Previsão de Preço FUSION - Projeção FSN
Previsão de Preço FUSION até $0.004858 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001627 | $0.004858 |
| 2027 | $0.001566 | $0.004115 |
| 2028 | $0.002827 | $0.006925 |
| 2029 | $0.006211 | $0.020432 |
| 2030 | $0.005282 | $0.015272 |
| 2031 | $0.006245 | $0.013942 |
| 2032 | $0.009533 | $0.025862 |
| 2033 | $0.022153 | $0.068888 |
| 2034 | $0.0178099 | $0.039896 |
| 2035 | $0.021056 | $0.047008 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em FUSION hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,956.12, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de FUSION para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'FUSION'
'name_with_ticker' => 'FUSION <small>FSN</small>'
'name_lang' => 'FUSION'
'name_lang_with_ticker' => 'FUSION <small>FSN</small>'
'name_with_lang' => 'FUSION'
'name_with_lang_with_ticker' => 'FUSION <small>FSN</small>'
'image' => '/uploads/coins/fsn.png?1717261912'
'price_for_sd' => 0.00471
'ticker' => 'FSN'
'marketcap' => '$368.53K'
'low24h' => '$0.004554'
'high24h' => '$0.004676'
'volume24h' => '$7.81'
'current_supply' => '78.23M'
'max_supply' => '78.77M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0025 ETH'
'price' => '$0.00471'
'change_24h_pct' => '3.4337%'
'ath_price' => '$9.76'
'ath_days' => 2794
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 de mai. de 2018'
'ath_pct' => '-99.95%'
'fdv' => '$371.03K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.232262'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00475'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004163'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001627'
'current_year_max_price_prediction' => '$0.004858'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005282'
'grand_prediction_max_price' => '$0.015272'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0047998124447507
107 => 0.0048177332020875
108 => 0.0048581095834238
109 => 0.0045130978256347
110 => 0.004667997975869
111 => 0.0047589873019503
112 => 0.0043478942164948
113 => 0.0047508613134159
114 => 0.0045070919385135
115 => 0.0044243529513785
116 => 0.0045357500975231
117 => 0.0044923385213333
118 => 0.0044550157973385
119 => 0.0044341890760637
120 => 0.0045159868457379
121 => 0.0045121708820132
122 => 0.0043783338545631
123 => 0.0042037489081497
124 => 0.0042623453467216
125 => 0.0042410567112439
126 => 0.0041639039499841
127 => 0.0042158955956133
128 => 0.0039869507006321
129 => 0.003593062908337
130 => 0.0038532772490365
131 => 0.0038432592799783
201 => 0.0038382077657004
202 => 0.0040337516509399
203 => 0.0040149546183392
204 => 0.0039808378201077
205 => 0.0041632773682298
206 => 0.0040966844790071
207 => 0.0043019080723337
208 => 0.0044370816039285
209 => 0.0044027972239104
210 => 0.0045299285837256
211 => 0.0042636952903181
212 => 0.0043521273109623
213 => 0.0043703530278556
214 => 0.0041610260925254
215 => 0.0040180300453395
216 => 0.0040084938392665
217 => 0.0037605583995153
218 => 0.0038930035101654
219 => 0.0040095497265865
220 => 0.0039537331332725
221 => 0.0039360632673026
222 => 0.0040263347804165
223 => 0.0040333496501087
224 => 0.0038734098777246
225 => 0.0039066664210371
226 => 0.0040453517350907
227 => 0.0039031719069528
228 => 0.003626939725824
301 => 0.0035584303256954
302 => 0.0035492899088395
303 => 0.0033634869821416
304 => 0.0035630084514024
305 => 0.0034759119832271
306 => 0.003751048682617
307 => 0.0035938920755132
308 => 0.0035871173682859
309 => 0.0035768764046783
310 => 0.0034169481502472
311 => 0.0034519622739968
312 => 0.0035683545541422
313 => 0.003609884630951
314 => 0.0036055527036939
315 => 0.0035677841684719
316 => 0.0035850744104904
317 => 0.0035293765166293
318 => 0.0035097084310555
319 => 0.0034476305428516
320 => 0.0033563931966462
321 => 0.0033690803092272
322 => 0.003188315252844
323 => 0.0030898248561988
324 => 0.0030625640124899
325 => 0.0030261096729734
326 => 0.0030666816271396
327 => 0.0031878031681512
328 => 0.0030417048923228
329 => 0.0027912296460175
330 => 0.0028062836351095
331 => 0.0028401054790298
401 => 0.0027770786966383
402 => 0.0027174291365416
403 => 0.0027692895895239
404 => 0.0026631599257075
405 => 0.0028529307418615
406 => 0.0028477979731111
407 => 0.0029185327980248
408 => 0.002962764735668
409 => 0.0028608244396602
410 => 0.0028351867308901
411 => 0.0028497911349745
412 => 0.0026084128671724
413 => 0.002898807043895
414 => 0.0029013183847942
415 => 0.0028798147593361
416 => 0.0030344406935266
417 => 0.0033607496437067
418 => 0.0032379790909018
419 => 0.0031904386220962
420 => 0.0031000641561448
421 => 0.0032204827661202
422 => 0.0032112364956971
423 => 0.0031694213542996
424 => 0.0031441314263112
425 => 0.0031907288940613
426 => 0.0031383574843856
427 => 0.0031289501401378
428 => 0.0030719518692873
429 => 0.0030516060798497
430 => 0.0030365428673394
501 => 0.0030199597504462
502 => 0.0030565379740573
503 => 0.0029736469070884
504 => 0.0028736884062355
505 => 0.0028653779384555
506 => 0.0028883238706598
507 => 0.0028781720037831
508 => 0.0028653293352226
509 => 0.0028408091834479
510 => 0.0028335345782065
511 => 0.0028571735161043
512 => 0.0028304865334534
513 => 0.00286986463007
514 => 0.0028591559666798
515 => 0.0027993382434849
516 => 0.0027247832130265
517 => 0.0027241195168709
518 => 0.0027080567578534
519 => 0.0026875984191926
520 => 0.0026819073774006
521 => 0.0027649220468243
522 => 0.0029367599281115
523 => 0.0029030240402828
524 => 0.0029274016766319
525 => 0.0030473155200358
526 => 0.0030854325249188
527 => 0.0030583779777036
528 => 0.0030213440448236
529 => 0.0030229733499199
530 => 0.0031495295095048
531 => 0.0031574226619412
601 => 0.0031773661117204
602 => 0.0032029990807049
603 => 0.0030627433831618
604 => 0.0030163673191786
605 => 0.0029943917672174
606 => 0.0029267155727855
607 => 0.0029996985463618
608 => 0.0029571744931015
609 => 0.0029629124407148
610 => 0.0029591755948042
611 => 0.0029612161653558
612 => 0.0028528776970509
613 => 0.0028923505407989
614 => 0.0028267192821838
615 => 0.0027388463943528
616 => 0.0027385518136206
617 => 0.0027600585784278
618 => 0.0027472655131607
619 => 0.0027128397034666
620 => 0.0027177297272484
621 => 0.002674887973395
622 => 0.0027229314918412
623 => 0.0027243092080423
624 => 0.0027058098364923
625 => 0.0027798275053867
626 => 0.0028101526047253
627 => 0.0027979759220762
628 => 0.0028092982562101
629 => 0.0029044259187305
630 => 0.0029199358784322
701 => 0.0029268243780013
702 => 0.0029175947011301
703 => 0.0028110370152527
704 => 0.0028157633017396
705 => 0.0027810849474389
706 => 0.0027517853923697
707 => 0.0027529572209166
708 => 0.0027680210008977
709 => 0.0028338054115541
710 => 0.0029722448255779
711 => 0.0029774985001422
712 => 0.0029838661069746
713 => 0.0029579658498843
714 => 0.0029501540845138
715 => 0.0029604598194252
716 => 0.003012450384534
717 => 0.0031461842332943
718 => 0.003098913759359
719 => 0.0030604821282408
720 => 0.0030941970298248
721 => 0.0030890068849921
722 => 0.0030451968394267
723 => 0.0030439672373616
724 => 0.0029598817530028
725 => 0.0029287972639692
726 => 0.0029028207382991
727 => 0.0028744550504017
728 => 0.0028576389197896
729 => 0.0028834761392044
730 => 0.0028893854169816
731 => 0.0028328918851738
801 => 0.0028251920255391
802 => 0.002871325863111
803 => 0.0028510240812384
804 => 0.0028719049673543
805 => 0.0028767495120461
806 => 0.0028759694287714
807 => 0.0028547720368517
808 => 0.002868282622346
809 => 0.0028363260599526
810 => 0.0028015780980702
811 => 0.0027794110632637
812 => 0.0027600673853646
813 => 0.0027708003821242
814 => 0.0027325392084441
815 => 0.0027202986889385
816 => 0.0028637055399783
817 => 0.0029696417227248
818 => 0.0029681013686724
819 => 0.0029587248595249
820 => 0.0029447932688871
821 => 0.0030114312019043
822 => 0.0029882158785086
823 => 0.0030051069659841
824 => 0.0030094064566634
825 => 0.0030224197200257
826 => 0.0030270708431499
827 => 0.0030130119186557
828 => 0.0029658284509004
829 => 0.0028482517353235
830 => 0.0027935194568302
831 => 0.0027754568932892
901 => 0.0027761134331682
902 => 0.0027580031323817
903 => 0.00276333742761
904 => 0.0027561480821923
905 => 0.0027425332012607
906 => 0.0027699597015924
907 => 0.0027731203502601
908 => 0.0027667186773604
909 => 0.0027682265030722
910 => 0.002715223385653
911 => 0.0027192530975536
912 => 0.0026968151496197
913 => 0.0026926083048756
914 => 0.0026358871263942
915 => 0.0025353973368481
916 => 0.0025910784350365
917 => 0.0025238234983721
918 => 0.0024983530347787
919 => 0.0026189262479601
920 => 0.002606824041537
921 => 0.0025861103248434
922 => 0.0025554704207368
923 => 0.0025441057822578
924 => 0.0024750578364669
925 => 0.0024709781154731
926 => 0.0025052001418585
927 => 0.0024894078541897
928 => 0.0024672295012956
929 => 0.002386901755297
930 => 0.0022965867731918
1001 => 0.0022993128148018
1002 => 0.0023280403302395
1003 => 0.0024115694558078
1004 => 0.0023789331813797
1005 => 0.002355255189824
1006 => 0.0023508210137635
1007 => 0.0024063240107378
1008 => 0.0024848723796939
1009 => 0.0025217255169874
1010 => 0.002485205177176
1011 => 0.0024432525771953
1012 => 0.0024458060375665
1013 => 0.0024627930654457
1014 => 0.0024645781618921
1015 => 0.0024372713321017
1016 => 0.002444958044737
1017 => 0.0024332812253562
1018 => 0.0023616206063699
1019 => 0.0023603244930107
1020 => 0.0023427378214279
1021 => 0.0023422053040018
1022 => 0.0023122859884385
1023 => 0.0023081000693688
1024 => 0.0022486934523454
1025 => 0.00228779506757
1026 => 0.0022615677570043
1027 => 0.0022220370135846
1028 => 0.002215221898519
1029 => 0.0022150170279307
1030 => 0.0022556062625102
1031 => 0.0022873207587317
1101 => 0.0022620239923005
1102 => 0.0022562644089413
1103 => 0.0023177616909186
1104 => 0.0023099356012268
1105 => 0.0023031582580266
1106 => 0.00247783923478
1107 => 0.0023395656111531
1108 => 0.0022792704188692
1109 => 0.0022046436686715
1110 => 0.0022289425148366
1111 => 0.0022340626387479
1112 => 0.0020545987570052
1113 => 0.001981790282533
1114 => 0.0019568051578236
1115 => 0.0019424258653155
1116 => 0.0019489786894753
1117 => 0.001883442522868
1118 => 0.0019274839106962
1119 => 0.0018707351300486
1120 => 0.0018612210122965
1121 => 0.0019626948619194
1122 => 0.0019768143552928
1123 => 0.0019165762099791
1124 => 0.0019552588509404
1125 => 0.0019412319875989
1126 => 0.0018717079250139
1127 => 0.0018690526172075
1128 => 0.0018341678864913
1129 => 0.0017795800379354
1130 => 0.0017546319263579
1201 => 0.0017416387332388
1202 => 0.001746999977952
1203 => 0.0017442891685683
1204 => 0.0017265993036769
1205 => 0.0017453031309168
1206 => 0.0016975225812739
1207 => 0.001678495981412
1208 => 0.0016699021076682
1209 => 0.0016274941197142
1210 => 0.0016949840874668
1211 => 0.0017082804613302
1212 => 0.0017216030331577
1213 => 0.0018375669252094
1214 => 0.001831773696873
1215 => 0.001884141659617
1216 => 0.0018821067368832
1217 => 0.0018671705456039
1218 => 0.0018041572114807
1219 => 0.0018292732033575
1220 => 0.0017519700842523
1221 => 0.0018098908371871
1222 => 0.0017834582243761
1223 => 0.0018009539442069
1224 => 0.0017694950624257
1225 => 0.0017869057065088
1226 => 0.0017114335248362
1227 => 0.0016409586635126
1228 => 0.0016693198049987
1229 => 0.001700151609284
1230 => 0.0017670028167722
1231 => 0.0017271867891027
]
'min_raw' => 0.0016274941197142
'max_raw' => 0.0048581095834238
'avg_raw' => 0.003242801851569
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001627'
'max' => '$0.004858'
'avg' => '$0.003242'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0030830558802858
'max_diff' => 0.00014755958342381
'year' => 2026
]
1 => [
'items' => [
101 => 0.0017415061382633
102 => 0.0016935387156053
103 => 0.0015945682214449
104 => 0.0015951283836937
105 => 0.0015799039293565
106 => 0.0015667477780025
107 => 0.0017317601388437
108 => 0.0017112382433137
109 => 0.0016785392886259
110 => 0.0017223081388803
111 => 0.0017338813175926
112 => 0.0017342107897206
113 => 0.0017661434130286
114 => 0.0017831858598124
115 => 0.0017861896649242
116 => 0.0018364363376494
117 => 0.0018532783595773
118 => 0.001922648264326
119 => 0.0017817399272717
120 => 0.0017788380127974
121 => 0.0017229240563621
122 => 0.0016874625412261
123 => 0.0017253521366421
124 => 0.0017589171457351
125 => 0.0017239670147567
126 => 0.0017285307640249
127 => 0.0016816130687171
128 => 0.0016983839371069
129 => 0.0017128292682441
130 => 0.0017048534054475
131 => 0.0016929131528047
201 => 0.0017561651977598
202 => 0.0017525962694966
203 => 0.001811498027917
204 => 0.0018574161607108
205 => 0.0019397096635254
206 => 0.0018538321032811
207 => 0.0018507023836534
208 => 0.0018812958950369
209 => 0.0018532736758701
210 => 0.0018709827510894
211 => 0.0019368564577264
212 => 0.0019382482653452
213 => 0.0019149336944873
214 => 0.0019135150007317
215 => 0.0019179928190984
216 => 0.0019442195411345
217 => 0.0019350551185893
218 => 0.0019456604203734
219 => 0.0019589225126484
220 => 0.0020137801493088
221 => 0.002027006139788
222 => 0.0019948738398135
223 => 0.001997775026731
224 => 0.0019857566644892
225 => 0.0019741470771533
226 => 0.0020002437340404
227 => 0.0020479358874328
228 => 0.0020476391970218
301 => 0.0020587028496059
302 => 0.0020655954135095
303 => 0.00203600748357
304 => 0.0020167468291578
305 => 0.0020241325896467
306 => 0.0020359425815095
307 => 0.0020203027684567
308 => 0.0019237665972289
309 => 0.0019530495048249
310 => 0.0019481753971399
311 => 0.0019412340750847
312 => 0.0019706782651106
313 => 0.001967838301153
314 => 0.001882770354755
315 => 0.0018882161286811
316 => 0.0018831015303044
317 => 0.0018996278440079
318 => 0.0018523812006954
319 => 0.0018669139499673
320 => 0.0018760287540746
321 => 0.001881397443717
322 => 0.0019007928320504
323 => 0.0018985170070902
324 => 0.0019006513635755
325 => 0.0019294096042812
326 => 0.0020748589171344
327 => 0.0020827754023172
328 => 0.0020437917339588
329 => 0.0020593649405491
330 => 0.0020294677893816
331 => 0.0020495379472538
401 => 0.0020632694395433
402 => 0.0020012194663013
403 => 0.0019975452695869
404 => 0.0019675247222415
405 => 0.0019836560639342
406 => 0.0019579899394166
407 => 0.0019642875086103
408 => 0.0019466789561325
409 => 0.0019783708447647
410 => 0.0020138073006771
411 => 0.0020227599488686
412 => 0.0019992093858341
413 => 0.0019821572261394
414 => 0.001952219251046
415 => 0.0020020067708376
416 => 0.0020165661588718
417 => 0.0020019302965703
418 => 0.0019985388474752
419 => 0.0019921120575681
420 => 0.0019999023213354
421 => 0.0020164868653178
422 => 0.0020086659006441
423 => 0.0020138317855987
424 => 0.0019941447591892
425 => 0.002036017278406
426 => 0.0021025209160928
427 => 0.0021027347361624
428 => 0.0020949137293308
429 => 0.0020917135418413
430 => 0.0020997383694688
501 => 0.0021040915092611
502 => 0.002130042330307
503 => 0.0021578885952155
504 => 0.0022878349632663
505 => 0.0022513465431064
506 => 0.0023666426913851
507 => 0.0024578269753424
508 => 0.0024851691550957
509 => 0.0024600156362716
510 => 0.0023739668071408
511 => 0.0023697448410661
512 => 0.002498338120666
513 => 0.0024620046292337
514 => 0.00245768287604
515 => 0.0024117067237767
516 => 0.0024388843240216
517 => 0.0024329401841767
518 => 0.0024235570686342
519 => 0.0024754100366934
520 => 0.0025724741639537
521 => 0.0025573458094586
522 => 0.0025460531946121
523 => 0.0024965722435857
524 => 0.0025263708280741
525 => 0.0025157601228921
526 => 0.002561350446074
527 => 0.0025343437485704
528 => 0.0024617293673011
529 => 0.0024732934468584
530 => 0.002471545559497
531 => 0.0025075169575376
601 => 0.0024967192367108
602 => 0.0024694371312083
603 => 0.002572142409319
604 => 0.0025654732998352
605 => 0.0025749285723125
606 => 0.002579091075671
607 => 0.0026416059685869
608 => 0.0026672163199611
609 => 0.0026730303180954
610 => 0.0026973581711252
611 => 0.0026724250189498
612 => 0.0027721754046876
613 => 0.0028385035906068
614 => 0.0029155471917693
615 => 0.0030281286004353
616 => 0.00307046025153
617 => 0.0030628134176557
618 => 0.0031481713568325
619 => 0.0033015576761327
620 => 0.003093817178269
621 => 0.0033125684269528
622 => 0.0032433143072241
623 => 0.0030791140351758
624 => 0.00306854147345
625 => 0.0031797398040854
626 => 0.0034263669989922
627 => 0.0033645896838906
628 => 0.0034264680445486
629 => 0.0033542836499784
630 => 0.0033506990863701
701 => 0.0034229622096229
702 => 0.0035918089359609
703 => 0.0035115961854026
704 => 0.003396591538504
705 => 0.0034815091801035
706 => 0.0034079456601932
707 => 0.0032421864607028
708 => 0.003364542443942
709 => 0.0032827264824477
710 => 0.0033066047295875
711 => 0.0034785697114426
712 => 0.0034578784298629
713 => 0.0034846548641881
714 => 0.0034373951584654
715 => 0.0033932471411488
716 => 0.0033108415883525
717 => 0.0032864453667142
718 => 0.0032931876046909
719 => 0.0032864420255959
720 => 0.0032403368761525
721 => 0.0032303804735199
722 => 0.0032137860329323
723 => 0.0032189293439615
724 => 0.0031877269407819
725 => 0.0032466123223273
726 => 0.0032575419680383
727 => 0.0033003938380938
728 => 0.0033048428613985
729 => 0.0034241847095448
730 => 0.0033584532250441
731 => 0.0034025515798305
801 => 0.0033986070079086
802 => 0.0030826727529699
803 => 0.0031262057057889
804 => 0.0031939293189821
805 => 0.0031634199230358
806 => 0.0031202867752668
807 => 0.0030854544457903
808 => 0.0030326799048448
809 => 0.0031069590577803
810 => 0.0032046282451832
811 => 0.0033073199131698
812 => 0.0034306972236311
813 => 0.0034031608442063
814 => 0.0033050134601702
815 => 0.0033094162801213
816 => 0.0033366327806136
817 => 0.0033013849395963
818 => 0.0032909896631607
819 => 0.0033352046292616
820 => 0.0033355091134331
821 => 0.0032949522124988
822 => 0.0032498806389449
823 => 0.003249691787406
824 => 0.0032416717362319
825 => 0.0033557103992656
826 => 0.0034184201333248
827 => 0.003425609703273
828 => 0.0034179362179838
829 => 0.0034208894379219
830 => 0.0033844000253875
831 => 0.0034678040018419
901 => 0.0035443437384349
902 => 0.003523829453995
903 => 0.0034930756253423
904 => 0.0034685787195153
905 => 0.003518058761505
906 => 0.0035158554931241
907 => 0.0035436752306076
908 => 0.0035424131666207
909 => 0.0035330584352583
910 => 0.0035238297880819
911 => 0.0035604203309771
912 => 0.0035498828422495
913 => 0.0035393289858913
914 => 0.0035181616112503
915 => 0.0035210386090169
916 => 0.0034902900904462
917 => 0.003476064418799
918 => 0.0032621444493831
919 => 0.0032049780435186
920 => 0.0032229637585331
921 => 0.0032288851229147
922 => 0.0032040062298217
923 => 0.0032396761716538
924 => 0.0032341170490031
925 => 0.0032557443432591
926 => 0.0032422325487559
927 => 0.0032427870775154
928 => 0.0032825223841309
929 => 0.0032940577126874
930 => 0.0032881907514821
1001 => 0.0032922997700026
1002 => 0.0033869903675012
1003 => 0.0033735283925718
1004 => 0.0033663769866976
1005 => 0.0033683579749983
1006 => 0.0033925534528485
1007 => 0.0033993268656225
1008 => 0.00337062743974
1009 => 0.0033841622548956
1010 => 0.0034417917800042
1011 => 0.0034619588522436
1012 => 0.0035263224660879
1013 => 0.0034989796589548
1014 => 0.0035491685648166
1015 => 0.0037034321507766
1016 => 0.0038266685774697
1017 => 0.003713335266522
1018 => 0.0039396432700795
1019 => 0.0041158565128041
1020 => 0.0041090931550498
1021 => 0.0040783663002951
1022 => 0.0038777522083246
1023 => 0.0036931441299057
1024 => 0.0038475766263762
1025 => 0.003847970306569
1026 => 0.0038347044181628
1027 => 0.0037523111246024
1028 => 0.0038318373101447
1029 => 0.0038381498099564
1030 => 0.003834616488691
1031 => 0.0037714457436996
1101 => 0.0036749956920029
1102 => 0.0036938418012356
1103 => 0.0037247121126091
1104 => 0.0036662681729576
1105 => 0.0036475917929957
1106 => 0.0036823147366715
1107 => 0.0037941992960072
1108 => 0.0037730481681679
1109 => 0.0037724958267416
1110 => 0.0038629893211123
1111 => 0.0037982155088613
1112 => 0.0036940795110267
1113 => 0.0036677837981884
1114 => 0.0035744517325271
1115 => 0.0036389165227167
1116 => 0.0036412364957512
1117 => 0.0036059297889785
1118 => 0.0036969444556949
1119 => 0.0036961057395183
1120 => 0.0037825106198201
1121 => 0.0039476842987661
1122 => 0.0038988343141987
1123 => 0.0038420270970099
1124 => 0.0038482036166116
1125 => 0.0039159447916928
1126 => 0.0038749869308581
1127 => 0.0038897156631826
1128 => 0.0039159224979924
1129 => 0.0039317337321123
1130 => 0.0038459286233428
1201 => 0.0038259233479559
1202 => 0.0037849995754118
1203 => 0.0037743233270334
1204 => 0.0038076548858681
1205 => 0.0037988731977365
1206 => 0.003641041511001
1207 => 0.00362454722157
1208 => 0.0036250530778784
1209 => 0.0035835774028433
1210 => 0.0035203170431121
1211 => 0.0036865614914058
1212 => 0.0036732097356182
1213 => 0.0036584704305726
1214 => 0.0036602759113394
1215 => 0.0037324369917965
1216 => 0.0036905799209095
1217 => 0.0038018638041017
1218 => 0.0037789871832171
1219 => 0.0037555238633282
1220 => 0.0037522805178094
1221 => 0.0037432491414486
1222 => 0.0037122771914801
1223 => 0.0036748767007676
1224 => 0.0036501816572241
1225 => 0.0033670996309169
1226 => 0.0034196380083871
1227 => 0.0034800786226428
1228 => 0.0035009424804833
1229 => 0.0034652534079121
1230 => 0.0037136864135927
1231 => 0.0037590775176905
]
'min_raw' => 0.0015667477780025
'max_raw' => 0.0041158565128041
'avg_raw' => 0.0028413021454033
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001566'
'max' => '$0.004115'
'avg' => '$0.002841'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.0746341711767E-5
'max_diff' => -0.0007422530706197
'year' => 2027
]
2 => [
'items' => [
101 => 0.0036215849025897
102 => 0.0035958656480908
103 => 0.0037153725636358
104 => 0.0036432952844359
105 => 0.0036757516788463
106 => 0.0036055987068296
107 => 0.00374814412992
108 => 0.003747058172625
109 => 0.0036916047835084
110 => 0.0037384736082613
111 => 0.0037303289965754
112 => 0.0036677222568384
113 => 0.0037501288752393
114 => 0.0037501697478939
115 => 0.0036967970665299
116 => 0.003634469459479
117 => 0.0036233267554507
118 => 0.003614932224777
119 => 0.0036736871388946
120 => 0.0037263666111707
121 => 0.0038243900487277
122 => 0.003849035469909
123 => 0.0039452281895181
124 => 0.0038879501085294
125 => 0.0039133407399563
126 => 0.0039409058620944
127 => 0.0039541215953212
128 => 0.0039325872672235
129 => 0.0040820141552794
130 => 0.0040946303629529
131 => 0.004098860468256
201 => 0.0040484745623444
202 => 0.004093229039762
203 => 0.0040722899018908
204 => 0.0041267677215716
205 => 0.0041353105393053
206 => 0.0041280750766044
207 => 0.0041307867017923
208 => 0.004003277213546
209 => 0.0039966651739143
210 => 0.003906509544367
211 => 0.0039432486298043
212 => 0.0038745666705295
213 => 0.0038963464273181
214 => 0.0039059467365854
215 => 0.0039009320798369
216 => 0.003945325802572
217 => 0.0039075820692088
218 => 0.003807970151219
219 => 0.0037083310940287
220 => 0.0037070802068299
221 => 0.0036808470018471
222 => 0.0036618851994958
223 => 0.0036655379153347
224 => 0.0036784105623824
225 => 0.0036611370178481
226 => 0.0036648232043655
227 => 0.0037260384614852
228 => 0.0037383147447334
229 => 0.0036965951376027
301 => 0.0035290848948626
302 => 0.0034879774611265
303 => 0.0035175246693001
304 => 0.0035034030068771
305 => 0.0028275196559436
306 => 0.002986308423726
307 => 0.0028919615298667
308 => 0.0029354409192489
309 => 0.0028391371716284
310 => 0.0028850983677048
311 => 0.0028766110130236
312 => 0.0031319386527164
313 => 0.0031279520628143
314 => 0.0031298602324348
315 => 0.0030387783247388
316 => 0.0031838742768418
317 => 0.0032553537603295
318 => 0.0032421248103007
319 => 0.0032454542520164
320 => 0.0031882434123728
321 => 0.0031304141584192
322 => 0.0030662726159264
323 => 0.0031854396737439
324 => 0.0031721903311641
325 => 0.0032025795560791
326 => 0.003279867911311
327 => 0.0032912489152088
328 => 0.0033065450998622
329 => 0.0033010625065205
330 => 0.0034316801229567
331 => 0.0034158614677635
401 => 0.0034539798754415
402 => 0.0033755674187974
403 => 0.0032868362811259
404 => 0.0033037011695578
405 => 0.003302076945183
406 => 0.003281398704693
407 => 0.0032627313137653
408 => 0.0032316553673755
409 => 0.0033299842601277
410 => 0.0033259922866516
411 => 0.003390617697068
412 => 0.0033791945280392
413 => 0.0033029078095409
414 => 0.0033056324046162
415 => 0.0033239566158937
416 => 0.0033873769203472
417 => 0.0034062043846926
418 => 0.0033974827530631
419 => 0.0034181262082114
420 => 0.0034344419534592
421 => 0.0034201752146129
422 => 0.0036221621507868
423 => 0.0035382830924073
424 => 0.0035791651618348
425 => 0.0035889152945021
426 => 0.003563940534698
427 => 0.0035693566658204
428 => 0.0035775606286634
429 => 0.0036273734845458
430 => 0.0037580968318472
501 => 0.0038159933125031
502 => 0.0039901777311184
503 => 0.0038111858157426
504 => 0.0038005651762263
505 => 0.0038319410498845
506 => 0.0039342057429049
507 => 0.0040170816713637
508 => 0.0040445763980605
509 => 0.004048210280082
510 => 0.00409979221518
511 => 0.0041293580184321
512 => 0.0040935288115196
513 => 0.0040631673101355
514 => 0.003954416180786
515 => 0.0039670044201277
516 => 0.0040537249060357
517 => 0.0041762227001918
518 => 0.004281338551301
519 => 0.0042445306438998
520 => 0.0045253489950377
521 => 0.0045531909875129
522 => 0.0045493441243923
523 => 0.0046127723266948
524 => 0.004486880262053
525 => 0.0044330589653747
526 => 0.0040697318113524
527 => 0.0041718119217107
528 => 0.0043201913570711
529 => 0.0043005527824068
530 => 0.0041927956702544
531 => 0.0042812568078686
601 => 0.0042520087893378
602 => 0.0042289396636212
603 => 0.0043346238006992
604 => 0.0042184197507168
605 => 0.004319032132781
606 => 0.0041899957120819
607 => 0.0042446987793204
608 => 0.0042136466726662
609 => 0.0042337411912745
610 => 0.0041162690460886
611 => 0.0041796541641558
612 => 0.0041136320167861
613 => 0.0041136007136919
614 => 0.0041121432711295
615 => 0.0041898180347229
616 => 0.004192351005975
617 => 0.0041349492383195
618 => 0.0041266767468161
619 => 0.0041572644836922
620 => 0.0041214542547513
621 => 0.0041382096354859
622 => 0.0041219617581648
623 => 0.0041183040187472
624 => 0.0040891585287545
625 => 0.0040766018502937
626 => 0.0040815256474639
627 => 0.0040647181893305
628 => 0.0040545910878528
629 => 0.0041101287357501
630 => 0.0040804572108609
701 => 0.0041055811490113
702 => 0.0040769492505951
703 => 0.0039776986163606
704 => 0.0039206185270558
705 => 0.0037331432795254
706 => 0.0037863110271627
707 => 0.0038215612988522
708 => 0.0038099110842691
709 => 0.0038349402532282
710 => 0.0038364768409238
711 => 0.003828339602953
712 => 0.0038189177238276
713 => 0.003814331674132
714 => 0.0038485123312833
715 => 0.0038683553532277
716 => 0.0038250991352041
717 => 0.0038149648085399
718 => 0.0038586992332031
719 => 0.0038853772069831
720 => 0.0040823523763159
721 => 0.0040677598195503
722 => 0.0041043842733873
723 => 0.0041002609219333
724 => 0.0041386491842875
725 => 0.0042013977691465
726 => 0.0040738123513479
727 => 0.0040959567683059
728 => 0.0040905274686571
729 => 0.0041498031385843
730 => 0.0041499881907556
731 => 0.004114449465595
801 => 0.0041337155850545
802 => 0.0041229617657105
803 => 0.004142395370731
804 => 0.004067564927058
805 => 0.0041587003300045
806 => 0.0042103682308394
807 => 0.0042110856396927
808 => 0.0042355758146266
809 => 0.0042604592507348
810 => 0.004308220839454
811 => 0.0042591272059481
812 => 0.0041708125384399
813 => 0.0041771885721794
814 => 0.0041254097149324
815 => 0.0041262801268774
816 => 0.0041216337996999
817 => 0.0041355777773187
818 => 0.0040706248460075
819 => 0.0040858691691601
820 => 0.0040645270274757
821 => 0.0040959103746579
822 => 0.004062147080943
823 => 0.0040905248504844
824 => 0.0041027717550805
825 => 0.004147963096697
826 => 0.0040554722830423
827 => 0.0038668772529227
828 => 0.0039065222147476
829 => 0.0038478842021641
830 => 0.0038533113734794
831 => 0.0038642751232641
901 => 0.0038287380230961
902 => 0.0038355173819054
903 => 0.0038352751755031
904 => 0.0038331879715787
905 => 0.0038239433993171
906 => 0.0038105369405548
907 => 0.0038639441459732
908 => 0.0038730190708815
909 => 0.0038931915048073
910 => 0.0039532109850778
911 => 0.0039472136236419
912 => 0.0039569955689719
913 => 0.0039356416372398
914 => 0.0038543019211279
915 => 0.0038587190590499
916 => 0.003803637278382
917 => 0.0038917829398349
918 => 0.003870908883737
919 => 0.0038574512439769
920 => 0.0038537792022842
921 => 0.0039139474592371
922 => 0.0039319507447393
923 => 0.0039207323053699
924 => 0.003897722958929
925 => 0.0039419077061981
926 => 0.0039537296805625
927 => 0.003956376184645
928 => 0.0040346630852208
929 => 0.0039607515527282
930 => 0.0039785427932167
1001 => 0.0041173449727738
1002 => 0.0039914705493069
1003 => 0.0040581490387519
1004 => 0.0040548854736717
1005 => 0.0040889959325947
1006 => 0.0040520874204303
1007 => 0.0040525449456731
1008 => 0.0040828327223541
1009 => 0.0040402990024349
1010 => 0.0040297670552299
1011 => 0.0040152172455974
1012 => 0.0040469862226358
1013 => 0.0040660302875831
1014 => 0.004219511464734
1015 => 0.0043186673047655
1016 => 0.0043143626882448
1017 => 0.0043536988253394
1018 => 0.0043359775353005
1019 => 0.004278750815125
1020 => 0.0043764298484096
1021 => 0.004345520115214
1022 => 0.0043480682760633
1023 => 0.0043479734333893
1024 => 0.0043685257037886
1025 => 0.0043539625366227
1026 => 0.0043252570392605
1027 => 0.004344313088039
1028 => 0.0044009027402492
1029 => 0.0045765587570922
1030 => 0.0046748581912502
1031 => 0.0045706410077275
1101 => 0.0046425286253978
1102 => 0.0045994216709728
1103 => 0.004591587855033
1104 => 0.0046367385913832
1105 => 0.0046819683581203
1106 => 0.0046790874175128
1107 => 0.0046462529294359
1108 => 0.0046277055602655
1109 => 0.0047681524534482
1110 => 0.0048716313318948
1111 => 0.0048645747661159
1112 => 0.0048957201525457
1113 => 0.0049871639703939
1114 => 0.0049955244470867
1115 => 0.0049944712191868
1116 => 0.0049737489053781
1117 => 0.00506378721953
1118 => 0.0051388987652689
1119 => 0.0049689522884566
1120 => 0.005033665682064
1121 => 0.0050627176093897
1122 => 0.0051053744580222
1123 => 0.0051773437117832
1124 => 0.0052555214102694
1125 => 0.0052665765940102
1126 => 0.0052587324121069
1127 => 0.0052071721184259
1128 => 0.0052927150889634
1129 => 0.0053428241548748
1130 => 0.0053726629568994
1201 => 0.0054483291941307
1202 => 0.0050628970242024
1203 => 0.0047900689771054
1204 => 0.0047474629378664
1205 => 0.0048341039940586
1206 => 0.004856950549627
1207 => 0.0048477411317245
1208 => 0.0045406483602759
1209 => 0.004745846157979
1210 => 0.0049666217347867
1211 => 0.0049751026238287
1212 => 0.0050856274937782
1213 => 0.0051216189220013
1214 => 0.0052106059291365
1215 => 0.0052050397676116
1216 => 0.0052267066877565
1217 => 0.005221725838034
1218 => 0.0053865555303269
1219 => 0.0055683871583721
1220 => 0.0055620909072821
1221 => 0.0055359504594164
1222 => 0.0055747734821057
1223 => 0.0057624432085098
1224 => 0.0057451655874486
1225 => 0.0057619493246053
1226 => 0.0059832225086382
1227 => 0.0062709091236242
1228 => 0.0061372498076993
1229 => 0.0064272520638243
1230 => 0.0066097931116959
1231 => 0.0069254789788933
]
'min_raw' => 0.0028275196559436
'max_raw' => 0.0069254789788933
'avg_raw' => 0.0048764993174184
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002827'
'max' => '$0.006925'
'avg' => '$0.004876'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0012607718779411
'max_diff' => 0.0028096224660892
'year' => 2028
]
3 => [
'items' => [
101 => 0.0068859535535345
102 => 0.0070088477450245
103 => 0.0068151947929371
104 => 0.0063705284712255
105 => 0.0063001583237003
106 => 0.0064410411411016
107 => 0.0067873878005385
108 => 0.0064301334522528
109 => 0.006502405541622
110 => 0.0064815911750217
111 => 0.0064804820658809
112 => 0.0065228122507111
113 => 0.0064614101098209
114 => 0.0062112467418
115 => 0.006325895139142
116 => 0.00628162388706
117 => 0.0063307461418854
118 => 0.0065958386916194
119 => 0.006478634956365
120 => 0.0063551703421326
121 => 0.0065100223673712
122 => 0.0067072022084288
123 => 0.0066948630483417
124 => 0.0066709199204038
125 => 0.0068058860789681
126 => 0.0070288106315423
127 => 0.0070890662423198
128 => 0.0071335457023239
129 => 0.0071396786683718
130 => 0.0072028520302828
131 => 0.0068631529415507
201 => 0.0074022641194598
202 => 0.007495353727239
203 => 0.0074778567391454
204 => 0.0075813219203824
205 => 0.0075508798394042
206 => 0.0075067740402829
207 => 0.0076707883602187
208 => 0.0074827591776854
209 => 0.0072158754252952
210 => 0.0070694577203718
211 => 0.0072622723653943
212 => 0.0073800175408057
213 => 0.007457839611753
214 => 0.0074813885234002
215 => 0.0068895228148097
216 => 0.0065705400242564
217 => 0.006775004335856
218 => 0.0070244649073803
219 => 0.0068617671754803
220 => 0.0068681446185432
221 => 0.0066361804090656
222 => 0.0070449885928174
223 => 0.0069854286790628
224 => 0.0072944256169814
225 => 0.0072206810178917
226 => 0.0074726560255723
227 => 0.0074063025614479
228 => 0.007681732081256
301 => 0.007791608373664
302 => 0.0079761077694964
303 => 0.0081118262761184
304 => 0.0081915227790882
305 => 0.008186738099984
306 => 0.0085025353493903
307 => 0.0083163207445309
308 => 0.0080823913134149
309 => 0.0080781602680439
310 => 0.0081993156352246
311 => 0.0084532240474835
312 => 0.008519058804565
313 => 0.0085558514524309
314 => 0.008499502231463
315 => 0.0082973796240091
316 => 0.0082101041068954
317 => 0.0082844653760915
318 => 0.0081935279338014
319 => 0.0083505114717338
320 => 0.0085660833991894
321 => 0.0085215686486336
322 => 0.0086703747857173
323 => 0.0088243734827367
324 => 0.0090445985359887
325 => 0.0091021735198188
326 => 0.0091973427787096
327 => 0.0092953032075811
328 => 0.0093267654572271
329 => 0.0093868366539639
330 => 0.0093865200491052
331 => 0.0095675486437296
401 => 0.0097672287895892
402 => 0.0098426034220452
403 => 0.010015923233196
404 => 0.0097191191304506
405 => 0.009944248451823
406 => 0.010147320735053
407 => 0.0099052095872986
408 => 0.010238903399816
409 => 0.01025185997439
410 => 0.010447488867697
411 => 0.010249181506369
412 => 0.010131427228232
413 => 0.010471379417019
414 => 0.010635871572779
415 => 0.010586325196783
416 => 0.010209274829042
417 => 0.0099898153425658
418 => 0.0094154475358843
419 => 0.010095811013741
420 => 0.010427196217331
421 => 0.010208416621421
422 => 0.010318756323949
423 => 0.01092073396317
424 => 0.01114992807302
425 => 0.011102257300359
426 => 0.011110312876211
427 => 0.011233981857719
428 => 0.011782398227476
429 => 0.011453774426526
430 => 0.011704995009053
501 => 0.011838241500182
502 => 0.011962008267051
503 => 0.01165807620451
504 => 0.011262665056793
505 => 0.01113742174808
506 => 0.010186663302283
507 => 0.010137172196244
508 => 0.010109391338691
509 => 0.0099342369614975
510 => 0.009796613599845
511 => 0.0096871703930312
512 => 0.0093999587358436
513 => 0.0094968842389578
514 => 0.0090391288031324
515 => 0.0093319845091169
516 => 0.0086013957806481
517 => 0.0092098517832782
518 => 0.0088786968441463
519 => 0.0091010584793899
520 => 0.0091002826805922
521 => 0.0086908444102882
522 => 0.0084546889607356
523 => 0.0086051764044981
524 => 0.0087665108899197
525 => 0.008792686867385
526 => 0.009001861238995
527 => 0.0090602373099233
528 => 0.0088833550896924
529 => 0.0085862559531391
530 => 0.0086552653064506
531 => 0.0084532904883933
601 => 0.008099337388597
602 => 0.0083535526842989
603 => 0.0084403529633091
604 => 0.0084786889114228
605 => 0.0081306166895614
606 => 0.0080212448404369
607 => 0.0079630161856817
608 => 0.0085413242002006
609 => 0.0085730052186925
610 => 0.0084109206488434
611 => 0.0091435582740506
612 => 0.0089777398154913
613 => 0.0091629996602107
614 => 0.0086490034309594
615 => 0.0086686387791045
616 => 0.008425304727022
617 => 0.008561555536601
618 => 0.0084652578559591
619 => 0.0085505478176437
620 => 0.0086016702690138
621 => 0.0088449643923728
622 => 0.0092126298113582
623 => 0.008808624363487
624 => 0.0086325934043849
625 => 0.0087418020213762
626 => 0.0090326389597671
627 => 0.0094732718090983
628 => 0.0092124082937317
629 => 0.0093281750921016
630 => 0.0093534649874391
701 => 0.0091611138889
702 => 0.0094803640684682
703 => 0.0096514528332826
704 => 0.0098269545041507
705 => 0.0099793376875203
706 => 0.0097568552774415
707 => 0.0099949433478265
708 => 0.0098030863912983
709 => 0.0096309708674849
710 => 0.0096312318956883
711 => 0.0095232613133935
712 => 0.0093140547050286
713 => 0.0092754737966408
714 => 0.0094761765543054
715 => 0.0096371211593305
716 => 0.009650377327873
717 => 0.0097394845308473
718 => 0.0097922172556903
719 => 0.010309069645815
720 => 0.01051695195275
721 => 0.01077114650266
722 => 0.01087016960547
723 => 0.01116819364318
724 => 0.0109275150284
725 => 0.010875442696153
726 => 0.010152533863588
727 => 0.010270910144422
728 => 0.01046044199165
729 => 0.01015565917394
730 => 0.010348973720443
731 => 0.010387138106885
801 => 0.010145302770421
802 => 0.010274477472714
803 => 0.0099314277610527
804 => 0.0092201073576258
805 => 0.0094811559714189
806 => 0.0096733756191839
807 => 0.0093990544813116
808 => 0.0098907645032536
809 => 0.0096035176593903
810 => 0.0095124742001657
811 => 0.0091572812063939
812 => 0.0093249186268221
813 => 0.0095516506382878
814 => 0.0094115566156275
815 => 0.009702272747871
816 => 0.010114004322288
817 => 0.010407428761257
818 => 0.010429954246216
819 => 0.010241301989869
820 => 0.010543618434627
821 => 0.010545820479881
822 => 0.010204806295195
823 => 0.0099959370058498
824 => 0.0099484814638459
825 => 0.010067034711979
826 => 0.010210980241349
827 => 0.010437942221286
828 => 0.010575090592374
829 => 0.010932700806296
830 => 0.011029459876695
831 => 0.011135768759546
901 => 0.01127783021148
902 => 0.011448411408337
903 => 0.011075189460808
904 => 0.011090018264556
905 => 0.010742479154627
906 => 0.010371083773519
907 => 0.010652926572692
908 => 0.011021398540636
909 => 0.010936870664064
910 => 0.010927359551202
911 => 0.010943354604873
912 => 0.010879623346361
913 => 0.010591369226099
914 => 0.01044660981147
915 => 0.010633386388407
916 => 0.01073264982658
917 => 0.010886598762505
918 => 0.010867621306684
919 => 0.011264177232718
920 => 0.011418266874346
921 => 0.01137884415015
922 => 0.011386098880162
923 => 0.011665070816049
924 => 0.01197534498371
925 => 0.012265957686006
926 => 0.012561581408888
927 => 0.012205195472564
928 => 0.012024244672927
929 => 0.012210939709053
930 => 0.012111876694962
1001 => 0.01268112215793
1002 => 0.012720535478712
1003 => 0.013289739778755
1004 => 0.013829982439083
1005 => 0.013490665703583
1006 => 0.013810626101998
1007 => 0.014156689359637
1008 => 0.014824301530363
1009 => 0.014599473238142
1010 => 0.014427258289809
1011 => 0.014264515995771
1012 => 0.014603156875052
1013 => 0.015038812956328
1014 => 0.015132649103573
1015 => 0.015284699510276
1016 => 0.015124837099467
1017 => 0.01531737376502
1018 => 0.015997112799321
1019 => 0.01581344131203
1020 => 0.015552598273413
1021 => 0.016089186958162
1022 => 0.016283376317237
1023 => 0.017646298936984
1024 => 0.01936704504394
1025 => 0.018654644856632
1026 => 0.01821243507136
1027 => 0.018316364860255
1028 => 0.018944723087583
1029 => 0.019146531807108
1030 => 0.018597946139803
1031 => 0.018791715871684
1101 => 0.019859406145369
1102 => 0.020432187721596
1103 => 0.019654273406251
1104 => 0.017508038662743
1105 => 0.015529112211731
1106 => 0.016054012618759
1107 => 0.015994505202158
1108 => 0.017141605204158
1109 => 0.015809060807802
1110 => 0.015831497437936
1111 => 0.017002318253178
1112 => 0.016689963332622
1113 => 0.016183988364717
1114 => 0.015532806388942
1115 => 0.014329036279679
1116 => 0.013262823524293
1117 => 0.015353912271739
1118 => 0.015263740722551
1119 => 0.015133158956652
1120 => 0.015423754546237
1121 => 0.016834804242268
1122 => 0.016802274979653
1123 => 0.016595340407467
1124 => 0.016752298456632
1125 => 0.016156472859817
1126 => 0.016310030682813
1127 => 0.01552879873967
1128 => 0.015881948205099
1129 => 0.01618290276968
1130 => 0.016243323854229
1201 => 0.016379455642893
1202 => 0.015216224413556
1203 => 0.015738481084853
1204 => 0.016045257950409
1205 => 0.014659228911193
1206 => 0.016017860612726
1207 => 0.015195975145809
1208 => 0.014917014874031
1209 => 0.015292598129758
1210 => 0.015146232969735
1211 => 0.015020396799997
1212 => 0.014950178055144
1213 => 0.015225964946538
1214 => 0.015213099158418
1215 => 0.014761858276168
1216 => 0.014173232940203
1217 => 0.014370794923921
1218 => 0.014299018803083
1219 => 0.014038892881862
1220 => 0.014214186345041
1221 => 0.01344228264719
1222 => 0.012114262455099
1223 => 0.012991593272353
1224 => 0.012957816990241
1225 => 0.012940785457168
1226 => 0.013600075318691
1227 => 0.01353669981091
1228 => 0.013421672643714
1229 => 0.014036780317731
1230 => 0.013812257742349
1231 => 0.014504183415503
]
'min_raw' => 0.0062112467418
'max_raw' => 0.020432187721596
'avg_raw' => 0.013321717231698
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.006211'
'max' => '$0.020432'
'avg' => '$0.013321'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0033837270858564
'max_diff' => 0.013506708742703
'year' => 2029
]
4 => [
'items' => [
101 => 0.01495993041479
102 => 0.0148443382339
103 => 0.015272970489545
104 => 0.014375346353007
105 => 0.014673501084735
106 => 0.01473495036172
107 => 0.014029189984514
108 => 0.013547068827761
109 => 0.01351491684319
110 => 0.012678985197769
111 => 0.013125533135348
112 => 0.013518476841009
113 => 0.013330287299661
114 => 0.013270712112873
115 => 0.013575068821892
116 => 0.013598719944821
117 => 0.01305947183559
118 => 0.013171598593266
119 => 0.013639185812297
120 => 0.013159816595052
121 => 0.012228480510461
122 => 0.011997496284754
123 => 0.01196667873116
124 => 0.011340231191452
125 => 0.012012931755209
126 => 0.011719279931875
127 => 0.012646922523299
128 => 0.012117058050125
129 => 0.012094216651713
130 => 0.012059688527909
131 => 0.01152047925226
201 => 0.01163853181509
202 => 0.01203095651385
203 => 0.012170978067348
204 => 0.012156372672155
205 => 0.012029033418739
206 => 0.012087328676871
207 => 0.011899539339015
208 => 0.011833227015321
209 => 0.011623927081102
210 => 0.011316313998382
211 => 0.011359089484235
212 => 0.010749627476026
213 => 0.010417560227357
214 => 0.010325648389501
215 => 0.01020274003866
216 => 0.010339531214775
217 => 0.010747900946732
218 => 0.01025532040952
219 => 0.0094108256289789
220 => 0.0094615812042385
221 => 0.0095756139123814
222 => 0.009363114715159
223 => 0.0091620020586938
224 => 0.0093368531967047
225 => 0.0089790296254113
226 => 0.0096188551814498
227 => 0.0096015496932494
228 => 0.0098400370939936
301 => 0.0099891681599331
302 => 0.0096454693346985
303 => 0.0095590300096125
304 => 0.0096082697776298
305 => 0.0087944460952426
306 => 0.0097735303367368
307 => 0.0097819974979146
308 => 0.0097094965233476
309 => 0.010230828656109
310 => 0.011331002063804
311 => 0.010917072573456
312 => 0.010756786563709
313 => 0.01045208274201
314 => 0.010858082492901
315 => 0.010826908046615
316 => 0.010685925377954
317 => 0.010600658620054
318 => 0.010757765235905
319 => 0.010581191371729
320 => 0.010549473853797
321 => 0.010357300204132
322 => 0.010288702954546
323 => 0.010237916281888
324 => 0.010182005145486
325 => 0.010305331180201
326 => 0.010025858160646
327 => 0.0096888410961404
328 => 0.009660821773802
329 => 0.0097381855862625
330 => 0.0097039578583072
331 => 0.0096606579046089
401 => 0.0095779865009581
402 => 0.00955345966149
403 => 0.0096331599910305
404 => 0.0095431829657972
405 => 0.0096759489678311
406 => 0.0096398439615559
407 => 0.0094381643314643
408 => 0.0091867968410076
409 => 0.0091845591430814
410 => 0.0091304024295878
411 => 0.0090614257124374
412 => 0.0090422379676996
413 => 0.0093221277215609
414 => 0.0099014911356585
415 => 0.0097877482344796
416 => 0.0098699391374227
417 => 0.010274237032576
418 => 0.010402751175784
419 => 0.010311534880959
420 => 0.010186672390628
421 => 0.010192165706514
422 => 0.010618858634424
423 => 0.010645470948945
424 => 0.010712711682283
425 => 0.010799135026851
426 => 0.010326253150244
427 => 0.010169893012652
428 => 0.01009580090493
429 => 0.0098676258904025
430 => 0.010113693081324
501 => 0.0099703202668215
502 => 0.0099896661578106
503 => 0.0099770671209247
504 => 0.0099839470470075
505 => 0.0096186763371672
506 => 0.0097517617857697
507 => 0.0095304814151208
508 => 0.0092342118387092
509 => 0.0092332186392036
510 => 0.0093057301983055
511 => 0.0092625974855741
512 => 0.0091465284646573
513 => 0.0091630155212482
514 => 0.0090185715570157
515 => 0.0091805536337484
516 => 0.0091851987001094
517 => 0.009122826777344
518 => 0.0093723825157698
519 => 0.009474625705421
520 => 0.0094335711697207
521 => 0.0094717452097532
522 => 0.009792474765542
523 => 0.0098447676775472
524 => 0.009867992734784
525 => 0.0098368742348171
526 => 0.0094776075572615
527 => 0.009493542562131
528 => 0.0093766220694407
529 => 0.0092778365738954
530 => 0.0092817874756555
531 => 0.0093325760615813
601 => 0.0095543727950305
602 => 0.010021130944943
603 => 0.010038844075536
604 => 0.010060312906544
605 => 0.0099729883814657
606 => 0.0099466504691189
607 => 0.0099813969738962
608 => 0.010156686794026
609 => 0.01060757980212
610 => 0.010448204098928
611 => 0.010318629171402
612 => 0.010432301315992
613 => 0.010414802380324
614 => 0.010267093752981
615 => 0.01026294806377
616 => 0.0099794479825938
617 => 0.0098746444575673
618 => 0.0097870627876473
619 => 0.0096914258904721
620 => 0.0096347291320488
621 => 0.0097218411212028
622 => 0.0097417646638011
623 => 0.0095512927770587
624 => 0.0095253321627135
625 => 0.0096808756170486
626 => 0.0096124267420402
627 => 0.0096828281074368
628 => 0.0096991618281005
629 => 0.0096965317228762
630 => 0.0096250632360642
701 => 0.0096706151183372
702 => 0.0095628713370918
703 => 0.0094457161575802
704 => 0.0093709784520773
705 => 0.009305759891508
706 => 0.0093419469394369
707 => 0.0092129467210645
708 => 0.0091716769549457
709 => 0.0096551831655729
710 => 0.010012354401931
711 => 0.010007160990699
712 => 0.0099755474354611
713 => 0.0099285761049534
714 => 0.010153250548633
715 => 0.010074978464962
716 => 0.010131927945684
717 => 0.01014642397869
718 => 0.010190299104673
719 => 0.010205980691017
720 => 0.010158580045522
721 => 0.0099994976897406
722 => 0.009603079584229
723 => 0.0094185458860031
724 => 0.0093576466919368
725 => 0.009359860261977
726 => 0.0092988001184544
727 => 0.0093167850672455
728 => 0.0092925456872256
729 => 0.0092466421656039
730 => 0.0093391125263295
731 => 0.0093497688739821
801 => 0.0093281851868502
802 => 0.0093332689265106
803 => 0.009154565215572
804 => 0.0091681516705906
805 => 0.0090925005625638
806 => 0.0090783168917965
807 => 0.0088870774784003
808 => 0.0085482691369726
809 => 0.008736001847045
810 => 0.0085092471324913
811 => 0.0084233716861952
812 => 0.008829892692589
813 => 0.0087890892586846
814 => 0.0087192515166667
815 => 0.0086159469407614
816 => 0.0085776302686758
817 => 0.0083448302986681
818 => 0.0083310752345005
819 => 0.0084464571857643
820 => 0.0083932123853066
821 => 0.0083184365200811
822 => 0.0080476059161426
823 => 0.0077431026483842
824 => 0.0077522936879985
825 => 0.0078491505119878
826 => 0.0081307747906587
827 => 0.0080207393128325
828 => 0.0079409073111579
829 => 0.0079259571769854
830 => 0.00811308940638
831 => 0.0083779207163875
901 => 0.0085021736417764
902 => 0.0083790427663334
903 => 0.0082375966464617
904 => 0.0082462058163801
905 => 0.008303478766871
906 => 0.0083094973441717
907 => 0.0082174304610312
908 => 0.0082433467493504
909 => 0.0082039775375585
910 => 0.0079623687574615
911 => 0.0079579988207793
912 => 0.0078987041296756
913 => 0.0078969087099942
914 => 0.0077960336486729
915 => 0.0077819205302777
916 => 0.0075816269733458
917 => 0.0077134607990631
918 => 0.0076250335903585
919 => 0.0074917529289707
920 => 0.0074687752927109
921 => 0.0074680845572186
922 => 0.0076049339954533
923 => 0.0077118616336997
924 => 0.0076265718195128
925 => 0.0076071529820961
926 => 0.0078144953618857
927 => 0.0077881091540897
928 => 0.0077652588683112
929 => 0.0083542079772715
930 => 0.0078880088012573
1001 => 0.0076847193507965
1002 => 0.0074331100522315
1003 => 0.0075150353085685
1004 => 0.0075322981638111
1005 => 0.0069272231567474
1006 => 0.006681744301739
1007 => 0.0065975052093756
1008 => 0.0065490244207545
1009 => 0.0065711177249126
1010 => 0.0063501579636071
1011 => 0.0064986465775415
1012 => 0.0063073141015146
1013 => 0.006275236589259
1014 => 0.0066173627579406
1015 => 0.0066649676156405
1016 => 0.0064618705030225
1017 => 0.0065922917277591
1018 => 0.006544999178679
1019 => 0.0063105939476586
1020 => 0.0063016413920018
1021 => 0.006184025086818
1022 => 0.0059999783442099
1023 => 0.0059158640442046
1024 => 0.005872056586448
1025 => 0.0058901323973087
1026 => 0.0058809927142086
1027 => 0.0058213500996605
1028 => 0.0058844113590594
1029 => 0.0057233159000068
1030 => 0.0056591663901777
1031 => 0.0056301915448452
1101 => 0.0054872100526274
1102 => 0.0057147571909042
1103 => 0.005759586843708
1104 => 0.0058045048247765
1105 => 0.0061954851831692
1106 => 0.0061759529093629
1107 => 0.0063525151519685
1108 => 0.006345654267898
1109 => 0.0062952958561882
1110 => 0.0060828420007411
1111 => 0.0061675223208965
1112 => 0.0059068894577019
1113 => 0.0061021733201193
1114 => 0.0060130539205611
1115 => 0.0060720419614826
1116 => 0.0059659761451684
1117 => 0.0060246773472669
1118 => 0.0057702176174583
1119 => 0.005532606702108
1120 => 0.00562822827074
1121 => 0.0057321798514957
1122 => 0.0059575733649444
1123 => 0.0058233308477905
1124 => 0.0058716095332306
1125 => 0.0057098840187606
1126 => 0.0053761980877995
1127 => 0.0053780867139305
1128 => 0.0053267564031953
1129 => 0.005282399520372
1130 => 0.0058387502157432
1201 => 0.0057695592121709
1202 => 0.005659312403473
1203 => 0.0058068821379491
1204 => 0.0058459019179913
1205 => 0.0058470127562737
1206 => 0.0059546758252214
1207 => 0.0060121356244184
1208 => 0.0060222631630719
1209 => 0.0061916733282757
1210 => 0.0062484573810779
1211 => 0.0064823428581901
1212 => 0.0060072605619059
1213 => 0.0059974765546505
1214 => 0.005808958746741
1215 => 0.0056893977726161
1216 => 0.0058171451889282
1217 => 0.0059303119605193
1218 => 0.0058124751537855
1219 => 0.0058278621530741
1220 => 0.0056696758676548
1221 => 0.0057262200213357
1222 => 0.0057749234638057
1223 => 0.0057480322855298
1224 => 0.005707774890103
1225 => 0.0059210335757857
1226 => 0.0059090006849719
1227 => 0.0061075920758757
1228 => 0.0062624082664917
1229 => 0.0065398665567801
1230 => 0.0062503243666364
1231 => 0.0062397722984016
]
'min_raw' => 0.005282399520372
'max_raw' => 0.015272970489545
'avg_raw' => 0.010277685004958
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005282'
'max' => '$0.015272'
'avg' => '$0.010277'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00092884722142795
'max_diff' => -0.005159217232051
'year' => 2030
]
5 => [
'items' => [
101 => 0.0063429204580018
102 => 0.0062484415896321
103 => 0.0063081489731421
104 => 0.0065302467742241
105 => 0.0065349393507838
106 => 0.0064563326473649
107 => 0.0064515494223181
108 => 0.0064666466995728
109 => 0.0065550719240085
110 => 0.006524173433558
111 => 0.0065599299489614
112 => 0.0066046440189966
113 => 0.0067896003710349
114 => 0.0068341927213445
115 => 0.0067258564285749
116 => 0.006735637982822
117 => 0.0066951172354284
118 => 0.0066559747011696
119 => 0.0067439614018752
120 => 0.0069047588267975
121 => 0.0069037585143625
122 => 0.0069410603914891
123 => 0.0069642991519136
124 => 0.0068645413803594
125 => 0.0067996027392725
126 => 0.0068245043464183
127 => 0.0068643225585309
128 => 0.0068115918368867
129 => 0.006486113395652
130 => 0.0065848427630793
131 => 0.00656840936872
201 => 0.0065450062167833
202 => 0.006644279359183
203 => 0.0066347042224201
204 => 0.0063478917018849
205 => 0.0063662525088886
206 => 0.0063490082833716
207 => 0.0064047279038535
208 => 0.0062454325472698
209 => 0.0062944307260844
210 => 0.0063251619245074
211 => 0.0063432628364668
212 => 0.0064086557423756
213 => 0.0064009826396293
214 => 0.0064081787715354
215 => 0.006505139187911
216 => 0.0069955317011422
217 => 0.0070222226836473
218 => 0.0068907865240241
219 => 0.00694329267733
220 => 0.0068424923448162
221 => 0.0069101602833362
222 => 0.0069564569682923
223 => 0.0067472511513161
224 => 0.0067348633405693
225 => 0.0066336469692265
226 => 0.0066880349139978
227 => 0.0066014997832351
228 => 0.0066227324774539
301 => 0.0065633640133851
302 => 0.0066702154285656
303 => 0.0067896919137687
304 => 0.0068198763922004
305 => 0.0067404740246817
306 => 0.0066829814777271
307 => 0.0065820435044972
308 => 0.006749905603528
309 => 0.0067989935967894
310 => 0.0067496477651968
311 => 0.0067382132577891
312 => 0.0067165448869131
313 => 0.0067428103051034
314 => 0.0067987262530359
315 => 0.0067723573245963
316 => 0.0067897744663914
317 => 0.0067233982823473
318 => 0.0068645744043327
319 => 0.0070887960619295
320 => 0.0070895169712226
321 => 0.0070631479006447
322 => 0.0070523582450938
323 => 0.0070794145117157
324 => 0.0070940914264519
325 => 0.0071815864314364
326 => 0.0072754720577396
327 => 0.0077135953101885
328 => 0.0075905720540793
329 => 0.0079793010677209
330 => 0.0082867352473664
331 => 0.0083789213153747
401 => 0.0082941144704967
402 => 0.0080039948353449
403 => 0.0079897601819555
404 => 0.0084233214022229
405 => 0.0083008204991355
406 => 0.0082862494065079
407 => 0.0081312375991996
408 => 0.0082228687759046
409 => 0.008202827693411
410 => 0.0081711918642514
411 => 0.0083460177663215
412 => 0.0086732762481806
413 => 0.0086222699447723
414 => 0.0085841961053923
415 => 0.008417367624357
416 => 0.0085178356324305
417 => 0.0084820608990935
418 => 0.008635771856716
419 => 0.008544716890535
420 => 0.0082998924343116
421 => 0.0083388815359172
422 => 0.0083329884116446
423 => 0.0084542684915813
424 => 0.0084178632219409
425 => 0.0083258796984637
426 => 0.0086721577142672
427 => 0.0086496723460204
428 => 0.0086815514573235
429 => 0.0086955856280134
430 => 0.0089063589541299
501 => 0.0089927060418457
502 => 0.0090123083424757
503 => 0.0090943313974823
504 => 0.0090102675341459
505 => 0.0093465829240103
506 => 0.0095702130337231
507 => 0.0098299709140547
508 => 0.010209546993555
509 => 0.010352271110723
510 => 0.01032648927643
511 => 0.010614279527866
512 => 0.011131432212477
513 => 0.010431020619951
514 => 0.011168555727614
515 => 0.01093506062778
516 => 0.010381447946472
517 => 0.010345801816461
518 => 0.010720714751818
519 => 0.011552235558407
520 => 0.011343949027387
521 => 0.011552576240555
522 => 0.011309201514508
523 => 0.011297115908036
524 => 0.011540756073333
525 => 0.012110034599684
526 => 0.011839591710901
527 => 0.011451845514514
528 => 0.011738151271928
529 => 0.011490126728509
530 => 0.01093125801449
531 => 0.011343789754602
601 => 0.011067941528216
602 => 0.011148448705574
603 => 0.01172824064811
604 => 0.011658478547645
605 => 0.011748757165444
606 => 0.011589417768032
607 => 0.011440569645333
608 => 0.011162733570709
609 => 0.011080480006165
610 => 0.011103211932232
611 => 0.011080468741352
612 => 0.010925022011044
613 => 0.010891453304435
614 => 0.010835503989407
615 => 0.010852845021636
616 => 0.010747643940834
617 => 0.01094618011596
618 => 0.010983030179559
619 => 0.011127508251273
620 => 0.011142508443965
621 => 0.011544877817172
622 => 0.011323259527953
623 => 0.011471940209964
624 => 0.011458640810328
625 => 0.010393446411977
626 => 0.01054022080178
627 => 0.010768555691972
628 => 0.010665691133441
629 => 0.010520264714278
630 => 0.010402825083532
701 => 0.010224892034134
702 => 0.01047532938426
703 => 0.010804627868634
704 => 0.011150859996954
705 => 0.011566835213103
706 => 0.011473994387344
707 => 0.011143083629635
708 => 0.011157928044495
709 => 0.0112496903761
710 => 0.011130849819185
711 => 0.011095801418907
712 => 0.011244875264107
713 => 0.011245901853749
714 => 0.011109161430657
715 => 0.010957199473623
716 => 0.010956562747475
717 => 0.010929522584999
718 => 0.011314011899342
719 => 0.011525442145977
720 => 0.011549682283017
721 => 0.011523810591619
722 => 0.011533767578827
723 => 0.011410740976858
724 => 0.011691943306554
725 => 0.011950002372311
726 => 0.01188083703006
727 => 0.011777148349594
728 => 0.011694555321279
729 => 0.011861380737433
730 => 0.01185395226426
731 => 0.011947748451497
801 => 0.011943493314651
802 => 0.011911953184736
803 => 0.011880838156458
804 => 0.012004205726499
805 => 0.011968677847549
806 => 0.011933094783991
807 => 0.01186172750253
808 => 0.011871427501366
809 => 0.011767756724212
810 => 0.011719793879048
811 => 0.010998547766748
812 => 0.010805807238144
813 => 0.010866447332038
814 => 0.010886411625467
815 => 0.010802530700415
816 => 0.010922794399698
817 => 0.010904051429556
818 => 0.010976969362109
819 => 0.010931413403578
820 => 0.010933283036007
821 => 0.011067253396492
822 => 0.011106145562091
823 => 0.011086364692769
824 => 0.011100218535593
825 => 0.011419474496146
826 => 0.011374086507787
827 => 0.011349975043587
828 => 0.011356654083951
829 => 0.011438230826797
830 => 0.011461067860869
831 => 0.011364305742776
901 => 0.011409939317044
902 => 0.011604241284513
903 => 0.011672235976588
904 => 0.011889242394388
905 => 0.011797054211125
906 => 0.011966269611315
907 => 0.012486380061719
908 => 0.012901880278407
909 => 0.012519769107868
910 => 0.013282782342183
911 => 0.013876897592844
912 => 0.013854094459973
913 => 0.013750496723887
914 => 0.01307411230638
915 => 0.012451693281066
916 => 0.012972373225049
917 => 0.012973700545305
918 => 0.012928973676349
919 => 0.012651178934594
920 => 0.012919307021491
921 => 0.01294059005533
922 => 0.012928677215996
923 => 0.012715692638816
924 => 0.012390504555593
925 => 0.012454045528665
926 => 0.012558126938757
927 => 0.012361079115796
928 => 0.012298110396812
929 => 0.012415181225693
930 => 0.012792407829024
1001 => 0.012721095324789
1002 => 0.012719233067107
1003 => 0.013024338201432
1004 => 0.012805948771064
1005 => 0.012454846983822
1006 => 0.012366189152079
1007 => 0.012051513576466
1008 => 0.012268861117378
1009 => 0.012276683068439
1010 => 0.012157644041519
1011 => 0.012464506344795
1012 => 0.012461678554648
1013 => 0.012752998641182
1014 => 0.013309893231806
1015 => 0.01314519209824
1016 => 0.012953662599335
1017 => 0.012974487166403
1018 => 0.013202881267727
1019 => 0.013064788980336
1020 => 0.013114447929695
1021 => 0.013202806102959
1022 => 0.0132561147827
1023 => 0.012966816867762
1024 => 0.012899367685071
1025 => 0.012761390328732
1026 => 0.012725394611933
1027 => 0.012837774289679
1028 => 0.012808166215025
1029 => 0.01227602566374
1030 => 0.012220414015329
1031 => 0.012222119545191
1101 => 0.012082281411071
1102 => 0.01186899469154
1103 => 0.012429499455779
1104 => 0.012384483078951
1105 => 0.012334788482924
1106 => 0.012340875787384
1107 => 0.012584171908271
1108 => 0.012443047871408
1109 => 0.012818249253183
1110 => 0.012741119128676
1111 => 0.012662010907514
1112 => 0.012651075741654
1113 => 0.012620625825703
1114 => 0.012516201733992
1115 => 0.012390103368336
1116 => 0.012306842304876
1117 => 0.011352411489025
1118 => 0.011529548296779
1119 => 0.011733328047571
1120 => 0.011803672000948
1121 => 0.011683343801043
1122 => 0.012520953024733
1123 => 0.012673992301305
1124 => 0.012210426350065
1125 => 0.012123712087861
1126 => 0.012526637997327
1127 => 0.01228362441823
1128 => 0.012393053418017
1129 => 0.012156527774939
1130 => 0.012637129621092
1201 => 0.012633468240253
1202 => 0.012446503267214
1203 => 0.012604524782145
1204 => 0.012577064655207
1205 => 0.012365981661121
1206 => 0.012643821328506
1207 => 0.012643959133515
1208 => 0.012464009411935
1209 => 0.012253867533188
1210 => 0.012216299128598
1211 => 0.012187996382344
1212 => 0.012386092677429
1213 => 0.012563705196171
1214 => 0.012894198059672
1215 => 0.012977291817873
1216 => 0.013301612287996
1217 => 0.013108495238915
1218 => 0.013194101525488
1219 => 0.013287039259312
1220 => 0.013331597026579
1221 => 0.013258992535919
1222 => 0.013762795721652
1223 => 0.013805332146658
1224 => 0.013819594242024
1225 => 0.013649714642412
1226 => 0.013800607487683
1227 => 0.013730009722427
1228 => 0.013913685495
1229 => 0.01394248820143
1230 => 0.01391809333377
1231 => 0.01392723576741
]
'min_raw' => 0.0062454325472698
'max_raw' => 0.01394248820143
'avg_raw' => 0.01009396037435
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.006245'
'max' => '$0.013942'
'avg' => '$0.010093'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00096303302689782
'max_diff' => -0.0013304822881153
'year' => 2031
]
6 => [
'items' => [
101 => 0.01349732862536
102 => 0.013475035672104
103 => 0.01317106967262
104 => 0.013294938064213
105 => 0.013063372043297
106 => 0.013136804013923
107 => 0.01316917212689
108 => 0.013152264861551
109 => 0.013301941397223
110 => 0.013174685765005
111 => 0.012838837228821
112 => 0.012502897190927
113 => 0.012498679737402
114 => 0.012410232655259
115 => 0.01234630161476
116 => 0.012358617001236
117 => 0.012402018029497
118 => 0.012343779068099
119 => 0.012356207303303
120 => 0.012562598816596
121 => 0.012603989162669
122 => 0.012463328594458
123 => 0.011898556115868
124 => 0.011759959532998
125 => 0.011859580008275
126 => 0.011811967837473
127 => 0.0095331799311321
128 => 0.010068547347988
129 => 0.0097504502082519
130 => 0.009897044005188
131 => 0.0095723491963724
201 => 0.0097273105778522
202 => 0.0096986948689765
203 => 0.010559549832607
204 => 0.010546108766418
205 => 0.010552542293517
206 => 0.010245453282584
207 => 0.010734654415376
208 => 0.010975652484492
209 => 0.010931050155855
210 => 0.010942275601053
211 => 0.010749385260862
212 => 0.010554409893648
213 => 0.010338152204913
214 => 0.010739932260323
215 => 0.010695261176776
216 => 0.010797720570285
217 => 0.01105830365605
218 => 0.011096675505288
219 => 0.011148247659792
220 => 0.011129762713558
221 => 0.011570149126804
222 => 0.011516815426397
223 => 0.011645334299225
224 => 0.011380961227067
225 => 0.011081798001397
226 => 0.011138659150214
227 => 0.011133182964335
228 => 0.011063464832814
229 => 0.011000526420986
301 => 0.010895751698079
302 => 0.011227274425097
303 => 0.011213815207812
304 => 0.011431704291033
305 => 0.011393190279112
306 => 0.011135984281526
307 => 0.011145170444048
308 => 0.011206951801726
309 => 0.011420777786055
310 => 0.011484255896587
311 => 0.011454850306623
312 => 0.011524451156936
313 => 0.011579460831168
314 => 0.011531359525076
315 => 0.012212372582663
316 => 0.011929568481088
317 => 0.012067405232458
318 => 0.012100278485478
319 => 0.012016074339116
320 => 0.012034335203338
321 => 0.012061995436846
322 => 0.012229942958276
323 => 0.012670685850515
324 => 0.012865887877249
325 => 0.013453162805778
326 => 0.012849679066273
327 => 0.012813870838634
328 => 0.012919656787266
329 => 0.013264449339677
330 => 0.013543871318689
331 => 0.013636571709368
401 => 0.013648823596312
402 => 0.013822735691831
403 => 0.013922418861714
404 => 0.013801618189093
405 => 0.013699252267404
406 => 0.013332590242041
407 => 0.013375032369865
408 => 0.013667416542734
409 => 0.014080426408255
410 => 0.014434831839224
411 => 0.014310731409574
412 => 0.015257530086547
413 => 0.015351401308043
414 => 0.015338431340452
415 => 0.015552283952931
416 => 0.015127830067488
417 => 0.014946367808054
418 => 0.013721384941576
419 => 0.014065555160655
420 => 0.014565826786494
421 => 0.014499613960891
422 => 0.014136303333908
423 => 0.014434556235534
424 => 0.014335944499026
425 => 0.014258165331037
426 => 0.014614486777827
427 => 0.014222696710204
428 => 0.014561918380865
429 => 0.014126863079443
430 => 0.014311298289884
501 => 0.01420660394431
502 => 0.014274354016753
503 => 0.013878288477615
504 => 0.014091995828586
505 => 0.01386939754921
506 => 0.013869292008643
507 => 0.013864378139288
508 => 0.014126264027822
509 => 0.014134804117245
510 => 0.013941270049931
511 => 0.01391337876726
512 => 0.014016507457706
513 => 0.013895770770641
514 => 0.013952262706611
515 => 0.013897481853832
516 => 0.013885149530011
517 => 0.013786883475627
518 => 0.013744547757517
519 => 0.013761148683445
520 => 0.013704481164889
521 => 0.013670336935206
522 => 0.013857585992606
523 => 0.013757546374842
524 => 0.013842253486414
525 => 0.013745719041888
526 => 0.013411088599109
527 => 0.013218639092813
528 => 0.01258655320666
529 => 0.012765811979873
530 => 0.01288466073197
531 => 0.012845381220111
601 => 0.012929768810737
602 => 0.012934949523434
603 => 0.012907514257492
604 => 0.012875747734206
605 => 0.012860285547469
606 => 0.012975528019472
607 => 0.013042430153353
608 => 0.012896588794234
609 => 0.01286242020433
610 => 0.013009873870522
611 => 0.013099820521717
612 => 0.01376393605749
613 => 0.013714736233535
614 => 0.013838218136684
615 => 0.013824315969374
616 => 0.013953744676084
617 => 0.014165305910902
618 => 0.013735142767065
619 => 0.013809804214913
620 => 0.013791498952085
621 => 0.01399135101174
622 => 0.013991974928055
623 => 0.013872153634942
624 => 0.013937110701817
625 => 0.013900853449091
626 => 0.013966375205229
627 => 0.01371407913989
628 => 0.014021348513795
629 => 0.014195550448798
630 => 0.014197969242834
701 => 0.014280539577474
702 => 0.014364435819618
703 => 0.014525467350593
704 => 0.01435994473762
705 => 0.014062185670183
706 => 0.014083682913096
707 => 0.013909106880803
708 => 0.013912041535446
709 => 0.013896376118971
710 => 0.01394338921305
711 => 0.013724395870265
712 => 0.013775793170099
713 => 0.013703836649349
714 => 0.01380964779549
715 => 0.013695812493452
716 => 0.013791490124733
717 => 0.01383278141863
718 => 0.013985147182049
719 => 0.01367330794631
720 => 0.013037446634977
721 => 0.013171112391693
722 => 0.012973410238292
723 => 0.012991708325295
724 => 0.013028673373158
725 => 0.012908857558821
726 => 0.012931714640366
727 => 0.012930898024571
728 => 0.012923860870816
729 => 0.01289269215
730 => 0.012847491338274
731 => 0.013027557460114
801 => 0.013058154203033
802 => 0.013126166972409
803 => 0.013328526840567
804 => 0.013308306317763
805 => 0.013341286829397
806 => 0.013269290557679
807 => 0.012995048025849
808 => 0.013009940714748
809 => 0.012824228645539
810 => 0.013121417897261
811 => 0.013051039559747
812 => 0.013005666187713
813 => 0.012993285642773
814 => 0.013196147121903
815 => 0.013256846455923
816 => 0.013219022704343
817 => 0.013141445086356
818 => 0.013290417046654
819 => 0.013330275658608
820 => 0.013339198531895
821 => 0.013603148283003
822 => 0.013353950390866
823 => 0.013413934800317
824 => 0.013881916039553
825 => 0.013457521632563
826 => 0.01368233281507
827 => 0.013671329477547
828 => 0.013786335271322
829 => 0.01366189564569
830 => 0.01366343822399
831 => 0.013765555577694
901 => 0.013622150171378
902 => 0.013586640976059
903 => 0.013537585277048
904 => 0.013644696601172
905 => 0.013708904995756
906 => 0.014226377500234
907 => 0.014560688337739
908 => 0.014546175022601
909 => 0.014678799555177
910 => 0.01461905098855
911 => 0.014426107106036
912 => 0.014755438786488
913 => 0.01465122446297
914 => 0.01465981576518
915 => 0.014659495996483
916 => 0.014728789411048
917 => 0.01467968867618
918 => 0.01458290608767
919 => 0.014647154886577
920 => 0.014837950849967
921 => 0.015430187374665
922 => 0.015761610779976
923 => 0.015410235269518
924 => 0.015652609391526
925 => 0.015507271285051
926 => 0.015480859027671
927 => 0.015633087887599
928 => 0.015785583203995
929 => 0.015775869911596
930 => 0.015665166142614
1001 => 0.01560263239252
1002 => 0.016076158898574
1003 => 0.016425045161921
1004 => 0.016401253457724
1005 => 0.016506262302573
1006 => 0.016814571518852
1007 => 0.016842759449732
1008 => 0.016839208418333
1009 => 0.016769341690542
1010 => 0.017072912152979
1011 => 0.017326155973559
1012 => 0.016753169561702
1013 => 0.016971355286394
1014 => 0.017069305887713
1015 => 0.017213126431084
1016 => 0.017455775794872
1017 => 0.017719357363511
1018 => 0.017756630687341
1019 => 0.017730183480391
1020 => 0.01755634435042
1021 => 0.017844758448007
1022 => 0.018013704662231
1023 => 0.018114308266535
1024 => 0.018369422268209
1025 => 0.017069910797281
1026 => 0.016150051988247
1027 => 0.016006402752294
1028 => 0.016298519122331
1029 => 0.016375547879526
1030 => 0.016344497684087
1031 => 0.015309112964615
1101 => 0.016000951666024
1102 => 0.01674531193729
1103 => 0.016773905846811
1104 => 0.017146548162446
1105 => 0.017267895775542
1106 => 0.017567921682972
1107 => 0.017549154980774
1108 => 0.017622206514779
1109 => 0.017605413232187
1110 => 0.018161148047795
1111 => 0.018774206076828
1112 => 0.018752977826688
1113 => 0.018664843481641
1114 => 0.018795738013175
1115 => 0.019428479598428
1116 => 0.019370226892735
1117 => 0.019426814434362
1118 => 0.020172852423129
1119 => 0.021142807931193
1120 => 0.020692166215756
1121 => 0.021669929069593
1122 => 0.022285378957101
1123 => 0.02334973589884
1124 => 0.023216473167666
1125 => 0.023630819514473
1126 => 0.022977905066093
1127 => 0.021478681516831
1128 => 0.021241423651363
1129 => 0.021716419906356
1130 => 0.022884151849799
1201 => 0.021679643871852
1202 => 0.021923314267036
1203 => 0.02185313717683
1204 => 0.021849397737927
1205 => 0.021992116911481
1206 => 0.021785095306509
1207 => 0.020941652045378
1208 => 0.021328197121512
1209 => 0.021178933504197
1210 => 0.021344552615948
1211 => 0.022238330655547
1212 => 0.021843170079233
1213 => 0.021426900512324
1214 => 0.021948994926839
1215 => 0.022613800527622
1216 => 0.022572198187896
1217 => 0.022491472260397
1218 => 0.022946520087033
1219 => 0.023698125780132
1220 => 0.023901281778781
1221 => 0.024051247383641
1222 => 0.024071925106862
1223 => 0.024284918507168
1224 => 0.023139599312475
1225 => 0.024957250288336
1226 => 0.025271108400272
1227 => 0.025212116083314
1228 => 0.025560956165563
1229 => 0.025458318564147
1230 => 0.025309612783041
1231 => 0.025862598513818
]
'min_raw' => 0.0095331799311321
'max_raw' => 0.025862598513818
'avg_raw' => 0.017697889222475
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.009533'
'max' => '$0.025862'
'avg' => '$0.017697'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0032877473838623
'max_diff' => 0.011920110312389
'year' => 2032
]
7 => [
'items' => [
101 => 0.025228644997129
102 => 0.024328827792717
103 => 0.02383517027801
104 => 0.024485258315592
105 => 0.024882244395197
106 => 0.025144626940759
107 => 0.02522402374051
108 => 0.023228507181253
109 => 0.022153034432236
110 => 0.022842400134036
111 => 0.023683473867711
112 => 0.023134927105417
113 => 0.023156429099963
114 => 0.022374345572485
115 => 0.02375267090608
116 => 0.023551860498516
117 => 0.024593665248186
118 => 0.024345030183672
119 => 0.0251945815144
120 => 0.024970866177454
121 => 0.025899496033362
122 => 0.026269951624533
123 => 0.026892004218919
124 => 0.027349588639558
125 => 0.027618290963553
126 => 0.027602159083897
127 => 0.028666891558531
128 => 0.028039056017159
129 => 0.02725034660772
130 => 0.027236081342849
131 => 0.027644565122097
201 => 0.028500635061347
202 => 0.028722601541283
203 => 0.028846650522343
204 => 0.028656665189673
205 => 0.027975194706893
206 => 0.027680939207562
207 => 0.027931653418394
208 => 0.027625051482664
209 => 0.028154332441044
210 => 0.028881148245212
211 => 0.028731063655792
212 => 0.029232773936282
213 => 0.029751991295129
214 => 0.03049449543779
215 => 0.030688613515531
216 => 0.031009483316386
217 => 0.031339763741705
218 => 0.031445840913011
219 => 0.031648375146846
220 => 0.03164730769146
221 => 0.032257658237249
222 => 0.032930893790238
223 => 0.033185024626052
224 => 0.03376938447015
225 => 0.032768688715543
226 => 0.033527727940577
227 => 0.034212400321542
228 => 0.033396105683226
301 => 0.034521177669887
302 => 0.034564861665661
303 => 0.035224438137821
304 => 0.034555831023724
305 => 0.034158814253643
306 => 0.035304986792843
307 => 0.035859583580465
308 => 0.035692534514575
309 => 0.034421282874921
310 => 0.033681359894095
311 => 0.031744838732789
312 => 0.034038731699845
313 => 0.035156020050322
314 => 0.034418389368011
315 => 0.034790407378754
316 => 0.036820017018126
317 => 0.037592760961307
318 => 0.037432035623013
319 => 0.03745919555942
320 => 0.037876154164866
321 => 0.039725178244709
322 => 0.038617200156025
323 => 0.039464207889677
324 => 0.039913457737493
325 => 0.04033074603311
326 => 0.039306017864394
327 => 0.037972861573141
328 => 0.037550595013608
329 => 0.034345046533767
330 => 0.034178183814399
331 => 0.034084518713561
401 => 0.033493973501964
402 => 0.033029966729597
403 => 0.032660971316743
404 => 0.031692617162058
405 => 0.03201940826293
406 => 0.030476053851581
407 => 0.03146343731084
408 => 0.029000206404731
409 => 0.03105165829864
410 => 0.029935146300857
411 => 0.030684854078875
412 => 0.030682238419064
413 => 0.029301788704667
414 => 0.028505574118653
415 => 0.029012953041996
416 => 0.029556903523609
417 => 0.029645157659182
418 => 0.030350403657153
419 => 0.030547222655975
420 => 0.029950851900945
421 => 0.028949161419256
422 => 0.029181831272025
423 => 0.028500859071513
424 => 0.027307481483333
425 => 0.028164586101538
426 => 0.028457239302422
427 => 0.028586491628018
428 => 0.027412941830386
429 => 0.027044187004964
430 => 0.026847865030062
501 => 0.028797670877189
502 => 0.028904485642932
503 => 0.028358006199303
504 => 0.030828145103814
505 => 0.030269076593707
506 => 0.030893693094607
507 => 0.029160718921616
508 => 0.029226920868783
509 => 0.028406503123146
510 => 0.028865882240369
511 => 0.028541207886796
512 => 0.028828768947371
513 => 0.02900113186142
514 => 0.029821414984578
515 => 0.031061024614268
516 => 0.02969889204001
517 => 0.029105391371308
518 => 0.029473595848197
519 => 0.030454172891568
520 => 0.031939797307091
521 => 0.031060277752124
522 => 0.031450593595408
523 => 0.031535860243222
524 => 0.030887335084973
525 => 0.031963709354723
526 => 0.032540547070331
527 => 0.033132263206798
528 => 0.033646033748583
529 => 0.032895918769776
530 => 0.033698649321858
531 => 0.033051790197898
601 => 0.032471490692638
602 => 0.032472370767451
603 => 0.032108340410979
604 => 0.031402985724537
605 => 0.031272907498275
606 => 0.03194959085836
607 => 0.032492226830996
608 => 0.032536920928753
609 => 0.032837352084847
610 => 0.033015144148336
611 => 0.034757748067123
612 => 0.035458637778834
613 => 0.036315672451152
614 => 0.036649535755847
615 => 0.03765434460636
616 => 0.036842879852986
617 => 0.036667314349241
618 => 0.034229976748366
619 => 0.034629090643967
620 => 0.035268110499587
621 => 0.034240513950419
622 => 0.034892287440745
623 => 0.035020961334185
624 => 0.034205596612893
625 => 0.034641118140365
626 => 0.033484502086533
627 => 0.031086235683574
628 => 0.03196637931081
629 => 0.032614461273597
630 => 0.03168956840477
701 => 0.033347403073845
702 => 0.032378930284826
703 => 0.032071970905599
704 => 0.030874412928314
705 => 0.031439614195359
706 => 0.032204057001939
707 => 0.031731720223487
708 => 0.032711889960499
709 => 0.034100071709827
710 => 0.035089372692051
711 => 0.035165318937267
712 => 0.034529264683715
713 => 0.035548545684276
714 => 0.035555970033591
715 => 0.034406216901073
716 => 0.033701999509258
717 => 0.033541999836152
718 => 0.033941710389355
719 => 0.034427032791583
720 => 0.035192250952918
721 => 0.035654656261435
722 => 0.036860364065221
723 => 0.037186594026573
724 => 0.037545021847356
725 => 0.038023991950967
726 => 0.038599118365767
727 => 0.03734077451215
728 => 0.037390770859301
729 => 0.03621901848577
730 => 0.034966833028364
731 => 0.035917085703414
801 => 0.037159414669227
802 => 0.036874423031818
803 => 0.036842355650759
804 => 0.036896284090951
805 => 0.036681409703301
806 => 0.035709540811579
807 => 0.035221474338377
808 => 0.035851204607844
809 => 0.036185878219996
810 => 0.036704927805838
811 => 0.036640943988575
812 => 0.037977959979848
813 => 0.038497483964791
814 => 0.038364567497758
815 => 0.038389027326506
816 => 0.039329600685546
817 => 0.040375711704464
818 => 0.041355532720187
819 => 0.042352248741673
820 => 0.041150668675284
821 => 0.040540580420727
822 => 0.041170035769658
823 => 0.04083603790129
824 => 0.042755288723138
825 => 0.042888173485904
826 => 0.044807285524073
827 => 0.046628751371906
828 => 0.045484721307833
829 => 0.046563490130008
830 => 0.047730266564504
831 => 0.0499811676093
901 => 0.049223143325066
902 => 0.048642508603098
903 => 0.048093811596445
904 => 0.049235562964094
905 => 0.05070440785865
906 => 0.051020782980516
907 => 0.051533431542538
908 => 0.050994444263256
909 => 0.05164359507365
910 => 0.053935382685659
911 => 0.053316121442725
912 => 0.052436670926547
913 => 0.054245817140606
914 => 0.054900540122596
915 => 0.059495728891291
916 => 0.065297344529548
917 => 0.062895437559847
918 => 0.0614044963947
919 => 0.061754902934107
920 => 0.063873456568115
921 => 0.064553868755828
922 => 0.06270427387748
923 => 0.063357582057088
924 => 0.066957374358571
925 => 0.068888547433153
926 => 0.066265755006724
927 => 0.059029574723664
928 => 0.052357486029841
929 => 0.054127224399513
930 => 0.053926590989767
1001 => 0.057794118734476
1002 => 0.053301352266884
1003 => 0.053376998931857
1004 => 0.057324503054543
1005 => 0.056271376631964
1006 => 0.054565446701627
1007 => 0.052369941206228
1008 => 0.048311346238305
1009 => 0.044716535492921
1010 => 0.05176678720009
1011 => 0.051462767526426
1012 => 0.051022501985769
1013 => 0.052002265304793
1014 => 0.056759717871306
1015 => 0.056650043191276
1016 => 0.055952348833443
1017 => 0.056481543854664
1018 => 0.054472676255787
1019 => 0.054990407177082
1020 => 0.052356429136904
1021 => 0.053547097215704
1022 => 0.054561786542168
1023 => 0.054765500447188
1024 => 0.055224478277088
1025 => 0.051302562973166
1026 => 0.053063387803243
1027 => 0.054097707423939
1028 => 0.049424613748765
1029 => 0.054005335387122
1030 => 0.051234291153198
1031 => 0.050293757120517
1101 => 0.051560062289586
1102 => 0.051066581933678
1103 => 0.050642316501806
1104 => 0.050405569101017
1105 => 0.05133540386018
1106 => 0.051292025957272
1107 => 0.049770635818132
1108 => 0.047786044401419
1109 => 0.04845213842286
1110 => 0.048210140220206
1111 => 0.047333107515397
1112 => 0.047924121665105
1113 => 0.045321594455205
1114 => 0.040844081658163
1115 => 0.043802063761815
1116 => 0.04368818466849
1117 => 0.043630761665629
1118 => 0.045853603463903
1119 => 0.045639928514685
1120 => 0.045252106389542
1121 => 0.047325984857935
1122 => 0.04656899131937
1123 => 0.048901867035118
1124 => 0.050438449862451
1125 => 0.050048722754192
1126 => 0.051493886330248
1127 => 0.048467483883793
1128 => 0.049472733378314
1129 => 0.04967991390592
1130 => 0.047300393519555
1201 => 0.045674888378939
1202 => 0.045566485718176
1203 => 0.042748083812756
1204 => 0.044253651361286
1205 => 0.045578488499374
1206 => 0.044943994321745
1207 => 0.044743132420082
1208 => 0.045769292314047
1209 => 0.045849033726273
1210 => 0.044030921076899
1211 => 0.044408964268843
1212 => 0.045985467223704
1213 => 0.044369240439271
1214 => 0.041229175806264
1215 => 0.040450396362489
1216 => 0.040346492828936
1217 => 0.03823438121164
1218 => 0.040502438128801
1219 => 0.039512370504313
1220 => 0.042639982267237
1221 => 0.040853507201973
1222 => 0.040776495832492
1223 => 0.04066008185241
1224 => 0.038842100133171
1225 => 0.039240122590919
1226 => 0.040563209861004
1227 => 0.041035302304616
1228 => 0.040986059195008
1229 => 0.040556726011573
1230 => 0.040753272544408
1231 => 0.040120127680796
]
'min_raw' => 0.022153034432236
'max_raw' => 0.068888547433153
'avg_raw' => 0.045520790932694
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.022153'
'max' => '$0.068888'
'avg' => '$0.04552'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.012619854501104
'max_diff' => 0.043025948919334
'year' => 2033
]
8 => [
'items' => [
101 => 0.039896551051683
102 => 0.039190881710608
103 => 0.038153742725359
104 => 0.038297963262401
105 => 0.036243119550445
106 => 0.035123531637362
107 => 0.034813644458951
108 => 0.034399250372905
109 => 0.034860451373631
110 => 0.036237298436387
111 => 0.034576528764304
112 => 0.031729255650966
113 => 0.031900381616595
114 => 0.032284850853608
115 => 0.031568394973952
116 => 0.030890329611443
117 => 0.031479852430963
118 => 0.030273425277904
119 => 0.032430641811281
120 => 0.032372295149583
121 => 0.03317637207185
122 => 0.033679177872664
123 => 0.0325203732871
124 => 0.032228937067571
125 => 0.032394952383253
126 => 0.029651089018729
127 => 0.032952139896406
128 => 0.032980687521475
129 => 0.032736245423866
130 => 0.034493953107717
131 => 0.038203264563418
201 => 0.036807672387075
202 => 0.036267256914399
203 => 0.0352399267058
204 => 0.036608783211926
205 => 0.036503676389744
206 => 0.036028343479256
207 => 0.035740860651863
208 => 0.036270556576038
209 => 0.035675225464973
210 => 0.035568287638821
211 => 0.034920360761841
212 => 0.034689080345553
213 => 0.034517849532873
214 => 0.034329341232904
215 => 0.034745143569294
216 => 0.033802880771681
217 => 0.032666604208921
218 => 0.03257213510741
219 => 0.03283297260249
220 => 0.032717571427985
221 => 0.032571582610985
222 => 0.032292850201643
223 => 0.032210156249967
224 => 0.032478871475512
225 => 0.032175507652943
226 => 0.032623137498227
227 => 0.032501406948799
228 => 0.031821429995123
301 => 0.03097392695113
302 => 0.030966382396341
303 => 0.030783789255696
304 => 0.030551229438023
305 => 0.030486536616994
306 => 0.031430204463416
307 => 0.033383568663908
308 => 0.033000076531307
309 => 0.033277188898966
310 => 0.034640307479653
311 => 0.035073601886048
312 => 0.03476605977953
313 => 0.034345077175756
314 => 0.034363598273799
315 => 0.035802223270994
316 => 0.035891948547416
317 => 0.036118655374462
318 => 0.036410037714559
319 => 0.034815683452021
320 => 0.034288504331412
321 => 0.034038697617283
322 => 0.033269389625131
323 => 0.034099022339184
324 => 0.03361563088512
325 => 0.033680856907277
326 => 0.03363837837478
327 => 0.033661574525909
328 => 0.032430038825296
329 => 0.032878745706988
330 => 0.032132683488044
331 => 0.031133789926291
401 => 0.031130441284814
402 => 0.031374919068922
403 => 0.031229494116518
404 => 0.030838159308817
405 => 0.030893746571203
406 => 0.030406743661037
407 => 0.030952877541969
408 => 0.030968538707513
409 => 0.030758247415241
410 => 0.031599642010769
411 => 0.031944362063069
412 => 0.03180594382962
413 => 0.031934650270816
414 => 0.03301601236078
415 => 0.03319232156458
416 => 0.033270626466576
417 => 0.033165708271313
418 => 0.031954415584736
419 => 0.0320081415662
420 => 0.031613935961967
421 => 0.031280873766752
422 => 0.03129419450788
423 => 0.031465431771275
424 => 0.032213234943452
425 => 0.033786942633894
426 => 0.033846663690381
427 => 0.03391904735303
428 => 0.033624626619925
429 => 0.033535826509594
430 => 0.033652976776374
501 => 0.034243978643285
502 => 0.035764195900421
503 => 0.035226849589852
504 => 0.034789978675066
505 => 0.035173232246886
506 => 0.035114233363546
507 => 0.03461622341377
508 => 0.034602245933154
509 => 0.033646405616124
510 => 0.033293053214348
511 => 0.032997765499456
512 => 0.032675319023475
513 => 0.032484161944009
514 => 0.032777866097407
515 => 0.032845039712295
516 => 0.03220285044782
517 => 0.032115322424043
518 => 0.032639748040031
519 => 0.032408967878992
520 => 0.032646330997693
521 => 0.032701401277295
522 => 0.032692533693903
523 => 0.032451572700846
524 => 0.03260515405226
525 => 0.032241888371361
526 => 0.031846891504124
527 => 0.031594908112001
528 => 0.031375019181627
529 => 0.031497026340218
530 => 0.031062093097468
531 => 0.030922949199636
601 => 0.032553124146091
602 => 0.033757351906371
603 => 0.03373984195781
604 => 0.033633254649138
605 => 0.033474887528898
606 => 0.034232393102031
607 => 0.033968493307153
608 => 0.034160502457493
609 => 0.034209376844853
610 => 0.034357304895368
611 => 0.034410176458581
612 => 0.034250361872888
613 => 0.033714004603595
614 => 0.032377453283834
615 => 0.031755285036534
616 => 0.031549959151893
617 => 0.031557422357831
618 => 0.031351553820861
619 => 0.031412191331379
620 => 0.031330466569303
621 => 0.031175699641274
622 => 0.031487469918534
623 => 0.031523398538648
624 => 0.031450627630558
625 => 0.031467767813758
626 => 0.030865255775634
627 => 0.030911063457305
628 => 0.030656000464801
629 => 0.030608179228537
630 => 0.029963402194362
701 => 0.028821086216396
702 => 0.029454040155484
703 => 0.028689520803857
704 => 0.028399985741038
705 => 0.029770599696485
706 => 0.029633028070271
707 => 0.029397565247143
708 => 0.029049266656983
709 => 0.028920079321862
710 => 0.028135177969406
711 => 0.028088801810217
712 => 0.028477820114613
713 => 0.028298301552437
714 => 0.028046189502145
715 => 0.027133065212177
716 => 0.026106411185191
717 => 0.026137399416948
718 => 0.026463958961355
719 => 0.027413474879274
720 => 0.027042482583351
721 => 0.026773323416013
722 => 0.026722917994865
723 => 0.027353847371424
724 => 0.028246744623046
725 => 0.028665672036057
726 => 0.028250527692778
727 => 0.027773632224177
728 => 0.02780265864163
729 => 0.02799575839288
730 => 0.028016050446453
731 => 0.02770564052204
801 => 0.027793019097526
802 => 0.027660283051299
803 => 0.026845682180616
804 => 0.026830948633992
805 => 0.026631032443113
806 => 0.026624979060305
807 => 0.026284871748188
808 => 0.026237288384173
809 => 0.025561984672927
810 => 0.026006471620677
811 => 0.025708333112738
812 => 0.025258968057511
813 => 0.025181497352614
814 => 0.025179168489676
815 => 0.025640565925207
816 => 0.026001079923004
817 => 0.025713519359728
818 => 0.025648047393598
819 => 0.026347116703241
820 => 0.026258153761431
821 => 0.026181112427572
822 => 0.028166795467546
823 => 0.026594972396627
824 => 0.025909567821182
825 => 0.02506124950427
826 => 0.025337466225849
827 => 0.025395669147553
828 => 0.02335561651625
829 => 0.022527967417803
830 => 0.022243949436514
831 => 0.022080493072858
901 => 0.022154982190332
902 => 0.021410000928172
903 => 0.021910640657196
904 => 0.021265549855865
905 => 0.021157398283714
906 => 0.022310900547911
907 => 0.022471403649311
908 => 0.021786647554332
909 => 0.02222637181925
910 => 0.022066921688166
911 => 0.021276608086131
912 => 0.021246423919686
913 => 0.020849872335051
914 => 0.020229345892615
915 => 0.019945748657474
916 => 0.019798048755108
917 => 0.019858992613438
918 => 0.019828177533754
919 => 0.01962708829469
920 => 0.01983970373355
921 => 0.019296559146029
922 => 0.019080274594864
923 => 0.018982583880867
924 => 0.018500511797205
925 => 0.019267702860739
926 => 0.019418849165074
927 => 0.019570293274319
928 => 0.020888510850017
929 => 0.02082265642518
930 => 0.021417948353307
1001 => 0.021394816403651
1002 => 0.021225029502659
1003 => 0.020508726495965
1004 => 0.02079423210756
1005 => 0.019915490212494
1006 => 0.020573903388918
1007 => 0.02027343111119
1008 => 0.02047231340957
1009 => 0.020114705104588
1010 => 0.02031262030585
1011 => 0.01945469156099
1012 => 0.018653569770422
1013 => 0.018975964565149
1014 => 0.019326444577335
1015 => 0.0200863745444
1016 => 0.019633766525302
1017 => 0.019796541483974
1018 => 0.019251272620623
1019 => 0.01812622720718
1020 => 0.01813259484204
1021 => 0.017959531115629
1022 => 0.017809978788291
1023 => 0.019685754000901
1024 => 0.019452471701595
1025 => 0.019080766888883
1026 => 0.01957830855166
1027 => 0.019709866464346
1028 => 0.019713611733171
1029 => 0.020076605286924
1030 => 0.020270335011632
1031 => 0.020304480715284
1101 => 0.020875658915109
1102 => 0.021067110313667
1103 => 0.021855671529114
1104 => 0.020253898398005
1105 => 0.020220910934445
1106 => 0.019585309983186
1107 => 0.019182201811443
1108 => 0.019612911144579
1109 => 0.01999446081605
1110 => 0.019597165795044
1111 => 0.019649044137432
1112 => 0.019115708031926
1113 => 0.019306350593848
1114 => 0.019470557650502
1115 => 0.019379892165462
1116 => 0.019244161546099
1117 => 0.019963178094124
1118 => 0.019922608362636
1119 => 0.020592173102276
1120 => 0.02111414669786
1121 => 0.022049616695086
1122 => 0.021073404985827
1123 => 0.021037827951051
1124 => 0.021385599172718
1125 => 0.021067057071705
1126 => 0.021268364683845
1127 => 0.022017182926567
1128 => 0.022033004276063
1129 => 0.021767976287341
1130 => 0.021751849310142
1201 => 0.021802750834465
1202 => 0.022100882652302
1203 => 0.021996706234484
1204 => 0.022117261822607
1205 => 0.022268018431567
1206 => 0.022891611685704
1207 => 0.023041957908112
1208 => 0.02267669453324
1209 => 0.022709673726311
1210 => 0.022573055197405
1211 => 0.022441083410307
1212 => 0.022737736714771
1213 => 0.023279876459415
1214 => 0.0232765038362
1215 => 0.023402269719267
1216 => 0.023480620822516
1217 => 0.023144280530856
1218 => 0.022925335368561
1219 => 0.023009292875627
1220 => 0.023143542757784
1221 => 0.022965757448219
1222 => 0.021868384159417
1223 => 0.022201257114762
1224 => 0.022145850778337
1225 => 0.022066945417626
1226 => 0.022401651748257
1227 => 0.022369368506146
1228 => 0.021402360068551
1229 => 0.021464264811274
1230 => 0.02140612470099
1231 => 0.021593987291665
]
'min_raw' => 0.017809978788291
'max_raw' => 0.039896551051683
'avg_raw' => 0.028853264919987
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0178099'
'max' => '$0.039896'
'avg' => '$0.028853'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0043430556439443
'max_diff' => -0.028991996381469
'year' => 2034
]
9 => [
'items' => [
101 => 0.021056911875296
102 => 0.021222112656113
103 => 0.02132572503718
104 => 0.021386753525617
105 => 0.021607230273475
106 => 0.021581359871847
107 => 0.021605622132986
108 => 0.021932530946357
109 => 0.023585923542828
110 => 0.023675914053848
111 => 0.023232767865099
112 => 0.023409796026832
113 => 0.023069940668108
114 => 0.023298087847253
115 => 0.023454180352913
116 => 0.022748828334694
117 => 0.022707061965872
118 => 0.022365803903189
119 => 0.02254917665623
120 => 0.022257417421174
121 => 0.022329004932152
122 => 0.02212884001057
123 => 0.022489097016979
124 => 0.022891920328423
125 => 0.022993689404868
126 => 0.022725978779083
127 => 0.022532138643024
128 => 0.022191819219015
129 => 0.022757778005655
130 => 0.02292328160215
131 => 0.022756908685719
201 => 0.022718356445662
202 => 0.022645300020417
203 => 0.022733855711638
204 => 0.022922380234019
205 => 0.022833475550766
206 => 0.022892198660354
207 => 0.022668406721612
208 => 0.023144391873488
209 => 0.023900370846731
210 => 0.023902801442745
211 => 0.023813896280262
212 => 0.023777518203263
213 => 0.023868740295187
214 => 0.023918224537929
215 => 0.024213220055941
216 => 0.024529761999907
217 => 0.026006925134327
218 => 0.025592143637146
219 => 0.026902770646831
220 => 0.027939306447875
221 => 0.028250118212391
222 => 0.02796418601386
223 => 0.026986027408439
224 => 0.026938034280705
225 => 0.028399816205115
226 => 0.027986795857615
227 => 0.0279376684015
228 => 0.027415035270582
301 => 0.027723976180327
302 => 0.027656406271476
303 => 0.027549743864722
304 => 0.028139181599505
305 => 0.029242556419551
306 => 0.029070585106464
307 => 0.028942216498763
308 => 0.02837974262736
309 => 0.028718477531032
310 => 0.028597860519874
311 => 0.029116107745255
312 => 0.028809109569521
313 => 0.027983666822266
314 => 0.028115121300462
315 => 0.028095252220532
316 => 0.028504156477543
317 => 0.028381413569216
318 => 0.028071284697728
319 => 0.029238785204368
320 => 0.029162974215446
321 => 0.029270456864933
322 => 0.029317774051248
323 => 0.030028411035974
324 => 0.030319536270769
325 => 0.030385626795932
326 => 0.030662173252553
327 => 0.030378746068163
328 => 0.031512656885882
329 => 0.032266641414134
330 => 0.033142433243388
331 => 0.03442220049658
401 => 0.034903404822289
402 => 0.034816479567943
403 => 0.035786784493531
404 => 0.037530400876147
405 => 0.03516891429077
406 => 0.037655565399309
407 => 0.036868320368113
408 => 0.035001776561081
409 => 0.034881593145014
410 => 0.036145638282155
411 => 0.038949168736499
412 => 0.038246916155065
413 => 0.038950317370147
414 => 0.038129762489399
415 => 0.03808901502339
416 => 0.038910464851102
417 => 0.040829827148451
418 => 0.0399180100672
419 => 0.038610696694507
420 => 0.039575996544855
421 => 0.0387397644802
422 => 0.036855499591914
423 => 0.038246379155751
424 => 0.037316337601383
425 => 0.037587773170676
426 => 0.039542582184718
427 => 0.039307374392365
428 => 0.039611755055324
429 => 0.03907453115223
430 => 0.038572679314306
501 => 0.037635935590814
502 => 0.037358611955195
503 => 0.037435254231021
504 => 0.03735857397509
505 => 0.036834474470915
506 => 0.036721295232889
507 => 0.036532658211015
508 => 0.036591124711889
509 => 0.036236431923059
510 => 0.036905810498851
511 => 0.037030053061062
512 => 0.037517170966982
513 => 0.037567745163926
514 => 0.038924361598225
515 => 0.038177160063227
516 => 0.038678447363181
517 => 0.038633607508774
518 => 0.035042230225235
519 => 0.035537090327917
520 => 0.036306937352034
521 => 0.035960122311172
522 => 0.035469806985615
523 => 0.035073851071182
524 => 0.034473937372246
525 => 0.035318304383177
526 => 0.036428557214129
527 => 0.037595903007915
528 => 0.038998392491624
529 => 0.038685373165638
530 => 0.037569684442569
531 => 0.037619733423675
601 => 0.037929116531322
602 => 0.037528437296499
603 => 0.037410269167962
604 => 0.037912882045056
605 => 0.03791634326371
606 => 0.037455313380343
607 => 0.036942963032558
608 => 0.036940816265894
609 => 0.036849648470223
610 => 0.038145981037718
611 => 0.038858832875835
612 => 0.038940560190257
613 => 0.038853331976405
614 => 0.038886902653953
615 => 0.038472109875971
616 => 0.03942020316346
617 => 0.040290267320768
618 => 0.0400570715404
619 => 0.039707477914895
620 => 0.03942900975347
621 => 0.039991473291414
622 => 0.039966427675469
623 => 0.040282668069382
624 => 0.040268321578421
625 => 0.040161981828351
626 => 0.040057075338128
627 => 0.04047301771377
628 => 0.040353232989416
629 => 0.040233262206298
630 => 0.039992642434149
701 => 0.040025346657455
702 => 0.039675813394218
703 => 0.039514103313091
704 => 0.037082371689673
705 => 0.036432533540773
706 => 0.036636985851092
707 => 0.036704296860251
708 => 0.036421486465059
709 => 0.036826963923734
710 => 0.036763770691307
711 => 0.037009618591878
712 => 0.036856023497076
713 => 0.036862327093343
714 => 0.037314017517229
715 => 0.037445145168911
716 => 0.037378452586935
717 => 0.037425161785263
718 => 0.038501555546007
719 => 0.038348526774364
720 => 0.038267233289405
721 => 0.038289752140308
722 => 0.038564793824321
723 => 0.038641790479125
724 => 0.03831555024226
725 => 0.038469407023938
726 => 0.039124509672989
727 => 0.039353758524558
728 => 0.040085410813075
729 => 0.039774591916831
730 => 0.040345113452814
731 => 0.042098702149303
801 => 0.043499590139166
802 => 0.042211275649543
803 => 0.044783828040917
804 => 0.046786929088325
805 => 0.046710046733786
806 => 0.046360759733609
807 => 0.044080282446332
808 => 0.041981753246578
809 => 0.043737262030428
810 => 0.043741737183342
811 => 0.043590937421926
812 => 0.04265433305509
813 => 0.043558345620167
814 => 0.043630102854692
815 => 0.043589937885147
816 => 0.042871845513079
817 => 0.041775451186586
818 => 0.041989684013586
819 => 0.042340601754442
820 => 0.041676241261891
821 => 0.041463937829499
822 => 0.041858650302696
823 => 0.043130496132947
824 => 0.04289006104604
825 => 0.042883782314246
826 => 0.043912465576382
827 => 0.043176150364435
828 => 0.041992386175603
829 => 0.041693470105991
830 => 0.040632519432862
831 => 0.041365321841769
901 => 0.041391694095883
902 => 0.040990345705583
903 => 0.042024953385518
904 => 0.042015419293608
905 => 0.042997625304675
906 => 0.044875234298105
907 => 0.04431993292722
908 => 0.043674177849499
909 => 0.043744389331294
910 => 0.044514435989875
911 => 0.044048848201641
912 => 0.044216276816483
913 => 0.044514182566614
914 => 0.044693916502251
915 => 0.043718528383904
916 => 0.04349111875531
917 => 0.043025918465141
918 => 0.042904556392811
919 => 0.043283452322431
920 => 0.043183626631567
921 => 0.041389477610043
922 => 0.041201979054743
923 => 0.041207729367747
924 => 0.040736255335375
925 => 0.040017144269273
926 => 0.041906925215097
927 => 0.04175514935768
928 => 0.04158760055761
929 => 0.041608124329598
930 => 0.042428414187562
1001 => 0.041952604644312
1002 => 0.043217622298691
1003 => 0.042957572698863
1004 => 0.042690853808055
1005 => 0.042653985132889
1006 => 0.042551321115315
1007 => 0.042199247999453
1008 => 0.041774098555737
1009 => 0.041493378067181
1010 => 0.038275447935308
1011 => 0.038872677049945
1012 => 0.039559734707189
1013 => 0.039796904257258
1014 => 0.039391209330231
1015 => 0.042215267307912
1016 => 0.042731249913734
1017 => 0.041168304943987
1018 => 0.040875941754769
1019 => 0.042234434589924
1020 => 0.041415097341331
1021 => 0.041784044854204
1022 => 0.040986582134872
1023 => 0.042606964813726
1024 => 0.042594620212597
1025 => 0.04196425475252
1026 => 0.042497035322821
1027 => 0.042404451587645
1028 => 0.04169277053574
1029 => 0.042629526372474
1030 => 0.042629990991682
1031 => 0.042023277941685
1101 => 0.041314769925853
1102 => 0.041188105426835
1103 => 0.041092680741806
1104 => 0.041760576231326
1105 => 0.042359409238775
1106 => 0.043473689002345
1107 => 0.04375384540954
1108 => 0.044847314517893
1109 => 0.044196206903914
1110 => 0.044484834475935
1111 => 0.044798180534228
1112 => 0.044948410157493
1113 => 0.044703619048149
1114 => 0.046402226663261
1115 => 0.046545641189969
1116 => 0.046593726840244
1117 => 0.046020965909536
1118 => 0.046529711672369
1119 => 0.046291686377828
1120 => 0.046910962068893
1121 => 0.047008072404561
1122 => 0.046925823405051
1123 => 0.046956647758374
1124 => 0.045507185813792
1125 => 0.045432023565445
1126 => 0.044407180975957
1127 => 0.044824811906427
1128 => 0.044044070899485
1129 => 0.04429165191531
1130 => 0.044400783268047
1201 => 0.044343779242527
1202 => 0.044848424132628
1203 => 0.044419372883902
1204 => 0.043287036095959
1205 => 0.042154390803616
1206 => 0.042140171364603
1207 => 0.041841965851979
1208 => 0.041626417885416
1209 => 0.041667940070751
1210 => 0.041814269667695
1211 => 0.041617912943229
1212 => 0.041659815605933
1213 => 0.042355679002792
1214 => 0.042495229444362
1215 => 0.042020982518031
1216 => 0.040116812675309
1217 => 0.039649524619657
1218 => 0.039985402007335
1219 => 0.039824874249299
1220 => 0.03214178172318
1221 => 0.033946810347269
1222 => 0.032874323631816
1223 => 0.033368574853038
1224 => 0.032273843635648
1225 => 0.032796306752366
1226 => 0.032699826892006
1227 => 0.035602259504862
1228 => 0.035556942011778
1229 => 0.035578633097569
1230 => 0.034543261056939
1231 => 0.036192636831077
]
'min_raw' => 0.021056911875296
'max_raw' => 0.047008072404561
'avg_raw' => 0.034032492139929
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.021056'
'max' => '$0.047008'
'avg' => '$0.034032'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0032469330870048
'max_diff' => 0.0071115213528774
'year' => 2035
]
10 => [
'items' => [
101 => 0.037005178647052
102 => 0.036854798782015
103 => 0.036892646154238
104 => 0.036242302905107
105 => 0.0355849298418
106 => 0.034855801945603
107 => 0.036210431453805
108 => 0.03605981977679
109 => 0.036405268775492
110 => 0.037283842842478
111 => 0.03741321621122
112 => 0.037587095330785
113 => 0.03752477204398
114 => 0.039009565583035
115 => 0.038829747288472
116 => 0.039263057641114
117 => 0.038371705370393
118 => 0.037363055668139
119 => 0.037554767001294
120 => 0.037536303658266
121 => 0.037301244110281
122 => 0.037089042860582
123 => 0.036735787567164
124 => 0.037853539587483
125 => 0.037808160896713
126 => 0.038542789153323
127 => 0.038412936473169
128 => 0.03754574849476
129 => 0.03757672028306
130 => 0.037785020443906
131 => 0.038505949678926
201 => 0.038719970560485
202 => 0.03862082756089
203 => 0.038855491687095
204 => 0.03904096064442
205 => 0.038878783732605
206 => 0.041174866803075
207 => 0.040221373029862
208 => 0.040686099260559
209 => 0.040796933728254
210 => 0.040513033569851
211 => 0.040574601348506
212 => 0.040667859756953
213 => 0.041234106551176
214 => 0.042720101984047
215 => 0.043378239245753
216 => 0.045358277669515
217 => 0.043323590107881
218 => 0.043202860168348
219 => 0.043559524879899
220 => 0.044722017043001
221 => 0.045664107753858
222 => 0.045976653593166
223 => 0.0460179616854
224 => 0.046604318457597
225 => 0.046940407224513
226 => 0.046533119322738
227 => 0.046187985470804
228 => 0.044951758852767
229 => 0.045094855449938
301 => 0.046080649102379
302 => 0.047473140699409
303 => 0.048668043353718
304 => 0.048249630090741
305 => 0.051441827933526
306 => 0.05175832131068
307 => 0.051714592159413
308 => 0.052435611173098
309 => 0.051004535263902
310 => 0.050392722586931
311 => 0.046262607327028
312 => 0.047423001249848
313 => 0.049109701964214
314 => 0.048886460799865
315 => 0.047661533655453
316 => 0.048667114136637
317 => 0.048334637782149
318 => 0.048072399886907
319 => 0.049273762522326
320 => 0.047952814955426
321 => 0.049096524501762
322 => 0.047629705178425
323 => 0.048251541367282
324 => 0.047898557071655
325 => 0.048126981171053
326 => 0.046791618553439
327 => 0.047512147807809
328 => 0.046761642167577
329 => 0.046761286330185
330 => 0.04674471887658
331 => 0.047627685434061
401 => 0.047656478941801
402 => 0.047003965321734
403 => 0.046909927914904
404 => 0.047257633494955
405 => 0.046850561324951
406 => 0.047041027831214
407 => 0.046856330361394
408 => 0.046814751070614
409 => 0.046483440207543
410 => 0.04634070237815
411 => 0.046396673558955
412 => 0.046205615063744
413 => 0.046090495409492
414 => 0.046721818679829
415 => 0.046384528123996
416 => 0.04667012406472
417 => 0.046344651445184
418 => 0.0452164215442
419 => 0.044567564597329
420 => 0.042436442901338
421 => 0.043040826370673
422 => 0.043441533236122
423 => 0.043309099619481
424 => 0.043593618273031
425 => 0.043611085407594
426 => 0.043518585493001
427 => 0.043411482441875
428 => 0.043359350599757
429 => 0.043747898640088
430 => 0.043973463855425
501 => 0.043481749530836
502 => 0.043366547744399
503 => 0.043863698074851
504 => 0.044166959489232
505 => 0.046406071385156
506 => 0.04624019074367
507 => 0.046656518601368
508 => 0.046609646473663
509 => 0.04704602439476
510 => 0.047759317868684
511 => 0.046308992796204
512 => 0.046560719080319
513 => 0.046499001608663
514 => 0.047172816781014
515 => 0.047174920358433
516 => 0.046770934503044
517 => 0.046989941789172
518 => 0.046867697930206
519 => 0.047088609105606
520 => 0.04623797530657
521 => 0.047273955453552
522 => 0.047861289439805
523 => 0.047869444572774
524 => 0.048147836220886
525 => 0.048430698258726
526 => 0.048973627308268
527 => 0.04841555626221
528 => 0.047411640777472
529 => 0.047484120232843
530 => 0.046895524951459
531 => 0.046905419344478
601 => 0.046852602299108
602 => 0.047011110228145
603 => 0.04627275888332
604 => 0.046446048468154
605 => 0.046203442034603
606 => 0.046560191701313
607 => 0.046176388032766
608 => 0.046498971846629
609 => 0.04663818832687
610 => 0.047151900136075
611 => 0.04610051238086
612 => 0.043956661575283
613 => 0.044407325006294
614 => 0.04374075839298
615 => 0.04380245167084
616 => 0.04392708191053
617 => 0.043523114527218
618 => 0.043600178773479
619 => 0.04359742549631
620 => 0.043573699241106
621 => 0.043468611722746
622 => 0.043316214030192
623 => 0.043923319531791
624 => 0.04402647858674
625 => 0.044255788387188
626 => 0.044938058810998
627 => 0.044869883906615
628 => 0.044981080004213
629 => 0.044738339547495
630 => 0.043813711704431
701 => 0.043863923444828
702 => 0.043237782237487
703 => 0.044239776548759
704 => 0.044002491070171
705 => 0.043849511578492
706 => 0.043807769706843
707 => 0.044491731347067
708 => 0.044696383389608
709 => 0.044568857970384
710 => 0.044307299615046
711 => 0.044809568980081
712 => 0.044943955073122
713 => 0.044974039163385
714 => 0.04586396417763
715 => 0.045023776085848
716 => 0.045226017710291
717 => 0.04680384913178
718 => 0.045372973758342
719 => 0.046130940355981
720 => 0.046093841835294
721 => 0.046481591898455
722 => 0.046062035012539
723 => 0.046067235922974
724 => 0.046411531710596
725 => 0.045928030370953
726 => 0.045808308639763
727 => 0.045642913925587
728 => 0.046004047233146
729 => 0.046220530318373
730 => 0.047965224995996
731 => 0.049092377325484
801 => 0.049043444670208
802 => 0.049490597541337
803 => 0.049289151077443
804 => 0.048638627306635
805 => 0.049748992060481
806 => 0.049397626192729
807 => 0.049426592367957
808 => 0.049425514245469
809 => 0.049659141830586
810 => 0.049493595274877
811 => 0.049167286020568
812 => 0.049383905331793
813 => 0.050027187243312
814 => 0.052023954034963
815 => 0.053141371185213
816 => 0.051956684119448
817 => 0.052773865393821
818 => 0.052283847820657
819 => 0.052194797050853
820 => 0.052708047280381
821 => 0.053222195886493
822 => 0.053189446843009
823 => 0.052816201356795
824 => 0.052605364452387
825 => 0.054201892128114
826 => 0.05537818652345
827 => 0.055297971131666
828 => 0.055652015783559
829 => 0.056691501831705
830 => 0.056786539408684
831 => 0.056774566858399
901 => 0.05653900630771
902 => 0.057562515316431
903 => 0.058416344538433
904 => 0.056484480846224
905 => 0.057220109250265
906 => 0.057550356541305
907 => 0.058035257544509
908 => 0.058853366815758
909 => 0.059742050477101
910 => 0.059867720090736
911 => 0.059778551486017
912 => 0.059192440722262
913 => 0.060164848988705
914 => 0.060734462945408
915 => 0.06107365502124
916 => 0.061933789689372
917 => 0.057552396036145
918 => 0.054451027838997
919 => 0.053966704410713
920 => 0.054951595147207
921 => 0.055211302980064
922 => 0.055106615078286
923 => 0.051615743208335
924 => 0.05394832569277
925 => 0.056457988316916
926 => 0.056554394679233
927 => 0.057810784263451
928 => 0.058219916213222
929 => 0.059231474507265
930 => 0.059168201260555
1001 => 0.059414499607746
1002 => 0.05935787988302
1003 => 0.061231578614005
1004 => 0.063298546561236
1005 => 0.063226974033779
1006 => 0.06292982293611
1007 => 0.06337114298794
1008 => 0.065504475419229
1009 => 0.065308072354912
1010 => 0.065498861202323
1011 => 0.06801418036816
1012 => 0.071284453083727
1013 => 0.069765083077334
1014 => 0.073061678804266
1015 => 0.075136711069339
1016 => 0.078725264809441
1017 => 0.078275960207181
1018 => 0.079672957844179
1019 => 0.077471611196434
1020 => 0.072416874327652
1021 => 0.071616942869411
1022 => 0.073218425906299
1023 => 0.077155515682058
1024 => 0.073094432938348
1025 => 0.073915984688235
1026 => 0.073679377728999
1027 => 0.073666769949656
1028 => 0.074147957607628
1029 => 0.073449969812678
1030 => 0.070606241970447
1031 => 0.071909505682348
1101 => 0.071406252975319
1102 => 0.071964649373743
1103 => 0.07497808443584
1104 => 0.073645772963567
1105 => 0.072242291055723
1106 => 0.074002568825728
1107 => 0.076244007324012
1108 => 0.076103742131041
1109 => 0.075831569030376
1110 => 0.077365794548304
1111 => 0.079899885618022
1112 => 0.080584840251364
1113 => 0.081090459758416
1114 => 0.081160176145927
1115 => 0.081878298265782
1116 => 0.078016774637242
1117 => 0.084145111806696
1118 => 0.085203306343963
1119 => 0.085004409628627
1120 => 0.086180548321166
1121 => 0.085834498482062
1122 => 0.085333126558757
1123 => 0.087197556558305
1124 => 0.085060138015566
1125 => 0.082026341487659
1126 => 0.080361940710758
1127 => 0.082553757917162
1128 => 0.083892224201234
1129 => 0.084776865272561
1130 => 0.08504455712623
1201 => 0.078316533724178
1202 => 0.074690502263756
1203 => 0.077014746857351
1204 => 0.07985048567233
1205 => 0.078001021964945
1206 => 0.078073517440776
1207 => 0.075436668224557
1208 => 0.080083788318374
1209 => 0.079406742009137
1210 => 0.082919259459134
1211 => 0.082080968979978
1212 => 0.084945290605309
1213 => 0.084191018727488
1214 => 0.087321959121548
1215 => 0.088570976011566
1216 => 0.090668269763862
1217 => 0.092211047585572
1218 => 0.093116996231117
1219 => 0.093062606472567
1220 => 0.096652426348041
1221 => 0.094535634986227
1222 => 0.091876446146371
1223 => 0.091828349809892
1224 => 0.09320558139105
1225 => 0.096091880960126
1226 => 0.096840256444437
1227 => 0.097258496244905
1228 => 0.096617947431456
1229 => 0.094320322120011
1230 => 0.093328219159754
1231 => 0.094173519625883
]
'min_raw' => 0.034855801945603
'max_raw' => 0.097258496244905
'avg_raw' => 0.066057149095254
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.034855'
'max' => '$0.097258'
'avg' => '$0.066057'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.013798890070307
'max_diff' => 0.050250423840345
'year' => 2036
]
11 => [
'items' => [
101 => 0.093139789793304
102 => 0.094924297497698
103 => 0.097374807726109
104 => 0.09686878705431
105 => 0.098560338293276
106 => 0.10031091586923
107 => 0.10281432042619
108 => 0.10346880307819
109 => 0.10455063801418
110 => 0.10566420152759
111 => 0.10602184811672
112 => 0.10670470642658
113 => 0.10670110742622
114 => 0.10875894690466
115 => 0.11102880757537
116 => 0.11188562743117
117 => 0.11385583744425
118 => 0.11048192184124
119 => 0.11304107558287
120 => 0.11534949631759
121 => 0.11259730195264
122 => 0.11639056070568
123 => 0.11653784434735
124 => 0.1187616524734
125 => 0.11650739690756
126 => 0.11516882714841
127 => 0.11903322788753
128 => 0.12090308967771
129 => 0.12033987208907
130 => 0.11605375843002
131 => 0.11355905644039
201 => 0.10702994014146
202 => 0.11476396043438
203 => 0.1185309761146
204 => 0.11604400276946
205 => 0.11729828746615
206 => 0.12414125806811
207 => 0.1267466182238
208 => 0.12620472152426
209 => 0.1262962931461
210 => 0.12770209819548
211 => 0.13393621197541
212 => 0.13020058649285
213 => 0.13305633220305
214 => 0.13457100943059
215 => 0.1359779260534
216 => 0.13252298348834
217 => 0.12802815397438
218 => 0.1266044527872
219 => 0.11579672228317
220 => 0.11523413297484
221 => 0.11491833454787
222 => 0.11292727013643
223 => 0.11136283890747
224 => 0.1101187451106
225 => 0.10685387146975
226 => 0.10795567048216
227 => 0.10275214333074
228 => 0.10608117560054
301 => 0.097776220623305
302 => 0.10469283391142
303 => 0.10092843575851
304 => 0.10345612787502
305 => 0.10344730899535
306 => 0.098793026403341
307 => 0.096108533336669
308 => 0.097819196800786
309 => 0.099653163826954
310 => 0.099950718806744
311 => 0.10232850492761
312 => 0.1029920939236
313 => 0.10098138828574
314 => 0.097604118890927
315 => 0.098388581544028
316 => 0.096092636226042
317 => 0.092069080368532
318 => 0.094958868429941
319 => 0.095945569129118
320 => 0.096381352368974
321 => 0.092424647291626
322 => 0.091181364652076
323 => 0.090519451406932
324 => 0.097093357951616
325 => 0.097453491391889
326 => 0.095610997793717
327 => 0.10393924356987
328 => 0.10205430505512
329 => 0.10416024319724
330 => 0.098317399780608
331 => 0.098540604267555
401 => 0.095774508558401
402 => 0.097323337324945
403 => 0.096228675073833
404 => 0.097198207266433
405 => 0.097779340865146
406 => 0.10054498268521
407 => 0.10472441309849
408 => 0.10013188802332
409 => 0.0981308590819
410 => 0.099372286182944
411 => 0.10267837014637
412 => 0.1076872565863
413 => 0.10472189500063
414 => 0.10603787211724
415 => 0.10632535457348
416 => 0.10413880672386
417 => 0.10776787772437
418 => 0.10971272635607
419 => 0.11170773862247
420 => 0.11343995187441
421 => 0.11091088685201
422 => 0.11361734895321
423 => 0.11143641825451
424 => 0.10947989795731
425 => 0.10948286519099
426 => 0.10825551142835
427 => 0.10587735885673
428 => 0.10543879103511
429 => 0.10772027622816
430 => 0.10954981129554
501 => 0.10970050056657
502 => 0.11071342518477
503 => 0.11131286353987
504 => 0.11718817431678
505 => 0.11955127291437
506 => 0.12244082514834
507 => 0.12356646858971
508 => 0.12695425178273
509 => 0.12421834171207
510 => 0.1236264103586
511 => 0.11540875646777
512 => 0.11675439683203
513 => 0.1189088968902
514 => 0.11544428338018
515 => 0.11764178320819
516 => 0.11807561622365
517 => 0.11532655713886
518 => 0.11679494837588
519 => 0.11289533659803
520 => 0.10480941397884
521 => 0.10777687966773
522 => 0.1099619332529
523 => 0.1068435923717
524 => 0.1124330977048
525 => 0.10916782408001
526 => 0.10813288910173
527 => 0.10409523877049
528 => 0.10600085430342
529 => 0.1085782265975
530 => 0.10698571017145
531 => 0.11029042087305
601 => 0.11497077256066
602 => 0.11830626989302
603 => 0.11856232796116
604 => 0.11641782663742
605 => 0.11985440369474
606 => 0.1198794354068
607 => 0.11600296244732
608 => 0.11362864434393
609 => 0.11308919427523
610 => 0.11443684631226
611 => 0.11607314467549
612 => 0.11865313113226
613 => 0.12021216291403
614 => 0.12427729095433
615 => 0.12537719804568
616 => 0.12658566246808
617 => 0.12820054361303
618 => 0.13013962247457
619 => 0.12589702831734
620 => 0.12606559449239
621 => 0.12211494955589
622 => 0.11789311886145
623 => 0.12109696209991
624 => 0.12528556094478
625 => 0.12432469174178
626 => 0.12421657432766
627 => 0.12439839782893
628 => 0.12367393382892
629 => 0.12039721000676
630 => 0.11875165981665
701 => 0.12087483938652
702 => 0.12200321483606
703 => 0.12375322675361
704 => 0.1235375008465
705 => 0.12804534360855
706 => 0.12979695499579
707 => 0.12934881784726
708 => 0.12943128586761
709 => 0.13260249461635
710 => 0.13612953095377
711 => 0.1394330659172
712 => 0.14279356357213
713 => 0.13874235248666
714 => 0.13668539734142
715 => 0.13880764999751
716 => 0.13768155286532
717 => 0.14415244100899
718 => 0.14460047126438
719 => 0.15107089148919
720 => 0.15721209076584
721 => 0.15335491353119
722 => 0.15699205793239
723 => 0.16092592614302
724 => 0.16851499616844
725 => 0.16595926437058
726 => 0.16400161386685
727 => 0.16215164360011
728 => 0.16600113805067
729 => 0.17095345116415
730 => 0.17202013197613
731 => 0.17374856239496
801 => 0.17193132915197
802 => 0.17411998643148
803 => 0.18184690837287
804 => 0.17975902585688
805 => 0.17679389704031
806 => 0.18289355981156
807 => 0.18510100405664
808 => 0.20059400381613
809 => 0.22015455599638
810 => 0.21205635895225
811 => 0.20702954671977
812 => 0.20821096683198
813 => 0.21535381832173
814 => 0.21764787551746
815 => 0.21141183725052
816 => 0.21361451139059
817 => 0.22575146246452
818 => 0.23226254731567
819 => 0.22341961953244
820 => 0.19902233249413
821 => 0.17652691963255
822 => 0.18249371610509
823 => 0.18181726655635
824 => 0.1948569063698
825 => 0.17970923054938
826 => 0.17996427856181
827 => 0.19327356431739
828 => 0.18972287505672
829 => 0.18397121319237
830 => 0.17656891312933
831 => 0.16288507683293
901 => 0.15076492142319
902 => 0.17453533728677
903 => 0.17351031373103
904 => 0.17202592772235
905 => 0.17532926815733
906 => 0.19136935164006
907 => 0.1909995757991
908 => 0.1886472505602
909 => 0.19043146852146
910 => 0.18365843115719
911 => 0.18540399710516
912 => 0.17652335624422
913 => 0.18053777680169
914 => 0.18395887270921
915 => 0.18464570836283
916 => 0.18619318416115
917 => 0.17297017289459
918 => 0.17890691674606
919 => 0.18239419756113
920 => 0.1666385359703
921 => 0.18208275878979
922 => 0.17273998968699
923 => 0.16956891352981
924 => 0.17383834981793
925 => 0.17217454634429
926 => 0.17074410581947
927 => 0.16994589542853
928 => 0.17308089823804
929 => 0.17293464660984
930 => 0.16780517353566
1001 => 0.16111398501446
1002 => 0.16335976751295
1003 => 0.16254385367693
1004 => 0.1595868766802
1005 => 0.16157952214923
1006 => 0.1528049199584
1007 => 0.13770867295321
1008 => 0.14768171613539
1009 => 0.14729776482146
1010 => 0.14710415915817
1011 => 0.15459862547491
1012 => 0.15387820546531
1013 => 0.15257063609352
1014 => 0.15956286214327
1015 => 0.1570106055764
1016 => 0.16487605892823
1017 => 0.17005675521137
1018 => 0.168742763056
1019 => 0.17361523295077
1020 => 0.16341150580587
1021 => 0.16680077466093
1022 => 0.16749929827463
1023 => 0.15947657915919
1024 => 0.15399607508847
1025 => 0.15363058794927
1026 => 0.14412814915061
1027 => 0.14920427525585
1028 => 0.15367105616409
1029 => 0.15153181474524
1030 => 0.15085459482005
1031 => 0.15431436454675
1101 => 0.15458321828544
1102 => 0.1484533245515
1103 => 0.14972792356728
1104 => 0.15504321334751
1105 => 0.14959399190245
1106 => 0.13900704475995
1107 => 0.13638133549262
1108 => 0.13603101747493
1109 => 0.12890988569429
1110 => 0.13655679794118
1111 => 0.13321871582091
1112 => 0.14376367724248
1113 => 0.13774045183224
1114 => 0.13748080262327
1115 => 0.13708830476166
1116 => 0.13095885246782
1117 => 0.13230081297315
1118 => 0.13676169407925
1119 => 0.13835338671333
1120 => 0.13818736013124
1121 => 0.13673983332821
1122 => 0.1374025036861
1123 => 0.13526781157367
1124 => 0.13451400735899
1125 => 0.1321347939073
1126 => 0.1286380074078
1127 => 0.12912425701759
1128 => 0.12219620797813
1129 => 0.11842143916203
1130 => 0.11737663290439
1201 => 0.11597947431121
1202 => 0.11753444568519
1203 => 0.12217658168566
1204 => 0.116577180785
1205 => 0.10697740069312
1206 => 0.10755436383387
1207 => 0.10885062870924
1208 => 0.10643504768963
1209 => 0.10414890297892
1210 => 0.1061365203241
1211 => 0.10206896694751
1212 => 0.10934217310184
1213 => 0.10914545325829
1214 => 0.11185645474057
1215 => 0.1135516996028
1216 => 0.10964470903741
1217 => 0.10866211147585
1218 => 0.10922184370348
1219 => 0.099970716799572
1220 => 0.11110044030567
1221 => 0.11119669061672
1222 => 0.11037253701823
1223 => 0.11629877119357
1224 => 0.12880497374232
1225 => 0.12409963728265
1226 => 0.12227758878591
1227 => 0.11881387326172
1228 => 0.12342906854263
1229 => 0.12307469355332
1230 => 0.12147207545893
1231 => 0.12050280703496
]
'min_raw' => 0.090519451406932
'max_raw' => 0.23226254731567
'avg_raw' => 0.1613909993613
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.090519'
'max' => '$0.232262'
'avg' => '$0.16139'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.055663649461329
'max_diff' => 0.13500405107076
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0028413021454033
]
1 => [
'year' => 2028
'avg' => 0.0048764993174184
]
2 => [
'year' => 2029
'avg' => 0.013321717231698
]
3 => [
'year' => 2030
'avg' => 0.010277685004958
]
4 => [
'year' => 2031
'avg' => 0.01009396037435
]
5 => [
'year' => 2032
'avg' => 0.017697889222475
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0028413021454033
'min' => '$0.002841'
'max_raw' => 0.017697889222475
'max' => '$0.017697'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.017697889222475
]
1 => [
'year' => 2033
'avg' => 0.045520790932694
]
2 => [
'year' => 2034
'avg' => 0.028853264919987
]
3 => [
'year' => 2035
'avg' => 0.034032492139929
]
4 => [
'year' => 2036
'avg' => 0.066057149095254
]
5 => [
'year' => 2037
'avg' => 0.1613909993613
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.017697889222475
'min' => '$0.017697'
'max_raw' => 0.1613909993613
'max' => '$0.16139'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.1613909993613
]
]
]
]
'prediction_2025_max_price' => '$0.004858'
'last_price' => 0.00471055
'sma_50day_nextmonth' => '$0.004418'
'sma_200day_nextmonth' => '$0.00769'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.004524'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004423'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.004429'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004552'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004876'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006591'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0095067'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004569'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0045046'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.004485'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004588'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005181'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.006562'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.010272'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007826'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.012437'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.055645'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.16548'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0046061'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004723'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.005497'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.007814'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.020872'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.068187'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.199854'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '50.95'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 88.9
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004374'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0045074'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 92.63
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 66.57
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.86
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000293'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -7.37
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 54.71
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001817'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767709537
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de FUSION para 2026
A previsão de preço para FUSION em 2026 sugere que o preço médio poderia variar entre $0.001627 na extremidade inferior e $0.004858 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, FUSION poderia potencialmente ganhar 3.13% até 2026 se FSN atingir a meta de preço prevista.
Previsão de preço de FUSION 2027-2032
A previsão de preço de FSN para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002841 na extremidade inferior e $0.017697 na extremidade superior. Considerando a volatilidade de preços no mercado, se FUSION atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de FUSION | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001566 | $0.002841 | $0.004115 |
| 2028 | $0.002827 | $0.004876 | $0.006925 |
| 2029 | $0.006211 | $0.013321 | $0.020432 |
| 2030 | $0.005282 | $0.010277 | $0.015272 |
| 2031 | $0.006245 | $0.010093 | $0.013942 |
| 2032 | $0.009533 | $0.017697 | $0.025862 |
Previsão de preço de FUSION 2032-2037
A previsão de preço de FUSION para 2032-2037 é atualmente estimada entre $0.017697 na extremidade inferior e $0.16139 na extremidade superior. Comparado ao preço atual, FUSION poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de FUSION | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.009533 | $0.017697 | $0.025862 |
| 2033 | $0.022153 | $0.04552 | $0.068888 |
| 2034 | $0.0178099 | $0.028853 | $0.039896 |
| 2035 | $0.021056 | $0.034032 | $0.047008 |
| 2036 | $0.034855 | $0.066057 | $0.097258 |
| 2037 | $0.090519 | $0.16139 | $0.232262 |
FUSION Histograma de preços potenciais
Previsão de preço de FUSION baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para FUSION é Altista, com 17 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de FSN foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de FUSION
De acordo com nossos indicadores técnicos, o SMA de 200 dias de FUSION está projetado para aumentar no próximo mês, alcançando $0.00769 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para FUSION é esperado para alcançar $0.004418 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 50.95, sugerindo que o mercado de FSN está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de FSN para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.004524 | BUY |
| SMA 5 | $0.004423 | BUY |
| SMA 10 | $0.004429 | BUY |
| SMA 21 | $0.004552 | BUY |
| SMA 50 | $0.004876 | SELL |
| SMA 100 | $0.006591 | SELL |
| SMA 200 | $0.0095067 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.004569 | BUY |
| EMA 5 | $0.0045046 | BUY |
| EMA 10 | $0.004485 | BUY |
| EMA 21 | $0.004588 | BUY |
| EMA 50 | $0.005181 | SELL |
| EMA 100 | $0.006562 | SELL |
| EMA 200 | $0.010272 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.007826 | SELL |
| SMA 50 | $0.012437 | SELL |
| SMA 100 | $0.055645 | SELL |
| SMA 200 | $0.16548 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.007814 | SELL |
| EMA 50 | $0.020872 | SELL |
| EMA 100 | $0.068187 | SELL |
| EMA 200 | $0.199854 | SELL |
Osciladores de FUSION
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 50.95 | NEUTRAL |
| Stoch RSI (14) | 88.9 | NEUTRAL |
| Estocástico Rápido (14) | 92.63 | SELL |
| Índice de Canal de Commodities (20) | 66.57 | NEUTRAL |
| Índice Direcional Médio (14) | 17.86 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000293 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -7.37 | SELL |
| Oscilador Ultimate (7, 14, 28) | 54.71 | NEUTRAL |
| VWMA (10) | 0.004374 | BUY |
| Média Móvel de Hull (9) | 0.0045074 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.001817 | SELL |
Previsão do preço de FUSION com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do FUSION
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de FUSION por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.006619 | $0.00930095 | $0.013069 | $0.018364 | $0.0258054 | $0.03626 |
| Amazon.com stock | $0.009828 | $0.0205084 | $0.042792 | $0.089288 | $0.1863053 | $0.388737 |
| Apple stock | $0.006681 | $0.009477 | $0.013442 | $0.019067 | $0.027045 | $0.038362 |
| Netflix stock | $0.007432 | $0.011727 | $0.0185038 | $0.029196 | $0.046067 | $0.072686 |
| Google stock | $0.00610014 | $0.007899 | $0.01023 | $0.013247 | $0.017155 | $0.022216 |
| Tesla stock | $0.010678 | $0.0242072 | $0.054876 | $0.124399 | $0.282005 | $0.639284 |
| Kodak stock | $0.003532 | $0.002648 | $0.001986 | $0.001489 | $0.001117 | $0.000837 |
| Nokia stock | $0.00312 | $0.002067 | $0.001369 | $0.0009072 | $0.00060098 | $0.000398 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para FUSION
Você pode fazer perguntas como: 'Devo investir em FUSION agora?', 'Devo comprar FSN hoje?', 'FUSION será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para FUSION regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como FUSION, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre FUSION para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de FUSION é de $0.00471 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para FUSION
com base no histórico de preços de 4 horas
Previsão de longo prazo para FUSION
com base no histórico de preços de 1 mês
Previsão do preço de FUSION com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se FUSION tiver 1% da média anterior do crescimento anual do Bitcoin | $0.004832 | $0.004958 | $0.005087 | $0.005219 |
| Se FUSION tiver 2% da média anterior do crescimento anual do Bitcoin | $0.004955 | $0.005213 | $0.005484 | $0.005769 |
| Se FUSION tiver 5% da média anterior do crescimento anual do Bitcoin | $0.005322 | $0.006014 | $0.006796 | $0.007679 |
| Se FUSION tiver 10% da média anterior do crescimento anual do Bitcoin | $0.005934 | $0.007477 | $0.009421 | $0.01187 |
| Se FUSION tiver 20% da média anterior do crescimento anual do Bitcoin | $0.007159 | $0.010881 | $0.016538 | $0.025135 |
| Se FUSION tiver 50% da média anterior do crescimento anual do Bitcoin | $0.010832 | $0.024911 | $0.057287 | $0.131742 |
| Se FUSION tiver 100% da média anterior do crescimento anual do Bitcoin | $0.016954 | $0.061025 | $0.219651 | $0.790595 |
Perguntas Frequentes sobre FUSION
FSN é um bom investimento?
A decisão de adquirir FUSION depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de FUSION experimentou uma escalada de 3.4337% nas últimas 24 horas, e FUSION registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em FUSION dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
FUSION pode subir?
Parece que o valor médio de FUSION pode potencialmente subir para $0.004858 até o final deste ano. Observando as perspectivas de FUSION em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.015272. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de FUSION na próxima semana?
Com base na nossa nova previsão experimental de FUSION, o preço de FUSION aumentará 0.86% na próxima semana e atingirá $0.00475 até 13 de janeiro de 2026.
Qual será o preço de FUSION no próximo mês?
Com base na nossa nova previsão experimental de FUSION, o preço de FUSION diminuirá -11.62% no próximo mês e atingirá $0.004163 até 5 de fevereiro de 2026.
Até onde o preço de FUSION pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de FUSION em 2026, espera-se que FSN fluctue dentro do intervalo de $0.001627 e $0.004858. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de FUSION não considera flutuações repentinas e extremas de preço.
Onde estará FUSION em 5 anos?
O futuro de FUSION parece seguir uma tendência de alta, com um preço máximo de $0.015272 projetada após um período de cinco anos. Com base na previsão de FUSION para 2030, o valor de FUSION pode potencialmente atingir seu pico mais alto de aproximadamente $0.015272, enquanto seu pico mais baixo está previsto para cerca de $0.005282.
Quanto será FUSION em 2026?
Com base na nossa nova simulação experimental de previsão de preços de FUSION, espera-se que o valor de FSN em 2026 aumente 3.13% para $0.004858 se o melhor cenário ocorrer. O preço ficará entre $0.004858 e $0.001627 durante 2026.
Quanto será FUSION em 2027?
De acordo com nossa última simulação experimental para previsão de preços de FUSION, o valor de FSN pode diminuir -12.62% para $0.004115 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.004115 e $0.001566 ao longo do ano.
Quanto será FUSION em 2028?
Nosso novo modelo experimental de previsão de preços de FUSION sugere que o valor de FSN em 2028 pode aumentar 47.02%, alcançando $0.006925 no melhor cenário. O preço é esperado para variar entre $0.006925 e $0.002827 durante o ano.
Quanto será FUSION em 2029?
Com base no nosso modelo de previsão experimental, o valor de FUSION pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.020432 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.020432 e $0.006211.
Quanto será FUSION em 2030?
Usando nossa nova simulação experimental para previsões de preços de FUSION, espera-se que o valor de FSN em 2030 aumente 224.23%, alcançando $0.015272 no melhor cenário. O preço está previsto para variar entre $0.015272 e $0.005282 ao longo de 2030.
Quanto será FUSION em 2031?
Nossa simulação experimental indica que o preço de FUSION poderia aumentar 195.98% em 2031, potencialmente atingindo $0.013942 sob condições ideais. O preço provavelmente oscilará entre $0.013942 e $0.006245 durante o ano.
Quanto será FUSION em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de FUSION, FSN poderia ver um 449.04% aumento em valor, atingindo $0.025862 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.025862 e $0.009533 ao longo do ano.
Quanto será FUSION em 2033?
De acordo com nossa previsão experimental de preços de FUSION, espera-se que o valor de FSN seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.068888. Ao longo do ano, o preço de FSN poderia variar entre $0.068888 e $0.022153.
Quanto será FUSION em 2034?
Os resultados da nossa nova simulação de previsão de preços de FUSION sugerem que FSN pode aumentar 746.96% em 2034, atingindo potencialmente $0.039896 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.039896 e $0.0178099.
Quanto será FUSION em 2035?
Com base em nossa previsão experimental para o preço de FUSION, FSN poderia aumentar 897.93%, com o valor potencialmente atingindo $0.047008 em 2035. A faixa de preço esperada para o ano está entre $0.047008 e $0.021056.
Quanto será FUSION em 2036?
Nossa recente simulação de previsão de preços de FUSION sugere que o valor de FSN pode aumentar 1964.7% em 2036, possivelmente atingindo $0.097258 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.097258 e $0.034855.
Quanto será FUSION em 2037?
De acordo com a simulação experimental, o valor de FUSION poderia aumentar 4830.69% em 2037, com um pico de $0.232262 sob condições favoráveis. O preço é esperado para cair entre $0.232262 e $0.090519 ao longo do ano.
Previsões relacionadas
Previsão de Preço do POOH
Previsão de Preço do Premia
Previsão de Preço do Altair
Previsão de Preço do GEEQ
Previsão de Preço do Ben
Previsão de Preço do Ta-da
Previsão de Preço do Empyreal
Previsão de Preço do MarsDAO
Previsão de Preço do Vela Token
Previsão de Preço do ONINO
Previsão de Preço do WolfWifBallz
Previsão de Preço do BSCPAD
Previsão de Preço do Roko Network
Previsão de Preço do Aura Network
Previsão de Preço do bitsCrunch Token
Previsão de Preço do AstroPepeX
Previsão de Preço do Shift
Previsão de Preço do Project WITH
Previsão de Preço do Choise.ai
Previsão de Preço do Cheems
Previsão de Preço do Handshake
Previsão de Preço do Itheum
Previsão de Preço do Umbrella Network
Previsão de Preço do SuiswapPrevisão de Preço do PureFi
Como ler e prever os movimentos de preço de FUSION?
Traders de FUSION utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de FUSION
Médias móveis são ferramentas populares para a previsão de preço de FUSION. Uma média móvel simples (SMA) calcula o preço médio de fechamento de FSN em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de FSN acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de FSN.
Como ler gráficos de FUSION e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de FUSION em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de FSN dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de FUSION?
A ação de preço de FUSION é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de FSN. A capitalização de mercado de FUSION pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de FSN, grandes detentores de FUSION, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de FUSION.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


