Previsão de Preço Eigenpie - Projeção EGP
Previsão de Preço Eigenpie até $0.143954 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.048225 | $0.143954 |
| 2027 | $0.046425 | $0.12196 |
| 2028 | $0.083784 | $0.205214 |
| 2029 | $0.18405 | $0.605442 |
| 2030 | $0.156526 | $0.452565 |
| 2031 | $0.185063 | $0.41314 |
| 2032 | $0.282485 | $0.766354 |
| 2033 | $0.656433 | $2.04 |
| 2034 | $0.527741 | $1.18 |
| 2035 | $0.623953 | $1.39 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Eigenpie hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.45, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Eigenpie para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Eigenpie'
'name_with_ticker' => 'Eigenpie <small>EGP</small>'
'name_lang' => 'Eigenpie'
'name_lang_with_ticker' => 'Eigenpie <small>EGP</small>'
'name_with_lang' => 'Eigenpie'
'name_with_lang_with_ticker' => 'Eigenpie <small>EGP</small>'
'image' => '/uploads/coins/eigenpie.jpeg?1717601614'
'price_for_sd' => 0.1395
'ticker' => 'EGP'
'marketcap' => '$505.92K'
'low24h' => '$0.1349'
'high24h' => '$0.1411'
'volume24h' => '$235.51K'
'current_supply' => '3.69M'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1395'
'change_24h_pct' => '3.0573%'
'ath_price' => '$9.68'
'ath_days' => 466
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 de set. de 2024'
'ath_pct' => '-98.59%'
'fdv' => '$1.37M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$6.88'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.140776'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.123365'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.048225'
'current_year_max_price_prediction' => '$0.143954'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.156526'
'grand_prediction_max_price' => '$0.452565'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.14222700547987
107 => 0.14275802948993
108 => 0.14395445369935
109 => 0.13373113982396
110 => 0.13832110761328
111 => 0.14101728366769
112 => 0.12883586216616
113 => 0.14077649613086
114 => 0.13355317467421
115 => 0.13110147088117
116 => 0.13440236705108
117 => 0.13311600460344
118 => 0.1320100657087
119 => 0.13139293280299
120 => 0.13381674664355
121 => 0.13370367283081
122 => 0.12973784294565
123 => 0.12456457952837
124 => 0.12630089653779
125 => 0.12567007629021
126 => 0.12338390233554
127 => 0.12492450754729
128 => 0.1181404618772
129 => 0.10646886390581
130 => 0.11417947903642
131 => 0.11388262874143
201 => 0.1137329433616
202 => 0.11952725752651
203 => 0.11897026791713
204 => 0.11795932632204
205 => 0.12336533560036
206 => 0.12139206949268
207 => 0.12747321067656
208 => 0.13147864356382
209 => 0.13046273622143
210 => 0.13422986521183
211 => 0.12634089777482
212 => 0.12896129630696
213 => 0.12950135681272
214 => 0.12329862628502
215 => 0.11906139830563
216 => 0.11877882350734
217 => 0.11143205411706
218 => 0.1153566390243
219 => 0.11881011133231
220 => 0.11715616609705
221 => 0.11663257644577
222 => 0.11930748242139
223 => 0.11951534552472
224 => 0.11477604474054
225 => 0.11576149544771
226 => 0.11987098871415
227 => 0.11565794676127
228 => 0.10747269444332
301 => 0.1054426386985
302 => 0.10517179184079
303 => 0.09966611965509
304 => 0.10557829673046
305 => 0.10299747300056
306 => 0.11115026424028
307 => 0.10649343360845
308 => 0.1062926869474
309 => 0.10598922892609
310 => 0.10125026943941
311 => 0.10228780039041
312 => 0.10573671129195
313 => 0.10696732155638
314 => 0.10683895882371
315 => 0.10571980974698
316 => 0.10623215046334
317 => 0.10458172250462
318 => 0.10399892204171
319 => 0.10215944346888
320 => 0.099455918135731
321 => 0.09983185991499
322 => 0.094475468814145
323 => 0.091557022657213
324 => 0.090749235225476
325 => 0.089669028111997
326 => 0.090871247493265
327 => 0.094460294831152
328 => 0.090131142282792
329 => 0.082709113893372
330 => 0.083155190446097
331 => 0.084157392018753
401 => 0.082289796018335
402 => 0.080522273139391
403 => 0.082058990878969
404 => 0.0789141796075
405 => 0.084537427436397
406 => 0.084385334341595
407 => 0.086481333392894
408 => 0.087792004613902
409 => 0.084771331784326
410 => 0.084011640736455
411 => 0.084444395283355
412 => 0.07729192659576
413 => 0.08589682410779
414 => 0.085971239618801
415 => 0.085334048834564
416 => 0.089915891113315
417 => 0.099585007433924
418 => 0.095947096934808
419 => 0.094538388033124
420 => 0.091860431381261
421 => 0.095428649618536
422 => 0.095154666130789
423 => 0.093915608894045
424 => 0.093166223211168
425 => 0.094546989309288
426 => 0.092995131011349
427 => 0.092716374618825
428 => 0.091027414170077
429 => 0.090424532132678
430 => 0.089978182273613
501 => 0.089486794936213
502 => 0.090570672956421
503 => 0.088114462766602
504 => 0.085152514062935
505 => 0.084906260076955
506 => 0.08558618898312
507 => 0.085285371056895
508 => 0.084904819876457
509 => 0.084178244036053
510 => 0.083962684505041
511 => 0.084663148406211
512 => 0.083872365501373
513 => 0.085039208753635
514 => 0.084721891953402
515 => 0.082949386101859
516 => 0.080740187545119
517 => 0.080720521044013
518 => 0.080244552838775
519 => 0.079638335767106
520 => 0.079469700046136
521 => 0.081929572797196
522 => 0.087021435774094
523 => 0.086021781233775
524 => 0.086744134087874
525 => 0.090297395191143
526 => 0.091426870045583
527 => 0.09062519554698
528 => 0.089527814048162
529 => 0.089576093264804
530 => 0.093326178046236
531 => 0.093560066234106
601 => 0.094151026229666
602 => 0.094910576829234
603 => 0.090754550298476
604 => 0.089380344788951
605 => 0.088729169980519
606 => 0.086723803606914
607 => 0.088886419313728
608 => 0.087626355753805
609 => 0.087796381377939
610 => 0.087685651967171
611 => 0.08774611771294
612 => 0.084535855624026
613 => 0.085705506402818
614 => 0.083760735125577
615 => 0.081156904696171
616 => 0.081148175743551
617 => 0.081785459552304
618 => 0.08140637820594
619 => 0.080386280049946
620 => 0.080531180178278
621 => 0.079261702583015
622 => 0.080685317742976
623 => 0.080726141931824
624 => 0.080177972550397
625 => 0.082371248125353
626 => 0.083269834917955
627 => 0.082909018088173
628 => 0.083244519047313
629 => 0.086063321393095
630 => 0.086522909168426
701 => 0.086727027699564
702 => 0.086453535908362
703 => 0.083296041579646
704 => 0.083436089879827
705 => 0.082408508376605
706 => 0.081540310290253
707 => 0.081575033660608
708 => 0.082021400334844
709 => 0.083970709780291
710 => 0.088072916590167
711 => 0.088228592339928
712 => 0.088417275890019
713 => 0.087649805067041
714 => 0.087418328523125
715 => 0.087723705833716
716 => 0.089264279027718
717 => 0.093227051544234
718 => 0.09182634307222
719 => 0.090687545281146
720 => 0.091686577961598
721 => 0.091532784711119
722 => 0.090234614905024
723 => 0.090198179602255
724 => 0.087706576694365
725 => 0.086785487830371
726 => 0.086015757033311
727 => 0.085175231097253
728 => 0.084676939147673
729 => 0.085442542051868
730 => 0.085617644494405
731 => 0.083943640363933
801 => 0.083715479786608
802 => 0.08508250769544
803 => 0.0844809296807
804 => 0.085099667587277
805 => 0.085243220089038
806 => 0.08522010482996
807 => 0.084591988291777
808 => 0.08499233104251
809 => 0.084045401089108
810 => 0.083015756989063
811 => 0.082358908202329
812 => 0.081785720517555
813 => 0.082103758358931
814 => 0.08097001152584
815 => 0.080607303096118
816 => 0.084856703926559
817 => 0.087995782008763
818 => 0.087950138570236
819 => 0.087672295876745
820 => 0.087259477992549
821 => 0.089234078828205
822 => 0.088546167380453
823 => 0.089046680435618
824 => 0.089174082014624
825 => 0.089559688223375
826 => 0.08969750929903
827 => 0.089280918285509
828 => 0.087882787961825
829 => 0.084398780125447
830 => 0.082776965072713
831 => 0.082241739091845
901 => 0.082261193539711
902 => 0.081724553019095
903 => 0.081882617702957
904 => 0.081669584572624
905 => 0.081266151362021
906 => 0.082078847495021
907 => 0.082172503153561
908 => 0.081982810165124
909 => 0.082027489730887
910 => 0.080456912805556
911 => 0.080576320358075
912 => 0.07991144393207
913 => 0.0797867876174
914 => 0.078106037909873
915 => 0.075128346174424
916 => 0.076778276447393
917 => 0.07478539269295
918 => 0.074030657418026
919 => 0.0776034568241
920 => 0.07724484685776
921 => 0.076631062479391
922 => 0.075723147459911
923 => 0.075386392947557
924 => 0.073340379134013
925 => 0.07321948972285
926 => 0.074233549415862
927 => 0.0737655957592
928 => 0.073108411597339
929 => 0.070728157180767
930 => 0.068051963141386
1001 => 0.068132740617479
1002 => 0.068983988149046
1003 => 0.071459105153446
1004 => 0.070492034119868
1005 => 0.069790412989145
1006 => 0.069659020442015
1007 => 0.071303673258284
1008 => 0.073631201558722
1009 => 0.074723225761777
1010 => 0.073641062941817
1011 => 0.072397932562032
1012 => 0.072473596148138
1013 => 0.072976952088618
1014 => 0.073029847680892
1015 => 0.07222069759952
1016 => 0.072448468607802
1017 => 0.072102463618404
1018 => 0.069979031637139
1019 => 0.069940625486073
1020 => 0.069419501032904
1021 => 0.069403721591571
1022 => 0.068517158896144
1023 => 0.068393122646535
1024 => 0.066632798604256
1025 => 0.067791449219636
1026 => 0.067014287218726
1027 => 0.065842920769373
1028 => 0.065640976751989
1029 => 0.065634906070972
1030 => 0.066837637501713
1031 => 0.067777394602603
1101 => 0.067027806284464
1102 => 0.066857139554583
1103 => 0.068679413729139
1104 => 0.068447512730029
1105 => 0.068246687960401
1106 => 0.073422796927971
1107 => 0.069325502783319
1108 => 0.067538848670878
1109 => 0.065327524930317
1110 => 0.066047543090706
1111 => 0.066199261496367
1112 => 0.060881426521383
1113 => 0.058723981534326
1114 => 0.057983627716367
1115 => 0.057557543627065
1116 => 0.057751715496987
1117 => 0.055809761965579
1118 => 0.057114786855632
1119 => 0.055433219246678
1120 => 0.055151298964743
1121 => 0.058158150155806
1122 => 0.058576535933273
1123 => 0.056791572224328
1124 => 0.057937807884846
1125 => 0.057522166900474
1126 => 0.055462044896942
1127 => 0.055383363389639
1128 => 0.054349666585056
1129 => 0.052732131249027
1130 => 0.051992874196195
1201 => 0.051607862704556
1202 => 0.05176672594973
1203 => 0.051686399831674
1204 => 0.05116221757668
1205 => 0.051716445344945
1206 => 0.050300622419753
1207 => 0.049736830322882
1208 => 0.049482178512602
1209 => 0.048225554174768
1210 => 0.050225402319642
1211 => 0.050619397597605
1212 => 0.051014169167977
1213 => 0.054450386166069
1214 => 0.054278722475493
1215 => 0.055830478634694
1216 => 0.055770180243844
1217 => 0.055327594250456
1218 => 0.053460396746218
1219 => 0.054204628391812
1220 => 0.051913999065949
1221 => 0.053630294304539
1222 => 0.05284704883185
1223 => 0.053365478222349
1224 => 0.052433295433338
1225 => 0.052949203877661
1226 => 0.050712828494271
1227 => 0.048624532627913
1228 => 0.049464923845692
1229 => 0.050378525209811
1230 => 0.05235944574852
1231 => 0.051179625817905
]
'min_raw' => 0.048225554174768
'max_raw' => 0.14395445369935
'avg_raw' => 0.096090003937058
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.048225'
'max' => '$0.143954'
'avg' => '$0.09609'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.091356445825232
'max_diff' => 0.0043724536993476
'year' => 2026
]
1 => [
'items' => [
101 => 0.051603933678885
102 => 0.05018257337288
103 => 0.047249901070091
104 => 0.047266499676838
105 => 0.046815371934793
106 => 0.046425531699937
107 => 0.051315142329468
108 => 0.050707041954381
109 => 0.049738113592888
110 => 0.051035062708428
111 => 0.051377996639927
112 => 0.051387759486849
113 => 0.052333980082445
114 => 0.052838978183934
115 => 0.052927986288109
116 => 0.054416884839728
117 => 0.054915943995184
118 => 0.056971498027013
119 => 0.052796132623248
120 => 0.052710143720433
121 => 0.051053313442195
122 => 0.050002525486285
123 => 0.051125261792524
124 => 0.052119852891062
125 => 0.051084218160038
126 => 0.051219450192467
127 => 0.049829195180534
128 => 0.050326145929722
129 => 0.050754186861418
130 => 0.050517847818018
131 => 0.05016403683111
201 => 0.052038307763149
202 => 0.051932554051837
203 => 0.053677918233054
204 => 0.055038554424503
205 => 0.057477057722391
206 => 0.054932352408993
207 => 0.054839613233085
208 => 0.055746153553415
209 => 0.054915805208585
210 => 0.055440556699867
211 => 0.057392512144519
212 => 0.057433753887213
213 => 0.056742901560098
214 => 0.056700863133208
215 => 0.056833548879727
216 => 0.057610693441452
217 => 0.057339135252345
218 => 0.057653389263792
219 => 0.058046368717134
220 => 0.059671898355993
221 => 0.060063808048717
222 => 0.059111670677276
223 => 0.059197638021287
224 => 0.058841512507613
225 => 0.058497499723643
226 => 0.059270790222974
227 => 0.060683993809566
228 => 0.060675202343399
301 => 0.061003038106736
302 => 0.061207277071357
303 => 0.060330533923145
304 => 0.059759806372398
305 => 0.059978659631692
306 => 0.060328610759307
307 => 0.059865175197529
308 => 0.057004636226005
309 => 0.057872341018029
310 => 0.057727912512039
311 => 0.057522228756404
312 => 0.058394712634546
313 => 0.058310559436061
314 => 0.05578984442526
315 => 0.055951212421812
316 => 0.055799657747598
317 => 0.056289361905152
318 => 0.054889359577005
319 => 0.055319990863983
320 => 0.055590078770259
321 => 0.055749162621968
322 => 0.05632388257916
323 => 0.056256445825576
324 => 0.056319690615872
325 => 0.057171848591944
326 => 0.061481771209616
327 => 0.061716350788387
328 => 0.060561195149066
329 => 0.061022657042537
330 => 0.060136751117695
331 => 0.060731465700095
401 => 0.061138354313261
402 => 0.059299702910545
403 => 0.059190829907225
404 => 0.058301267533496
405 => 0.05877926796575
406 => 0.058018734908587
407 => 0.058205343118497
408 => 0.057683570295376
409 => 0.058622657493062
410 => 0.059672702899473
411 => 0.059937985836682
412 => 0.05924014064037
413 => 0.058734854728001
414 => 0.057847739117408
415 => 0.059323032148485
416 => 0.059754452789513
417 => 0.059320766079519
418 => 0.059220271392572
419 => 0.059029834142397
420 => 0.059260673555452
421 => 0.05975210318005
422 => 0.05952035404437
423 => 0.059673428431381
424 => 0.059090066717717
425 => 0.060330824161608
426 => 0.062301445587046
427 => 0.062307781457158
428 => 0.062076031072264
429 => 0.061981203807897
430 => 0.062218993766588
501 => 0.062347985064523
502 => 0.063116954187708
503 => 0.063942088693967
504 => 0.067792631400289
505 => 0.066711414416549
506 => 0.070127844975408
507 => 0.07282979797948
508 => 0.073639995543316
509 => 0.072894651907328
510 => 0.070344871591286
511 => 0.070219767204611
512 => 0.07403021548626
513 => 0.072953589317107
514 => 0.072825528060082
515 => 0.071463172648247
516 => 0.072268493427642
517 => 0.072092357959845
518 => 0.071814319507086
519 => 0.07335081545504
520 => 0.076226998705669
521 => 0.075778718573383
522 => 0.075444098249748
523 => 0.073977889398092
524 => 0.074860874616392
525 => 0.074546460492623
526 => 0.075897383100467
527 => 0.07509712647418
528 => 0.072945432814984
529 => 0.073288097122286
530 => 0.073236304101582
531 => 0.074302200797573
601 => 0.073982245066619
602 => 0.073173827610008
603 => 0.076217168223999
604 => 0.076019550612477
605 => 0.07629972720394
606 => 0.076423069604251
607 => 0.078275497406311
608 => 0.079034377805737
609 => 0.079206656942478
610 => 0.079927534628016
611 => 0.079188720848957
612 => 0.082144502730489
613 => 0.084109925207053
614 => 0.086392864553298
615 => 0.08972885253441
616 => 0.090983214874923
617 => 0.090756625545471
618 => 0.093285933559646
619 => 0.097831043837759
620 => 0.091675322282354
621 => 0.098157312027456
622 => 0.096105188912327
623 => 0.091239641922475
624 => 0.090926358057359
625 => 0.094221362969049
626 => 0.10152936673071
627 => 0.099698794675104
628 => 0.10153236089081
629 => 0.099393408504586
630 => 0.099287191490104
701 => 0.10142847674764
702 => 0.10643170646725
703 => 0.10405485957072
704 => 0.10064706671778
705 => 0.10316332792927
706 => 0.1009835095989
707 => 0.09607176880785
708 => 0.099697394871153
709 => 0.097273041974507
710 => 0.097980597035437
711 => 0.10307622622891
712 => 0.10246310664299
713 => 0.10325654016051
714 => 0.10185615076985
715 => 0.10054796625783
716 => 0.098106142719093
717 => 0.097383239149717
718 => 0.097583023688947
719 => 0.097383140146422
720 => 0.096016962318014
721 => 0.095721936346044
722 => 0.095230213467377
723 => 0.095382618948708
724 => 0.094458036078211
725 => 0.096202914983407
726 => 0.096526779884032
727 => 0.097796557240408
728 => 0.097928389737872
729 => 0.10146470160123
730 => 0.099516960452199
731 => 0.10082367337485
801 => 0.10070678867179
802 => 0.091345093079374
803 => 0.092635052133069
804 => 0.094641823609168
805 => 0.0937377757793
806 => 0.092459663662479
807 => 0.09142751960011
808 => 0.089863715803472
809 => 0.092064739617048
810 => 0.094958851879113
811 => 0.09800178920085
812 => 0.10165767901177
813 => 0.10084172696522
814 => 0.097933444883819
815 => 0.098063908293489
816 => 0.098870381756611
817 => 0.097825925346028
818 => 0.097517894760335
819 => 0.098828063084268
820 => 0.098837085493459
821 => 0.09763531216631
822 => 0.09629976103538
823 => 0.096294165027376
824 => 0.096056516603521
825 => 0.099435685631251
826 => 0.10129388692398
827 => 0.10150692670755
828 => 0.10127954764913
829 => 0.10136705682436
830 => 0.1002858104348
831 => 0.10275721904769
901 => 0.10502522798786
902 => 0.10441735314295
903 => 0.10350606233593
904 => 0.10278017531443
905 => 0.10424635722971
906 => 0.104181070457
907 => 0.10500541890834
908 => 0.10496802170092
909 => 0.10469082432205
910 => 0.10441736304254
911 => 0.10550160610512
912 => 0.10518936151551
913 => 0.1048766319238
914 => 0.10424940485114
915 => 0.10433465542745
916 => 0.10342352196764
917 => 0.1030019899385
918 => 0.096663159616987
919 => 0.094969217027823
920 => 0.095502165849755
921 => 0.095677626439945
922 => 0.094940420454294
923 => 0.095997384465038
924 => 0.095832657743565
925 => 0.096473513054906
926 => 0.096073134479083
927 => 0.096089566155493
928 => 0.097266994177274
929 => 0.097608806541134
930 => 0.09743495801411
1001 => 0.097556715563259
1002 => 0.10036256689273
1003 => 0.099963664559755
1004 => 0.09975175564578
1005 => 0.099810455863162
1006 => 0.10052741103597
1007 => 0.10072811934006
1008 => 0.099877704152125
1009 => 0.10027876487095
1010 => 0.10198643050951
1011 => 0.1025840168375
1012 => 0.10449122553873
1013 => 0.10368100938452
1014 => 0.10516819620092
1015 => 0.10973930145518
1016 => 0.11339101662871
1017 => 0.11003274844162
1018 => 0.11673865831469
1019 => 0.12196017105651
1020 => 0.12175976070059
1021 => 0.12084926917829
1022 => 0.11490471574282
1023 => 0.10943444904321
1024 => 0.11401055941723
1025 => 0.11402222486366
1026 => 0.11362913292418
1027 => 0.11118767264847
1028 => 0.11354417539876
1029 => 0.11373122602951
1030 => 0.11362652741707
1031 => 0.11175466554799
1101 => 0.1088966784518
1102 => 0.10945512228934
1103 => 0.11036986468718
1104 => 0.10863806649282
1105 => 0.10808465203637
1106 => 0.10911355480232
1107 => 0.11242889389462
1108 => 0.11180214824367
1109 => 0.11178578138184
1110 => 0.11446726505811
1111 => 0.1125479014463
1112 => 0.10946216605452
1113 => 0.10868297717225
1114 => 0.1059173815647
1115 => 0.10782758830155
1116 => 0.10789633324133
1117 => 0.1068501325334
1118 => 0.10954705947603
1119 => 0.10952220681947
1120 => 0.11208253756689
1121 => 0.11697692833966
1122 => 0.11552941614981
1123 => 0.11384611696189
1124 => 0.11402913825644
1125 => 0.11603643012261
1126 => 0.11482277563831
1127 => 0.11525921425276
1128 => 0.1160357695205
1129 => 0.1165042845943
1130 => 0.11396172614736
1201 => 0.11336893414875
1202 => 0.11215628976131
1203 => 0.1118399334757
1204 => 0.11282760702662
1205 => 0.11256738994097
1206 => 0.10789055549533
1207 => 0.1074018002741
1208 => 0.10741678969896
1209 => 0.10618779145613
1210 => 0.10431327414244
1211 => 0.1092393937212
1212 => 0.10884375737803
1213 => 0.10840700547498
1214 => 0.10846050509103
1215 => 0.11059876663849
1216 => 0.10935846695617
1217 => 0.11265600694274
1218 => 0.11197813185463
1219 => 0.11128287182836
1220 => 0.11118676571459
1221 => 0.11091914992128
1222 => 0.11000139579055
1223 => 0.10889315252922
1224 => 0.10816139433371
1225 => 0.099773168883175
1226 => 0.10132997473473
1227 => 0.10312093795963
1228 => 0.10373917128803
1229 => 0.10268164039936
1230 => 0.11004315355576
1231 => 0.11138817294674
]
'min_raw' => 0.046425531699937
'max_raw' => 0.12196017105651
'avg_raw' => 0.084192851378222
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.046425'
'max' => '$0.12196'
'avg' => '$0.084192'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0018000224748303
'max_diff' => -0.021994282642842
'year' => 2027
]
2 => [
'items' => [
101 => 0.10731402147802
102 => 0.10655191408473
103 => 0.11009311718959
104 => 0.10795733882288
105 => 0.10891907969064
106 => 0.10684032197868
107 => 0.11106419716222
108 => 0.11103201831025
109 => 0.10938883546331
110 => 0.11077764235351
111 => 0.11053630297948
112 => 0.10868115359226
113 => 0.11112300870677
114 => 0.11112421983644
115 => 0.10954269207213
116 => 0.10769581388437
117 => 0.10736563568571
118 => 0.10711689076622
119 => 0.10885790368878
120 => 0.11041889043114
121 => 0.11332349975725
122 => 0.11405378755365
123 => 0.116904149441
124 => 0.11520689771868
125 => 0.1159592674241
126 => 0.11677607116852
127 => 0.11716767692056
128 => 0.11652957636233
129 => 0.12095736162915
130 => 0.12133120236951
131 => 0.12145654793604
201 => 0.11996352365672
202 => 0.12128967866344
203 => 0.12066921465343
204 => 0.1222834896376
205 => 0.12253662856722
206 => 0.12232222889951
207 => 0.1224025791913
208 => 0.11862424558091
209 => 0.11842831905092
210 => 0.11575684691211
211 => 0.1168454915552
212 => 0.11481032257504
213 => 0.11545569562321
214 => 0.1157401699135
215 => 0.11559157668803
216 => 0.11690704188993
217 => 0.11578862773653
218 => 0.11283694890139
219 => 0.10988446588333
220 => 0.10984739986408
221 => 0.10907006320108
222 => 0.10850819117004
223 => 0.1086164276567
224 => 0.10899786715319
225 => 0.10848602121308
226 => 0.10859524949565
227 => 0.11040916677055
228 => 0.11077293494377
229 => 0.10953670855778
301 => 0.10457308123143
302 => 0.10335499463523
303 => 0.10423053112487
304 => 0.10381208107459
305 => 0.083784451627924
306 => 0.088489646092392
307 => 0.085693979314912
308 => 0.086982351188418
309 => 0.084128699343013
310 => 0.085490611576348
311 => 0.085239116115923
312 => 0.092804929577961
313 => 0.092686799807187
314 => 0.092743342277168
315 => 0.090044422864356
316 => 0.094343874772614
317 => 0.096461939385911
318 => 0.096069941996454
319 => 0.096168599294129
320 => 0.094473340052822
321 => 0.092759756092277
322 => 0.090859127761352
323 => 0.094390260275449
324 => 0.093997658618323
325 => 0.094898145566152
326 => 0.097188337412108
327 => 0.097525576861018
328 => 0.097978830100298
329 => 0.097816371078779
330 => 0.10168680407225
331 => 0.1012180690988
401 => 0.10234758552056
402 => 0.10002408454439
403 => 0.097394822641118
404 => 0.097894559371882
405 => 0.09784643070608
406 => 0.097233697550915
407 => 0.096680549455582
408 => 0.095759713725362
409 => 0.098673374233824
410 => 0.098555084938149
411 => 0.10047005113886
412 => 0.10013156226189
413 => 0.097871050699246
414 => 0.097951785311936
415 => 0.098494764382009
416 => 0.10037402114316
417 => 0.10093191249943
418 => 0.10067347499508
419 => 0.10128517739851
420 => 0.10176864203708
421 => 0.10134589311356
422 => 0.10733112637189
423 => 0.10484564023403
424 => 0.10605704888372
425 => 0.10634596270864
426 => 0.10560591602132
427 => 0.10576640564871
428 => 0.10600950370341
429 => 0.10748554748806
430 => 0.11135911347569
501 => 0.11307468948335
502 => 0.11823608454744
503 => 0.11293223477789
504 => 0.11261752628207
505 => 0.11354724939232
506 => 0.11657753468409
507 => 0.11903329629285
508 => 0.11984801409476
509 => 0.11995569250181
510 => 0.12148415725961
511 => 0.1223602447546
512 => 0.1212985614354
513 => 0.12039889598525
514 => 0.11717640601341
515 => 0.1175494180022
516 => 0.12011910070677
517 => 0.12374892888053
518 => 0.12686369907287
519 => 0.12577301511221
520 => 0.13409416382914
521 => 0.13491917173558
522 => 0.13480518231861
523 => 0.13668467310711
524 => 0.13295426664357
525 => 0.13135944560719
526 => 0.12059341386721
527 => 0.12361822964542
528 => 0.12801497702024
529 => 0.12743305101823
530 => 0.12424001554923
531 => 0.12686127686914
601 => 0.12599460590236
602 => 0.12531102655265
603 => 0.12844263607205
604 => 0.12499930276604
605 => 0.1279806271365
606 => 0.12415704779353
607 => 0.12577799726467
608 => 0.12485786794835
609 => 0.12545330438282
610 => 0.12197239515368
611 => 0.12385060927942
612 => 0.12189425527105
613 => 0.12189332770452
614 => 0.12185014108136
615 => 0.12415178289641
616 => 0.12422683935337
617 => 0.12252592257446
618 => 0.1222807938933
619 => 0.12318716310467
620 => 0.12212604213663
621 => 0.12262253395896
622 => 0.12214108036814
623 => 0.12203269502389
624 => 0.1211690621606
625 => 0.12079698537701
626 => 0.12094288627109
627 => 0.12044485130253
628 => 0.12014476721926
629 => 0.12179044680419
630 => 0.12091122658848
701 => 0.12165569369634
702 => 0.1208072794677
703 => 0.11786630611475
704 => 0.11617492123924
705 => 0.1106196952039
706 => 0.11219515041628
707 => 0.11323967885202
708 => 0.11289446221024
709 => 0.11363612113789
710 => 0.11368165297255
711 => 0.11344053209485
712 => 0.11316134500797
713 => 0.1130254521741
714 => 0.1140382860229
715 => 0.11462627016256
716 => 0.11334451125454
717 => 0.1130442130761
718 => 0.11434014209996
719 => 0.11513065805588
720 => 0.12096738372184
721 => 0.12053498023213
722 => 0.1216202281364
723 => 0.12149804587687
724 => 0.1226355585741
725 => 0.12449491108533
726 => 0.12071432754686
727 => 0.12137050612639
728 => 0.12120962629207
729 => 0.12296607013828
730 => 0.12297155356424
731 => 0.12191847773756
801 => 0.12248936722741
802 => 0.12217071237571
803 => 0.12274656476152
804 => 0.1205292052199
805 => 0.12322970979242
806 => 0.12476072186837
807 => 0.12478197997253
808 => 0.12550766754566
809 => 0.12624500814896
810 => 0.12766026922815
811 => 0.12620553728559
812 => 0.12358861613623
813 => 0.12377754939061
814 => 0.12224324947823
815 => 0.12226904133696
816 => 0.12213136237376
817 => 0.1225445473063
818 => 0.12061987607719
819 => 0.12107159256768
820 => 0.12043918683574
821 => 0.12136913139984
822 => 0.12036866477422
823 => 0.12120954871094
824 => 0.12157244634228
825 => 0.12291154641457
826 => 0.12017087860475
827 => 0.11458247141363
828 => 0.11575722235809
829 => 0.11401967343653
830 => 0.11418049020454
831 => 0.11450536566971
901 => 0.11345233799446
902 => 0.11365322249018
903 => 0.11364604548239
904 => 0.11358419790659
905 => 0.1133102647384
906 => 0.1129130074485
907 => 0.11449555822213
908 => 0.11476446443659
909 => 0.11536220964091
910 => 0.11714069391454
911 => 0.11696298139605
912 => 0.11725283788692
913 => 0.11662008279484
914 => 0.11420984189848
915 => 0.11434072957517
916 => 0.1127085581495
917 => 0.11532047134794
918 => 0.11470193582698
919 => 0.1143031619528
920 => 0.11419435280662
921 => 0.11597724559876
922 => 0.11651071506559
923 => 0.11617829269366
924 => 0.11549648471054
925 => 0.11680575759657
926 => 0.11715606378709
927 => 0.11723448442435
928 => 0.11955426495023
929 => 0.1173641343862
930 => 0.11789132058099
1001 => 0.12200427678078
1002 => 0.11827439305673
1003 => 0.12025019565169
1004 => 0.12015349039625
1005 => 0.12116424414632
1006 => 0.12007057908705
1007 => 0.12008413637621
1008 => 0.12098161723188
1009 => 0.11972126723161
1010 => 0.1194091868472
1011 => 0.11897805003131
1012 => 0.11991942149599
1013 => 0.1204837311145
1014 => 0.12503165219996
1015 => 0.12796981663155
1016 => 0.12784226316472
1017 => 0.12900786308149
1018 => 0.12848274964332
1019 => 0.12678701983352
1020 => 0.12968142384662
1021 => 0.12876551330987
1022 => 0.12884101986169
1023 => 0.12883820950406
1024 => 0.12944720994071
1025 => 0.12901567731727
1026 => 0.12816508222056
1027 => 0.12872974694137
1028 => 0.13040659929084
1029 => 0.13561160043571
1030 => 0.13852438803348
1031 => 0.13543624696492
1101 => 0.13756640532215
1102 => 0.13628906936084
1103 => 0.13605693941922
1104 => 0.13739483628503
1105 => 0.13873507496219
1106 => 0.13864970755247
1107 => 0.13767676309486
1108 => 0.13712717145832
1109 => 0.14128886345696
1110 => 0.14435512722899
1111 => 0.14414602859623
1112 => 0.14506892195872
1113 => 0.14777856541498
1114 => 0.14802630125426
1115 => 0.14799509223265
1116 => 0.14738105310643
1117 => 0.15004904898078
1118 => 0.15227473807809
1119 => 0.14723892079
1120 => 0.14915649408962
1121 => 0.15001735452417
1122 => 0.15128135304787
1123 => 0.15341393042811
1124 => 0.15573047510126
1125 => 0.15605805991766
1126 => 0.15582562281404
1127 => 0.15429779933004
1128 => 0.15683259015352
1129 => 0.15831741116976
1130 => 0.15920158810541
1201 => 0.16144371370119
1202 => 0.15002267090514
1203 => 0.14193828915144
1204 => 0.14067579620071
1205 => 0.1432431252611
1206 => 0.14392010946026
1207 => 0.14364721797845
1208 => 0.13454751131482
1209 => 0.14062788812836
1210 => 0.14716986232712
1211 => 0.14742116619912
1212 => 0.15069621526925
1213 => 0.15176270549528
1214 => 0.15439954926723
1215 => 0.15423461397136
1216 => 0.15487664346848
1217 => 0.15472905200549
1218 => 0.15961324984006
1219 => 0.16500124536199
1220 => 0.16481467620984
1221 => 0.16404008810569
1222 => 0.16519048352725
1223 => 0.17075147231857
1224 => 0.17023950558369
1225 => 0.1707368376574
1226 => 0.17729355684596
1227 => 0.18581822447351
1228 => 0.18185766049788
1229 => 0.19045094470343
1230 => 0.19585996160039
1231 => 0.20521429702092
]
'min_raw' => 0.083784451627924
'max_raw' => 0.20521429702092
'avg_raw' => 0.14449937432442
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.083784'
'max' => '$0.205214'
'avg' => '$0.144499'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.037358919927987
'max_diff' => 0.083254125964412
'year' => 2028
]
3 => [
'items' => [
101 => 0.20404308815519
102 => 0.20768466228912
103 => 0.20194637984688
104 => 0.18877012346129
105 => 0.18668493045159
106 => 0.19085953966251
107 => 0.20112240905516
108 => 0.19053632538289
109 => 0.19267787632244
110 => 0.19206110950778
111 => 0.19202824462532
112 => 0.1932825635178
113 => 0.19146310854338
114 => 0.18405032166391
115 => 0.18744755820694
116 => 0.18613572202898
117 => 0.1875913020723
118 => 0.1954464672392
119 => 0.19197351147516
120 => 0.18831503469776
121 => 0.19290357645761
122 => 0.19874636691191
123 => 0.19838073558579
124 => 0.19767125799106
125 => 0.20167054604548
126 => 0.20827619822992
127 => 0.21006167947171
128 => 0.21137968522185
129 => 0.2115614159469
130 => 0.21343335535997
131 => 0.20336746534641
201 => 0.21934229130833
202 => 0.22210070245629
203 => 0.2215822354849
204 => 0.22464809338417
205 => 0.2237460402169
206 => 0.22243910670532
207 => 0.22729914360235
208 => 0.22172750348466
209 => 0.21381926178759
210 => 0.2094806439853
211 => 0.21519408589368
212 => 0.21868308549548
213 => 0.22098909229022
214 => 0.22168688855298
215 => 0.20414885173425
216 => 0.19469682259306
217 => 0.20075546490483
218 => 0.20814742667034
219 => 0.20332640262557
220 => 0.20351537764072
221 => 0.19664186429572
222 => 0.20875558008356
223 => 0.20699071358566
224 => 0.21614684409878
225 => 0.21396166006928
226 => 0.22142812906379
227 => 0.21946195754891
228 => 0.22762342558
301 => 0.23087925614053
302 => 0.23634630238122
303 => 0.24036788385075
304 => 0.24272943341026
305 => 0.24258765483265
306 => 0.25194529070673
307 => 0.24642741976268
308 => 0.23949567339463
309 => 0.23937029997221
310 => 0.24296034963983
311 => 0.25048410886114
312 => 0.25243491016098
313 => 0.25352514195438
314 => 0.25185541401154
315 => 0.24586616057115
316 => 0.2432800313018
317 => 0.24548348836667
318 => 0.24278884972155
319 => 0.24744055200508
320 => 0.25382833279037
321 => 0.25250928131823
322 => 0.25691867262634
323 => 0.26148192874873
324 => 0.26800758995242
325 => 0.2697136394356
326 => 0.27253367435604
327 => 0.27543641662239
328 => 0.27636869920724
329 => 0.27814871593202
330 => 0.27813933436524
331 => 0.28350353457432
401 => 0.28942041352038
402 => 0.29165389834646
403 => 0.29678967354895
404 => 0.28799483849371
405 => 0.29466582191089
406 => 0.30068321593873
407 => 0.2935090307107
408 => 0.30339697367677
409 => 0.30378090009558
410 => 0.3095777332012
411 => 0.30370153230981
412 => 0.300212262978
413 => 0.31028565279772
414 => 0.31515984882268
415 => 0.31369170131244
416 => 0.30251902626813
417 => 0.29601605017376
418 => 0.2789965074044
419 => 0.29915689100424
420 => 0.30897642576927
421 => 0.30249359604531
422 => 0.30576315827439
423 => 0.32360082963715
424 => 0.33039225998839
425 => 0.32897968995101
426 => 0.32921839103445
427 => 0.3328829235788
428 => 0.34913347897539
429 => 0.33939576949683
430 => 0.34683988352817
501 => 0.35078821476865
502 => 0.3544556448677
503 => 0.34544959564763
504 => 0.33373285793746
505 => 0.33002167526946
506 => 0.30184900639187
507 => 0.30038249662909
508 => 0.29955930025945
509 => 0.29436916359231
510 => 0.29029113787001
511 => 0.28704814040825
512 => 0.27853754662757
513 => 0.28140962219745
514 => 0.26784551201002
515 => 0.27652334902539
516 => 0.25487470164937
517 => 0.27290433847715
518 => 0.26309162685878
519 => 0.26968059879848
520 => 0.2696576104961
521 => 0.25752522411966
522 => 0.25052751685416
523 => 0.25498672827858
524 => 0.25976735689819
525 => 0.26054299780776
526 => 0.26674120760026
527 => 0.26847099472327
528 => 0.2632296589845
529 => 0.25442608155121
530 => 0.25647095180074
531 => 0.25048607762383
601 => 0.23999781583364
602 => 0.24753066855883
603 => 0.25010271567537
604 => 0.25123867820832
605 => 0.24092467732268
606 => 0.23768379431656
607 => 0.23595837539774
608 => 0.25309467355455
609 => 0.25403343865059
610 => 0.24923058369126
611 => 0.27093994353282
612 => 0.26602644678985
613 => 0.27151602648768
614 => 0.25628540125891
615 => 0.25686723165341
616 => 0.24965680958852
617 => 0.25369416414428
618 => 0.25084069207428
619 => 0.25336798579409
620 => 0.25488283522932
621 => 0.2620920741349
622 => 0.27298665640509
623 => 0.26101525424934
624 => 0.25579914289645
625 => 0.25903518904326
626 => 0.2676532063734
627 => 0.28070994377675
628 => 0.27298009244263
629 => 0.27641046920333
630 => 0.2771598539187
701 => 0.27146014771957
702 => 0.28092010007428
703 => 0.28598976539369
704 => 0.29119019299198
705 => 0.2957055785629
706 => 0.28911302784937
707 => 0.29616800211787
708 => 0.29048293822806
709 => 0.2853828482078
710 => 0.28539058293914
711 => 0.282191221969
712 => 0.27599205694394
713 => 0.27484883580107
714 => 0.28079601655922
715 => 0.28556509232715
716 => 0.28595789624973
717 => 0.28859830163882
718 => 0.29016086634974
719 => 0.30547612472049
720 => 0.31163604833167
721 => 0.31916828632204
722 => 0.32210251751296
723 => 0.33093350141752
724 => 0.32380176469714
725 => 0.32225876859696
726 => 0.3008376902373
727 => 0.30434539061867
728 => 0.30996155737197
729 => 0.3009302987585
730 => 0.30665855363957
731 => 0.30778943249412
801 => 0.30062342004667
802 => 0.30445109691997
803 => 0.29428592197158
804 => 0.27320822944075
805 => 0.28094356557145
806 => 0.28663937664963
807 => 0.27851075195262
808 => 0.29308099710079
809 => 0.28456936067614
810 => 0.28187158056013
811 => 0.27134657849951
812 => 0.27631397432764
813 => 0.28303244831145
814 => 0.27888121249589
815 => 0.28749565012436
816 => 0.29969599119288
817 => 0.30839068078118
818 => 0.30905815108538
819 => 0.30346804817907
820 => 0.312426223762
821 => 0.31249147429126
822 => 0.30238661563849
823 => 0.29619744597776
824 => 0.29479125360872
825 => 0.29830419784684
826 => 0.3025695606772
827 => 0.30929484903705
828 => 0.31335879994155
829 => 0.32395542854748
830 => 0.3268225724191
831 => 0.32997269427029
901 => 0.33418222852509
902 => 0.33923685370041
903 => 0.32817762157679
904 => 0.32861702548605
905 => 0.31831882165802
906 => 0.30731371395596
907 => 0.31566521889579
908 => 0.32658370065046
909 => 0.32407898887209
910 => 0.3237971576304
911 => 0.32427111960545
912 => 0.32238264872079
913 => 0.3138411648995
914 => 0.30955168519697
915 => 0.31508620837622
916 => 0.31802756113271
917 => 0.3225893427451
918 => 0.32202700687384
919 => 0.33377766640778
920 => 0.33834361738117
921 => 0.33717545173412
922 => 0.33739042232666
923 => 0.34565685846573
924 => 0.35485083557464
925 => 0.36346220838927
926 => 0.37222206668338
927 => 0.36166171560675
928 => 0.35629982060194
929 => 0.3618319275815
930 => 0.3588965137481
1001 => 0.37576427233513
1002 => 0.37693215934224
1003 => 0.39379869819833
1004 => 0.40980705200285
1005 => 0.39975249179768
1006 => 0.40923348920382
1007 => 0.41948796089561
1008 => 0.43927050051716
1009 => 0.43260843713076
1010 => 0.42750540098462
1011 => 0.42268305648421
1012 => 0.43271758986393
1013 => 0.44562685675137
1014 => 0.4484073891955
1015 => 0.45291291400014
1016 => 0.44817590557742
1017 => 0.45388111045822
1018 => 0.4740229906815
1019 => 0.46858047684788
1020 => 0.46085123227637
1021 => 0.47675131226591
1022 => 0.48250548940413
1023 => 0.52289131804611
1024 => 0.57388009496199
1025 => 0.55277040650845
1026 => 0.53966694167996
1027 => 0.542746566733
1028 => 0.56136594198365
1029 => 0.56734589436473
1030 => 0.55109032237975
1031 => 0.55683206521561
1101 => 0.58846963275687
1102 => 0.60544217268807
1103 => 0.58239118374528
1104 => 0.51879441946759
1105 => 0.46015529837021
1106 => 0.47570903383927
1107 => 0.47394572292568
1108 => 0.50793634238184
1109 => 0.46845067469291
1110 => 0.46911551207015
1111 => 0.50380902153997
1112 => 0.49455338801075
1113 => 0.47956044706539
1114 => 0.46026476343129
1115 => 0.42459490759894
1116 => 0.39300112156071
1117 => 0.45496381159606
1118 => 0.4522918677299
1119 => 0.4484224970518
1120 => 0.45703336278628
1121 => 0.49884528255603
1122 => 0.49788138247336
1123 => 0.49174954193356
1124 => 0.49640048893943
1125 => 0.47874511356826
1126 => 0.48329530580684
1127 => 0.46014600963383
1128 => 0.47061045830403
1129 => 0.47952827894779
1130 => 0.48131866347262
1201 => 0.48535249122635
1202 => 0.4508838747265
1203 => 0.46635927158952
1204 => 0.47544961739795
1205 => 0.43437910432584
1206 => 0.47463778540628
1207 => 0.45028385279899
1208 => 0.44201776228828
1209 => 0.45314696418633
1210 => 0.44880990338316
1211 => 0.44508115318534
1212 => 0.4430004465069
1213 => 0.45117250409564
1214 => 0.4507912678414
1215 => 0.4374201954982
1216 => 0.41997817670111
1217 => 0.42583229072416
1218 => 0.42370543621698
1219 => 0.41599744111324
1220 => 0.42119169914628
1221 => 0.39831881552261
1222 => 0.35896720807712
1223 => 0.38496408532795
1224 => 0.38396323383295
1225 => 0.38345855912417
1226 => 0.40299449387726
1227 => 0.40111656452145
1228 => 0.39770810435191
1229 => 0.41593484206928
1230 => 0.40928183761823
1231 => 0.42978482969139
]
'min_raw' => 0.18405032166391
'max_raw' => 0.60544217268807
'avg_raw' => 0.39474624717599
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.18405'
'max' => '$0.605442'
'avg' => '$0.394746'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.10026587003598
'max_diff' => 0.40022787566715
'year' => 2029
]
4 => [
'items' => [
101 => 0.44328942632117
102 => 0.43986422378792
103 => 0.4525653621916
104 => 0.42596715768761
105 => 0.43480201428909
106 => 0.43662286599007
107 => 0.41570992695511
108 => 0.4014238169888
109 => 0.40047109632762
110 => 0.37570095039326
111 => 0.38893296241376
112 => 0.40057658541395
113 => 0.39500019357851
114 => 0.39323487451337
115 => 0.40225350676615
116 => 0.40295433173155
117 => 0.38697544825028
118 => 0.39029796411146
119 => 0.40415340757492
120 => 0.38994884248559
121 => 0.36235169281956
122 => 0.35550721814193
123 => 0.35459403905124
124 => 0.3360312808834
125 => 0.35596459866802
126 => 0.34726317127533
127 => 0.37475087614974
128 => 0.35905004654499
129 => 0.35837321516158
130 => 0.35735008525598
131 => 0.34137235248304
201 => 0.34487046052242
202 => 0.35649870442224
203 => 0.36064779284723
204 => 0.36021500893203
205 => 0.35644171968336
206 => 0.35816911217903
207 => 0.35260457908703
208 => 0.3506396266365
209 => 0.34443769619989
210 => 0.33532257178508
211 => 0.33659008574127
212 => 0.31853063917349
213 => 0.30869089419598
214 => 0.30596738247197
215 => 0.30232538877122
216 => 0.30637875535144
217 => 0.31847947903041
218 => 0.30388343896183
219 => 0.27885955205743
220 => 0.28036353029901
221 => 0.2837425228727
222 => 0.2774457925659
223 => 0.27148646577504
224 => 0.27666761692423
225 => 0.26606466615876
226 => 0.28502383881651
227 => 0.28451104632859
228 => 0.29157785346803
301 => 0.2959968729978
302 => 0.28581246365624
303 => 0.28325111224841
304 => 0.28471017441724
305 => 0.26059512686759
306 => 0.28960713960416
307 => 0.28985803669506
308 => 0.28770970347877
309 => 0.30315770461559
310 => 0.33575780536667
311 => 0.3234923361281
312 => 0.31874277571315
313 => 0.30971385789243
314 => 0.32174435480445
315 => 0.32082060034659
316 => 0.3166430323647
317 => 0.31411642621444
318 => 0.31877177551626
319 => 0.31353957691747
320 => 0.31259973027793
321 => 0.30690528220552
322 => 0.30487262332455
323 => 0.30336772361156
324 => 0.30171097689595
325 => 0.30536534731503
326 => 0.29708406317293
327 => 0.28709764632187
328 => 0.28626738381523
329 => 0.28855981159348
330 => 0.28754558295278
331 => 0.2862625280787
401 => 0.28381282690487
402 => 0.28308605289618
403 => 0.2854477158438
404 => 0.28278153606944
405 => 0.28671562956084
406 => 0.2856457738145
407 => 0.27966964658361
408 => 0.27222117940825
409 => 0.2721548724267
410 => 0.2705501123917
411 => 0.26850620920984
412 => 0.26793764210282
413 => 0.27623127482585
414 => 0.29339884635499
415 => 0.29002844127865
416 => 0.29246390435931
417 => 0.30444397224975
418 => 0.30825207557891
419 => 0.30554917403574
420 => 0.30184927569575
421 => 0.3020120524454
422 => 0.31465572510856
423 => 0.31544429546352
424 => 0.31743675834805
425 => 0.31999763622463
426 => 0.30598530261167
427 => 0.30135207279234
428 => 0.29915659146214
429 => 0.29239535872332
430 => 0.29968676856785
501 => 0.29543837630075
502 => 0.29601162956332
503 => 0.29563829762404
504 => 0.29584216210748
505 => 0.28501853934137
506 => 0.28896209860447
507 => 0.28240516646366
508 => 0.27362617037728
509 => 0.27359674010409
510 => 0.27574538695903
511 => 0.27446728773315
512 => 0.27102795557924
513 => 0.27151649647852
514 => 0.26723636413399
515 => 0.27203618203944
516 => 0.27217382364239
517 => 0.27032563230095
518 => 0.27772041403152
519 => 0.2807500621401
520 => 0.27953354300707
521 => 0.28066470791474
522 => 0.29016849682604
523 => 0.29171802909796
524 => 0.29240622897679
525 => 0.29148413230817
526 => 0.28083841972969
527 => 0.28131060235161
528 => 0.27784603957004
529 => 0.27491884910625
530 => 0.27503592137371
531 => 0.27654087778023
601 => 0.28311311067199
602 => 0.29694398733842
603 => 0.29746885899767
604 => 0.29810501876027
605 => 0.2955174372975
606 => 0.29473699796851
607 => 0.29576659889193
608 => 0.30096074897489
609 => 0.31432151318627
610 => 0.30959892677853
611 => 0.3057593905176
612 => 0.30912769894998
613 => 0.30860917426849
614 => 0.30423230413192
615 => 0.3041094599648
616 => 0.29570884680269
617 => 0.29260333138936
618 => 0.29000813026619
619 => 0.28717423838912
620 => 0.28549421229148
621 => 0.28807549593566
622 => 0.28866586604594
623 => 0.28302184424481
624 => 0.2822525849287
625 => 0.28686161496617
626 => 0.28483335268864
627 => 0.28691947073956
628 => 0.28740346802176
629 => 0.28732553331193
630 => 0.28520779454975
701 => 0.28655757808488
702 => 0.28336493763445
703 => 0.27989342066369
704 => 0.2776788091195
705 => 0.2757462668216
706 => 0.27681855360849
707 => 0.27299604700505
708 => 0.27177315021075
709 => 0.28610030179427
710 => 0.29668392271185
711 => 0.29653003267214
712 => 0.29559326663267
713 => 0.29420142231408
714 => 0.30085892689373
715 => 0.29853958541918
716 => 0.30022710012938
717 => 0.30065664344789
718 => 0.30195674170286
719 => 0.30242141508179
720 => 0.30101684939425
721 => 0.29630295539361
722 => 0.2845563797276
723 => 0.2790883170458
724 => 0.27728376528302
725 => 0.27734935731226
726 => 0.27554003632996
727 => 0.27607296244733
728 => 0.27535470637491
729 => 0.27399450313855
730 => 0.2767345648916
731 => 0.27705033148319
801 => 0.27641076832873
802 => 0.27656140860413
803 => 0.2712660988462
804 => 0.27166868974629
805 => 0.26942701245582
806 => 0.26900672498768
807 => 0.26333996000256
808 => 0.2533004644207
809 => 0.25886331953047
810 => 0.25214417281366
811 => 0.24959953014032
812 => 0.26164547278279
813 => 0.26043639424392
814 => 0.2583669773592
815 => 0.25530587848242
816 => 0.25417048713256
817 => 0.24727220871208
818 => 0.24686462162211
819 => 0.25028359467649
820 => 0.24870585625158
821 => 0.24649011396673
822 => 0.2384649200172
823 => 0.22944194496752
824 => 0.22971429186787
825 => 0.23258433235276
826 => 0.24092936214024
827 => 0.23766881463179
828 => 0.23530325000394
829 => 0.23486025085775
830 => 0.24040531265379
831 => 0.24825273682156
901 => 0.25193457266485
902 => 0.24828598516316
903 => 0.24409468429513
904 => 0.24434978935835
905 => 0.24604688905486
906 => 0.24622523023727
907 => 0.24349712424487
908 => 0.24426507010176
909 => 0.2430984901227
910 => 0.23593919094458
911 => 0.23580970192483
912 => 0.23405269444723
913 => 0.23399949295908
914 => 0.23101038493362
915 => 0.23059218805813
916 => 0.22465713264769
917 => 0.22856360409184
918 => 0.22594334814606
919 => 0.22199400437987
920 => 0.22131313602598
921 => 0.22129266830109
922 => 0.22534776129186
923 => 0.22851621796925
924 => 0.22598892862006
925 => 0.2254135138247
926 => 0.23155743843133
927 => 0.23077556802202
928 => 0.23009847329008
929 => 0.24755008605864
930 => 0.233735772786
1001 => 0.2277119437057
1002 => 0.2202563113247
1003 => 0.22268390282252
1004 => 0.22319543201985
1005 => 0.2052659801223
1006 => 0.19799200372044
1007 => 0.19549584913334
1008 => 0.19405927687802
1009 => 0.19471394089411
1010 => 0.1881665089801
1011 => 0.19256649151084
1012 => 0.18689696891395
1013 => 0.18594645500036
1014 => 0.19608426372268
1015 => 0.19749488058217
1016 => 0.19147675081527
1017 => 0.19534136437233
1018 => 0.19394000177439
1019 => 0.18699415660636
1020 => 0.18672887641112
1021 => 0.18324369546406
1022 => 0.17779006214593
1023 => 0.17529760537903
1024 => 0.17399951225432
1025 => 0.1745351307769
1026 => 0.17426430566169
1027 => 0.17249698859174
1028 => 0.17436560620739
1029 => 0.16959206036551
1030 => 0.1676911959482
1031 => 0.16683261959062
1101 => 0.1625958229009
1102 => 0.16933845054628
1103 => 0.17066683313381
1104 => 0.17199783304539
1105 => 0.18358327856346
1106 => 0.18300450244551
1107 => 0.18823635667641
1108 => 0.18803305644176
1109 => 0.18654084686469
1110 => 0.18024546011558
1111 => 0.1827546890693
1112 => 0.17503167237052
1113 => 0.18081828159533
1114 => 0.17817751479971
1115 => 0.17992543568536
1116 => 0.17678251632928
1117 => 0.17852193766889
1118 => 0.17098184192505
1119 => 0.16394100661147
1120 => 0.16677444427645
1121 => 0.16985471506119
1122 => 0.1765335269609
1123 => 0.17255568169243
1124 => 0.17398626526996
1125 => 0.16919404976205
1126 => 0.15930634034056
1127 => 0.15936230370208
1128 => 0.15784129502305
1129 => 0.15652692145345
1130 => 0.17301258507263
1201 => 0.17096233220181
1202 => 0.16769552258262
1203 => 0.17206827707576
1204 => 0.17322450276869
1205 => 0.17325741888871
1206 => 0.17644766768977
1207 => 0.17815030404678
1208 => 0.17845040108435
1209 => 0.18347032650272
1210 => 0.18515293928854
1211 => 0.19208338322104
1212 => 0.17800584724755
1213 => 0.17771592965815
1214 => 0.17212981069888
1215 => 0.16858700574186
1216 => 0.17237238958529
1217 => 0.17572572291414
1218 => 0.17223400811279
1219 => 0.17268995235172
1220 => 0.16800261051448
1221 => 0.16967811466136
1222 => 0.17112128454744
1223 => 0.17032445096195
1224 => 0.1691315525173
1225 => 0.17545078782208
1226 => 0.1750942318009
1227 => 0.18097884899531
1228 => 0.18556632891137
1229 => 0.19378791303106
1230 => 0.18520826140129
1231 => 0.18489558479487
]
'min_raw' => 0.15652692145345
'max_raw' => 0.4525653621916
'avg_raw' => 0.30454614182253
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.156526'
'max' => '$0.452565'
'avg' => '$0.304546'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.027523400210454
'max_diff' => -0.15287681049647
'year' => 2030
]
5 => [
'items' => [
101 => 0.18795204877749
102 => 0.18515247135982
103 => 0.18692170764966
104 => 0.19350286171248
105 => 0.19364191112738
106 => 0.19131265427275
107 => 0.19117091878146
108 => 0.19161827803967
109 => 0.19423847518802
110 => 0.19332289779386
111 => 0.19438242713397
112 => 0.19570738479786
113 => 0.20118797146613
114 => 0.20250932235741
115 => 0.19929912473349
116 => 0.19958896963587
117 => 0.19838826760263
118 => 0.19722840448327
119 => 0.19983560739118
120 => 0.2046003219501
121 => 0.20457068090812
122 => 0.20567600207297
123 => 0.2063646080017
124 => 0.20340860726525
125 => 0.20148435948098
126 => 0.20222223852454
127 => 0.2034021231841
128 => 0.20183961783153
129 => 0.19219511097258
130 => 0.1951206382601
131 => 0.19463368746848
201 => 0.19394021032598
202 => 0.19688185063601
203 => 0.19659812225193
204 => 0.18809935560232
205 => 0.18864341906904
206 => 0.18813244190372
207 => 0.18978351366097
208 => 0.18506330806658
209 => 0.18651521151634
210 => 0.18742583174929
211 => 0.1879621940622
212 => 0.18989990252354
213 => 0.18967253480055
214 => 0.18988576902664
215 => 0.19275887913874
216 => 0.20729008415341
217 => 0.20808098558106
218 => 0.2041862976927
219 => 0.20574214868478
220 => 0.20275525500719
221 => 0.2047603767434
222 => 0.20613223011075
223 => 0.19993308853595
224 => 0.19956601560398
225 => 0.19656679395369
226 => 0.19817840578396
227 => 0.19561421548301
228 => 0.1962433780913
301 => 0.19448418458913
302 => 0.1976503826411
303 => 0.20119068404065
304 => 0.20208510398491
305 => 0.19973227018355
306 => 0.19802866345206
307 => 0.19503769123451
308 => 0.20001174469046
309 => 0.20146630950251
310 => 0.20000410448073
311 => 0.19966527962737
312 => 0.1990232071425
313 => 0.19980149834031
314 => 0.20145838763016
315 => 0.20067702923901
316 => 0.20119313022213
317 => 0.1992262854755
318 => 0.20340958582449
319 => 0.21005367354475
320 => 0.21007503537319
321 => 0.20929367277023
322 => 0.20897395602778
323 => 0.20977568147547
324 => 0.21021058464235
325 => 0.21280321772888
326 => 0.21558521632578
327 => 0.22856758989645
328 => 0.22492219134761
329 => 0.23644092550437
330 => 0.24555074870193
331 => 0.24828238635459
401 => 0.24576940824763
402 => 0.23717264589212
403 => 0.23675084771793
404 => 0.24959804013652
405 => 0.24596811983958
406 => 0.24553635237057
407 => 0.24094307598295
408 => 0.24365827121638
409 => 0.24306441818932
410 => 0.24212699213382
411 => 0.24730739549706
412 => 0.25700464813526
413 => 0.25549324037134
414 => 0.25436504458776
415 => 0.24942161907697
416 => 0.25239866538852
417 => 0.25133859621854
418 => 0.25589332610929
419 => 0.25319520502163
420 => 0.2459406196232
421 => 0.24709593625933
422 => 0.24692131247395
423 => 0.25051505760302
424 => 0.24943630451751
425 => 0.24671066862064
426 => 0.25697150397997
427 => 0.2563052224055
428 => 0.25724985734492
429 => 0.25766571485906
430 => 0.26391130452609
501 => 0.26646992277609
502 => 0.26705077391376
503 => 0.26948126336062
504 => 0.26699030112219
505 => 0.27695592610188
506 => 0.28358248520303
507 => 0.29127957459863
508 => 0.30252709098819
509 => 0.30675626119601
510 => 0.3059922994518
511 => 0.31452003801224
512 => 0.32984419464437
513 => 0.30908974964156
514 => 0.33094423062524
515 => 0.32402535426793
516 => 0.30762082289
517 => 0.30656456446598
518 => 0.31767390357564
519 => 0.3423133484866
520 => 0.33614144699467
521 => 0.34232344350642
522 => 0.33511181619939
523 => 0.33475369811923
524 => 0.34197319086477
525 => 0.35884192917878
526 => 0.35082822392099
527 => 0.33933861239281
528 => 0.34782236274707
529 => 0.34047295305618
530 => 0.32391267605237
531 => 0.33613672745792
601 => 0.32796285240397
602 => 0.33034842369181
603 => 0.34752869328307
604 => 0.34546151779249
605 => 0.34813663429259
606 => 0.3434151236899
607 => 0.33900448827311
608 => 0.33077170972957
609 => 0.32833438987391
610 => 0.32900797739643
611 => 0.32833405607738
612 => 0.32372789214542
613 => 0.32273319148287
614 => 0.32107531346644
615 => 0.32158915918736
616 => 0.31847186348717
617 => 0.32435484453959
618 => 0.32544677766357
619 => 0.32972792067362
620 => 0.33017240314307
621 => 0.34209532548779
622 => 0.33552838021689
623 => 0.33993405406739
624 => 0.33953996913039
625 => 0.30797635882785
626 => 0.31232554583945
627 => 0.31909151597942
628 => 0.31604345560242
629 => 0.31173421136562
630 => 0.30825426559735
701 => 0.30298179191569
702 => 0.31040269737373
703 => 0.32016039892575
704 => 0.33041987455709
705 => 0.34274596230067
706 => 0.33999492300778
707 => 0.33018944692057
708 => 0.33062931341494
709 => 0.33334839500203
710 => 0.32982693729213
711 => 0.32878839066646
712 => 0.33320571464363
713 => 0.33323613432614
714 => 0.32918427164852
715 => 0.32468136776539
716 => 0.32466250043371
717 => 0.3238612521806
718 => 0.33525435648364
719 => 0.34151941187754
720 => 0.34223769038181
721 => 0.34147106601126
722 => 0.34176610930525
723 => 0.33812061161261
724 => 0.34645313829922
725 => 0.35409988878833
726 => 0.35205039630826
727 => 0.34897791572809
728 => 0.34653053695528
729 => 0.3514738716482
730 => 0.35125375273585
731 => 0.35403310109369
801 => 0.35390701379788
802 => 0.35297242348172
803 => 0.35205042968542
804 => 0.35570603087031
805 => 0.35465327643622
806 => 0.35359888678372
807 => 0.35148414691664
808 => 0.35177157518668
809 => 0.34869962511361
810 => 0.34727840044694
811 => 0.32590659145496
812 => 0.3201953457483
813 => 0.32199221991074
814 => 0.32258379754083
815 => 0.32009825609013
816 => 0.32366188404723
817 => 0.32310649640493
818 => 0.3252671848302
819 => 0.32391728050828
820 => 0.32397268105251
821 => 0.32794246183335
822 => 0.32909490608268
823 => 0.3285087636361
824 => 0.3289192777139
825 => 0.3383794013695
826 => 0.3370344743034
827 => 0.33632000860492
828 => 0.33651792048615
829 => 0.33893518490749
830 => 0.33961188696772
831 => 0.33674465278751
901 => 0.33809685700218
902 => 0.34385437092799
903 => 0.34586917495496
904 => 0.35229946224824
905 => 0.34956776191681
906 => 0.35458191610037
907 => 0.3699937166095
908 => 0.38230572927167
909 => 0.37098309361209
910 => 0.39359253694081
911 => 0.41119723170423
912 => 0.41052153419706
913 => 0.40745174846113
914 => 0.387409271518
915 => 0.36896588541843
916 => 0.38439456103826
917 => 0.38443389190535
918 => 0.38310855498659
919 => 0.37487700120973
920 => 0.38282211475808
921 => 0.38345276901914
922 => 0.38309977033745
923 => 0.37678865735663
924 => 0.36715275432356
925 => 0.36903558671113
926 => 0.37211970457071
927 => 0.36628082604814
928 => 0.36441495057005
929 => 0.36788396808115
930 => 0.3790618653004
1001 => 0.37694874858025
1002 => 0.37689356656291
1003 => 0.38593437599266
1004 => 0.37946310756975
1005 => 0.3690593352572
1006 => 0.36643224553938
1007 => 0.35710784686082
1008 => 0.36354824224047
1009 => 0.36378002060457
1010 => 0.36025268187438
1011 => 0.36934555935488
1012 => 0.36926176688813
1013 => 0.37789410075966
1014 => 0.39439588096548
1015 => 0.38951549255533
1016 => 0.38384013181908
1017 => 0.38445720089179
1018 => 0.39122492556322
1019 => 0.38713300473475
1020 => 0.38860448799455
1021 => 0.39122269829707
1022 => 0.39280232957909
1023 => 0.38422991625946
1024 => 0.38223127664872
1025 => 0.37814276143234
1026 => 0.37707614412813
1027 => 0.38040615446221
1028 => 0.37952881439018
1029 => 0.36376054053056
1030 => 0.36211266817838
1031 => 0.3621632060708
1101 => 0.35801955268919
1102 => 0.35169948669147
1103 => 0.36830824278194
1104 => 0.36697432722848
1105 => 0.36550178769433
1106 => 0.36568216538507
1107 => 0.37289146348097
1108 => 0.36870970650707
1109 => 0.37982759279868
1110 => 0.37754208961138
1111 => 0.37519797189132
1112 => 0.37487394341883
1113 => 0.37397165808733
1114 => 0.37087738596004
1115 => 0.3671408664294
1116 => 0.3646736925835
1117 => 0.33639220482982
1118 => 0.34164108445106
1119 => 0.34767944200486
1120 => 0.34976385883523
1121 => 0.34619831960963
1122 => 0.37101817518088
1123 => 0.37555300196383
1124 => 0.36181671583885
1125 => 0.35924721755373
1126 => 0.37118663106068
1127 => 0.36398570518205
1128 => 0.36722828166428
1129 => 0.36021960490421
1130 => 0.37446069498705
1201 => 0.37435220174097
1202 => 0.36881209604914
1203 => 0.37349455544287
1204 => 0.37268086289354
1205 => 0.36642609721214
1206 => 0.37465898221557
1207 => 0.37466306562382
1208 => 0.36933083434772
1209 => 0.36310395559275
1210 => 0.36199073674367
1211 => 0.3611520758808
1212 => 0.36702202250286
1213 => 0.37228499828935
1214 => 0.38207809142566
1215 => 0.38454030771828
1216 => 0.39415050182741
1217 => 0.38842809914728
1218 => 0.39096476613786
1219 => 0.39371867698959
1220 => 0.39503900312362
1221 => 0.39288760254082
1222 => 0.407816189706
1223 => 0.40907661986283
1224 => 0.40949923119174
1225 => 0.40446539559439
1226 => 0.40893661978873
1227 => 0.40684468205958
1228 => 0.41228732287378
1229 => 0.41314079844858
1230 => 0.412417935
1231 => 0.41268884161864
]
'min_raw' => 0.18506330806658
'max_raw' => 0.41314079844858
'avg_raw' => 0.29910205325758
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.185063'
'max' => '$0.41314'
'avg' => '$0.299102'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.028536386613124
'max_diff' => -0.039424563743026
'year' => 2031
]
6 => [
'items' => [
101 => 0.3999499260564
102 => 0.39928934608136
103 => 0.39028229124914
104 => 0.39395273267006
105 => 0.38709101836249
106 => 0.38926693865291
107 => 0.39022606358399
108 => 0.38972507114985
109 => 0.39416025392091
110 => 0.39038944251753
111 => 0.38043765124523
112 => 0.37048314861406
113 => 0.37035817794228
114 => 0.36773733311106
115 => 0.36584294232976
116 => 0.36620786920136
117 => 0.36749391909505
118 => 0.36576819477203
119 => 0.36613646555279
120 => 0.37225221428878
121 => 0.37347868408226
122 => 0.36931066051134
123 => 0.35257544443114
124 => 0.34846858042795
125 => 0.35142051283079
126 => 0.35000967927103
127 => 0.28248512830716
128 => 0.2983490199503
129 => 0.2889232342228
130 => 0.29326706994558
131 => 0.28364578351319
201 => 0.28823756569355
202 => 0.28738963118987
203 => 0.31289829950536
204 => 0.31250001673564
205 => 0.31269065362085
206 => 0.30359105838802
207 => 0.31808696067486
208 => 0.32522816339714
209 => 0.3239065168302
210 => 0.32423914679734
211 => 0.31852346190606
212 => 0.31274599394447
213 => 0.30633789282912
214 => 0.3182433526362
215 => 0.31691966873863
216 => 0.31995572335322
217 => 0.32767726505795
218 => 0.32881429140526
219 => 0.33034246634662
220 => 0.32979472441304
221 => 0.34284415947554
222 => 0.34126378678653
223 => 0.3450720302628
224 => 0.33723818449998
225 => 0.3283734444239
226 => 0.33005834170217
227 => 0.32989607254519
228 => 0.32783019993288
229 => 0.3259652225099
301 => 0.32286056055477
302 => 0.33268417038433
303 => 0.33228534976527
304 => 0.33874179200963
305 => 0.3376005531284
306 => 0.32997908057106
307 => 0.33025128295445
308 => 0.33208197479879
309 => 0.33841802017453
310 => 0.34029898983291
311 => 0.33942764974347
312 => 0.34149004710435
313 => 0.34312008188769
314 => 0.34169475437668
315 => 0.36187438618278
316 => 0.35349439613787
317 => 0.35757874497816
318 => 0.35855283811019
319 => 0.35605771903547
320 => 0.35659882101926
321 => 0.35741844308324
322 => 0.36239502775727
323 => 0.3754550259283
324 => 0.38123921021584
325 => 0.39864121403152
326 => 0.38075891423049
327 => 0.37969785256461
328 => 0.38283247894199
329 => 0.39304929737097
330 => 0.4013290690907
331 => 0.40407594704163
401 => 0.40443899230885
402 => 0.40959231795378
403 => 0.41254610810962
404 => 0.40896656867457
405 => 0.40593328379676
406 => 0.39506843386963
407 => 0.3963260698327
408 => 0.40498993448067
409 => 0.41722815359501
410 => 0.42772981876479
411 => 0.42405250164232
412 => 0.45210783550549
413 => 0.45488940726226
414 => 0.45450508398446
415 => 0.46084191839976
416 => 0.44826459255927
417 => 0.44288754208825
418 => 0.40658911441659
419 => 0.4167874919987
420 => 0.43161143274402
421 => 0.42964942859945
422 => 0.41888388658513
423 => 0.4277216521358
424 => 0.42479961046227
425 => 0.42249487495873
426 => 0.4330533150954
427 => 0.42144387644832
428 => 0.43149561971276
429 => 0.41860415500415
430 => 0.42406929931718
501 => 0.42096701908582
502 => 0.42297457459667
503 => 0.4112384461013
504 => 0.41757097615899
505 => 0.41097499203147
506 => 0.41097186467617
507 => 0.41082625796098
508 => 0.41858640403593
509 => 0.41883946212083
510 => 0.41310470244651
511 => 0.41227823398366
512 => 0.41533412106048
513 => 0.41175647763162
514 => 0.41343043447457
515 => 0.41180718007911
516 => 0.41144175132372
517 => 0.40852995282822
518 => 0.40727546997479
519 => 0.40776738502566
520 => 0.40608822535746
521 => 0.4050764709195
522 => 0.41062499453778
523 => 0.40766064219534
524 => 0.4101706650265
525 => 0.40731017722025
526 => 0.39739448022858
527 => 0.39169185803208
528 => 0.37296202560042
529 => 0.37827378284375
530 => 0.3817954833915
531 => 0.38063156138147
601 => 0.38313211623702
602 => 0.38328562999649
603 => 0.38247267412281
604 => 0.38153137536719
605 => 0.38107320319004
606 => 0.3844880432251
607 => 0.38647047280368
608 => 0.38214893315574
609 => 0.38113645688099
610 => 0.3855057720638
611 => 0.38817105180124
612 => 0.40784997989122
613 => 0.40639210133621
614 => 0.41005109041506
615 => 0.40963914439654
616 => 0.41347434787384
617 => 0.41974328468131
618 => 0.40699678332943
619 => 0.40920913522326
620 => 0.40866671762956
621 => 0.41458869068806
622 => 0.41460717844155
623 => 0.41105665976848
624 => 0.41298145354174
625 => 0.41190708646146
626 => 0.41384861298494
627 => 0.40637263047928
628 => 0.41547757018873
629 => 0.42063948429463
630 => 0.420711157477
701 => 0.42315786379572
702 => 0.42564385911921
703 => 0.43041551065808
704 => 0.4255107803476
705 => 0.41668764798493
706 => 0.41732464964297
707 => 0.412151650367
708 => 0.41223860941941
709 => 0.41177441518255
710 => 0.41316749703027
711 => 0.40667833360507
712 => 0.40820132729061
713 => 0.40606912721221
714 => 0.4092045002367
715 => 0.40583135715808
716 => 0.40866645605938
717 => 0.40988999076016
718 => 0.41440486014686
719 => 0.40516450727873
720 => 0.38632280226373
721 => 0.39028355709148
722 => 0.38442528959066
723 => 0.38496749455186
724 => 0.38606283486476
725 => 0.3825124785376
726 => 0.38318977464024
727 => 0.38316557685739
728 => 0.38295705343753
729 => 0.38203346863557
730 => 0.38069408794705
731 => 0.3860297683705
801 => 0.386936404447
802 => 0.38895174413661
803 => 0.39494802803494
804 => 0.39434885787138
805 => 0.39532612926747
806 => 0.39319275129696
807 => 0.38506645583724
808 => 0.38550775277749
809 => 0.38000477286127
810 => 0.38881102056777
811 => 0.38672558487408
812 => 0.3853810909158
813 => 0.38501423328263
814 => 0.39102538080893
815 => 0.39282401036199
816 => 0.39170322512606
817 => 0.38940446190864
818 => 0.39381876685442
819 => 0.39499984863334
820 => 0.39526424928702
821 => 0.40308555129192
822 => 0.39570137318526
823 => 0.39747881824795
824 => 0.41134593723299
825 => 0.39877037384518
826 => 0.40543193024023
827 => 0.40510588171976
828 => 0.40851370855669
829 => 0.40482634045212
830 => 0.40487204979905
831 => 0.40789796916406
901 => 0.40364861114333
902 => 0.40259641033854
903 => 0.40114280246274
904 => 0.40431670208038
905 => 0.40621931135803
906 => 0.42155294482334
907 => 0.43145917134057
908 => 0.43102911592164
909 => 0.43495901742062
910 => 0.43318856080156
911 => 0.42747128935575
912 => 0.43722997456677
913 => 0.43414191824527
914 => 0.43439649385643
915 => 0.43438701853946
916 => 0.43644030603069
917 => 0.43498536366212
918 => 0.4321175229069
919 => 0.43402132943674
920 => 0.43967495420708
921 => 0.45722397896859
922 => 0.46704464571879
923 => 0.45663276249904
924 => 0.46381474012335
925 => 0.45950811274905
926 => 0.45872547044407
927 => 0.46323628313611
928 => 0.46775499140864
929 => 0.4674671692266
930 => 0.46418681905898
1001 => 0.46233383248509
1002 => 0.47636526761859
1003 => 0.48670339000569
1004 => 0.48599839936654
1005 => 0.4891099987725
1006 => 0.49824575086655
1007 => 0.49908100954506
1008 => 0.49897578614977
1009 => 0.49690551036486
1010 => 0.50590084472877
1011 => 0.513404910913
1012 => 0.49642630133667
1013 => 0.50289153359702
1014 => 0.50579398465546
1015 => 0.51005564392768
1016 => 0.51724577745694
1017 => 0.52505616955845
1018 => 0.52616064463819
1019 => 0.52537696671511
1020 => 0.52022580316956
1021 => 0.52877202740439
1022 => 0.53377820512753
1023 => 0.53675926939732
1024 => 0.54431875238371
1025 => 0.50581190920508
1026 => 0.47855485168897
1027 => 0.47429826856115
1028 => 0.48295419773344
1029 => 0.48523669722643
1030 => 0.48431662454282
1031 => 0.45363632820518
1101 => 0.47413674315036
1102 => 0.49619346590753
1103 => 0.49704075445747
1104 => 0.50808281105403
1105 => 0.51167855731106
1106 => 0.52056886018674
1107 => 0.5200127693213
1108 => 0.52217741659591
1109 => 0.52167980167394
1110 => 0.53814721567699
1111 => 0.556313218757
1112 => 0.5556841878347
1113 => 0.55307260996155
1114 => 0.55695124844337
1115 => 0.57570051040914
1116 => 0.57397437881813
1117 => 0.57565116862726
1118 => 0.597757605147
1119 => 0.6264991172266
1120 => 0.61314579926499
1121 => 0.64211865692794
1122 => 0.66035553504157
1123 => 0.6918943300107
1124 => 0.68794551754873
1125 => 0.70022333898784
1126 => 0.68087631909976
1127 => 0.63645165075889
1128 => 0.62942127694315
1129 => 0.64349626335968
1130 => 0.67809824404764
1201 => 0.64240652384983
1202 => 0.64962691236085
1203 => 0.64754743998393
1204 => 0.64743663373816
1205 => 0.6516656574579
1206 => 0.64553123798137
1207 => 0.62053850947297
1208 => 0.6319925296653
1209 => 0.62756958240181
1210 => 0.63247717214321
1211 => 0.65896140993355
1212 => 0.64725209710107
1213 => 0.63491728721938
1214 => 0.65038787612445
1215 => 0.67008725207173
1216 => 0.66885450052814
1217 => 0.66646244728338
1218 => 0.67994632618022
1219 => 0.70221774371197
1220 => 0.70823761837699
1221 => 0.7126813667838
1222 => 0.71329408461135
1223 => 0.71960545903716
1224 => 0.68566760807843
1225 => 0.73952784913577
1226 => 0.74882802490723
1227 => 0.74707997731499
1228 => 0.75741673127376
1229 => 0.75437539604095
1230 => 0.74996897845949
1231 => 0.76635493217475
]
'min_raw' => 0.28248512830716
'max_raw' => 0.76635493217475
'avg_raw' => 0.52442003024095
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.282485'
'max' => '$0.766354'
'avg' => '$0.52442'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.097421820240579
'max_diff' => 0.35321413372618
'year' => 2032
]
7 => [
'items' => [
101 => 0.74756975851848
102 => 0.72090656950101
103 => 0.70627861666794
104 => 0.72554188496182
105 => 0.73730529071348
106 => 0.7450801536222
107 => 0.74743282244067
108 => 0.68830210683968
109 => 0.65643393067058
110 => 0.67686106622559
111 => 0.70178358140829
112 => 0.68552916224822
113 => 0.68616630470561
114 => 0.66299177456956
115 => 0.70383401310091
116 => 0.69788364248418
117 => 0.72875417576977
118 => 0.72138667524965
119 => 0.74656039675685
120 => 0.73993131222072
121 => 0.76744827150305
122 => 0.7784255315527
123 => 0.79685805965016
124 => 0.81041710235255
125 => 0.81837923157054
126 => 0.81790121519749
127 => 0.84945113787622
128 => 0.83084725074291
129 => 0.80747638390394
130 => 0.80705367865697
131 => 0.81915778176061
201 => 0.84452466126734
202 => 0.85110192405035
203 => 0.85477771665936
204 => 0.8491481123234
205 => 0.8289549261928
206 => 0.82023561080338
207 => 0.82766472013805
208 => 0.81857955781239
209 => 0.8342630968328
210 => 0.85579994573099
211 => 0.85135267159944
212 => 0.8662192422486
213 => 0.88160457886163
214 => 0.90360630121697
215 => 0.90935836616208
216 => 0.9188663107849
217 => 0.92865310899889
218 => 0.93179636482361
219 => 0.93779781548801
220 => 0.93776618488061
221 => 0.95585196040201
222 => 0.97580113087196
223 => 0.98333148090001
224 => 1.0006471055636
225 => 0.97099470513907
226 => 0.99348639148328
227 => 1.0137744555692
228 => 0.98958618918727
301 => 1.0229240792515
302 => 1.0242185139774
303 => 1.043762941515
304 => 1.0239509199464
305 => 1.0121866047812
306 => 1.04614974186
307 => 1.0625834340636
308 => 1.0576334722301
309 => 1.0199640182669
310 => 0.99803878034148
311 => 0.94065620362805
312 => 1.0086283444879
313 => 1.0417355915263
314 => 1.0198782784952
315 => 1.0309018358241
316 => 1.0910427902101
317 => 1.1139405718018
318 => 1.1091779932983
319 => 1.1099827906667
320 => 1.1223380179895
321 => 1.1771279000866
322 => 1.1442965327145
323 => 1.1693948829026
324 => 1.1827069573436
325 => 1.1950719539743
326 => 1.1647074302465
327 => 1.1252036310202
328 => 1.1126911195485
329 => 1.0177049994748
330 => 1.0127605594212
331 => 1.0099850953872
401 => 0.99248618725015
402 => 0.97873683880876
403 => 0.96780284644758
404 => 0.93910878532536
405 => 0.94879218863111
406 => 0.90305984411827
407 => 0.93231777748281
408 => 0.85932785139425
409 => 0.92011603074817
410 => 0.88703178842519
411 => 0.90924696734722
412 => 0.90916946068076
413 => 0.8682642729564
414 => 0.84467101434648
415 => 0.85970555699608
416 => 0.87582378015994
417 => 0.87843890764006
418 => 0.89933660470067
419 => 0.90516870275579
420 => 0.88749717337415
421 => 0.85781529741167
422 => 0.86470972022624
423 => 0.84453129908819
424 => 0.80916939219552
425 => 0.8345669310855
426 => 0.8432387675135
427 => 0.84706874450372
428 => 0.81229437041723
429 => 0.80136750709086
430 => 0.79555013674117
501 => 0.85332636239499
502 => 0.85649147445876
503 => 0.84029831363876
504 => 0.91349293604369
505 => 0.89692673872536
506 => 0.91543523994681
507 => 0.86408412361974
508 => 0.86604580541688
509 => 0.8417353640095
510 => 0.85534758677335
511 => 0.84572690646628
512 => 0.85424785369264
513 => 0.85935527432694
514 => 0.8836617266301
515 => 0.92039357138948
516 => 0.88003115320476
517 => 0.8624446696012
518 => 0.87335522511871
519 => 0.90241147223803
520 => 0.94643317398572
521 => 0.92037144053177
522 => 0.9319371952817
523 => 0.93446379816994
524 => 0.91524684077882
525 => 0.94714173061551
526 => 0.96423446119261
527 => 0.9817680659225
528 => 0.99699200362901
529 => 0.97476475862115
530 => 0.99855109692997
531 => 0.97938350710701
601 => 0.96218819752679
602 => 0.96221427571351
603 => 0.95142740683045
604 => 0.93052648913658
605 => 0.92667203923622
606 => 0.94672337438125
607 => 0.96280264629905
608 => 0.96412701214872
609 => 0.97302932326524
610 => 0.9782976192829
611 => 1.0299340821571
612 => 1.0507026946843
613 => 1.0760981609529
614 => 1.0859911262746
615 => 1.1157654050684
616 => 1.0917202567937
617 => 1.0865179377134
618 => 1.0142952764519
619 => 1.0261217331874
620 => 1.0450570315045
621 => 1.0146075125468
622 => 1.0339207238123
623 => 1.0377335608259
624 => 1.0135728495443
625 => 1.0264781293625
626 => 0.99220553231414
627 => 0.92114062034893
628 => 0.94722084617751
629 => 0.96642467089644
630 => 0.93901844520802
701 => 0.9881430439871
702 => 0.95944546751792
703 => 0.95034971350379
704 => 0.91486393422423
705 => 0.93161185607128
706 => 0.95426366017655
707 => 0.94026747879437
708 => 0.9693116566996
709 => 1.0104459584127
710 => 1.0397607114035
711 => 1.0420111341354
712 => 1.0231637118982
713 => 1.0533668263159
714 => 1.053586823031
715 => 1.0195175865845
716 => 0.9986503689593
717 => 0.99390929320986
718 => 1.0057534299746
719 => 1.0201343985553
720 => 1.0428091778052
721 => 1.0565110720157
722 => 1.0922383451936
723 => 1.1019051209343
724 => 1.1125259766901
725 => 1.1267187153305
726 => 1.1437607370117
727 => 1.106473763776
728 => 1.1079552447343
729 => 1.0732341315304
730 => 1.0361296425609
731 => 1.0642873245489
801 => 1.1010997480889
802 => 1.0926549374547
803 => 1.0917047237465
804 => 1.0933027196364
805 => 1.0869356081999
806 => 1.0581373991491
807 => 1.0436751188501
808 => 1.062335150157
809 => 1.0722521263342
810 => 1.0876324915338
811 => 1.0857365368828
812 => 1.1253547059063
813 => 1.1407491283976
814 => 1.1368105763599
815 => 1.1375353647214
816 => 1.1654062313084
817 => 1.1964043670341
818 => 1.2254382117055
819 => 1.2549726855378
820 => 1.2193677245828
821 => 1.2012897212185
822 => 1.2199416061395
823 => 1.2100446534561
824 => 1.2669154792016
825 => 1.2708530917853
826 => 1.3277198051228
827 => 1.3816930876423
828 => 1.3477934359236
829 => 1.3797592806205
830 => 1.4143329478737
831 => 1.4810311613806
901 => 1.4585695495429
902 => 1.4413643068936
903 => 1.4251054357251
904 => 1.4589375656036
905 => 1.5024620602108
906 => 1.5118368194768
907 => 1.5270275109213
908 => 1.5110563562968
909 => 1.5302918528771
910 => 1.598201608311
911 => 1.5798517929368
912 => 1.5537921052253
913 => 1.6074003350182
914 => 1.6268009449835
915 => 1.7629645858985
916 => 1.9348768071931
917 => 1.8637040187406
918 => 1.8195247722166
919 => 1.8299079430955
920 => 1.8926844667163
921 => 1.9128462936761
922 => 1.858039497801
923 => 1.8773981846477
924 => 1.9840664524775
925 => 2.0412905558405
926 => 1.9635725372512
927 => 1.7491516063047
928 => 1.5514457154721
929 => 1.6038862205332
930 => 1.5979410946776
1001 => 1.7125428413233
1002 => 1.5794141559088
1003 => 1.5816557015436
1004 => 1.6986272909446
1005 => 1.6674212762932
1006 => 1.6168715291222
1007 => 1.5518147845682
1008 => 1.4315513752396
1009 => 1.325030719804
1010 => 1.5339422553551
1011 => 1.5249336100611
1012 => 1.5118877566691
1013 => 1.5409198916843
1014 => 1.6818916984031
1015 => 1.678641841977
1016 => 1.6579679134856
1017 => 1.6736489060347
1018 => 1.6141225753118
1019 => 1.6294638661285
1020 => 1.5514143978489
1021 => 1.586696017145
1022 => 1.6167630720678
1023 => 1.6227994784939
1024 => 1.6363998103985
1025 => 1.5201864633472
1026 => 1.5723628443286
1027 => 1.6030115798894
1028 => 1.4645394776152
1029 => 1.6002744316492
1030 => 1.5181634475264
1031 => 1.4902937462496
1101 => 1.5278166274649
1102 => 1.5131939241631
1103 => 1.5006221825382
1104 => 1.4936069347015
1105 => 1.5211595974168
1106 => 1.5198742327685
1107 => 1.474792728825
1108 => 1.4159857446877
1109 => 1.4357232988376
1110 => 1.4285524603744
1111 => 1.4025644167271
1112 => 1.4200772203371
1113 => 1.3429596962661
1114 => 1.2102830043222
1115 => 1.2979332910173
1116 => 1.2945588503247
1117 => 1.2928573043088
1118 => 1.3587240722842
1119 => 1.3523925023483
1120 => 1.3409006409156
1121 => 1.4023533596799
1122 => 1.3799222906752
1123 => 1.4490495599231
1124 => 1.4945812503212
1125 => 1.4830329408404
1126 => 1.5258557157336
1127 => 1.436178012221
1128 => 1.4659653480829
1129 => 1.4721044767206
1130 => 1.4015950426694
1201 => 1.3534284254936
1202 => 1.3502162612677
1203 => 1.2667019848536
1204 => 1.3113146372103
1205 => 1.3505719250872
1206 => 1.3317707306828
1207 => 1.325818834204
1208 => 1.3562257825051
1209 => 1.358588662806
1210 => 1.3047147415388
1211 => 1.3159168357355
1212 => 1.3626314307287
1213 => 1.3147397477989
1214 => 1.2216940309284
1215 => 1.1986174066869
1216 => 1.1955385596265
1217 => 1.1329529244532
1218 => 1.2001594970639
1219 => 1.1708220270951
1220 => 1.2634987432095
1221 => 1.2105623000002
1222 => 1.2082803157361
1223 => 1.2048307618268
1224 => 1.1509607202531
1225 => 1.162754835738
1226 => 1.2019602719043
1227 => 1.2159492132093
1228 => 1.2144900520231
1229 => 1.2017681438786
1230 => 1.2075921682805
1231 => 1.1888309564575
]
'min_raw' => 0.65643393067058
'max_raw' => 2.0412905558405
'avg_raw' => 1.3488622432555
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.656433'
'max' => '$2.04'
'avg' => '$1.34'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.37394880236343
'max_diff' => 1.2749356236657
'year' => 2033
]
8 => [
'items' => [
101 => 1.1822059820819
102 => 1.1612957406099
103 => 1.1305634622477
104 => 1.134836974046
105 => 1.0739482890724
106 => 1.0407729018917
107 => 1.0315903919647
108 => 1.0193111559268
109 => 1.032977364349
110 => 1.0737757990782
111 => 1.024564230924
112 => 0.94019444911381
113 => 0.94526521675972
114 => 0.95665772613564
115 => 0.9354278602826
116 => 0.91533557394028
117 => 0.93280418677621
118 => 0.89705559799605
119 => 0.96097777229882
120 => 0.95924885662376
121 => 0.98307509028309
122 => 0.9979741231538
123 => 0.96363667600598
124 => 0.95500090090663
125 => 0.95992023087731
126 => 0.87861466440484
127 => 0.97643069090022
128 => 0.97727660795926
129 => 0.97003335252869
130 => 1.0221173669065
131 => 1.1320308826551
201 => 1.0906769967695
202 => 1.0746635222268
203 => 1.0442218954154
204 => 1.0847835556967
205 => 1.0816690530476
206 => 1.0675840909281
207 => 1.0590654618905
208 => 1.0747612970877
209 => 1.0571205742115
210 => 1.0539518156482
211 => 1.0347525863984
212 => 1.0278993350655
213 => 1.0228254606145
214 => 1.0172396233924
215 => 1.0295605884003
216 => 1.0016396607345
217 => 0.96796975909174
218 => 0.96517047108353
219 => 0.97289955139011
220 => 0.9694800087168
221 => 0.9651540996288
222 => 0.95689476108856
223 => 0.95444439177652
224 => 0.96240690329047
225 => 0.95341769203449
226 => 0.96668176291037
227 => 0.96307466956665
228 => 0.94292573936784
301 => 0.91781271225072
302 => 0.91758915363302
303 => 0.91217859313426
304 => 0.90528743085586
305 => 0.90337046715845
306 => 0.93133302892709
307 => 0.98921469493913
308 => 0.97785113891009
309 => 0.98606247272514
310 => 1.0264541080394
311 => 1.0392933942869
312 => 1.0301803730236
313 => 1.0177059074516
314 => 1.0182547206278
315 => 1.0608837457647
316 => 1.0635424657727
317 => 1.0702601934972
318 => 1.0788943720528
319 => 1.0316508109669
320 => 1.0160295531492
321 => 1.0086273345608
322 => 0.98583136632772
323 => 1.0104148636885
324 => 0.9960911125467
325 => 0.99802387594474
326 => 0.99676516124624
327 => 0.99745250458554
328 => 0.96095990474837
329 => 0.97425589013445
330 => 0.95214873563131
331 => 0.92254973739616
401 => 0.92245051117533
402 => 0.92969482406051
403 => 0.92538562328641
404 => 0.913789674803
405 => 0.91543682455373
406 => 0.90100605952487
407 => 0.91718898070567
408 => 0.91765304897986
409 => 0.91142174283558
410 => 0.93635376572738
411 => 0.94656843584875
412 => 0.94246685665707
413 => 0.94628065811869
414 => 0.97832334596648
415 => 0.98354770220615
416 => 0.98586801614621
417 => 0.98275910284922
418 => 0.94686633963095
419 => 0.9484583363075
420 => 0.93677732100141
421 => 0.92690809398283
422 => 0.92730281130629
423 => 0.93237687690355
424 => 0.95453561895678
425 => 1.0011673852786
426 => 1.0029370267232
427 => 1.005081883778
428 => 0.99635767221712
429 => 0.99372636653089
430 => 0.99719773792865
501 => 1.0147101775773
502 => 1.0597569269348
503 => 1.0438343971406
504 => 1.030889132569
505 => 1.0422456196166
506 => 1.0404973774507
507 => 1.0257404542019
508 => 1.0253262765158
509 => 0.99700302272765
510 => 0.98653256069145
511 => 0.97778265891351
512 => 0.96822799459397
513 => 0.9625636693101
514 => 0.97126664733593
515 => 0.97325712138104
516 => 0.95422790782554
517 => 0.95163429633328
518 => 0.96717396289681
519 => 0.96033553501937
520 => 0.96736902767617
521 => 0.96900085830473
522 => 0.96873809598929
523 => 0.96159799189679
524 => 0.96614888132438
525 => 0.95538467114271
526 => 0.94368020930223
527 => 0.93621349186174
528 => 0.92969779057857
529 => 0.93331308034525
530 => 0.92042523245285
531 => 0.91630215053094
601 => 0.96460714238457
602 => 1.000290559233
603 => 0.99977170821985
604 => 0.99661333611489
605 => 0.99192063581929
606 => 1.0143668773217
607 => 1.006547055609
608 => 1.012236629273
609 => 1.0136848645611
610 => 1.0180682365977
611 => 1.0196349153372
612 => 1.014899324058
613 => 0.99900610132127
614 => 0.9594017013436
615 => 0.94096574624396
616 => 0.93488157398596
617 => 0.93510272209205
618 => 0.92900247007746
619 => 0.93079926768988
620 => 0.92837761719468
621 => 0.92379159701696
622 => 0.93302990652234
623 => 0.93409453563203
624 => 0.9319382038039
625 => 0.93244609800977
626 => 0.91459259145418
627 => 0.91594995478183
628 => 0.90839198328812
629 => 0.90697495474575
630 => 0.88786906095751
701 => 0.85402020066805
702 => 0.87277575505678
703 => 0.85012168278523
704 => 0.84154224235079
705 => 0.88215597899072
706 => 0.87807948628177
707 => 0.87110230277284
708 => 0.86078159419069
709 => 0.85695354298416
710 => 0.83369551566708
711 => 0.83232130733644
712 => 0.84384861369435
713 => 0.83852915844056
714 => 0.83105862862901
715 => 0.80400112692702
716 => 0.77357953658304
717 => 0.77449777317223
718 => 0.78417431504684
719 => 0.81231016560673
720 => 0.80131700203782
721 => 0.79334133573656
722 => 0.79184773318599
723 => 0.8105432961752
724 => 0.83700143464647
725 => 0.84941500124971
726 => 0.83711353375152
727 => 0.82298227024765
728 => 0.82384237477917
729 => 0.82956426489369
730 => 0.83016555464155
731 => 0.82096755481789
801 => 0.82355673789066
802 => 0.81962353204326
803 => 0.79548545501792
804 => 0.7950488737472
805 => 0.78912500036611
806 => 0.78894562783443
807 => 0.77886764143372
808 => 0.77745766147043
809 => 0.75744720778178
810 => 0.77061814899689
811 => 0.76178377313525
812 => 0.74846828489316
813 => 0.74617268970131
814 => 0.74610368133783
815 => 0.75977571047377
816 => 0.77045838337619
817 => 0.76193745088568
818 => 0.75999739972893
819 => 0.78071207049532
820 => 0.77807593982188
821 => 0.7757930676599
822 => 0.83463239854177
823 => 0.78805647685853
824 => 0.76774671654397
825 => 0.74260953143582
826 => 0.75079432565972
827 => 0.75251898206234
828 => 0.69206858319543
829 => 0.66754386390373
830 => 0.65912790443738
831 => 0.65428440078029
901 => 0.65649164621771
902 => 0.63441652239253
903 => 0.6492513706919
904 => 0.63013617942306
905 => 0.62693145540062
906 => 0.66111178530712
907 => 0.66586777853502
908 => 0.64557723385353
909 => 0.65860704827984
910 => 0.65388225644089
911 => 0.63046385451344
912 => 0.62956944381391
913 => 0.61781891292335
914 => 0.59943160743075
915 => 0.59102811542336
916 => 0.58665150382344
917 => 0.58845737906803
918 => 0.58754427328367
919 => 0.5815856403922
920 => 0.58788581514608
921 => 0.57179147206185
922 => 0.56538257496477
923 => 0.56248782483131
924 => 0.54820316898822
925 => 0.57093640884985
926 => 0.57541514348841
927 => 0.57990270261775
928 => 0.61896384105191
929 => 0.61701245696137
930 => 0.63465201877726
1001 => 0.63396657784216
1002 => 0.62893548907032
1003 => 0.60771015311584
1004 => 0.61617019372206
1005 => 0.59013150371832
1006 => 0.60964146072793
1007 => 0.60073793110403
1008 => 0.60663116840595
1009 => 0.59603459636532
1010 => 0.60189917685434
1011 => 0.57647721762131
1012 => 0.55273854978612
1013 => 0.56229168269791
1014 => 0.5726770307063
1015 => 0.59519511132593
1016 => 0.58178352827901
1017 => 0.58660684069079
1018 => 0.57044955152408
1019 => 0.5371124488717
1020 => 0.53730113325231
1021 => 0.5321729462975
1022 => 0.52774144404099
1023 => 0.58332400992532
1024 => 0.57641143922726
1025 => 0.5653971625148
1026 => 0.58014020958439
1027 => 0.58403850523321
1028 => 0.58414948422997
1029 => 0.59490563079882
1030 => 0.60064618815076
1031 => 0.60165798626504
1101 => 0.61858301529305
1102 => 0.62425606177671
1103 => 0.64762253736331
1104 => 0.60015914196649
1105 => 0.59918166457245
1106 => 0.58034767449087
1107 => 0.56840286022754
1108 => 0.58116554614272
1109 => 0.59247154358321
1110 => 0.58069898334669
1111 => 0.58223623118127
1112 => 0.56643253091727
1113 => 0.57208161012844
1114 => 0.57694735815824
1115 => 0.57426077809163
1116 => 0.57023883769997
1117 => 0.59154458072498
1118 => 0.59034242720563
1119 => 0.61018282492743
1120 => 0.62564983375203
1121 => 0.65336947862425
1122 => 0.62444258414232
1123 => 0.62338837313341
1124 => 0.6336934548463
1125 => 0.62425448412239
1126 => 0.63021958779771
1127 => 0.65240840820202
1128 => 0.65287722301247
1129 => 0.64502397090354
1130 => 0.64454609979901
1201 => 0.64605440277169
1202 => 0.6548885803937
1203 => 0.65180164728571
1204 => 0.65537392442986
1205 => 0.65984111169926
1206 => 0.67831929229367
1207 => 0.6827743190774
1208 => 0.6719509136595
1209 => 0.6729281459842
1210 => 0.66887989524879
1211 => 0.66496933576281
1212 => 0.67375970239594
1213 => 0.68982427019307
1214 => 0.68972433335056
1215 => 0.69345100082892
1216 => 0.69577268379456
1217 => 0.68580632093024
1218 => 0.67931858517888
1219 => 0.68180639589131
1220 => 0.68578445939793
1221 => 0.68051636351111
1222 => 0.6479992352782
1223 => 0.65786285478187
1224 => 0.65622106619011
1225 => 0.65388295958712
1226 => 0.66380090527117
1227 => 0.66284429521496
1228 => 0.63419011009084
1229 => 0.63602445805421
1230 => 0.63430166286604
1231 => 0.63986836656974
]
'min_raw' => 0.52774144404099
'max_raw' => 1.1822059820819
'avg_raw' => 0.85497371306146
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.527741'
'max' => '$1.18'
'avg' => '$0.854973'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.1286924866296
'max_diff' => -0.85908457375853
'year' => 2034
]
9 => [
'items' => [
101 => 0.62395386385403
102 => 0.62884905770357
103 => 0.63191927739641
104 => 0.63372766038203
105 => 0.64026077974592
106 => 0.63949419359355
107 => 0.64021312767436
108 => 0.64990001901144
109 => 0.69889299125472
110 => 0.70155957063703
111 => 0.68842835850298
112 => 0.69367401874883
113 => 0.6836034981766
114 => 0.69036390610336
115 => 0.69498920551111
116 => 0.67408836688142
117 => 0.67285075486309
118 => 0.66273866967018
119 => 0.66817233147507
120 => 0.65952698484937
121 => 0.66164825050993
122 => 0.6557170067944
123 => 0.66639206458352
124 => 0.67832843792803
125 => 0.68134403721652
126 => 0.67341129378562
127 => 0.66766746474839
128 => 0.65758319309391
129 => 0.67435356159796
130 => 0.67925772841626
131 => 0.67432780209743
201 => 0.67318543044834
202 => 0.67102063823753
203 => 0.67364470134949
204 => 0.67923101927055
205 => 0.67659661490207
206 => 0.67833668539968
207 => 0.6717053310157
208 => 0.68580962021105
209 => 0.70821062583529
210 => 0.70828264873131
211 => 0.70564823016241
212 => 0.70457028284336
213 => 0.70727335616494
214 => 0.70873966255602
215 => 0.71748090601911
216 => 0.72686060852151
217 => 0.7706315874154
218 => 0.7583408716944
219 => 0.79717708811625
220 => 0.82789149305437
221 => 0.83710140011716
222 => 0.82862871897901
223 => 0.79964413449061
224 => 0.79822201249735
225 => 0.84153721869894
226 => 0.82929868898486
227 => 0.82784295481805
228 => 0.81235640278488
301 => 0.82151087308327
302 => 0.81950865614103
303 => 0.81634805874591
304 => 0.83381415036931
305 => 0.86650911467955
306 => 0.86141329788037
307 => 0.85760950702791
308 => 0.84094240277933
309 => 0.85097972226948
310 => 0.84740562505123
311 => 0.86276221487898
312 => 0.85366531125514
313 => 0.82920597008535
314 => 0.83310120078568
315 => 0.83251244450144
316 => 0.84462900711135
317 => 0.84099191576743
318 => 0.83180224404331
319 => 0.86639736684594
320 => 0.86415095199932
321 => 0.86733585464989
322 => 0.86873794729306
323 => 0.88979538890858
324 => 0.89842194897548
325 => 0.90038032913985
326 => 0.90857489400131
327 => 0.90017644090102
328 => 0.93377624129775
329 => 0.95611814795886
330 => 0.98206942224975
331 => 1.0199912090337
401 => 1.0342501516606
402 => 1.0316744013019
403 => 1.0604262672461
404 => 1.1120927312297
405 => 1.0421176708737
406 => 1.1158015793413
407 => 1.0924741046421
408 => 1.0371650817736
409 => 1.0336038327514
410 => 1.0710597451889
411 => 1.1541333539773
412 => 1.1333243571889
413 => 1.1541673900415
414 => 1.1298528850761
415 => 1.1286454649658
416 => 1.1529864888063
417 => 1.2098606177697
418 => 1.182841850994
419 => 1.1441038235477
420 => 1.1727073801836
421 => 1.1479283322914
422 => 1.0920942021714
423 => 1.1333084449413
424 => 1.1057496545151
425 => 1.1137927746673
426 => 1.1717172530824
427 => 1.1647476265903
428 => 1.1737669686411
429 => 1.1578480659988
430 => 1.1429773007503
501 => 1.1152199130965
502 => 1.1070023190349
503 => 1.1092733663955
504 => 1.1070011936167
505 => 1.0914711903279
506 => 1.0881174875964
507 => 1.0825278361146
508 => 1.0842603028383
509 => 1.0737501227424
510 => 1.0935850040973
511 => 1.0972665328611
512 => 1.1117007054194
513 => 1.1131993090979
514 => 1.153398274215
515 => 1.1312573597447
516 => 1.1461113967259
517 => 1.1447827118467
518 => 1.0383637960108
519 => 1.053027383671
520 => 1.0758393243828
521 => 1.065562576013
522 => 1.0510336582068
523 => 1.039300778087
524 => 1.0215242649569
525 => 1.0465443658198
526 => 1.0794431378634
527 => 1.1140336762482
528 => 1.1555919416556
529 => 1.1463166206082
530 => 1.1132567733837
531 => 1.11473981398
601 => 1.1239073873911
602 => 1.1120345468618
603 => 1.1085330144044
604 => 1.1234263306011
605 => 1.1235288926845
606 => 1.1098677547749
607 => 1.0946858999502
608 => 1.0946222874242
609 => 1.0919208229974
610 => 1.1303334695963
611 => 1.151456541269
612 => 1.1538782673948
613 => 1.1512935398055
614 => 1.1522882988704
615 => 1.1399972488792
616 => 1.1680909443615
617 => 1.1938724975146
618 => 1.186962490527
619 => 1.1766034077373
620 => 1.1683518993342
621 => 1.185018697384
622 => 1.1842765511028
623 => 1.1936473181392
624 => 1.1932222060182
625 => 1.1900711695163
626 => 1.1869626030605
627 => 1.1992877176813
628 => 1.1957382826058
629 => 1.1921833342772
630 => 1.1850533411689
701 => 1.186022425649
702 => 1.1756651315009
703 => 1.1708733733105
704 => 1.098816827162
705 => 1.0795609635155
706 => 1.085619250208
707 => 1.0876137954904
708 => 1.0792336189544
709 => 1.0912486394163
710 => 1.0893761112044
711 => 1.0966610230847
712 => 1.092109726416
713 => 1.0922965132188
714 => 1.1056809062827
715 => 1.1095664525304
716 => 1.1075902323486
717 => 1.108974309223
718 => 1.1408697766126
719 => 1.1363352611095
720 => 1.1339263901247
721 => 1.13459366385
722 => 1.1427436396145
723 => 1.1450251878564
724 => 1.135358107634
725 => 1.1399171585516
726 => 1.1593290187293
727 => 1.1661220711753
728 => 1.1878022337329
729 => 1.1785921153443
730 => 1.1954976862512
731 => 1.2474596476853
801 => 1.2889704579731
802 => 1.2507954013256
803 => 1.3270247180493
804 => 1.3863801755648
805 => 1.3841020142436
806 => 1.3737520173093
807 => 1.3061774069745
808 => 1.2439942430637
809 => 1.2960131001117
810 => 1.2961457068761
811 => 1.2916772409224
812 => 1.263923982655
813 => 1.2907114876934
814 => 1.2928377825654
815 => 1.2916476228645
816 => 1.2703692648219
817 => 1.2378811449886
818 => 1.2442292458384
819 => 1.2546275645282
820 => 1.2349413779319
821 => 1.2286504484863
822 => 1.240346483224
823 => 1.2780335441146
824 => 1.2709090235595
825 => 1.2707229735354
826 => 1.3012046937369
827 => 1.2793863604395
828 => 1.2443093157196
829 => 1.2354518993184
830 => 1.2040140381649
831 => 1.2257282808415
901 => 1.2265097377783
902 => 1.2146170689785
903 => 1.2452743402485
904 => 1.2449918280966
905 => 1.2740963444348
906 => 1.3297332485162
907 => 1.3132786782535
908 => 1.2941438032902
909 => 1.2962242947513
910 => 1.3190421509885
911 => 1.3052459542265
912 => 1.3102071627726
913 => 1.3190346416051
914 => 1.3243604787588
915 => 1.2954579887448
916 => 1.2887194357567
917 => 1.2749347212536
918 => 1.2713385465437
919 => 1.2825659088789
920 => 1.2796078955721
921 => 1.2264440593487
922 => 1.2208881426625
923 => 1.2210585346953
924 => 1.2070879180185
925 => 1.1857793742543
926 => 1.2417769549997
927 => 1.2372795655802
928 => 1.2323147957313
929 => 1.2329229517092
930 => 1.2572296035767
1001 => 1.2431305179782
1002 => 1.2806152478364
1003 => 1.2729095142717
1004 => 1.2650061577174
1005 => 1.2639136730995
1006 => 1.2608715551088
1007 => 1.2504390005965
1008 => 1.2378410641235
1009 => 1.2295228152494
1010 => 1.1341698047375
1011 => 1.1518667688456
1012 => 1.1722255129229
1013 => 1.1792532697958
1014 => 1.1672318053587
1015 => 1.2509136812841
1016 => 1.2662031663943
1017 => 1.2198903186871
1018 => 1.2112270758222
1019 => 1.2514816420441
1020 => 1.2272032176917
1021 => 1.238135790691
1022 => 1.2145055476642
1023 => 1.2625203771597
1024 => 1.2621545846058
1025 => 1.2434757314679
1026 => 1.2592629702328
1027 => 1.2565195489925
1028 => 1.2354311698039
1029 => 1.2631889163946
1030 => 1.2632026838906
1031 => 1.2452246938587
1101 => 1.2242303373896
1102 => 1.2204770423174
1103 => 1.2176494386649
1104 => 1.2374403735277
1105 => 1.2551848638411
1106 => 1.2882029610821
1107 => 1.2965044952191
1108 => 1.3289059356204
1109 => 1.3096124554589
1110 => 1.3181650053221
1111 => 1.3274500080306
1112 => 1.3319015797737
1113 => 1.3246479825028
1114 => 1.3749807564109
1115 => 1.3792303846851
1116 => 1.3806552482863
1117 => 1.3636833201186
1118 => 1.3787583646607
1119 => 1.3717052505525
1120 => 1.3900554940506
1121 => 1.3929330465388
1122 => 1.3904958619532
1123 => 1.391409242532
1124 => 1.3484590993113
1125 => 1.3462319078052
1126 => 1.3158639935859
1127 => 1.3282391430986
1128 => 1.305104394241
1129 => 1.312440661418
1130 => 1.3156744180872
1201 => 1.3139852871173
1202 => 1.3289388154845
1203 => 1.3162252615683
1204 => 1.2826721024819
1205 => 1.2491098018597
1206 => 1.2486884545147
1207 => 1.2398520931846
1208 => 1.2334650224034
1209 => 1.2346953988293
1210 => 1.239031405835
1211 => 1.2332130057938
1212 => 1.2344546564429
1213 => 1.2550743302943
1214 => 1.2592094588324
1215 => 1.2451566763609
1216 => 1.188732726931
1217 => 1.1748861482122
1218 => 1.1848387944057
1219 => 1.1800820705577
1220 => 0.95241833256942
1221 => 1.0059045508258
1222 => 0.97412485615821
1223 => 0.98877040157449
1224 => 0.95633156263091
1225 => 0.97181307684
1226 => 0.96895420645996
1227 => 1.054958462644
1228 => 1.0536156244787
1229 => 1.054258370047
1230 => 1.023578449406
1231 => 1.0724523960377
]
'min_raw' => 0.62395386385403
'max_raw' => 1.3929330465388
'avg_raw' => 1.0084434551964
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.623953'
'max' => '$1.39'
'avg' => '$1.00'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.096212419813037
'max_diff' => 0.21072706445687
'year' => 2035
]
10 => [
'items' => [
101 => 1.0965294595987
102 => 1.0920734359239
103 => 1.0931949210816
104 => 1.0739240904142
105 => 1.0544449538118
106 => 1.0328395935021
107 => 1.0729796824543
108 => 1.068516789777
109 => 1.0787530598806
110 => 1.104786776839
111 => 1.1086203405535
112 => 1.1137726890621
113 => 1.1119259388909
114 => 1.1559230202866
115 => 1.1505946834275
116 => 1.1634344421908
117 => 1.1370220842598
118 => 1.1071339941769
119 => 1.1128147429864
120 => 1.1122676411944
121 => 1.1053024074474
122 => 1.0990145058572
123 => 1.0885469213149
124 => 1.1216679077178
125 => 1.1203232561559
126 => 1.1420916019571
127 => 1.1382438353903
128 => 1.112547508549
129 => 1.1134652578892
130 => 1.1196375632572
131 => 1.1409999826101
201 => 1.1473418031384
202 => 1.1444040191918
203 => 1.151357535886
204 => 1.1568533119634
205 => 1.1520477207469
206 => 1.2200847582781
207 => 1.1918310367694
208 => 1.2056017040446
209 => 1.2088859270483
210 => 1.2004734588842
211 => 1.2022978220011
212 => 1.205061235014
213 => 1.2218401376965
214 => 1.2658728333501
215 => 1.2853746145144
216 => 1.344046685348
217 => 1.2837552630666
218 => 1.2801778195791
219 => 1.290746431263
220 => 1.3251931479118
221 => 1.3531089763401
222 => 1.3623702671326
223 => 1.363594299598
224 => 1.3809690968036
225 => 1.3909280065411
226 => 1.3788593394203
227 => 1.3686324076776
228 => 1.3320008075887
229 => 1.3362410150435
301 => 1.3654518395959
302 => 1.406713849785
303 => 1.4421209471078
304 => 1.4297226156873
305 => 1.5243131325678
306 => 1.5336913959489
307 => 1.5323956231852
308 => 1.5537607028401
309 => 1.511355370648
310 => 1.4932262695713
311 => 1.370843586401
312 => 1.4052281284471
313 => 1.4552080796444
314 => 1.4485930456882
315 => 1.4122962691608
316 => 1.442093412748
317 => 1.4322415452352
318 => 1.4244709685736
319 => 1.4600694866611
320 => 1.4209274537173
321 => 1.4548176079237
322 => 1.4113531346053
323 => 1.4297792502209
324 => 1.4193196958265
325 => 1.4260883093944
326 => 1.386519132782
327 => 1.4078696999946
328 => 1.3856308789918
329 => 1.385620334895
330 => 1.3851294116888
331 => 1.4112932859766
401 => 1.4121464889778
402 => 1.3928113463477
403 => 1.390024850223
404 => 1.4003279868577
405 => 1.3882657122542
406 => 1.3939095746222
407 => 1.3884366590959
408 => 1.3872045905337
409 => 1.3773872586108
410 => 1.3731576820853
411 => 1.3748162080237
412 => 1.3691548039672
413 => 1.3657436032412
414 => 1.3844508380057
415 => 1.3744563171187
416 => 1.3829190343382
417 => 1.3732746999865
418 => 1.3398432352873
419 => 1.3206164464074
420 => 1.2574675086889
421 => 1.2753764690898
422 => 1.2872501283638
423 => 1.2833258840446
424 => 1.2917566793233
425 => 1.2922742616813
426 => 1.2895333241944
427 => 1.2863596697205
428 => 1.2848149102366
429 => 1.2963282818313
430 => 1.3030121815643
501 => 1.2884418089211
502 => 1.2850281744719
503 => 1.2997596256666
504 => 1.3087458023853
505 => 1.3750946823795
506 => 1.3701793430455
507 => 1.3825158801873
508 => 1.3811269754247
509 => 1.3940576317138
510 => 1.4151937898433
511 => 1.3722180706032
512 => 1.3796771694747
513 => 1.3778483706871
514 => 1.3978147163128
515 => 1.3978770490645
516 => 1.3859062274689
517 => 1.3923958040603
518 => 1.3887735004392
519 => 1.3953194926662
520 => 1.3701136956919
521 => 1.4008116356089
522 => 1.4182153894103
523 => 1.4184570405487
524 => 1.4267062817259
525 => 1.4350879885256
526 => 1.451175944835
527 => 1.4346393041559
528 => 1.4048914973838
529 => 1.4070391929479
530 => 1.3895980647216
531 => 1.3898912532381
601 => 1.3883261899596
602 => 1.393023062671
603 => 1.371144395124
604 => 1.3762792746668
605 => 1.3690904132371
606 => 1.3796615422939
607 => 1.368288754899
608 => 1.377847488785
609 => 1.3819727214531
610 => 1.3971949188085
611 => 1.3660404239728
612 => 1.3025143000289
613 => 1.3158682614617
614 => 1.2961167035715
615 => 1.2979447854538
616 => 1.3016378017929
617 => 1.289667527558
618 => 1.2919510786553
619 => 1.291869494141
620 => 1.2911664428723
621 => 1.2880525122298
622 => 1.2835366967259
623 => 1.3015263157989
624 => 1.3045831026301
625 => 1.3113779611002
626 => 1.3315948509105
627 => 1.3295747068714
628 => 1.3328696456142
629 => 1.3256768128389
630 => 1.2982784403367
701 => 1.2997663037811
702 => 1.2812126227878
703 => 1.3109035017628
704 => 1.3038723097211
705 => 1.2993392544711
706 => 1.2981023683477
707 => 1.3183693719176
708 => 1.324433577032
709 => 1.3206547713584
710 => 1.3129043306763
711 => 1.3277874679979
712 => 1.331769567676
713 => 1.3326610129398
714 => 1.3590310787152
715 => 1.3341348066818
716 => 1.3401275868079
717 => 1.3868815466372
718 => 1.3444821566774
719 => 1.3669420591584
720 => 1.3658427638076
721 => 1.3773324899152
722 => 1.3649002709068
723 => 1.3650543831613
724 => 1.3752564815634
725 => 1.3609294743158
726 => 1.3573819058402
727 => 1.3524809653992
728 => 1.3631819895547
729 => 1.3695967695702
730 => 1.4212951853586
731 => 1.4546947196921
801 => 1.4532447578217
802 => 1.4664946951025
803 => 1.4605254770019
804 => 1.4412492971553
805 => 1.4741513856739
806 => 1.4637397881847
807 => 1.4645981076316
808 => 1.4645661609389
809 => 1.4714889630716
810 => 1.4665835232951
811 => 1.4569143979626
812 => 1.4633332145975
813 => 1.4823948052342
814 => 1.5415625674514
815 => 1.5746736310567
816 => 1.5395692398469
817 => 1.5637837788369
818 => 1.5492636839653
819 => 1.5466249507918
820 => 1.5618334707179
821 => 1.5770686111449
822 => 1.576098198563
823 => 1.5650382689461
824 => 1.5587907953409
825 => 1.606098758537
826 => 1.6409544599497
827 => 1.638577534789
828 => 1.6490685094311
829 => 1.679870335454
830 => 1.6826864684045
831 => 1.6823317003808
901 => 1.67535162103
902 => 1.7056800188721
903 => 1.7309805019294
904 => 1.6737359343341
905 => 1.695533916288
906 => 1.7053197326742
907 => 1.71968821445
908 => 1.743930251643
909 => 1.7702635339174
910 => 1.7739873487608
911 => 1.7713451239285
912 => 1.7539776163919
913 => 1.7827918080779
914 => 1.7996704857916
915 => 1.8097213521085
916 => 1.8352086767834
917 => 1.7053801665447
918 => 1.6134810941021
919 => 1.5991297269015
920 => 1.6283137964436
921 => 1.6360094028433
922 => 1.632907313553
923 => 1.5294665524208
924 => 1.5985851327017
925 => 1.6729509134287
926 => 1.6758076059306
927 => 1.7130366706777
928 => 1.7251599802303
929 => 1.7551342570768
930 => 1.7532593578989
1001 => 1.7605576173161
1002 => 1.7588798738643
1003 => 1.8144009098938
1004 => 1.8756488575878
1005 => 1.8735280359157
1006 => 1.8647229187819
1007 => 1.8778000192212
1008 => 1.9410144649705
1009 => 1.9351946917968
1010 => 1.9408481057079
1011 => 2.0153814998564
1012 => 2.112285514501
1013 => 2.0672638706946
1014 => 2.1649478831255
1015 => 2.2264347909438
1016 => 2.3327700401506
1017 => 2.3194563432378
1018 => 2.3608518754299
1019 => 2.2956220471114
1020 => 2.1458411761689
1021 => 2.1221377800041
1022 => 2.1695925793916
1023 => 2.2862555731142
1024 => 2.1659184465509
1025 => 2.1902624905272
1026 => 2.1832514042243
1027 => 2.1828778132305
1028 => 2.1971362619626
1029 => 2.176453638406
1030 => 2.0921889093033
1031 => 2.1308069380759
1101 => 2.1158946625768
1102 => 2.1324409440268
1103 => 2.2217344008074
1104 => 2.1822556350746
1105 => 2.1406679623695
1106 => 2.192828132985
1107 => 2.2592459543578
1108 => 2.2550896464606
1109 => 2.2470246719381
1110 => 2.2924865110531
1111 => 2.3675761502021
1112 => 2.3878725779295
1113 => 2.4028549859356
1114 => 2.4049208068698
1115 => 2.4262000463925
1116 => 2.3117762124201
1117 => 2.4933697755468
1118 => 2.5247259674779
1119 => 2.5188323029758
1120 => 2.5536833906369
1121 => 2.5434293165603
1122 => 2.5285727720382
1123 => 2.5838191590199
1124 => 2.5204836344989
1125 => 2.430586831162
1126 => 2.3812676668943
1127 => 2.4462151208656
1128 => 2.485876264652
1129 => 2.5120897577724
1130 => 2.520021944952
1201 => 2.3206586089285
1202 => 2.2132128280094
1203 => 2.2820843417101
1204 => 2.3661123416831
1205 => 2.3113094326376
1206 => 2.3134576029165
1207 => 2.2353230565688
1208 => 2.3730255152913
1209 => 2.3529634253154
1210 => 2.4570455835995
1211 => 2.4322055412135
1212 => 2.5170805008481
1213 => 2.4947300795067
1214 => 2.5875054288998
1215 => 2.624516027565
1216 => 2.6866625829636
1217 => 2.7323778420968
1218 => 2.7592227166534
1219 => 2.7576110510776
1220 => 2.8639838181342
1221 => 2.8012595137824
1222 => 2.722463004533
1223 => 2.7210378242804
1224 => 2.7618476529759
1225 => 2.8473738582918
1226 => 2.8695495589745
1227 => 2.8819427503914
1228 => 2.8629621463263
1229 => 2.7948794094438
1230 => 2.7654816288452
1231 => 2.7905293896509
]
'min_raw' => 1.0328395935021
'max_raw' => 2.8819427503914
'avg_raw' => 1.9573911719467
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.03'
'max' => '$2.88'
'avg' => '$1.95'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.40888572964804
'max_diff' => 1.4890097038526
'year' => 2036
]
11 => [
'items' => [
101 => 2.7598981305641
102 => 2.8127762773612
103 => 2.8853892670762
104 => 2.8703949718429
105 => 2.9205186527374
106 => 2.9723913892981
107 => 3.0465717323303
108 => 3.0659652208891
109 => 3.0980219200084
110 => 3.1310187934793
111 => 3.1416164999475
112 => 3.1618508098704
113 => 3.1617441650692
114 => 3.2227216199481
115 => 3.2899816409942
116 => 3.315370741866
117 => 3.3737515793575
118 => 3.2737764410618
119 => 3.3496087318907
120 => 3.4180113564237
121 => 3.3364589275463
122 => 3.448859951475
123 => 3.4532242285279
124 => 3.5191196305191
125 => 3.4523220165695
126 => 3.4126578066318
127 => 3.5271668945235
128 => 3.5825742351518
129 => 3.5658850932347
130 => 3.4388798992006
131 => 3.3649574287638
201 => 3.1714880650509
202 => 3.4006608836233
203 => 3.5122842784872
204 => 3.4385908215741
205 => 3.4757575147487
206 => 3.6785269413683
207 => 3.755728410677
208 => 3.7396710447398
209 => 3.7423844752564
210 => 3.7840409867896
211 => 3.9687688995875
212 => 3.8580756522795
213 => 3.9426964922496
214 => 3.9875790806467
215 => 4.0292685300836
216 => 3.9268924183522
217 => 3.7937026011934
218 => 3.751515795171
219 => 3.4312634596234
220 => 3.4145929347728
221 => 3.4052352640055
222 => 3.3462364734867
223 => 3.2998795852677
224 => 3.263014866635
225 => 3.166270836206
226 => 3.198919106525
227 => 3.0447293140696
228 => 3.1433744791319
301 => 2.8972838473304
302 => 3.1022354381173
303 => 2.9906896052573
304 => 3.0655896320072
305 => 3.0653283128699
306 => 2.9274136165482
307 => 2.8478672979161
308 => 2.8985573081375
309 => 2.9529010228729
310 => 2.9617181077545
311 => 3.0321761524249
312 => 3.0518394782019
313 => 2.9922586831049
314 => 2.892184165975
315 => 2.9154291938475
316 => 2.8473962381682
317 => 2.7281711001901
318 => 2.8138006757572
319 => 2.8430383777225
320 => 2.8559514125455
321 => 2.7387071824436
322 => 2.7018664998495
323 => 2.6822528295597
324 => 2.8770494081588
325 => 2.8877208044629
326 => 2.8331244321878
327 => 3.0799052119114
328 => 3.0240511210377
329 => 3.0864538251281
330 => 2.9133199512109
331 => 2.9199338983503
401 => 2.8379695478444
402 => 2.8838641072678
403 => 2.8514273119181
404 => 2.8801562804053
405 => 2.8973763056625
406 => 2.979327206625
407 => 3.1031711857667
408 => 2.9670864748429
409 => 2.9077924175244
410 => 2.9445781172024
411 => 3.0425432830075
412 => 3.1909655239469
413 => 3.1030965700348
414 => 3.1420913196694
415 => 3.1506099377089
416 => 3.0858186241796
417 => 3.1933544720941
418 => 3.2509838066112
419 => 3.3100995791152
420 => 3.361428147994
421 => 3.2864874395934
422 => 3.3666847399107
423 => 3.3020598725841
424 => 3.2440846857963
425 => 3.2441726102235
426 => 3.2078039286692
427 => 3.1373350254088
428 => 3.1243394784606
429 => 3.1919439548416
430 => 3.2461563427314
501 => 3.2506215346578
502 => 3.2806362981267
503 => 3.2983987259709
504 => 3.472494665694
505 => 3.5425174928477
506 => 3.628140080427
507 => 3.6614949037138
508 => 3.761880963441
509 => 3.6808110672542
510 => 3.6632710852606
511 => 3.4197673403922
512 => 3.4596410649731
513 => 3.5234827452692
514 => 3.420820066186
515 => 3.4859359063729
516 => 3.4987911525679
517 => 3.4173316276351
518 => 3.46084267956
519 => 3.3452902257752
520 => 3.1056899134908
521 => 3.1936212157351
522 => 3.2583682515432
523 => 3.1659662481931
524 => 3.3315932627467
525 => 3.2348373800801
526 => 3.2041704103762
527 => 3.0845276279971
528 => 3.140994415807
529 => 3.2173665548464
530 => 3.1701774521342
531 => 3.2681019257414
601 => 3.4067890958725
602 => 3.5056258322716
603 => 3.5132132896317
604 => 3.4496678896741
605 => 3.5514997986475
606 => 3.5522415329319
607 => 3.4373747236144
608 => 3.3670194424885
609 => 3.3510345745879
610 => 3.3909679086215
611 => 3.4394543482385
612 => 3.515903949582
613 => 3.5621008425485
614 => 3.6825578384662
615 => 3.7151500477888
616 => 3.7509590044939
617 => 3.7988108137253
618 => 3.8562691796595
619 => 3.730553546102
620 => 3.7355484625865
621 => 3.6184838052691
622 => 3.4933834301555
623 => 3.5883190208848
624 => 3.7124346770111
625 => 3.6839624083601
626 => 3.6807586965012
627 => 3.6861464512123
628 => 3.6646792904668
629 => 3.5675841180252
630 => 3.5188235302729
701 => 3.581737128626
702 => 3.6151729061885
703 => 3.6670288812817
704 => 3.6606365378047
705 => 3.7942119607197
706 => 3.8461153309534
707 => 3.8328362277772
708 => 3.8352799023411
709 => 3.9292484749211
710 => 4.0337608537409
711 => 4.1316504881287
712 => 4.2312280286856
713 => 4.1111834169667
714 => 4.0502321664582
715 => 4.1131182987023
716 => 4.0797500317472
717 => 4.2714939913423
718 => 4.2847699270837
719 => 4.476500021408
720 => 4.6584747117168
721 => 4.5441796691491
722 => 4.6519547463287
723 => 4.7685222793293
724 => 4.9933999628883
725 => 4.9176690703579
726 => 4.8596603935341
727 => 4.8048424742314
728 => 4.9189098622006
729 => 5.065655734552
730 => 5.097263389942
731 => 5.1484798667275
801 => 5.0946320038404
802 => 5.1594858235404
803 => 5.3884483052937
804 => 5.3265806216162
805 => 5.2387185650677
806 => 5.4194624546215
807 => 5.4848729656269
808 => 5.9439581876135
809 => 6.5235722442362
810 => 6.2836082188433
811 => 6.1346548046912
812 => 6.1696623902392
813 => 6.3813178225438
814 => 6.4492948297924
815 => 6.2645098910111
816 => 6.3297790552953
817 => 6.6894185676241
818 => 6.8823536273715
819 => 6.620321901599
820 => 5.8973867625215
821 => 5.2308075481951
822 => 5.4076143722877
823 => 5.3875699653901
824 => 5.7739577554446
825 => 5.3251050978215
826 => 5.3326626254291
827 => 5.72704050579
828 => 5.6218272486583
829 => 5.4513952468007
830 => 5.23205189042
831 => 4.8265754093457
901 => 4.4674335825099
902 => 5.1717934103579
903 => 5.1414201337859
904 => 5.0974351282422
905 => 5.195318998405
906 => 5.6706152870944
907 => 5.6596581692562
908 => 5.5899545759399
909 => 5.642824137131
910 => 5.4421269571033
911 => 5.4938511901863
912 => 5.2307019586419
913 => 5.3496564013826
914 => 5.4510295762696
915 => 5.4713817419836
916 => 5.5172362105447
917 => 5.1254147972048
918 => 5.3013311085221
919 => 5.4046654602918
920 => 4.9377970996606
921 => 5.3954369738983
922 => 5.1185940581225
923 => 5.0246294144671
924 => 5.1511404282486
925 => 5.101838963142
926 => 5.0594524585225
927 => 5.0358000606522
928 => 5.1286957866622
929 => 5.1243620900095
930 => 4.9723666519736
1001 => 4.7740947991824
1002 => 4.8406413410308
1003 => 4.8164643585001
1004 => 4.7288438549161
1005 => 4.7878894949918
1006 => 4.527882378413
1007 => 4.0805536483331
1008 => 4.3760727094734
1009 => 4.3646955470824
1010 => 4.3589586658916
1011 => 4.5810330727917
1012 => 4.5596857426965
1013 => 4.5209401295401
1014 => 4.7281322613458
1015 => 4.6525043461093
1016 => 4.8855717606903
1017 => 5.0390850337886
1018 => 5.0001491020968
1019 => 5.1445290774398
1020 => 4.8421744389499
1021 => 4.9426045214936
1022 => 4.9633030223158
1023 => 4.7255755426009
1024 => 4.5631784299069
1025 => 4.5523483939529
1026 => 4.2707741802422
1027 => 4.4211888524188
1028 => 4.5535475393522
1029 => 4.4901579997601
1030 => 4.4700907652339
1031 => 4.5726099143762
1101 => 4.5805765302817
1102 => 4.3989368433724
1103 => 4.4367054860617
1104 => 4.5942070045902
1105 => 4.432736851902
1106 => 4.1190267212286
1107 => 4.0412222714397
1108 => 4.0308417236174
1109 => 3.8198298850412
1110 => 4.0464215368111
1111 => 3.9475082085348
1112 => 4.259974227396
1113 => 4.0814953132113
1114 => 4.0738014439421
1115 => 4.0621710320965
1116 => 3.8805444258447
1117 => 3.9203091096408
1118 => 4.0524929749116
1119 => 4.099657667198
1120 => 4.0947380033836
1121 => 4.0518452018591
1122 => 4.0714813067504
1123 => 4.0082265712232
1124 => 3.9858900075751
1125 => 3.9153896685458
1126 => 3.8117736463885
1127 => 3.8261820897835
1128 => 3.6208916372829
1129 => 3.5090385031716
1130 => 3.4780790298502
1201 => 3.4366787282394
1202 => 3.4827553040791
1203 => 3.6203100752243
1204 => 3.4543898373506
1205 => 3.1699312274674
1206 => 3.1870276746153
1207 => 3.2254383153758
1208 => 3.1538603404304
1209 => 3.0861177942286
1210 => 3.1450144420246
1211 => 3.0244855790655
1212 => 3.240003652631
1213 => 3.2341744927235
1214 => 3.3145063030004
1215 => 3.3647394325413
1216 => 3.2489683321184
1217 => 3.2198522134404
1218 => 3.2364380778932
1219 => 2.9623106839579
1220 => 3.2921042465839
1221 => 3.2949563150085
1222 => 3.2705351736164
1223 => 3.4461400644809
1224 => 3.8167211567439
1225 => 3.6772936432447
1226 => 3.6233030957989
1227 => 3.5206670256375
1228 => 3.6574234952007
1229 => 3.6469227320715
1230 => 3.5994342989051
1231 => 3.5707131463532
]
'min_raw' => 2.6822528295597
'max_raw' => 6.8823536273715
'avg_raw' => 4.7823032284656
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$2.68'
'max' => '$6.88'
'avg' => '$4.78'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.6494132360576
'max_diff' => 4.0004108769801
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.084192851378222
]
1 => [
'year' => 2028
'avg' => 0.14449937432442
]
2 => [
'year' => 2029
'avg' => 0.39474624717599
]
3 => [
'year' => 2030
'avg' => 0.30454614182253
]
4 => [
'year' => 2031
'avg' => 0.29910205325758
]
5 => [
'year' => 2032
'avg' => 0.52442003024095
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.084192851378222
'min' => '$0.084192'
'max_raw' => 0.52442003024095
'max' => '$0.52442'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.52442003024095
]
1 => [
'year' => 2033
'avg' => 1.3488622432555
]
2 => [
'year' => 2034
'avg' => 0.85497371306146
]
3 => [
'year' => 2035
'avg' => 1.0084434551964
]
4 => [
'year' => 2036
'avg' => 1.9573911719467
]
5 => [
'year' => 2037
'avg' => 4.7823032284656
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.52442003024095
'min' => '$0.52442'
'max_raw' => 4.7823032284656
'max' => '$4.78'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 4.7823032284656
]
]
]
]
'prediction_2025_max_price' => '$0.143954'
'last_price' => 0.139582
'sma_50day_nextmonth' => '$0.142524'
'sma_200day_nextmonth' => '$0.378657'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.141971'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.14298'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.149354'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.165254'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.234461'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.303548'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.489575'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.141552'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.143632'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.150068'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.16971'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.223096'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.313936'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.571243'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.371763'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.824061'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.153998'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.175861'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.2335018'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.386344'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$1.04'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$1.00'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.503943'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '34.14'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => -1.81
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0.02
'momentum_10_action' => 'BUY'
'vwma_10' => '0.153356'
'vwma_10_action' => 'SELL'
'hma_9' => '0.139229'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -98.88
'cci_20_action' => 'NEUTRAL'
'adx_14' => 25.73
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.052047'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 19.29
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.075383'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 30
'buy_signals' => 3
'sell_pct' => 90.91
'buy_pct' => 9.09
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767691068
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Eigenpie para 2026
A previsão de preço para Eigenpie em 2026 sugere que o preço médio poderia variar entre $0.048225 na extremidade inferior e $0.143954 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Eigenpie poderia potencialmente ganhar 3.13% até 2026 se EGP atingir a meta de preço prevista.
Previsão de preço de Eigenpie 2027-2032
A previsão de preço de EGP para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.084192 na extremidade inferior e $0.52442 na extremidade superior. Considerando a volatilidade de preços no mercado, se Eigenpie atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Eigenpie | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.046425 | $0.084192 | $0.12196 |
| 2028 | $0.083784 | $0.144499 | $0.205214 |
| 2029 | $0.18405 | $0.394746 | $0.605442 |
| 2030 | $0.156526 | $0.304546 | $0.452565 |
| 2031 | $0.185063 | $0.299102 | $0.41314 |
| 2032 | $0.282485 | $0.52442 | $0.766354 |
Previsão de preço de Eigenpie 2032-2037
A previsão de preço de Eigenpie para 2032-2037 é atualmente estimada entre $0.52442 na extremidade inferior e $4.78 na extremidade superior. Comparado ao preço atual, Eigenpie poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Eigenpie | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.282485 | $0.52442 | $0.766354 |
| 2033 | $0.656433 | $1.34 | $2.04 |
| 2034 | $0.527741 | $0.854973 | $1.18 |
| 2035 | $0.623953 | $1.00 | $1.39 |
| 2036 | $1.03 | $1.95 | $2.88 |
| 2037 | $2.68 | $4.78 | $6.88 |
Eigenpie Histograma de preços potenciais
Previsão de preço de Eigenpie baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Eigenpie é Baixista, com 3 indicadores técnicos mostrando sinais de alta e 30 indicando sinais de baixa. A previsão de preço de EGP foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Eigenpie
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Eigenpie está projetado para aumentar no próximo mês, alcançando $0.378657 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Eigenpie é esperado para alcançar $0.142524 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 34.14, sugerindo que o mercado de EGP está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de EGP para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.141971 | SELL |
| SMA 5 | $0.14298 | SELL |
| SMA 10 | $0.149354 | SELL |
| SMA 21 | $0.165254 | SELL |
| SMA 50 | $0.234461 | SELL |
| SMA 100 | $0.303548 | SELL |
| SMA 200 | $0.489575 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.141552 | SELL |
| EMA 5 | $0.143632 | SELL |
| EMA 10 | $0.150068 | SELL |
| EMA 21 | $0.16971 | SELL |
| EMA 50 | $0.223096 | SELL |
| EMA 100 | $0.313936 | SELL |
| EMA 200 | $0.571243 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.371763 | SELL |
| SMA 50 | $0.824061 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.386344 | SELL |
| EMA 50 | $1.04 | SELL |
| EMA 100 | $1.00 | SELL |
| EMA 200 | $0.503943 | SELL |
Osciladores de Eigenpie
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 34.14 | NEUTRAL |
| Stoch RSI (14) | -1.81 | BUY |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Commodities (20) | -98.88 | NEUTRAL |
| Índice Direcional Médio (14) | 25.73 | SELL |
| Oscilador Impressionante (5, 34) | -0.052047 | SELL |
| Momentum (10) | -0.02 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 19.29 | BUY |
| VWMA (10) | 0.153356 | SELL |
| Média Móvel de Hull (9) | 0.139229 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.075383 | SELL |
Previsão do preço de Eigenpie com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Eigenpie
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Eigenpie por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.196136 | $0.2756038 | $0.387269 | $0.544178 | $0.764661 | $1.07 |
| Amazon.com stock | $0.291246 | $0.6077023 | $1.26 | $2.64 | $5.52 | $11.51 |
| Apple stock | $0.197986 | $0.280828 | $0.398333 | $0.5650063 | $0.801418 | $1.13 |
| Netflix stock | $0.220238 | $0.3475018 | $0.5483034 | $0.865136 | $1.36 | $2.15 |
| Google stock | $0.180758 | $0.23408 | $0.303133 | $0.392556 | $0.508359 | $0.658323 |
| Tesla stock | $0.316421 | $0.7173043 | $1.62 | $3.68 | $8.35 | $18.94 |
| Kodak stock | $0.104671 | $0.078492 | $0.058861 | $0.044139 | $0.033099 | $0.024821 |
| Nokia stock | $0.092467 | $0.061255 | $0.040579 | $0.026882 | $0.0178082 | $0.011797 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Eigenpie
Você pode fazer perguntas como: 'Devo investir em Eigenpie agora?', 'Devo comprar EGP hoje?', 'Eigenpie será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Eigenpie regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Eigenpie, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Eigenpie para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Eigenpie é de $0.1395 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Eigenpie
com base no histórico de preços de 4 horas
Previsão de longo prazo para Eigenpie
com base no histórico de preços de 1 mês
Previsão do preço de Eigenpie com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Eigenpie tiver 1% da média anterior do crescimento anual do Bitcoin | $0.14321 | $0.146932 | $0.150751 | $0.15467 |
| Se Eigenpie tiver 2% da média anterior do crescimento anual do Bitcoin | $0.146838 | $0.154471 | $0.1625024 | $0.17095 |
| Se Eigenpie tiver 5% da média anterior do crescimento anual do Bitcoin | $0.157722 | $0.178221 | $0.201384 | $0.227557 |
| Se Eigenpie tiver 10% da média anterior do crescimento anual do Bitcoin | $0.175863 | $0.221576 | $0.279171 | $0.351736 |
| Se Eigenpie tiver 20% da média anterior do crescimento anual do Bitcoin | $0.212145 | $0.322432 | $0.490053 | $0.744815 |
| Se Eigenpie tiver 50% da média anterior do crescimento anual do Bitcoin | $0.320991 | $0.73817 | $1.69 | $3.90 |
| Se Eigenpie tiver 100% da média anterior do crescimento anual do Bitcoin | $0.50240046 | $1.80 | $6.50 | $23.42 |
Perguntas Frequentes sobre Eigenpie
EGP é um bom investimento?
A decisão de adquirir Eigenpie depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Eigenpie experimentou uma escalada de 3.0573% nas últimas 24 horas, e Eigenpie registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Eigenpie dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Eigenpie pode subir?
Parece que o valor médio de Eigenpie pode potencialmente subir para $0.143954 até o final deste ano. Observando as perspectivas de Eigenpie em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.452565. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Eigenpie na próxima semana?
Com base na nossa nova previsão experimental de Eigenpie, o preço de Eigenpie aumentará 0.86% na próxima semana e atingirá $0.140776 até 13 de janeiro de 2026.
Qual será o preço de Eigenpie no próximo mês?
Com base na nossa nova previsão experimental de Eigenpie, o preço de Eigenpie diminuirá -11.62% no próximo mês e atingirá $0.123365 até 5 de fevereiro de 2026.
Até onde o preço de Eigenpie pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Eigenpie em 2026, espera-se que EGP fluctue dentro do intervalo de $0.048225 e $0.143954. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Eigenpie não considera flutuações repentinas e extremas de preço.
Onde estará Eigenpie em 5 anos?
O futuro de Eigenpie parece seguir uma tendência de alta, com um preço máximo de $0.452565 projetada após um período de cinco anos. Com base na previsão de Eigenpie para 2030, o valor de Eigenpie pode potencialmente atingir seu pico mais alto de aproximadamente $0.452565, enquanto seu pico mais baixo está previsto para cerca de $0.156526.
Quanto será Eigenpie em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Eigenpie, espera-se que o valor de EGP em 2026 aumente 3.13% para $0.143954 se o melhor cenário ocorrer. O preço ficará entre $0.143954 e $0.048225 durante 2026.
Quanto será Eigenpie em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Eigenpie, o valor de EGP pode diminuir -12.62% para $0.12196 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.12196 e $0.046425 ao longo do ano.
Quanto será Eigenpie em 2028?
Nosso novo modelo experimental de previsão de preços de Eigenpie sugere que o valor de EGP em 2028 pode aumentar 47.02%, alcançando $0.205214 no melhor cenário. O preço é esperado para variar entre $0.205214 e $0.083784 durante o ano.
Quanto será Eigenpie em 2029?
Com base no nosso modelo de previsão experimental, o valor de Eigenpie pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.605442 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.605442 e $0.18405.
Quanto será Eigenpie em 2030?
Usando nossa nova simulação experimental para previsões de preços de Eigenpie, espera-se que o valor de EGP em 2030 aumente 224.23%, alcançando $0.452565 no melhor cenário. O preço está previsto para variar entre $0.452565 e $0.156526 ao longo de 2030.
Quanto será Eigenpie em 2031?
Nossa simulação experimental indica que o preço de Eigenpie poderia aumentar 195.98% em 2031, potencialmente atingindo $0.41314 sob condições ideais. O preço provavelmente oscilará entre $0.41314 e $0.185063 durante o ano.
Quanto será Eigenpie em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Eigenpie, EGP poderia ver um 449.04% aumento em valor, atingindo $0.766354 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.766354 e $0.282485 ao longo do ano.
Quanto será Eigenpie em 2033?
De acordo com nossa previsão experimental de preços de Eigenpie, espera-se que o valor de EGP seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $2.04. Ao longo do ano, o preço de EGP poderia variar entre $2.04 e $0.656433.
Quanto será Eigenpie em 2034?
Os resultados da nossa nova simulação de previsão de preços de Eigenpie sugerem que EGP pode aumentar 746.96% em 2034, atingindo potencialmente $1.18 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $1.18 e $0.527741.
Quanto será Eigenpie em 2035?
Com base em nossa previsão experimental para o preço de Eigenpie, EGP poderia aumentar 897.93%, com o valor potencialmente atingindo $1.39 em 2035. A faixa de preço esperada para o ano está entre $1.39 e $0.623953.
Quanto será Eigenpie em 2036?
Nossa recente simulação de previsão de preços de Eigenpie sugere que o valor de EGP pode aumentar 1964.7% em 2036, possivelmente atingindo $2.88 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $2.88 e $1.03.
Quanto será Eigenpie em 2037?
De acordo com a simulação experimental, o valor de Eigenpie poderia aumentar 4830.69% em 2037, com um pico de $6.88 sob condições favoráveis. O preço é esperado para cair entre $6.88 e $2.68 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Eigenpie?
Traders de Eigenpie utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Eigenpie
Médias móveis são ferramentas populares para a previsão de preço de Eigenpie. Uma média móvel simples (SMA) calcula o preço médio de fechamento de EGP em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de EGP acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de EGP.
Como ler gráficos de Eigenpie e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Eigenpie em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de EGP dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Eigenpie?
A ação de preço de Eigenpie é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de EGP. A capitalização de mercado de Eigenpie pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de EGP, grandes detentores de Eigenpie, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Eigenpie.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


