809
1123 => 0.09445274862057
1124 => 0.096014124055999
1125 => 0.094583977509406
1126 => 0.095487780759872
1127 => 0.098849721992913
1128 => 0.098920754513489
1129 => 0.097730868273599
1130 => 0.097658463587764
1201 => 0.097886994256065
1202 => 0.099225505518324
1203 => 0.098757788554994
1204 => 0.099299042466104
1205 => 0.099975888769921
1206 => 0.1027756120594
1207 => 0.10345061586607
1208 => 0.1018107065652
1209 => 0.10195877201378
1210 => 0.10134540091874
1211 => 0.10075289212645
1212 => 0.10208476536256
1213 => 0.1045187898796
1214 => 0.1045036479394
1215 => 0.10506829431668
1216 => 0.10542006433194
1217 => 0.10391000991505
1218 => 0.1029270200159
1219 => 0.10330396089251
1220 => 0.10390669756291
1221 => 0.10310850151378
1222 => 0.098181665738182
1223 => 0.099676152985011
1224 => 0.099427397230446
1225 => 0.099073138786212
1226 => 0.10057585726943
1227 => 0.10043091640581
1228 => 0.096089374822592
1229 => 0.096367306228652
1230 => 0.096106276751932
1231 => 0.096949716392822
]
'min_raw' => 0.07996079506602
'max_raw' => 0.17912205176695
'avg_raw' => 0.12954142341649
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.07996'
'max' => '$0.179122'
'avg' => '$0.129541'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.019498854346422
'max_diff' => -0.13016428086582
'year' => 2034
]
9 => [
'items' => [
101 => 0.094538429000866
102 => 0.095280124762363
103 => 0.095745309391008
104 => 0.096019306710997
105 => 0.097009172912518
106 => 0.096893023538762
107 => 0.097001952904364
108 => 0.098469663166231
109 => 0.10589283801341
110 => 0.10629686504203
111 => 0.10430728818716
112 => 0.10510208489802
113 => 0.10357624901611
114 => 0.10460055286585
115 => 0.10530135554534
116 => 0.10213456299333
117 => 0.10194704609071
118 => 0.10041491254135
119 => 0.1012381943263
120 => 0.099928293810397
121 => 0.10024969757862
122 => 0.099351024623184
123 => 0.10096845701898
124 => 0.10277699776106
125 => 0.10323390657394
126 => 0.10203197619885
127 => 0.10116169939621
128 => 0.099633780017772
129 => 0.10217474399601
130 => 0.10291779929773
131 => 0.10217084104284
201 => 0.10199775449383
202 => 0.1016697557962
203 => 0.10206734096808
204 => 0.10291375245897
205 => 0.10251460043063
206 => 0.10277824737751
207 => 0.10177349708758
208 => 0.1039105098059
209 => 0.10730460030271
210 => 0.10731551285865
211 => 0.10691635867873
212 => 0.1067530333882
213 => 0.1071625897995
214 => 0.10738475735175
215 => 0.10870918768608
216 => 0.11013035420246
217 => 0.11676231823085
218 => 0.11490008926991
219 => 0.12078436229321
220 => 0.12543805827742
221 => 0.12683349822162
222 => 0.12554975913348
223 => 0.12115815705917
224 => 0.12094268411016
225 => 0.12750559169575
226 => 0.12565126970261
227 => 0.12543070400193
228 => 0.12308425759832
301 => 0.12447129803589
302 => 0.12416793194554
303 => 0.12368905373074
304 => 0.12633543026355
305 => 0.13128921088932
306 => 0.13051711772253
307 => 0.1299407859899
308 => 0.12741546810514
309 => 0.12893627352193
310 => 0.12839474384212
311 => 0.13072149900982
312 => 0.12934318079241
313 => 0.12563722138973
314 => 0.12622740763961
315 => 0.12613820217523
316 => 0.12797404431099
317 => 0.12742297007024
318 => 0.1260305960853
319 => 0.13127227940568
320 => 0.13093191364663
321 => 0.13141447447452
322 => 0.13162691267465
323 => 0.13481743294294
324 => 0.1361244870116
325 => 0.13642121116839
326 => 0.13766281144243
327 => 0.1363903190225
328 => 0.14148119597393
329 => 0.14486633208572
330 => 0.14879834187708
331 => 0.15454406500686
401 => 0.15670451005457
402 => 0.15631424499409
403 => 0.16067058669605
404 => 0.16849883589845
405 => 0.15789655797611
406 => 0.16906078237267
407 => 0.16552631782589
408 => 0.15714616596776
409 => 0.1566065829836
410 => 0.16228171911749
411 => 0.17486862485083
412 => 0.17171574772413
413 => 0.17487378182833
414 => 0.17118976729693
415 => 0.17100682492413
416 => 0.17469485746541
417 => 0.1833121465223
418 => 0.17921839550562
419 => 0.17334899959428
420 => 0.1776828701973
421 => 0.17392847040018
422 => 0.16546875686692
423 => 0.17171333677842
424 => 0.167537764027
425 => 0.16875641814152
426 => 0.17753285099543
427 => 0.17647684737488
428 => 0.17784341384317
429 => 0.17543145979592
430 => 0.17317831438554
501 => 0.1689726511563
502 => 0.16772756161081
503 => 0.16807165956755
504 => 0.16772739109295
505 => 0.16537436116823
506 => 0.16486622458002
507 => 0.16401930800436
508 => 0.1642818028647
509 => 0.16268935192828
510 => 0.16569463586245
511 => 0.16625244304311
512 => 0.16843943807052
513 => 0.16866649914934
514 => 0.17475724917076
515 => 0.17140256640986
516 => 0.17365317723525
517 => 0.17345186141945
518 => 0.15732778926937
519 => 0.15954954414776
520 => 0.16300589751344
521 => 0.16144881500718
522 => 0.15924746464452
523 => 0.15746975619773
524 => 0.15477634612082
525 => 0.15856726908171
526 => 0.16355192965556
527 => 0.16879291836744
528 => 0.17508962290157
529 => 0.17368427175128
530 => 0.16867520585607
531 => 0.168899908893
601 => 0.17028893464994
602 => 0.16849002008841
603 => 0.16795948506523
604 => 0.17021604728468
605 => 0.1702315869885
606 => 0.16816171837937
607 => 0.16586143820227
608 => 0.16585179994434
609 => 0.1654424873049
610 => 0.17126258310619
611 => 0.17446304731885
612 => 0.17482997538302
613 => 0.1744383501366
614 => 0.1745890711509
615 => 0.17272679154297
616 => 0.17698341048483
617 => 0.18088970496187
618 => 0.17984273459621
619 => 0.17827317718249
620 => 0.17702294910233
621 => 0.17954822059335
622 => 0.179435774229
623 => 0.18085558688739
624 => 0.18079117598397
625 => 0.18031374638881
626 => 0.17984275164673
627 => 0.18171019256024
628 => 0.18117239956733
629 => 0.18063377123336
630 => 0.17955346964972
701 => 0.17970030057684
702 => 0.17813101416934
703 => 0.17740499047156
704 => 0.16648733603149
705 => 0.16356978202045
706 => 0.16448770390461
707 => 0.16478990762271
708 => 0.16352018437815
709 => 0.1653406413457
710 => 0.16505692505565
711 => 0.16616069917176
712 => 0.16547110902432
713 => 0.16549941004451
714 => 0.16752734763202
715 => 0.16811606654114
716 => 0.16781663935242
717 => 0.16802634789163
718 => 0.17285899266546
719 => 0.1721719451179
720 => 0.17180696480163
721 => 0.17190806684355
722 => 0.17314291119634
723 => 0.17348860019512
724 => 0.17202389161616
725 => 0.17271465664938
726 => 0.17565584648967
727 => 0.17668509647684
728 => 0.17996996836789
729 => 0.17857449640463
730 => 0.1811359455878
731 => 0.18900896711448
801 => 0.19529848148165
802 => 0.18951438414443
803 => 0.20106427631491
804 => 0.21005752410325
805 => 0.2097123482741
806 => 0.20814416750463
807 => 0.19790559399546
808 => 0.18848390600379
809 => 0.19636554807483
810 => 0.19638564000134
811 => 0.19570859995756
812 => 0.19150356239268
813 => 0.19556227376525
814 => 0.19588443953493
815 => 0.1957041123747
816 => 0.19248011993294
817 => 0.18755767936777
818 => 0.18851951247155
819 => 0.19009501471639
820 => 0.1871122602827
821 => 0.18615908950967
822 => 0.18793121532489
823 => 0.19364137393862
824 => 0.19256190152939
825 => 0.19253371214229
826 => 0.19715215287651
827 => 0.1938463460327
828 => 0.1885316442672
829 => 0.18718961197911
830 => 0.18242630145765
831 => 0.18571633700115
901 => 0.18583473952322
902 => 0.1840328206794
903 => 0.18867786005043
904 => 0.18863505519489
905 => 0.19304482875482
906 => 0.20147465956609
907 => 0.19898154378842
908 => 0.19608232138921
909 => 0.19639754725072
910 => 0.19985479690778
911 => 0.19776446484379
912 => 0.19851616282831
913 => 0.19985365912285
914 => 0.20066060384551
915 => 0.1962814403233
916 => 0.19526044782667
917 => 0.19317185549824
918 => 0.19262698074517
919 => 0.19432809561677
920 => 0.19387991194938
921 => 0.18582478824972
922 => 0.18498298300482
923 => 0.18500879996986
924 => 0.1828920406559
925 => 0.17966347462167
926 => 0.18814795339197
927 => 0.18746653100651
928 => 0.18671429343087
929 => 0.18680643824168
930 => 0.19048926291019
1001 => 0.18835303861535
1002 => 0.19403254102347
1003 => 0.19286500606983
1004 => 0.19166752825014
1005 => 0.1915020003394
1006 => 0.19104107354282
1007 => 0.18946038405407
1008 => 0.18755160651168
1009 => 0.18629126624272
1010 => 0.17184384578983
1011 => 0.17452520298911
1012 => 0.17760986003348
1013 => 0.17867467128421
1014 => 0.17685323795714
1015 => 0.18953230534359
1016 => 0.19184889313362
1017 => 0.18483179761032
1018 => 0.18351918554403
1019 => 0.18961835997213
1020 => 0.18593981219823
1021 => 0.18759626203558
1022 => 0.18401592351686
1023 => 0.19129089497261
1024 => 0.19123547187903
1025 => 0.18840534367006
1026 => 0.1907973486524
1027 => 0.19038167892237
1028 => 0.18718647114474
1029 => 0.19139218875835
1030 => 0.19139427474182
1031 => 0.18867033787298
1101 => 0.18548937595663
1102 => 0.18492069509695
1103 => 0.18449227046071
1104 => 0.18749089583797
1105 => 0.19017945397476
1106 => 0.19518219411725
1107 => 0.19644000185124
1108 => 0.20134930917403
1109 => 0.19842605569315
1110 => 0.19972189609875
1111 => 0.20112871416685
1112 => 0.20180319448272
1113 => 0.20070416500262
1114 => 0.20833034002642
1115 => 0.20897422285839
1116 => 0.20919011120239
1117 => 0.20661860789255
1118 => 0.20890270469953
1119 => 0.20783405144488
1120 => 0.21061439033305
1121 => 0.21105038297187
1122 => 0.21068111271768
1123 => 0.21081950366291
1124 => 0.20431190862957
1125 => 0.20397445549679
1126 => 0.19937325808678
1127 => 0.2012482800417
1128 => 0.19774301636913
1129 => 0.19885457158792
1130 => 0.19934453453707
1201 => 0.19908860569759
1202 => 0.20135429096977
1203 => 0.19942799563949
1204 => 0.19434418555063
1205 => 0.1892589903811
1206 => 0.18919514989806
1207 => 0.18785630777107
1208 => 0.18688857013443
1209 => 0.18707499073558
1210 => 0.18773196124927
1211 => 0.18685038581386
1212 => 0.18703851463002
1213 => 0.19016270647391
1214 => 0.19078924086748
1215 => 0.18866003219532
1216 => 0.18011095213326
1217 => 0.17801298644229
1218 => 0.17952096257649
1219 => 0.17880024711044
1220 => 0.14430575420525
1221 => 0.15240972364928
1222 => 0.14759462019044
1223 => 0.14981364139653
1224 => 0.14489866763005
1225 => 0.14724435072726
1226 => 0.14681118870984
1227 => 0.15984213176195
1228 => 0.15963867150966
1229 => 0.15973605716555
1230 => 0.15508758607291
1231 => 0.16249272674323
]
'min_raw' => 0.094538429000866
'max_raw' => 0.21105038297187
'avg_raw' => 0.15279440598637
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.094538'
'max' => '$0.21105'
'avg' => '$0.152794'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014577633934845
'max_diff' => 0.031928331204913
'year' => 2035
]
10 => [
'items' => [
101 => 0.16614076531768
102 => 0.16546561046695
103 => 0.16563553239724
104 => 0.16271571065661
105 => 0.15976432742242
106 => 0.15649078920108
107 => 0.16257261859477
108 => 0.16189642298648
109 => 0.1634473724244
110 => 0.16739187352435
111 => 0.16797271629503
112 => 0.16875337486913
113 => 0.16847356434138
114 => 0.17513978631183
115 => 0.17433246284605
116 => 0.17627788011575
117 => 0.17227600919283
118 => 0.16774751238247
119 => 0.1686082315784
120 => 0.16852533739837
121 => 0.16746999934501
122 => 0.16651728733779
123 => 0.16493129027071
124 => 0.16994961967434
125 => 0.1697458846651
126 => 0.17304411764869
127 => 0.17246112293151
128 => 0.16856774152721
129 => 0.16870679440574
130 => 0.16964199184037
131 => 0.17287872083954
201 => 0.1738396023798
202 => 0.17339448376584
203 => 0.17444804650884
204 => 0.17528073954368
205 => 0.17455261993364
206 => 0.18486125814343
207 => 0.18058039284298
208 => 0.18266685680435
209 => 0.18316446616498
210 => 0.18188985025133
211 => 0.18216626880242
212 => 0.18258496758779
213 => 0.1851272246229
214 => 0.19179884269102
215 => 0.19475365691815
216 => 0.20364336130844
217 => 0.19450830072959
218 => 0.19396626403948
219 => 0.19556756824352
220 => 0.2007867657914
221 => 0.20501643518965
222 => 0.20641966054454
223 => 0.20660511993991
224 => 0.20923766399033
225 => 0.21074658914599
226 => 0.20891800389983
227 => 0.20736846936456
228 => 0.20181822899454
229 => 0.20246068443017
301 => 0.20688656528928
302 => 0.21313838268585
303 => 0.21850309240285
304 => 0.21662455803897
305 => 0.2309564491968
306 => 0.23237739766458
307 => 0.2321810685311
308 => 0.23541820060617
309 => 0.22899315266763
310 => 0.22624632019447
311 => 0.20770349631905
312 => 0.21291327347608
313 => 0.22048599053332
314 => 0.21948371303456
315 => 0.21398420348829
316 => 0.21849892053171
317 => 0.2170062138889
318 => 0.21582885422726
319 => 0.22122256707962
320 => 0.21529195823694
321 => 0.22042682817343
322 => 0.21384130436645
323 => 0.21663313902571
324 => 0.21504835864726
325 => 0.21607390577549
326 => 0.21007857821923
327 => 0.21331351144024
328 => 0.20994399436176
329 => 0.20994239677194
330 => 0.20986801449568
331 => 0.21383223639578
401 => 0.21396150952963
402 => 0.21103194355584
403 => 0.2106097473306
404 => 0.21217082805732
405 => 0.21034321137402
406 => 0.21119834171726
407 => 0.21036911240098
408 => 0.21018243541565
409 => 0.20869496143603
410 => 0.20805411674666
411 => 0.20830540846189
412 => 0.20744762028804
413 => 0.20693077188573
414 => 0.20976520033958
415 => 0.20825087955721
416 => 0.20953310896126
417 => 0.20807184672509
418 => 0.20300647517286
419 => 0.20009332642785
420 => 0.19052530912589
421 => 0.19323878696364
422 => 0.19503782557736
423 => 0.19444324332625
424 => 0.19572063607441
425 => 0.19579905761459
426 => 0.19538376421069
427 => 0.19490290765135
428 => 0.1946688532713
429 => 0.19641330286304
430 => 0.19742601456652
501 => 0.19521838317028
502 => 0.19470116602218
503 => 0.19693320325046
504 => 0.1982947446703
505 => 0.20834760153038
506 => 0.20760285342389
507 => 0.20947202502176
508 => 0.20926158498461
509 => 0.21122077460157
510 => 0.21442322160997
511 => 0.20791175142361
512 => 0.20904191749827
513 => 0.20876482687611
514 => 0.21179002963178
515 => 0.21179947398457
516 => 0.20998571381246
517 => 0.21096898262666
518 => 0.21042014894914
519 => 0.21141196558373
520 => 0.20759290685888
521 => 0.21224410814384
522 => 0.21488103955562
523 => 0.21491765335084
524 => 0.21616753791204
525 => 0.21743749301465
526 => 0.21987506124435
527 => 0.21736951055972
528 => 0.21286226878852
529 => 0.2131876770861
530 => 0.21054508288478
531 => 0.21058950537073
601 => 0.21035237465929
602 => 0.21106402177469
603 => 0.20774907338132
604 => 0.20852708514342
605 => 0.20743786412045
606 => 0.20903954974449
607 => 0.20731640078114
608 => 0.20876469325462
609 => 0.20938972827452
610 => 0.21169612095399
611 => 0.20697574470711
612 => 0.19735057799835
613 => 0.19937390473439
614 => 0.19638124556289
615 => 0.19665822756307
616 => 0.19721777528479
617 => 0.19540409804607
618 => 0.19575009050768
619 => 0.19573772922224
620 => 0.19563120634243
621 => 0.1951593988451
622 => 0.1944751846297
623 => 0.19720088347381
624 => 0.19766403282115
625 => 0.19869355644823
626 => 0.20175672042986
627 => 0.20145063811371
628 => 0.20194987107058
629 => 0.20086004832881
630 => 0.19670878131438
701 => 0.19693421508561
702 => 0.19412305234602
703 => 0.19862166869662
704 => 0.19755633696596
705 => 0.19686951066881
706 => 0.19668210375024
707 => 0.19975286072289
708 => 0.20067167933733
709 => 0.20009913323644
710 => 0.19892482447967
711 => 0.20117984444589
712 => 0.20178319265719
713 => 0.20191826007108
714 => 0.20591372309403
715 => 0.20214156207
716 => 0.20304955872054
717 => 0.21013348938897
718 => 0.20370934178832
719 => 0.20711235604797
720 => 0.20694579620839
721 => 0.2086866631519
722 => 0.20680299430692
723 => 0.20682634463981
724 => 0.20837211654911
725 => 0.20620135868393
726 => 0.20566384850908
727 => 0.20492128205224
728 => 0.2065426487445
729 => 0.2075145847484
730 => 0.21534767513153
731 => 0.22040820875134
801 => 0.2201885176407
802 => 0.22219608314746
803 => 0.22129165649947
804 => 0.21837102427742
805 => 0.22335618734731
806 => 0.22177867316391
807 => 0.22190872151651
808 => 0.22190388111033
809 => 0.22295279013361
810 => 0.22220954195952
811 => 0.22074452351553
812 => 0.2217170711282
813 => 0.22460518984569
814 => 0.23356999896308
815 => 0.2385868249131
816 => 0.23326797974158
817 => 0.23693684791872
818 => 0.23473683436383
819 => 0.23433702645618
820 => 0.23664134679865
821 => 0.23894970054884
822 => 0.23880266839424
823 => 0.23712692210688
824 => 0.23618033554964
825 => 0.24334820609084
826 => 0.24862937100411
827 => 0.2482692309624
828 => 0.24985877198268
829 => 0.25452571358086
830 => 0.25495240023258
831 => 0.25489864752175
901 => 0.25384106013531
902 => 0.25843627021766
903 => 0.2622696753134
904 => 0.25359625921198
905 => 0.25689898252005
906 => 0.25838168142014
907 => 0.26055872330241
908 => 0.26423175787238
909 => 0.26822164763968
910 => 0.26878586179969
911 => 0.26838552485303
912 => 0.26575408529751
913 => 0.27011987029017
914 => 0.27267724474861
915 => 0.27420010271414
916 => 0.27806181713532
917 => 0.25839083806377
918 => 0.24446674136583
919 => 0.24229229260006
920 => 0.24671411967124
921 => 0.2478801202065
922 => 0.24741010685278
923 => 0.23173727009576
924 => 0.2422097783581
925 => 0.25347731669487
926 => 0.25391014873088
927 => 0.25955091401539
928 => 0.2613877784148
929 => 0.26592933382084
930 => 0.26564525829366
1001 => 0.2667510547631
1002 => 0.2664968513045
1003 => 0.27490912635686
1004 => 0.28418911497454
1005 => 0.28386777847727
1006 => 0.28253367031764
1007 => 0.28451504843394
1008 => 0.29409299119141
1009 => 0.2932112077057
1010 => 0.29406778525193
1011 => 0.30536071955218
1012 => 0.32004314054369
1013 => 0.31322168190217
1014 => 0.32802228433242
1015 => 0.33733847901604
1016 => 0.35344987440885
1017 => 0.35143264835538
1018 => 0.35770469635092
1019 => 0.34782139271187
1020 => 0.32512732981141
1021 => 0.32153590748803
1022 => 0.32872602592874
1023 => 0.34640223051372
1024 => 0.32816933934209
1025 => 0.33185782947954
1026 => 0.33079554407181
1027 => 0.33073893939686
1028 => 0.33289930961205
1029 => 0.32976557993758
1030 => 0.31699820149659
1031 => 0.32284941579746
1101 => 0.3205899809575
1102 => 0.32309699236446
1103 => 0.33662629895766
1104 => 0.33064467001442
1105 => 0.32434350983079
1106 => 0.33224656304045
1107 => 0.34230986556005
1108 => 0.34168012217387
1109 => 0.34045815679236
1110 => 0.34734631166791
1111 => 0.35872352548231
1112 => 0.361798740659
1113 => 0.36406880163242
1114 => 0.36438180468766
1115 => 0.36760593068695
1116 => 0.35026899260439
1117 => 0.37778315858556
1118 => 0.38253409498701
1119 => 0.38164111584968
1120 => 0.38692158170993
1121 => 0.38536793470135
1122 => 0.38311694394568
1123 => 0.39148760552147
1124 => 0.38189131750238
1125 => 0.36827059479835
1126 => 0.36079799693557
1127 => 0.37063851659855
1128 => 0.37664777856993
1129 => 0.38061951847216
1130 => 0.38182136456679
1201 => 0.35161480975581
1202 => 0.33533515204502
1203 => 0.34577022599098
1204 => 0.35850173639538
1205 => 0.35019826842126
1206 => 0.3505237486453
1207 => 0.33868518542721
1208 => 0.35954918655186
1209 => 0.35650947708187
1210 => 0.37227949518934
1211 => 0.36851585380569
1212 => 0.38137569138375
1213 => 0.37798926516936
1214 => 0.39204613105277
1215 => 0.39765379542811
1216 => 0.40706993667758
1217 => 0.41399648851127
1218 => 0.41806389223185
1219 => 0.41781970056891
1220 => 0.4339367804823
1221 => 0.42443310154526
1222 => 0.41249424095519
1223 => 0.41227830463373
1224 => 0.41846160970829
1225 => 0.43142012083767
1226 => 0.43478007423485
1227 => 0.4366578298106
1228 => 0.4337819817812
1229 => 0.42346641942984
1230 => 0.41901221190762
1231 => 0.42280732576737
]
'min_raw' => 0.15649078920108
'max_raw' => 0.4366578298106
'avg_raw' => 0.29657430950584
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.15649'
'max' => '$0.436657'
'avg' => '$0.296574'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.061952360200212
'max_diff' => 0.22560744683873
'year' => 2036
]
11 => [
'items' => [
101 => 0.41816622763474
102 => 0.4261780650738
103 => 0.43718002911375
104 => 0.43490816704598
105 => 0.44250266132194
106 => 0.45036216393346
107 => 0.46160160566028
108 => 0.46454001192299
109 => 0.46939708573768
110 => 0.47439661015862
111 => 0.47600232266166
112 => 0.4790681260533
113 => 0.47905196775611
114 => 0.48829097262919
115 => 0.49848188111236
116 => 0.50232871314468
117 => 0.51117429128745
118 => 0.49602654870398
119 => 0.50751628545827
120 => 0.5178803156174
121 => 0.50552389160287
122 => 0.52255434342935
123 => 0.52321559728193
124 => 0.53319974537928
125 => 0.52307889855128
126 => 0.51706917201171
127 => 0.53441902734995
128 => 0.54281407583281
129 => 0.5402854189086
130 => 0.5210422148602
131 => 0.50984184472418
201 => 0.48052831568817
202 => 0.51525145708154
203 => 0.53216408636633
204 => 0.52099841523614
205 => 0.52662973028591
206 => 0.55735235923738
207 => 0.56904954719919
208 => 0.56661661387265
209 => 0.56702773955534
210 => 0.57333932986056
211 => 0.60132839713014
212 => 0.5845566992407
213 => 0.59737803385364
214 => 0.60417842350159
215 => 0.61049500439643
216 => 0.59498347809459
217 => 0.57480321028548
218 => 0.56841127236032
219 => 0.51988820929357
220 => 0.51736237313596
221 => 0.51594454476003
222 => 0.50700533740558
223 => 0.49998156907995
224 => 0.49439600773161
225 => 0.47973782676375
226 => 0.48468453254499
227 => 0.46132245148235
228 => 0.47626868304491
301 => 0.43898223757178
302 => 0.47003549733451
303 => 0.45313461986412
304 => 0.46448310453785
305 => 0.46444351074391
306 => 0.44354735241924
307 => 0.43149488438927
308 => 0.43917518610704
309 => 0.4474090792116
310 => 0.44874500066567
311 => 0.45942045800233
312 => 0.46239974867681
313 => 0.45337235884337
314 => 0.43820955886639
315 => 0.44173153147439
316 => 0.43142351172678
317 => 0.41335910361134
318 => 0.42633327689416
319 => 0.43076323008704
320 => 0.43271974978588
321 => 0.41495547911564
322 => 0.40937355958997
323 => 0.40640179247134
324 => 0.43591641459702
325 => 0.43753329222255
326 => 0.42926111768685
327 => 0.46665213098801
328 => 0.45818939309925
329 => 0.46764434474211
330 => 0.44141194937579
331 => 0.44241406220539
401 => 0.42999522584618
402 => 0.43694894438039
403 => 0.43203428024922
404 => 0.43638715264081
405 => 0.43899624640477
406 => 0.45141304495512
407 => 0.47017727722858
408 => 0.44955838931544
409 => 0.44057444458377
410 => 0.44614803336768
411 => 0.46099123477815
412 => 0.48347944472452
413 => 0.47016597181887
414 => 0.47607426501697
415 => 0.47736496423908
416 => 0.46754810221001
417 => 0.48384140643016
418 => 0.49257312052831
419 => 0.50153005241936
420 => 0.50930710541283
421 => 0.49795245685492
422 => 0.51010355843682
423 => 0.50031191551998
424 => 0.49152779958214
425 => 0.4915411214601
426 => 0.48603071721683
427 => 0.47535361463989
428 => 0.47338459310856
429 => 0.48362769177455
430 => 0.49184168687962
501 => 0.49251823085886
502 => 0.49706592059933
503 => 0.49975719654281
504 => 0.52613535940118
505 => 0.53674487471442
506 => 0.5497179892116
507 => 0.55477174843293
508 => 0.56998175181616
509 => 0.55769843878812
510 => 0.55504086674885
511 => 0.51814637369532
512 => 0.52418784486597
513 => 0.53386082312544
514 => 0.51830587754404
515 => 0.52817191026051
516 => 0.53011967410988
517 => 0.51777732644536
518 => 0.52436990761434
519 => 0.50686196659362
520 => 0.47055890249915
521 => 0.48388182211828
522 => 0.49369197540421
523 => 0.47969167708201
524 => 0.50478666993819
525 => 0.49012669317741
526 => 0.48548018434723
527 => 0.46735249680069
528 => 0.47590806752397
529 => 0.48747959943119
530 => 0.48032973804751
531 => 0.49516677397574
601 => 0.51617997374308
602 => 0.53115523125496
603 => 0.53230484557821
604 => 0.5226767582624
605 => 0.53810582963162
606 => 0.53821821357224
607 => 0.52081415803816
608 => 0.51015427092972
609 => 0.50773232215009
610 => 0.51378282505264
611 => 0.52112925256078
612 => 0.53271252117637
613 => 0.53971204780611
614 => 0.55796310099438
615 => 0.56290131268842
616 => 0.56832691016794
617 => 0.57557718159287
618 => 0.58428299136994
619 => 0.56523517519974
620 => 0.56599198044576
621 => 0.54825491776303
622 => 0.52930032253445
623 => 0.54368449758929
624 => 0.56248989302688
625 => 0.55817591453538
626 => 0.55769050382851
627 => 0.55850682999577
628 => 0.55525423109455
629 => 0.54054284681126
630 => 0.53315488172232
701 => 0.54268724155795
702 => 0.54775326657407
703 => 0.55561022957025
704 => 0.5546416930406
705 => 0.57488038594253
706 => 0.58274453001792
707 => 0.58073254543774
708 => 0.5811027990216
709 => 0.59534045622961
710 => 0.61117565924244
711 => 0.62600741650304
712 => 0.64109491702731
713 => 0.62290634627013
714 => 0.61367131175472
715 => 0.62319951006025
716 => 0.61814371392024
717 => 0.6471958181873
718 => 0.6492073228533
719 => 0.67825732632255
720 => 0.70582923882494
721 => 0.68851181458431
722 => 0.7048413656493
723 => 0.72250310649392
724 => 0.75657547009738
725 => 0.74510109671594
726 => 0.73631190653211
727 => 0.72800616427745
728 => 0.74528909540995
729 => 0.76752331021034
730 => 0.77231234712168
731 => 0.78007241647096
801 => 0.77191365240633
802 => 0.78173998506379
803 => 0.81643125725401
804 => 0.80705736927988
805 => 0.79374494142893
806 => 0.82113036903791
807 => 0.83104104883145
808 => 0.90059938988578
809 => 0.98841966877862
810 => 0.95206149665794
811 => 0.92949280595175
812 => 0.93479698360421
813 => 0.96686597655183
814 => 0.97716551926764
815 => 0.94916781170078
816 => 0.95905707533241
817 => 1.0135478902337
818 => 1.0427804641536
819 => 1.0030787023119
820 => 0.89354311598544
821 => 0.79254630295538
822 => 0.81933520571672
823 => 0.81629817550002
824 => 0.87484175824384
825 => 0.80683380515185
826 => 0.8079788846658
827 => 0.86773308670203
828 => 0.85179169004513
829 => 0.82596866908078
830 => 0.79273483958589
831 => 0.73129903200743
901 => 0.67688362397096
902 => 0.78360477025053
903 => 0.77900276036314
904 => 0.77233836806655
905 => 0.78716925196005
906 => 0.85918381432704
907 => 0.85752364557609
908 => 0.84696249900809
909 => 0.85497303559825
910 => 0.82456438328615
911 => 0.83240138537912
912 => 0.79253030454419
913 => 0.810553698245
914 => 0.8259132644755
915 => 0.82899692479853
916 => 0.83594456896193
917 => 0.77657771026944
918 => 0.80323168690297
919 => 0.8188884010353
920 => 0.7481507969893
921 => 0.81749014604205
922 => 0.77554426533894
923 => 0.76130720342232
924 => 0.78047553170277
925 => 0.77300561553007
926 => 0.76658342025298
927 => 0.76299972494104
928 => 0.77707482969901
929 => 0.77641820923866
930 => 0.75338860599451
1001 => 0.72334742736923
1002 => 0.73343023298395
1003 => 0.72976705517732
1004 => 0.71649122624674
1005 => 0.72543753201625
1006 => 0.68604252902905
1007 => 0.61826547396365
1008 => 0.6630410726072
1009 => 0.6613172607659
1010 => 0.66044803666687
1011 => 0.69409566154085
1012 => 0.690861218792
1013 => 0.68499067353108
1014 => 0.71638340907928
1015 => 0.70492463831231
1016 => 0.74023786979017
1017 => 0.76349744795811
1018 => 0.75759806656619
1019 => 0.77947381225643
1020 => 0.73366252046091
1021 => 0.74887919396537
1022 => 0.75201532928524
1023 => 0.71599602759558
1024 => 0.69139041362674
1025 => 0.68974949969955
1026 => 0.64708675594005
1027 => 0.66987684929474
1028 => 0.68993118832873
1029 => 0.68032671621102
1030 => 0.677286227264
1031 => 0.69281942589274
1101 => 0.69402648845905
1102 => 0.66650533402859
1103 => 0.67222785351629
1104 => 0.69609171106974
1105 => 0.6716265455343
1106 => 0.62409472526103
1107 => 0.61230617665444
1108 => 0.61073336696426
1109 => 0.57876188818158
1110 => 0.61309394384147
1111 => 0.59810708150404
1112 => 0.6454504000578
1113 => 0.6184081504072
1114 => 0.61724241307342
1115 => 0.61548023011693
1116 => 0.58796105760353
1117 => 0.59398600744931
1118 => 0.61401385836248
1119 => 0.62116002119818
1120 => 0.62041461786763
1121 => 0.61391571096685
1122 => 0.61689087726624
1123 => 0.60730682999924
1124 => 0.60392250343457
1125 => 0.59324063786411
1126 => 0.57754124641622
1127 => 0.57972434308701
1128 => 0.54861974065951
1129 => 0.53167230241081
1130 => 0.52698147486721
1201 => 0.52070870423274
1202 => 0.52769000100158
1203 => 0.54853162522892
1204 => 0.52339220461351
1205 => 0.48029243129371
1206 => 0.48288280110867
1207 => 0.48870259299519
1208 => 0.47785744931644
1209 => 0.46759343098843
1210 => 0.47651716217851
1211 => 0.45825522004864
1212 => 0.49090946145412
1213 => 0.49002625573656
1214 => 0.50219773760778
1215 => 0.50980881500581
1216 => 0.49226774571892
1217 => 0.48785621422937
1218 => 0.49036922305875
1219 => 0.44883478490546
1220 => 0.49880348790008
1221 => 0.49923561931858
1222 => 0.49553544775885
1223 => 0.52214223949286
1224 => 0.57829086891808
1225 => 0.55716549595493
1226 => 0.54898511302581
1227 => 0.53343419909775
1228 => 0.55415486858499
1229 => 0.55256384446117
1230 => 0.54536862999526
1231 => 0.54101694183585
]
'min_raw' => 0.40640179247134
'max_raw' => 1.0427804641536
'avg_raw' => 0.72459112831246
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.4064017'
'max' => '$1.04'
'avg' => '$0.724591'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.24991100327027
'max_diff' => 0.60612263434297
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012756487880749
]
1 => [
'year' => 2028
'avg' => 0.021893836438257
]
2 => [
'year' => 2029
'avg' => 0.059810015169224
]
3 => [
'year' => 2030
'avg' => 0.04614333763131
]
4 => [
'year' => 2031
'avg' => 0.045318476034824
]
5 => [
'year' => 2032
'avg' => 0.079457550738343
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012756487880749
'min' => '$0.012756'
'max_raw' => 0.079457550738343
'max' => '$0.079457'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.079457550738343
]
1 => [
'year' => 2033
'avg' => 0.20437299102261
]
2 => [
'year' => 2034
'avg' => 0.12954142341649
]
3 => [
'year' => 2035
'avg' => 0.15279440598637
]
4 => [
'year' => 2036
'avg' => 0.29657430950584
]
5 => [
'year' => 2037
'avg' => 0.72459112831246
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.079457550738343
'min' => '$0.079457'
'max_raw' => 0.72459112831246
'max' => '$0.724591'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.72459112831246
]
]
]
]
'prediction_2025_max_price' => '$0.021811'
'last_price' => 0.02114878
'sma_50day_nextmonth' => '$0.0201056'
'sma_200day_nextmonth' => '$0.092274'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.021083'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.02107'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.021056'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.021085'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.021349'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.029488'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.021099'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.021083'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.021078'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.021161'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.02544'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0577029'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.117794'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.035058'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0211049'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.021198'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.02578'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.069893'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.07193'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.035965'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.017982'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '30.48'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 304.67
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.021069'
'vwma_10_action' => 'BUY'
'hma_9' => '0.021083'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 138.17
'cci_20_action' => 'SELL'
'adx_14' => 68.74
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000153'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 75.29
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.008826'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 13
'buy_signals' => 17
'sell_pct' => 43.33
'buy_pct' => 56.67
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767709396
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Glorious Looking para 2026
A previsão de preço para Glorious Looking em 2026 sugere que o preço médio poderia variar entre $0.0073068 na extremidade inferior e $0.021811 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Glorious Looking poderia potencialmente ganhar 3.13% até 2026 se GLG atingir a meta de preço prevista.
Previsão de preço de Glorious Looking 2027-2032
A previsão de preço de GLG para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.012756 na extremidade inferior e $0.079457 na extremidade superior. Considerando a volatilidade de preços no mercado, se Glorious Looking atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Glorious Looking | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.007034 | $0.012756 | $0.018478 |
| 2028 | $0.012694 | $0.021893 | $0.031093 |
| 2029 | $0.027886 | $0.05981 | $0.091733 |
| 2030 | $0.023716 | $0.046143 | $0.06857 |
| 2031 | $0.028039 | $0.045318 | $0.062597 |
| 2032 | $0.04280076 | $0.079457 | $0.116114 |
Previsão de preço de Glorious Looking 2032-2037
A previsão de preço de Glorious Looking para 2032-2037 é atualmente estimada entre $0.079457 na extremidade inferior e $0.724591 na extremidade superior. Comparado ao preço atual, Glorious Looking poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Glorious Looking | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.04280076 | $0.079457 | $0.116114 |
| 2033 | $0.099459 | $0.204372 | $0.309286 |
| 2034 | $0.07996 | $0.129541 | $0.179122 |
| 2035 | $0.094538 | $0.152794 | $0.21105 |
| 2036 | $0.15649 | $0.296574 | $0.436657 |
| 2037 | $0.4064017 | $0.724591 | $1.04 |
Glorious Looking Histograma de preços potenciais
Previsão de preço de Glorious Looking baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Glorious Looking é Altista, com 17 indicadores técnicos mostrando sinais de alta e 13 indicando sinais de baixa. A previsão de preço de GLG foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Glorious Looking
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Glorious Looking está projetado para aumentar no próximo mês, alcançando $0.092274 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Glorious Looking é esperado para alcançar $0.0201056 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 30.48, sugerindo que o mercado de GLG está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de GLG para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.021083 | BUY |
| SMA 5 | $0.02107 | BUY |
| SMA 10 | $0.021056 | BUY |
| SMA 21 | $0.021085 | BUY |
| SMA 50 | $0.021349 | SELL |
| SMA 100 | $0.029488 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.021099 | BUY |
| EMA 5 | $0.021083 | BUY |
| EMA 10 | $0.021078 | BUY |
| EMA 21 | $0.021161 | SELL |
| EMA 50 | $0.02544 | SELL |
| EMA 100 | $0.0577029 | SELL |
| EMA 200 | $0.117794 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.035058 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.069893 | SELL |
| EMA 50 | $0.07193 | SELL |
| EMA 100 | $0.035965 | SELL |
| EMA 200 | $0.017982 | BUY |
Osciladores de Glorious Looking
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 30.48 | NEUTRAL |
| Stoch RSI (14) | 304.67 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 138.17 | SELL |
| Índice Direcional Médio (14) | 68.74 | SELL |
| Oscilador Impressionante (5, 34) | -0.000153 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 75.29 | SELL |
| VWMA (10) | 0.021069 | BUY |
| Média Móvel de Hull (9) | 0.021083 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.008826 | SELL |
Previsão do preço de Glorious Looking com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Glorious Looking
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Glorious Looking por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.029717 | $0.041758 | $0.058677 | $0.082451 | $0.115857 | $0.162799 |
| Amazon.com stock | $0.044128 | $0.092076 | $0.192122 | $0.400874 | $0.836448 | $1.74 |
| Apple stock | $0.029997 | $0.042549 | $0.060353 | $0.0856069 | $0.121426 | $0.172234 |
| Netflix stock | $0.033369 | $0.052651 | $0.083076 | $0.131081 | $0.206825 | $0.326338 |
| Google stock | $0.027387 | $0.035466 | $0.045929 | $0.059478 | $0.077024 | $0.099745 |
| Tesla stock | $0.047942 | $0.108682 | $0.246374 | $0.558513 | $1.26 | $2.87 |
| Kodak stock | $0.015859 | $0.011892 | $0.008918 | $0.006687 | $0.005015 | $0.00376 |
| Nokia stock | $0.01401 | $0.009281 | $0.006148 | $0.004073 | $0.002698 | $0.001787 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Glorious Looking
Você pode fazer perguntas como: 'Devo investir em Glorious Looking agora?', 'Devo comprar GLG hoje?', 'Glorious Looking será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Glorious Looking regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Glorious Looking, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Glorious Looking para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Glorious Looking é de $0.02114 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Glorious Looking com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Glorious Looking tiver 1% da média anterior do crescimento anual do Bitcoin | $0.021698 | $0.022262 | $0.022841 | $0.023434 |
| Se Glorious Looking tiver 2% da média anterior do crescimento anual do Bitcoin | $0.022248 | $0.0234048 | $0.024621 | $0.0259015 |
| Se Glorious Looking tiver 5% da média anterior do crescimento anual do Bitcoin | $0.023897 | $0.0270032 | $0.030512 | $0.034478 |
| Se Glorious Looking tiver 10% da média anterior do crescimento anual do Bitcoin | $0.026646 | $0.033572 | $0.042298 | $0.053293 |
| Se Glorious Looking tiver 20% da média anterior do crescimento anual do Bitcoin | $0.032143 | $0.048853 | $0.07425 | $0.11285 |
| Se Glorious Looking tiver 50% da média anterior do crescimento anual do Bitcoin | $0.048635 | $0.111844 | $0.2572033 | $0.59148 |
| Se Glorious Looking tiver 100% da média anterior do crescimento anual do Bitcoin | $0.076121 | $0.273984 | $0.986159 | $3.54 |
Perguntas Frequentes sobre Glorious Looking
GLG é um bom investimento?
A decisão de adquirir Glorious Looking depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Glorious Looking experimentou uma escalada de 0.5018% nas últimas 24 horas, e Glorious Looking registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Glorious Looking dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Glorious Looking pode subir?
Parece que o valor médio de Glorious Looking pode potencialmente subir para $0.021811 até o final deste ano. Observando as perspectivas de Glorious Looking em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.06857. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Glorious Looking na próxima semana?
Com base na nossa nova previsão experimental de Glorious Looking, o preço de Glorious Looking aumentará 0.86% na próxima semana e atingirá $0.021329 até 13 de janeiro de 2026.
Qual será o preço de Glorious Looking no próximo mês?
Com base na nossa nova previsão experimental de Glorious Looking, o preço de Glorious Looking diminuirá -11.62% no próximo mês e atingirá $0.018691 até 5 de fevereiro de 2026.
Até onde o preço de Glorious Looking pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Glorious Looking em 2026, espera-se que GLG fluctue dentro do intervalo de $0.0073068 e $0.021811. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Glorious Looking não considera flutuações repentinas e extremas de preço.
Onde estará Glorious Looking em 5 anos?
O futuro de Glorious Looking parece seguir uma tendência de alta, com um preço máximo de $0.06857 projetada após um período de cinco anos. Com base na previsão de Glorious Looking para 2030, o valor de Glorious Looking pode potencialmente atingir seu pico mais alto de aproximadamente $0.06857, enquanto seu pico mais baixo está previsto para cerca de $0.023716.
Quanto será Glorious Looking em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Glorious Looking, espera-se que o valor de GLG em 2026 aumente 3.13% para $0.021811 se o melhor cenário ocorrer. O preço ficará entre $0.021811 e $0.0073068 durante 2026.
Quanto será Glorious Looking em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Glorious Looking, o valor de GLG pode diminuir -12.62% para $0.018478 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.018478 e $0.007034 ao longo do ano.
Quanto será Glorious Looking em 2028?
Nosso novo modelo experimental de previsão de preços de Glorious Looking sugere que o valor de GLG em 2028 pode aumentar 47.02%, alcançando $0.031093 no melhor cenário. O preço é esperado para variar entre $0.031093 e $0.012694 durante o ano.
Quanto será Glorious Looking em 2029?
Com base no nosso modelo de previsão experimental, o valor de Glorious Looking pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.091733 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.091733 e $0.027886.
Quanto será Glorious Looking em 2030?
Usando nossa nova simulação experimental para previsões de preços de Glorious Looking, espera-se que o valor de GLG em 2030 aumente 224.23%, alcançando $0.06857 no melhor cenário. O preço está previsto para variar entre $0.06857 e $0.023716 ao longo de 2030.
Quanto será Glorious Looking em 2031?
Nossa simulação experimental indica que o preço de Glorious Looking poderia aumentar 195.98% em 2031, potencialmente atingindo $0.062597 sob condições ideais. O preço provavelmente oscilará entre $0.062597 e $0.028039 durante o ano.
Quanto será Glorious Looking em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Glorious Looking, GLG poderia ver um 449.04% aumento em valor, atingindo $0.116114 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.116114 e $0.04280076 ao longo do ano.
Quanto será Glorious Looking em 2033?
De acordo com nossa previsão experimental de preços de Glorious Looking, espera-se que o valor de GLG seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.309286. Ao longo do ano, o preço de GLG poderia variar entre $0.309286 e $0.099459.
Quanto será Glorious Looking em 2034?
Os resultados da nossa nova simulação de previsão de preços de Glorious Looking sugerem que GLG pode aumentar 746.96% em 2034, atingindo potencialmente $0.179122 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.179122 e $0.07996.
Quanto será Glorious Looking em 2035?
Com base em nossa previsão experimental para o preço de Glorious Looking, GLG poderia aumentar 897.93%, com o valor potencialmente atingindo $0.21105 em 2035. A faixa de preço esperada para o ano está entre $0.21105 e $0.094538.
Quanto será Glorious Looking em 2036?
Nossa recente simulação de previsão de preços de Glorious Looking sugere que o valor de GLG pode aumentar 1964.7% em 2036, possivelmente atingindo $0.436657 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.436657 e $0.15649.
Quanto será Glorious Looking em 2037?
De acordo com a simulação experimental, o valor de Glorious Looking poderia aumentar 4830.69% em 2037, com um pico de $1.04 sob condições favoráveis. O preço é esperado para cair entre $1.04 e $0.4064017 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Glorious Looking?
Traders de Glorious Looking utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Glorious Looking
Médias móveis são ferramentas populares para a previsão de preço de Glorious Looking. Uma média móvel simples (SMA) calcula o preço médio de fechamento de GLG em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de GLG acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de GLG.
Como ler gráficos de Glorious Looking e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Glorious Looking em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de GLG dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Glorious Looking?
A ação de preço de Glorious Looking é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de GLG. A capitalização de mercado de Glorious Looking pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de GLG, grandes detentores de Glorious Looking, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Glorious Looking.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


