Previsão de Preço Ecorpay - Projeção ECOR
Previsão de Preço Ecorpay até $0.03364 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.011269 | $0.03364 |
| 2027 | $0.010849 | $0.02850052 |
| 2028 | $0.019579 | $0.047955 |
| 2029 | $0.04301 | $0.141484 |
| 2030 | $0.036578 | $0.105758 |
| 2031 | $0.043246 | $0.096545 |
| 2032 | $0.066013 | $0.179087 |
| 2033 | $0.15340017 | $0.477023 |
| 2034 | $0.123326 | $0.276266 |
| 2035 | $0.14581 | $0.32551 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Ecorpay hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.66, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Ecorpay para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Ecorpay'
'name_with_ticker' => 'Ecorpay <small>ECOR</small>'
'name_lang' => 'Ecorpay'
'name_lang_with_ticker' => 'Ecorpay <small>ECOR</small>'
'name_with_lang' => 'Ecorpay'
'name_with_lang_with_ticker' => 'Ecorpay <small>ECOR</small>'
'image' => '/uploads/coins/ecorpay.png?1748387395'
'price_for_sd' => 0.03261
'ticker' => 'ECOR'
'marketcap' => '$0'
'low24h' => '$0.03235'
'high24h' => '$0.0337'
'volume24h' => '$49.9K'
'current_supply' => '0'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03261'
'change_24h_pct' => '-1.8163%'
'ath_price' => '$0.05076'
'ath_days' => 223
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 de mai. de 2025'
'ath_pct' => '-35.74%'
'fdv' => '$326.19M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.60'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.032897'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.028828'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.011269'
'current_year_max_price_prediction' => '$0.03364'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.036578'
'grand_prediction_max_price' => '$0.105758'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.033236623796658
107 => 0.033360717285021
108 => 0.033640306250672
109 => 0.031251249150826
110 => 0.032323865649625
111 => 0.032953927352095
112 => 0.030107285658495
113 => 0.032897658398464
114 => 0.03120966098189
115 => 0.030636729305834
116 => 0.031408106329635
117 => 0.031107499953271
118 => 0.030849056243072
119 => 0.030704840212155
120 => 0.031271254364658
121 => 0.031244830467432
122 => 0.030318066977687
123 => 0.029109141785027
124 => 0.029514896761301
125 => 0.029367482174447
126 => 0.028833232694831
127 => 0.029193252338564
128 => 0.027607908029334
129 => 0.024880405544331
130 => 0.026682277231585
131 => 0.026612907131685
201 => 0.026577927581631
202 => 0.027931984354527
203 => 0.027801823039218
204 => 0.027565578977389
205 => 0.02882889388737
206 => 0.028367766951244
207 => 0.029788851513216
208 => 0.030724869715717
209 => 0.030487465222546
210 => 0.031367794866168
211 => 0.029524244536444
212 => 0.030136598005577
213 => 0.03026280320688
214 => 0.028813304777481
215 => 0.027823119040135
216 => 0.027757084940398
217 => 0.02604023932784
218 => 0.026957364396175
219 => 0.027764396503095
220 => 0.027377890752102
221 => 0.027255534577868
222 => 0.027880625736212
223 => 0.027929200672759
224 => 0.026821686971746
225 => 0.027051974140584
226 => 0.028012309916695
227 => 0.027027776142994
228 => 0.02511498784337
301 => 0.024640589898696
302 => 0.024577296467987
303 => 0.023290691617056
304 => 0.024672291437781
305 => 0.024069186091461
306 => 0.025974388654173
307 => 0.024886147168159
308 => 0.024839235252737
309 => 0.024768321012096
310 => 0.023660887067922
311 => 0.023903344720598
312 => 0.024709310885434
313 => 0.024996888692906
314 => 0.024966891971531
315 => 0.024705361211533
316 => 0.024825088654206
317 => 0.024439404845549
318 => 0.024303211865399
319 => 0.023873349357212
320 => 0.023241570222727
321 => 0.023329422986304
322 => 0.022077703206886
323 => 0.021395699837262
324 => 0.02120693029321
325 => 0.020954499769682
326 => 0.021235442992535
327 => 0.022074157242021
328 => 0.021062489913987
329 => 0.019328057240283
330 => 0.019432299599302
331 => 0.019666501230184
401 => 0.019230068040435
402 => 0.018817020653399
403 => 0.019176131844833
404 => 0.018441229856363
405 => 0.019755310624455
406 => 0.019719768422347
407 => 0.020209576470482
408 => 0.020515863494854
409 => 0.019809971065278
410 => 0.019632441028176
411 => 0.0197335702056
412 => 0.018062130170812
413 => 0.02007298416054
414 => 0.020090374109345
415 => 0.019941470809927
416 => 0.021012188481305
417 => 0.023271736733129
418 => 0.022421603790675
419 => 0.022092406619952
420 => 0.021466602557767
421 => 0.022300449314061
422 => 0.022236422893213
423 => 0.021946871136841
424 => 0.021771749331131
425 => 0.02209441662768
426 => 0.021731767282288
427 => 0.021666625494918
428 => 0.02127193713842
429 => 0.021131051352326
430 => 0.021026745125127
501 => 0.020911914217899
502 => 0.021165202585165
503 => 0.020591217822081
504 => 0.019899048466222
505 => 0.019841502073658
506 => 0.020000392723056
507 => 0.019930095438715
508 => 0.019841165517306
509 => 0.019671374078713
510 => 0.019621000585902
511 => 0.019784689999792
512 => 0.019599894195196
513 => 0.019872570471226
514 => 0.019798417612012
515 => 0.019384205768302
516 => 0.018867944450174
517 => 0.018863348641548
518 => 0.018752120987396
519 => 0.018610455846643
520 => 0.018571047845344
521 => 0.019145888501933
522 => 0.020335791457538
523 => 0.020102185035388
524 => 0.02027098961634
525 => 0.021101341082591
526 => 0.021365284844172
527 => 0.021177943814052
528 => 0.020921499857333
529 => 0.020932782089953
530 => 0.021809128720929
531 => 0.021863785385354
601 => 0.022001885143449
602 => 0.022179382359587
603 => 0.02120817235748
604 => 0.020887038186194
605 => 0.020734866999993
606 => 0.020266238644153
607 => 0.020771614148767
608 => 0.020477153484565
609 => 0.020516886288375
610 => 0.02049101024777
611 => 0.02050514031567
612 => 0.019754943312099
613 => 0.020028275671007
614 => 0.01957380761064
615 => 0.018965325894242
616 => 0.018963286050168
617 => 0.019112211088221
618 => 0.01902362464815
619 => 0.018785240815684
620 => 0.018819102113946
621 => 0.01852244151064
622 => 0.018855122082401
623 => 0.01886466217081
624 => 0.018736562029449
625 => 0.019249102351319
626 => 0.019459090539382
627 => 0.019374772282167
628 => 0.01945317454568
629 => 0.020111892436898
630 => 0.020219292195043
701 => 0.020266992073181
702 => 0.020203080555499
703 => 0.019465214699506
704 => 0.019497942187868
705 => 0.019257809593303
706 => 0.019054922855446
707 => 0.019063037260959
708 => 0.019167347417648
709 => 0.019622875989616
710 => 0.020581509014448
711 => 0.020617888436989
712 => 0.020661981358371
713 => 0.020482633287783
714 => 0.020428540193564
715 => 0.020499902947452
716 => 0.020859915109048
717 => 0.021785964131024
718 => 0.021458636557923
719 => 0.021192514145835
720 => 0.021425975247324
721 => 0.021390035740678
722 => 0.021086670136349
723 => 0.021078155674226
724 => 0.020495900087667
725 => 0.020280653454634
726 => 0.020100777257141
727 => 0.019904357145265
728 => 0.019787912718883
729 => 0.019966824280851
730 => 0.020007743471892
731 => 0.019616550214811
801 => 0.01956323201938
802 => 0.019882688877605
803 => 0.019742107824852
804 => 0.019886698923851
805 => 0.019920245299098
806 => 0.019914843560045
807 => 0.01976806079534
808 => 0.019861615752438
809 => 0.019640330388826
810 => 0.019399715791885
811 => 0.019246218669856
812 => 0.019112272072447
813 => 0.019186593429711
814 => 0.018921651361607
815 => 0.01883689106179
816 => 0.019829921438026
817 => 0.020563483653827
818 => 0.020552817368687
819 => 0.020487889101041
820 => 0.020391418865538
821 => 0.020852857710445
822 => 0.020692101643641
823 => 0.02080906511386
824 => 0.020838837225972
825 => 0.020928948442549
826 => 0.020961155457155
827 => 0.020863803489807
828 => 0.020537078396846
829 => 0.019722910529277
830 => 0.019343913189119
831 => 0.019218837754167
901 => 0.019223384008675
902 => 0.019097978013959
903 => 0.019134915699705
904 => 0.019085132594273
905 => 0.018990855436411
906 => 0.019180772080879
907 => 0.019202658204958
908 => 0.019158329390805
909 => 0.019168770431264
910 => 0.018801746783155
911 => 0.018829650793987
912 => 0.018674277715802
913 => 0.018645147136693
914 => 0.018252377524924
915 => 0.017556529224809
916 => 0.017942096730702
917 => 0.017476385402579
918 => 0.017300013465941
919 => 0.018134930782522
920 => 0.018051128240939
921 => 0.017907694717838
922 => 0.017695526643006
923 => 0.017616831440212
924 => 0.017138704299913
925 => 0.017110453997755
926 => 0.017347426719006
927 => 0.017238071961882
928 => 0.017084496466995
929 => 0.016528261592211
930 => 0.015902869429916
1001 => 0.015921746088221
1002 => 0.016120671699212
1003 => 0.016699074741942
1004 => 0.016473082666673
1005 => 0.016309122823105
1006 => 0.01627841807302
1007 => 0.016662752305088
1008 => 0.017206665763975
1009 => 0.017461857789507
1010 => 0.017208970242502
1011 => 0.016918466644935
1012 => 0.016936148252855
1013 => 0.017053776068846
1014 => 0.017066137089139
1015 => 0.016877049111375
1016 => 0.016930276269526
1017 => 0.016849419349101
1018 => 0.016353200577701
1019 => 0.016344225553653
1020 => 0.016222445464543
1021 => 0.016218758011843
1022 => 0.0160115797008
1023 => 0.015982594022929
1024 => 0.015571228911528
1025 => 0.01584199067358
1026 => 0.015660377899226
1027 => 0.015386644610152
1028 => 0.015339452887939
1029 => 0.015338034247784
1030 => 0.01561909713002
1031 => 0.015838706290159
1101 => 0.015663537131191
1102 => 0.015623654509206
1103 => 0.016049496570562
1104 => 0.015995304286618
1105 => 0.015948374118225
1106 => 0.017157964279427
1107 => 0.016200479281338
1108 => 0.015782961170839
1109 => 0.015266203224557
1110 => 0.015434462217586
1111 => 0.015469916859656
1112 => 0.014227207151468
1113 => 0.013723039977626
1114 => 0.013550028802703
1115 => 0.013450458425515
1116 => 0.013495833896726
1117 => 0.013042024307357
1118 => 0.013346991856731
1119 => 0.012954031111907
1120 => 0.012888149964232
1121 => 0.013590812454472
1122 => 0.013688583835095
1123 => 0.013271460750173
1124 => 0.013539321296786
1125 => 0.013442191339044
1126 => 0.012960767296011
1127 => 0.012942380438683
1128 => 0.012700818776762
1129 => 0.012322821551411
1130 => 0.012150066676406
1201 => 0.012060094437576
1202 => 0.012097218736841
1203 => 0.012078447555111
1204 => 0.011955952897002
1205 => 0.012085468805526
1206 => 0.011754609178914
1207 => 0.01162285820968
1208 => 0.011563349353476
1209 => 0.011269692391288
1210 => 0.011737031207973
1211 => 0.011829102842239
1212 => 0.011921355886067
1213 => 0.012724355648763
1214 => 0.012684240049873
1215 => 0.013046865526754
1216 => 0.013032774567548
1217 => 0.012929347907398
1218 => 0.012493007841086
1219 => 0.012666925214504
1220 => 0.012131634571884
1221 => 0.01253271071756
1222 => 0.012349676314014
1223 => 0.012470826601605
1224 => 0.012252987460835
1225 => 0.012373548635695
1226 => 0.011850936442356
1227 => 0.011362928529569
1228 => 0.011559317159513
1229 => 0.011772814060027
1230 => 0.01223572973834
1231 => 0.011960020979309
]
'min_raw' => 0.011269692391288
'max_raw' => 0.033640306250672
'avg_raw' => 0.02245499932098
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.011269'
'max' => '$0.03364'
'avg' => '$0.022454'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.021348827608712
'max_diff' => 0.0010217862506716
'year' => 2026
]
1 => [
'items' => [
101 => 0.012059176274759
102 => 0.011727022633396
103 => 0.011041694796269
104 => 0.011045573677401
105 => 0.010940150920337
106 => 0.01084905026626
107 => 0.011991689446896
108 => 0.011849584202331
109 => 0.011623158093392
110 => 0.011926238438023
111 => 0.012006377691675
112 => 0.012008659143564
113 => 0.012229778739371
114 => 0.01234779030729
115 => 0.012368590357628
116 => 0.012716526819234
117 => 0.012833150531772
118 => 0.013313507098509
119 => 0.012337777850253
120 => 0.012317683348482
121 => 0.011930503400012
122 => 0.01168494775562
123 => 0.011947316805066
124 => 0.012179739965928
125 => 0.011937725435497
126 => 0.011969327423966
127 => 0.011644442690176
128 => 0.011760573695258
129 => 0.011860601361371
130 => 0.011805371963498
131 => 0.011722690881749
201 => 0.012160683917256
202 => 0.012135970633684
203 => 0.012543839817765
204 => 0.012861803013761
205 => 0.013431649903705
206 => 0.012836984967258
207 => 0.012815313013395
208 => 0.013027159838698
209 => 0.012833118099127
210 => 0.012955745780443
211 => 0.013411892688429
212 => 0.013421530353807
213 => 0.013260087041281
214 => 0.013250263201042
215 => 0.013281270155209
216 => 0.01346287885425
217 => 0.013399419194533
218 => 0.013472856319359
219 => 0.013564690568463
220 => 0.013944555959672
221 => 0.014036140219464
222 => 0.013813637949163
223 => 0.013833727412919
224 => 0.013750505456003
225 => 0.01367011408839
226 => 0.013850822142568
227 => 0.014181069663404
228 => 0.014179015210716
301 => 0.014255626216456
302 => 0.014303354238352
303 => 0.014098470629327
304 => 0.013965098933632
305 => 0.014016242128423
306 => 0.014098021210648
307 => 0.013989722274248
308 => 0.013321251069842
309 => 0.013524022531153
310 => 0.013490271444973
311 => 0.01344220579398
312 => 0.013646094066314
313 => 0.013626428545058
314 => 0.013037369834092
315 => 0.013075079461572
316 => 0.013039663081437
317 => 0.013154100651162
318 => 0.01282693809481
319 => 0.01292757109367
320 => 0.01299068716718
321 => 0.013027863019357
322 => 0.013162167689143
323 => 0.013146408586282
324 => 0.013161188081183
325 => 0.013360326451357
326 => 0.014367499991663
327 => 0.014422318225258
328 => 0.014152373194206
329 => 0.014260210909681
330 => 0.014053186077485
331 => 0.014192163234284
401 => 0.014287247875329
402 => 0.013857578666172
403 => 0.013832136444136
404 => 0.013624257146815
405 => 0.01373595970631
406 => 0.013558232902455
407 => 0.013601840843501
408 => 0.013479909238663
409 => 0.013699361851031
410 => 0.013944743971146
411 => 0.014006737185121
412 => 0.01384365972891
413 => 0.013725580903286
414 => 0.013518273383072
415 => 0.013863030409337
416 => 0.013963847870096
417 => 0.013862500858134
418 => 0.013839016540987
419 => 0.013794513802428
420 => 0.01384845800735
421 => 0.013963298796553
422 => 0.013909142001142
423 => 0.013944913518631
424 => 0.01380858938139
425 => 0.014098538454327
426 => 0.014559047362196
427 => 0.014560527973635
428 => 0.014506370886298
429 => 0.01448421097299
430 => 0.014539779431125
501 => 0.014569923040126
502 => 0.014749621244221
503 => 0.014942444576707
504 => 0.01584226693401
505 => 0.015589600416776
506 => 0.016387976342847
507 => 0.017019388044229
508 => 0.017208720805187
509 => 0.017034543573901
510 => 0.016438692674541
511 => 0.016409457386762
512 => 0.017299910192166
513 => 0.017048316489317
514 => 0.017018390218928
515 => 0.016700025263217
516 => 0.016888218382309
517 => 0.016847057786537
518 => 0.016782083772466
519 => 0.017141143134047
520 => 0.017813270205477
521 => 0.017708512898226
522 => 0.017630316427916
523 => 0.017287682257665
524 => 0.017494024558269
525 => 0.01742055001725
526 => 0.017736243273561
527 => 0.017549233581984
528 => 0.017046410419569
529 => 0.01712648666551
530 => 0.017114383302027
531 => 0.017363469664854
601 => 0.017288700121437
602 => 0.017099783348667
603 => 0.017810972948216
604 => 0.017764792251466
605 => 0.017830265921081
606 => 0.017859089455286
607 => 0.018291978031965
608 => 0.018469318630941
609 => 0.018509578051693
610 => 0.018678037904706
611 => 0.018505386617086
612 => 0.019196114865846
613 => 0.01965540884616
614 => 0.020188902439348
615 => 0.020968479968554
616 => 0.021261608331031
617 => 0.02120865731604
618 => 0.021799724101489
619 => 0.022861857976264
620 => 0.021423344939701
621 => 0.022938102660184
622 => 0.022458547854598
623 => 0.021321532037376
624 => 0.021248321623283
625 => 0.022018321935731
626 => 0.023726108518956
627 => 0.023298327349413
628 => 0.023726808215701
629 => 0.023226962525075
630 => 0.023202140973505
701 => 0.023702531826184
702 => 0.024871722328352
703 => 0.024316283747223
704 => 0.023519926342045
705 => 0.024107944257335
706 => 0.023598548720622
707 => 0.022450738005575
708 => 0.023298000233215
709 => 0.022731460110231
710 => 0.022896806637047
711 => 0.024087589709075
712 => 0.023944311539428
713 => 0.024129726758153
714 => 0.023802473750264
715 => 0.023496767837833
716 => 0.022926145050261
717 => 0.022757211774225
718 => 0.022803898854139
719 => 0.022757188638427
720 => 0.022437930433074
721 => 0.022368986654025
722 => 0.022254077335114
723 => 0.02228969253794
724 => 0.02207362940048
725 => 0.02248138518179
726 => 0.022557068247932
727 => 0.022853798901559
728 => 0.022884606462385
729 => 0.023710997109038
730 => 0.023255835027792
731 => 0.023561197048695
801 => 0.023533882595367
802 => 0.021346174617869
803 => 0.021647621474857
804 => 0.022116578185096
805 => 0.02190531382279
806 => 0.021606635442735
807 => 0.021365436636719
808 => 0.020999995781762
809 => 0.021514346767445
810 => 0.022190663618489
811 => 0.02290175897382
812 => 0.023756093450437
813 => 0.023565415940805
814 => 0.022885787785042
815 => 0.022916275407641
816 => 0.02310473789411
817 => 0.02286066185051
818 => 0.022788679060322
819 => 0.023094848564109
820 => 0.023096956985214
821 => 0.022816117999477
822 => 0.022504016859823
823 => 0.022502709144652
824 => 0.02244717376139
825 => 0.023236842146385
826 => 0.023671079913653
827 => 0.023720864573861
828 => 0.023667729009358
829 => 0.02368817877926
830 => 0.023435505390263
831 => 0.024013041829545
901 => 0.024543046378664
902 => 0.024400993837604
903 => 0.024188036884597
904 => 0.024018406414131
905 => 0.024361034289696
906 => 0.024345777609743
907 => 0.024538417251293
908 => 0.024529678004412
909 => 0.024464900538502
910 => 0.024400996151011
911 => 0.024654369823987
912 => 0.024581402275227
913 => 0.024508321387709
914 => 0.024361746479668
915 => 0.024381668444022
916 => 0.024168748261036
917 => 0.024070241641822
918 => 0.022588938439268
919 => 0.022193085820567
920 => 0.022317629112733
921 => 0.02235863199828
922 => 0.022186356431322
923 => 0.022433355340377
924 => 0.022394860822037
925 => 0.022544620474357
926 => 0.022451057145396
927 => 0.022454897017053
928 => 0.022730046817722
929 => 0.022809923975427
930 => 0.022769297808331
1001 => 0.022797750983182
1002 => 0.023453442388287
1003 => 0.023360224038312
1004 => 0.023310703647798
1005 => 0.023324421134399
1006 => 0.023491964346586
1007 => 0.023538867298478
1008 => 0.023340136195499
1009 => 0.023433858932515
1010 => 0.02383291845154
1011 => 0.023972566698387
1012 => 0.024418256867359
1013 => 0.024228919762068
1014 => 0.024576456213147
1015 => 0.025644664779856
1016 => 0.026498023697353
1017 => 0.025713239570274
1018 => 0.027280324547655
1019 => 0.028500524987535
1020 => 0.028453691662302
1021 => 0.028240921491864
1022 => 0.026851755731768
1023 => 0.025573424688033
1024 => 0.02664280288692
1025 => 0.026645528951869
1026 => 0.0265536684162
1027 => 0.025983130518531
1028 => 0.026533814934074
1029 => 0.026577526263187
1030 => 0.026553059542664
1031 => 0.026115629474219
1101 => 0.025447754610292
1102 => 0.025578255760037
1103 => 0.02579201930547
1104 => 0.025387320318218
1105 => 0.025257994470214
1106 => 0.025498435826902
1107 => 0.026273187976096
1108 => 0.026126725570124
1109 => 0.026122900844803
1110 => 0.026749529127275
1111 => 0.026300998511872
1112 => 0.025579901797457
1113 => 0.025397815366971
1114 => 0.024751531206859
1115 => 0.025197921978233
1116 => 0.025213986787401
1117 => 0.024969503123922
1118 => 0.025599740299322
1119 => 0.0255939325528
1120 => 0.026192248952418
1121 => 0.027336005191111
1122 => 0.026997740190503
1123 => 0.026604374797924
1124 => 0.026647144522936
1125 => 0.027116222841649
1126 => 0.026832607382139
1127 => 0.026934597478816
1128 => 0.027116068467422
1129 => 0.027225554420519
1130 => 0.026631391179179
1201 => 0.026492863305509
1202 => 0.026209483892658
1203 => 0.026135555493372
1204 => 0.026366362112234
1205 => 0.026305552722682
1206 => 0.025212636602396
1207 => 0.025098420786898
1208 => 0.025101923622897
1209 => 0.024814722524162
1210 => 0.024376671912429
1211 => 0.02552784276542
1212 => 0.025435387635299
1213 => 0.025333324327104
1214 => 0.025345826499993
1215 => 0.025845510750476
1216 => 0.025555668650536
1217 => 0.026326261377412
1218 => 0.026167850678904
1219 => 0.026005377343718
1220 => 0.025982918579736
1221 => 0.025920380207263
1222 => 0.025705912858549
1223 => 0.025446930647487
1224 => 0.025275928159089
1225 => 0.023315707646252
1226 => 0.023679513171357
1227 => 0.024098038266072
1228 => 0.024242511451634
1229 => 0.023995380070491
1230 => 0.02571567111176
1231 => 0.026029984862137
]
'min_raw' => 0.01084905026626
'max_raw' => 0.028500524987535
'avg_raw' => 0.019674787626897
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.010849'
'max' => '$0.02850052'
'avg' => '$0.019674'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00042064212502831
'max_diff' => -0.0051397812631371
'year' => 2027
]
2 => [
'items' => [
101 => 0.025077908010067
102 => 0.024899813304086
103 => 0.025727346971035
104 => 0.025228243007988
105 => 0.025452989491987
106 => 0.024967210523335
107 => 0.025954275883852
108 => 0.025946756099592
109 => 0.025562765380468
110 => 0.025887311706816
111 => 0.025830913795921
112 => 0.025397389219758
113 => 0.02596801938618
114 => 0.025968302411623
115 => 0.025598719693145
116 => 0.025167127990023
117 => 0.025089969587246
118 => 0.025031841095526
119 => 0.025438693446366
120 => 0.025803475991934
121 => 0.026482245871974
122 => 0.02665290474699
123 => 0.027318997697585
124 => 0.026922371776983
125 => 0.02709819091042
126 => 0.027289067450901
127 => 0.02738058068366
128 => 0.02723146478175
129 => 0.02826618130882
130 => 0.0283535430866
131 => 0.028382834735013
201 => 0.028033934143852
202 => 0.028343839530003
203 => 0.028198845062811
204 => 0.028576080385823
205 => 0.028635235701253
206 => 0.028585133253595
207 => 0.028603910084416
208 => 0.027720962065065
209 => 0.02767517655234
210 => 0.02705088783754
211 => 0.02730529010333
212 => 0.026829697261254
213 => 0.026980512650625
214 => 0.027046990637239
215 => 0.027012266309624
216 => 0.027319673625736
217 => 0.027058314607876
218 => 0.026368545188341
219 => 0.025678587841589
220 => 0.025669925989128
221 => 0.025488272398486
222 => 0.025356970123968
223 => 0.025382263600238
224 => 0.025471401109697
225 => 0.025351789289875
226 => 0.025377314536107
227 => 0.025801203697387
228 => 0.025886211645642
229 => 0.025597321422721
301 => 0.02443738549103
302 => 0.024152734303914
303 => 0.024357335932335
304 => 0.024259549531982
305 => 0.01957934985252
306 => 0.020678893344827
307 => 0.020025581938667
308 => 0.020326657892038
309 => 0.019659796120517
310 => 0.019978057511107
311 => 0.01991928625331
312 => 0.021687319651082
313 => 0.021659714241426
314 => 0.021672927490182
315 => 0.021042224700101
316 => 0.022046951370148
317 => 0.022541915856616
318 => 0.022450311103224
319 => 0.022473366046106
320 => 0.022077205742716
321 => 0.021676763187883
322 => 0.021232610766906
323 => 0.022057791066183
324 => 0.021966045103201
325 => 0.022176477333126
326 => 0.022711665742313
327 => 0.022790474268549
328 => 0.022896393727008
329 => 0.022858429141011
330 => 0.023762899602863
331 => 0.023653362262044
401 => 0.023917315737373
402 => 0.023374343412423
403 => 0.022759918687336
404 => 0.022876700740518
405 => 0.022865453689694
406 => 0.022722265823949
407 => 0.022593002221116
408 => 0.022377814742194
409 => 0.023058699767258
410 => 0.023031057078683
411 => 0.02347856007561
412 => 0.023399459574091
413 => 0.02287120706577
414 => 0.022890073707449
415 => 0.023016960939733
416 => 0.023456119099444
417 => 0.023586491141413
418 => 0.023526097617145
419 => 0.023669044609455
420 => 0.023782024083759
421 => 0.023683233091965
422 => 0.025081905203996
423 => 0.024501079028001
424 => 0.024784169664818
425 => 0.024851685113632
426 => 0.024678745711192
427 => 0.024716250075086
428 => 0.024773058967057
429 => 0.025117991434785
430 => 0.026023194037118
501 => 0.026424102107769
502 => 0.027630253818777
503 => 0.026390812273411
504 => 0.026317268941428
505 => 0.026534533286872
506 => 0.027242672025359
507 => 0.027816551960813
508 => 0.028006941043331
509 => 0.028032104103567
510 => 0.028389286679198
511 => 0.028594017070488
512 => 0.028345915319682
513 => 0.028135675063209
514 => 0.027382620560506
515 => 0.027469788669693
516 => 0.028070290501539
517 => 0.028918534708401
518 => 0.029646416482658
519 => 0.029391537654554
520 => 0.031336083196573
521 => 0.031528876944308
522 => 0.031502239082139
523 => 0.031941451931036
524 => 0.031069703870117
525 => 0.030697014684751
526 => 0.028181131392987
527 => 0.028887991976427
528 => 0.029915455346923
529 => 0.029779466717048
530 => 0.029033295353219
531 => 0.029645850444767
601 => 0.029443320575133
602 => 0.02928357686398
603 => 0.030015393772613
604 => 0.029210731020189
605 => 0.029907428220433
606 => 0.029013906854711
607 => 0.029392701919571
608 => 0.029177679520501
609 => 0.029316825364853
610 => 0.028503381601983
611 => 0.028942296111197
612 => 0.028485121315383
613 => 0.028484904555004
614 => 0.028474812396047
615 => 0.029012676515899
616 => 0.029030216245538
617 => 0.0286327338483
618 => 0.028575450425016
619 => 0.028787257264354
620 => 0.028539286927788
621 => 0.02865531068756
622 => 0.028542801169276
623 => 0.028517472906897
624 => 0.028315653003014
625 => 0.028228703439267
626 => 0.028262798603627
627 => 0.028146414230406
628 => 0.028076288435734
629 => 0.028460862610447
630 => 0.028255400142576
701 => 0.028429372540499
702 => 0.028231109035998
703 => 0.027543841350103
704 => 0.027148586436221
705 => 0.025850401487313
706 => 0.02621856512843
707 => 0.026462658003383
708 => 0.026381985309667
709 => 0.026555301471957
710 => 0.026565941676706
711 => 0.026509594825597
712 => 0.026444352390491
713 => 0.026412595981214
714 => 0.026649282238425
715 => 0.026786686577229
716 => 0.026487155988926
717 => 0.026416980162965
718 => 0.026719822125276
719 => 0.02690455554734
720 => 0.028268523343114
721 => 0.028167476203245
722 => 0.028421084694816
723 => 0.028392532270605
724 => 0.028658354372773
725 => 0.029092861165014
726 => 0.028209387366377
727 => 0.028362727869595
728 => 0.028325132319355
729 => 0.02873559067879
730 => 0.028736872084985
731 => 0.028490781794588
801 => 0.028624191333371
802 => 0.028549725788722
803 => 0.028684295092525
804 => 0.028166126657087
805 => 0.028797199878625
806 => 0.029154977729777
807 => 0.029159945475587
808 => 0.029329529337533
809 => 0.029501836362904
810 => 0.029832564693326
811 => 0.029492612529272
812 => 0.028881071679815
813 => 0.028925222953881
814 => 0.028566676777599
815 => 0.028572704003599
816 => 0.028540530198849
817 => 0.028637086208834
818 => 0.028187315271463
819 => 0.028292875611475
820 => 0.028145090517298
821 => 0.028362406613662
822 => 0.028128610417612
823 => 0.028325114189643
824 => 0.028409918703448
825 => 0.0287228491851
826 => 0.028082390331036
827 => 0.026776451372346
828 => 0.027050975574442
829 => 0.026644932716132
830 => 0.026682513528582
831 => 0.026758432750675
901 => 0.026512353712649
902 => 0.026559297838263
903 => 0.026557620663755
904 => 0.026543167679931
905 => 0.026479153018117
906 => 0.026386319093572
907 => 0.026756140876184
908 => 0.026818980803501
909 => 0.026958666177705
910 => 0.027374275101841
911 => 0.027332745969587
912 => 0.027400481707321
913 => 0.027252614972167
914 => 0.026689372642334
915 => 0.026719959410685
916 => 0.026338541919234
917 => 0.026948912474905
918 => 0.026804368670824
919 => 0.02671118034002
920 => 0.026685753040577
921 => 0.027102392178849
922 => 0.027227057139038
923 => 0.027149374301802
924 => 0.026990044536261
925 => 0.027296004787716
926 => 0.027377866843579
927 => 0.02739619273893
928 => 0.027938295642449
929 => 0.027426490269225
930 => 0.027549686909468
1001 => 0.028510831928611
1002 => 0.027639206025194
1003 => 0.028100925705812
1004 => 0.028078326930119
1005 => 0.02831452709498
1006 => 0.028058951622434
1007 => 0.02806211978672
1008 => 0.028271849531532
1009 => 0.027977321929903
1010 => 0.027904392753788
1011 => 0.027803641619315
1012 => 0.028023628035531
1013 => 0.028155499942923
1014 => 0.029218290667259
1015 => 0.029904901944325
1016 => 0.029875094337979
1017 => 0.030147480062479
1018 => 0.030024767798824
1019 => 0.029628497529624
1020 => 0.030304882559138
1021 => 0.030090846034648
1022 => 0.030108490945672
1023 => 0.030107834201203
1024 => 0.030250149778591
1025 => 0.03014930614898
1026 => 0.029950533003632
1027 => 0.030082487893868
1028 => 0.030474346743135
1029 => 0.031690688634955
1030 => 0.032371369672004
1031 => 0.031649710781836
1101 => 0.032147501420876
1102 => 0.031849004418393
1103 => 0.031794758633525
1104 => 0.032107407941281
1105 => 0.032420604500263
1106 => 0.032400655233442
1107 => 0.032173290614443
1108 => 0.032044858110333
1109 => 0.033017392059494
1110 => 0.033733938506551
1111 => 0.03368507484265
1112 => 0.033900743163795
1113 => 0.034533952025044
1114 => 0.034591844707685
1115 => 0.034584551560321
1116 => 0.034441058505918
1117 => 0.03506453486238
1118 => 0.035584649807963
1119 => 0.034407844009737
1120 => 0.034855956252182
1121 => 0.035057128275091
1122 => 0.03535250848977
1123 => 0.035850864423406
1124 => 0.036392211149717
1125 => 0.036468763512382
1126 => 0.036414445947704
1127 => 0.03605741322952
1128 => 0.03664976127706
1129 => 0.036996744871037
1130 => 0.037203365660673
1201 => 0.037727321604767
1202 => 0.035058370645017
1203 => 0.033169154500237
1204 => 0.032874126118617
1205 => 0.033474077934058
1206 => 0.033632280443264
1207 => 0.033568509210172
1208 => 0.031442024679205
1209 => 0.032862930617648
1210 => 0.034391705934248
1211 => 0.034450432420292
1212 => 0.035215769308967
1213 => 0.035464994372138
1214 => 0.036081190882521
1215 => 0.036042647623024
1216 => 0.036192681667474
1217 => 0.036158191438882
1218 => 0.037299565718882
1219 => 0.038558671045442
1220 => 0.038515072231693
1221 => 0.038334060943941
1222 => 0.038602893573263
1223 => 0.0399024252042
1224 => 0.039782785156193
1225 => 0.039899005271916
1226 => 0.041431226303184
1227 => 0.043423331599732
1228 => 0.042497798685384
1229 => 0.044505938794598
1230 => 0.045769956546415
1231 => 0.047955944546308
]
'min_raw' => 0.01957934985252
'max_raw' => 0.047955944546308
'avg_raw' => 0.033767647199414
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.019579'
'max' => '$0.047955'
'avg' => '$0.033767'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0087302995862606
'max_diff' => 0.019455419558773
'year' => 2028
]
3 => [
'items' => [
101 => 0.047682248082503
102 => 0.048533237169341
103 => 0.047192274290118
104 => 0.04411315246611
105 => 0.043625869651056
106 => 0.044601422186761
107 => 0.046999722902765
108 => 0.044525891162386
109 => 0.045026344101539
110 => 0.044882213621396
111 => 0.044874533520624
112 => 0.045167651729854
113 => 0.044742468479348
114 => 0.043010195427782
115 => 0.043804085958966
116 => 0.043497526699121
117 => 0.043837677053425
118 => 0.045673328226929
119 => 0.044861743086665
120 => 0.044006804069219
121 => 0.045079087323252
122 => 0.046444472382138
123 => 0.046359029038986
124 => 0.046193233240723
125 => 0.047127815474741
126 => 0.048671471518438
127 => 0.049088715544136
128 => 0.049396716553729
129 => 0.049439184689232
130 => 0.049876632878712
131 => 0.047524363712736
201 => 0.051257475289697
202 => 0.051902080533912
203 => 0.051780921464149
204 => 0.052497373063959
205 => 0.052286574828672
206 => 0.051981161258971
207 => 0.053116889438295
208 => 0.051814868729239
209 => 0.049966814252582
210 => 0.048952935016315
211 => 0.050288092981936
212 => 0.051103427360949
213 => 0.051642311520471
214 => 0.05180537754154
215 => 0.047706963672039
216 => 0.045498145904833
217 => 0.046913972769465
218 => 0.048641379259467
219 => 0.047514767882465
220 => 0.047558928915486
221 => 0.045952677160144
222 => 0.048783496898363
223 => 0.048371070273446
224 => 0.050510740333086
225 => 0.050000090901428
226 => 0.051744908773551
227 => 0.051285439752606
228 => 0.05319266996998
301 => 0.053953515739887
302 => 0.05523109420375
303 => 0.056170886122447
304 => 0.056722749912461
305 => 0.056689618080498
306 => 0.058876377353981
307 => 0.057586921809958
308 => 0.055967061745327
309 => 0.055937763587351
310 => 0.056776712068418
311 => 0.058534917930458
312 => 0.05899079512963
313 => 0.059245568292056
314 => 0.058855374325083
315 => 0.057455762748158
316 => 0.056851417565433
317 => 0.05736633717068
318 => 0.056736634741009
319 => 0.057823677797917
320 => 0.05931642009492
321 => 0.059008174713532
322 => 0.060038592808783
323 => 0.061104967134223
324 => 0.06262993031347
325 => 0.063028612157748
326 => 0.063687618085827
327 => 0.064365951657991
328 => 0.064583814119767
329 => 0.064999781158051
330 => 0.064997588806432
331 => 0.066251133474109
401 => 0.067633832061604
402 => 0.068155768768838
403 => 0.069355933447363
404 => 0.067300693494175
405 => 0.068859616607563
406 => 0.070265804278216
407 => 0.068589289366951
408 => 0.070899974594254
409 => 0.070989693265505
410 => 0.072344338682481
411 => 0.070971146033716
412 => 0.070155748622266
413 => 0.072509770396581
414 => 0.073648807382181
415 => 0.073305720172327
416 => 0.07069480956504
417 => 0.069175147604375
418 => 0.065197899132414
419 => 0.0699091217518
420 => 0.072203820861454
421 => 0.070688866848705
422 => 0.071452921533123
423 => 0.075621356145748
424 => 0.077208426160082
425 => 0.076878326691557
426 => 0.076934108067838
427 => 0.077790462240214
428 => 0.081588008243386
429 => 0.079312430651858
430 => 0.081052024456315
501 => 0.081974698737627
502 => 0.082831730031306
503 => 0.080727132041553
504 => 0.077989080979568
505 => 0.077121825272673
506 => 0.070538234528617
507 => 0.070195530039303
508 => 0.070003159624443
509 => 0.068790291370083
510 => 0.067837309154731
511 => 0.067079462315121
512 => 0.065090645895763
513 => 0.065761813054978
514 => 0.062592054780768
515 => 0.064619953795272
516 => 0.059560943053143
517 => 0.063774237528504
518 => 0.061481132900558
519 => 0.063020890985373
520 => 0.063015518914469
521 => 0.060180336099579
522 => 0.058545061820707
523 => 0.059587122237031
524 => 0.06070429372219
525 => 0.060885551037041
526 => 0.062333993028709
527 => 0.062738222054427
528 => 0.061513389234852
529 => 0.059456106300238
530 => 0.059933966204321
531 => 0.058535378005003
601 => 0.056084405981615
602 => 0.057844736878678
603 => 0.058445791243221
604 => 0.058711251091915
605 => 0.056301001602953
606 => 0.055543648884459
607 => 0.055140440651937
608 => 0.05914497335783
609 => 0.05936435069918
610 => 0.058241985204002
611 => 0.063315183669271
612 => 0.06216696261082
613 => 0.063449806854099
614 => 0.059890605426716
615 => 0.060026571714343
616 => 0.058341588719886
617 => 0.059285066606177
618 => 0.058618246845859
619 => 0.059208842916595
620 => 0.059562843766276
621 => 0.061247550271603
622 => 0.063793474170614
623 => 0.060995911299718
624 => 0.059776973095031
625 => 0.06053319550165
626 => 0.062547115424301
627 => 0.065598307197781
628 => 0.063791940256924
629 => 0.064593575231176
630 => 0.064768696810793
701 => 0.063436748703944
702 => 0.065647418024352
703 => 0.066832133672604
704 => 0.068047406785349
705 => 0.069102594377967
706 => 0.06756199997969
707 => 0.069210656821379
708 => 0.067882130434087
709 => 0.066690304924153
710 => 0.066692112431488
711 => 0.065944462879314
712 => 0.064495797662071
713 => 0.064228641569499
714 => 0.065618421301152
715 => 0.066732893033307
716 => 0.066824686263127
717 => 0.067441715077673
718 => 0.067806866374219
719 => 0.071385845479488
720 => 0.072825340482495
721 => 0.074585527723926
722 => 0.075271219853181
723 => 0.077334907328004
724 => 0.075668312087582
725 => 0.075307733723942
726 => 0.07030190293705
727 => 0.071121607447971
728 => 0.072434033459678
729 => 0.070323544358586
730 => 0.071662163925601
731 => 0.071926435783969
801 => 0.07025183074652
802 => 0.071146309652434
803 => 0.068770838872839
804 => 0.063845252942196
805 => 0.065652901609546
806 => 0.066983939476677
807 => 0.065084384324495
808 => 0.068489263411845
809 => 0.066500203339986
810 => 0.065869766788929
811 => 0.063410209036394
812 => 0.06457102561853
813 => 0.066141046667163
814 => 0.065170956193645
815 => 0.067184039586011
816 => 0.070035102539331
817 => 0.072066939783601
818 => 0.072222919017793
819 => 0.07091658379225
820 => 0.073009994328102
821 => 0.073025242538428
822 => 0.070663866902153
823 => 0.06921753747313
824 => 0.068888928383753
825 => 0.069709858316624
826 => 0.070706618807156
827 => 0.072278232287917
828 => 0.073227925399189
829 => 0.075704221355079
830 => 0.076374236039774
831 => 0.077110379042494
901 => 0.078094093112222
902 => 0.079275294072042
903 => 0.076690893617765
904 => 0.076793576665738
905 => 0.074387018746175
906 => 0.071815266473807
907 => 0.073766905875088
908 => 0.076318414776554
909 => 0.075733095815391
910 => 0.075667235475279
911 => 0.075777994299213
912 => 0.075336682917226
913 => 0.073340647892262
914 => 0.072338251598566
915 => 0.073631598556002
916 => 0.074318954903629
917 => 0.075384984655026
918 => 0.075253573987008
919 => 0.077999552143368
920 => 0.079066556220861
921 => 0.078793570918159
922 => 0.078843806783615
923 => 0.080775566699157
924 => 0.082924081021967
925 => 0.084936448206715
926 => 0.086983514540221
927 => 0.08451569617682
928 => 0.083262690205762
929 => 0.084555472528376
930 => 0.083869504030768
1001 => 0.087811282489496
1002 => 0.088084202677623
1003 => 0.092025696100903
1004 => 0.095766642703902
1005 => 0.093417021168578
1006 => 0.09563260844711
1007 => 0.098028946728323
1008 => 0.10265187206466
1009 => 0.10109503344785
1010 => 0.099902519466155
1011 => 0.098775599515634
1012 => 0.10112054103916
1013 => 0.10413727084783
1014 => 0.10478704555474
1015 => 0.10583992881297
1016 => 0.10473295080738
1017 => 0.10606618388548
1018 => 0.11077308250351
1019 => 0.10950123694797
1020 => 0.10769501179974
1021 => 0.11141065620332
1022 => 0.11275533346877
1023 => 0.12219298273068
1024 => 0.13410840477368
1025 => 0.129175341807
1026 => 0.12611323043463
1027 => 0.12683289924139
1028 => 0.131184008009
1029 => 0.13258144604787
1030 => 0.12878272773245
1031 => 0.1301244992612
1101 => 0.13751779230469
1102 => 0.14148405681728
1103 => 0.13609733686879
1104 => 0.12123559017131
1105 => 0.10753238098748
1106 => 0.11116708912658
1107 => 0.11075502602173
1108 => 0.11869819706487
1109 => 0.1094709038521
1110 => 0.10962626780509
1111 => 0.11773369521344
1112 => 0.11557077257738
1113 => 0.11206711491318
1114 => 0.10755796156581
1115 => 0.099222374556993
1116 => 0.091839312688244
1117 => 0.10631919723046
1118 => 0.10569479827904
1119 => 0.10479057606664
1120 => 0.10680282475327
1121 => 0.1165737331888
1122 => 0.11634848212402
1123 => 0.11491554977397
1124 => 0.1160024163322
1125 => 0.1118765819506
1126 => 0.11293990341424
1127 => 0.10753021032913
1128 => 0.10997561753234
1129 => 0.1120595976374
1130 => 0.11247798749735
1201 => 0.11342064121532
1202 => 0.10536576840455
1203 => 0.10898216981794
1204 => 0.11110646683732
1205 => 0.10150881562117
1206 => 0.11091675213158
1207 => 0.10522555098939
1208 => 0.10329387184275
1209 => 0.10589462333432
1210 => 0.10488110794874
1211 => 0.10400974693584
1212 => 0.10352351251876
1213 => 0.1054332173797
1214 => 0.10534412736535
1215 => 0.10221947955511
1216 => 0.098143503863598
1217 => 0.099511535095012
1218 => 0.099014516523278
1219 => 0.097213257102643
1220 => 0.098427088467259
1221 => 0.093081989443486
1222 => 0.083886024387155
1223 => 0.089961160583394
1224 => 0.089727274448316
1225 => 0.089609338453117
1226 => 0.09417463540016
1227 => 0.093735787438022
1228 => 0.092939274089531
1229 => 0.097198628510365
1230 => 0.095643906850359
1231 => 0.100435192668
]
'min_raw' => 0.043010195427782
'max_raw' => 0.14148405681728
'avg_raw' => 0.09224712612253
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.04301'
'max' => '$0.141484'
'avg' => '$0.092247'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.023430845575261
'max_diff' => 0.09352811227097
'year' => 2029
]
4 => [
'items' => [
101 => 0.10359104338844
102 => 0.10279061756466
103 => 0.10575871042079
104 => 0.099543051771549
105 => 0.10160764424588
106 => 0.10203315389344
107 => 0.097146068737974
108 => 0.093807588391952
109 => 0.093584949814335
110 => 0.087796484965264
111 => 0.090888636164782
112 => 0.093609601258447
113 => 0.092306470134003
114 => 0.091893937749938
115 => 0.094001476232764
116 => 0.094165250022727
117 => 0.090431190255624
118 => 0.091207619523499
119 => 0.094445458641162
120 => 0.091126034285173
121 => 0.084676934986377
122 => 0.083077469194502
123 => 0.082864070973863
124 => 0.078526192891066
125 => 0.083184353146859
126 => 0.081150941364271
127 => 0.08757446482145
128 => 0.083905382672757
129 => 0.083747215874628
130 => 0.083508123561232
131 => 0.079774332699882
201 => 0.08059179560373
202 => 0.083309166799234
203 => 0.084278755455168
204 => 0.084177619414749
205 => 0.08329585019792
206 => 0.083699519629995
207 => 0.082399159741527
208 => 0.081939975600259
209 => 0.080490664141867
210 => 0.078360576680539
211 => 0.078656778406623
212 => 0.074436517778031
213 => 0.07213709580139
214 => 0.07150064610415
215 => 0.070649558969937
216 => 0.071596778660616
217 => 0.074424562309918
218 => 0.071013655281092
219 => 0.065165894427479
220 => 0.06551735481888
221 => 0.066306981968833
222 => 0.064835516998802
223 => 0.063442898895362
224 => 0.064653667349625
225 => 0.06217589398628
226 => 0.066606409042092
227 => 0.066486576026207
228 => 0.0681379980578
301 => 0.069170666144747
302 => 0.066790700534598
303 => 0.066192145619756
304 => 0.066533109702054
305 => 0.060897732928552
306 => 0.06767746754826
307 => 0.067736098974785
308 => 0.0672340611047
309 => 0.070844060488871
310 => 0.078462285176517
311 => 0.075596002606647
312 => 0.074486091361744
313 => 0.072376149273843
314 => 0.075187521830006
315 => 0.074971652281937
316 => 0.073995408319471
317 => 0.073404972924906
318 => 0.07449286824313
319 => 0.073270170655773
320 => 0.073050540571601
321 => 0.071719821221407
322 => 0.07124481495726
323 => 0.07089313922983
324 => 0.070505978808873
325 => 0.071359958223138
326 => 0.069424728520064
327 => 0.067091031211064
328 => 0.066897009530775
329 => 0.067432720448613
330 => 0.067195708246457
331 => 0.066895874807537
401 => 0.066323411117859
402 => 0.066153573369883
403 => 0.066705463657243
404 => 0.066082411700017
405 => 0.067001758802301
406 => 0.066751747260275
407 => 0.06535520310986
408 => 0.063614592031576
409 => 0.063599096941924
410 => 0.063224085140282
411 => 0.06274645122749
412 => 0.062613584399734
413 => 0.064551699807515
414 => 0.068563540698708
415 => 0.06777592033655
416 => 0.06834505676679
417 => 0.071144644708543
418 => 0.07203454952868
419 => 0.071402916165897
420 => 0.070538297461472
421 => 0.070576336296453
422 => 0.073531000147355
423 => 0.073715278907471
424 => 0.074180891883704
425 => 0.074779336140374
426 => 0.071504833810555
427 => 0.070422107531189
428 => 0.069909051752659
429 => 0.06832903853236
430 => 0.070032947330357
501 => 0.069040152642414
502 => 0.069174114564513
503 => 0.069086871687005
504 => 0.069134512197462
505 => 0.066605170622839
506 => 0.067526729754352
507 => 0.065994458958879
508 => 0.063942920369208
509 => 0.063936042892493
510 => 0.064438154055902
511 => 0.064139478688295
512 => 0.063335750953709
513 => 0.063449916684919
514 => 0.062449704748691
515 => 0.063571360523399
516 => 0.06360352559754
517 => 0.063171627027275
518 => 0.064899692506881
519 => 0.065607682343842
520 => 0.06532339745273
521 => 0.065587736158036
522 => 0.067808649518491
523 => 0.068170755301488
524 => 0.06833157877093
525 => 0.068116096626904
526 => 0.065628330377277
527 => 0.065738673389247
528 => 0.064929049581151
529 => 0.064245002779365
530 => 0.064272361064083
531 => 0.064624050040061
601 => 0.066159896424442
602 => 0.069391994597283
603 => 0.06951465036031
604 => 0.069663312723219
605 => 0.069058628181551
606 => 0.068876249537732
607 => 0.069116854044851
608 => 0.070330660182921
609 => 0.073452899115191
610 => 0.0723492913492
611 => 0.071452041056771
612 => 0.072239171460173
613 => 0.072117998904301
614 => 0.071095180588994
615 => 0.071066473485486
616 => 0.069103358123615
617 => 0.068377639072305
618 => 0.067771173913901
619 => 0.067108929793098
620 => 0.066716329279662
621 => 0.067319542102042
622 => 0.067457504011525
623 => 0.066138568633035
624 => 0.065958802614581
625 => 0.067035873715853
626 => 0.066561894881441
627 => 0.067049393866743
628 => 0.067162497813022
629 => 0.067144285472667
630 => 0.066649397133418
701 => 0.066964824203072
702 => 0.066218745150005
703 => 0.065407496237244
704 => 0.064889969973496
705 => 0.064438359668478
706 => 0.064688939313447
707 => 0.063795668633169
708 => 0.063509893364562
709 => 0.066857964609207
710 => 0.069331220835458
711 => 0.069295258710412
712 => 0.069076348522898
713 => 0.068751092388562
714 => 0.070306865670799
715 => 0.069764865367937
716 => 0.07015921587391
717 => 0.070259594628519
718 => 0.070563410886573
719 => 0.070671999084938
720 => 0.070343770130127
721 => 0.069242193667991
722 => 0.066497169859096
723 => 0.065219353866005
724 => 0.064797653304576
725 => 0.064812981319061
726 => 0.064390166252307
727 => 0.064514704238708
728 => 0.064346857022998
729 => 0.064028995003045
730 => 0.064669312229427
731 => 0.0647431028248
801 => 0.064593645132941
802 => 0.064628847829821
803 => 0.063391401975446
804 => 0.063485482296163
805 => 0.062961631115262
806 => 0.062863415333963
807 => 0.061539165165585
808 => 0.059193064039172
809 => 0.060493031804752
810 => 0.058922853547061
811 => 0.05832820324879
812 => 0.061143185273708
813 => 0.060860639153854
814 => 0.06037704301651
815 => 0.059661703539112
816 => 0.05939637716857
817 => 0.057784338133277
818 => 0.057689090267179
819 => 0.058488060341785
820 => 0.058119363143236
821 => 0.057601572639924
822 => 0.055726187924513
823 => 0.053617634585849
824 => 0.05368127855725
825 => 0.054351970143249
826 => 0.056302096384625
827 => 0.055540148324593
828 => 0.054987346264693
829 => 0.054883823056043
830 => 0.056179632752819
831 => 0.058013474954283
901 => 0.058873872685303
902 => 0.05802124466453
903 => 0.057041791503018
904 => 0.057101406278611
905 => 0.057497996672736
906 => 0.057539672715672
907 => 0.05690214939694
908 => 0.057081608476849
909 => 0.056808993724385
910 => 0.055135957491722
911 => 0.055105697571529
912 => 0.05469510749868
913 => 0.054682674994452
914 => 0.053984158854042
915 => 0.053886431617385
916 => 0.052499485423702
917 => 0.053412377608444
918 => 0.05280005745991
919 => 0.051877146564348
920 => 0.051718036378087
921 => 0.051713253333757
922 => 0.052660876464399
923 => 0.053401304080429
924 => 0.052810709031051
925 => 0.052676241986511
926 => 0.054111998227717
927 => 0.053929285158815
928 => 0.053771056819519
929 => 0.057849274498899
930 => 0.054621046978376
1001 => 0.053213355518642
1002 => 0.051471070023865
1003 => 0.05203836696633
1004 => 0.052157904767434
1005 => 0.047968022223059
1006 => 0.046268187396622
1007 => 0.045684868141113
1008 => 0.045349159662644
1009 => 0.045502146231844
1010 => 0.043972095517312
1011 => 0.045000314902181
1012 => 0.043675420315364
1013 => 0.043453297426304
1014 => 0.045822373070478
1015 => 0.046152016106425
1016 => 0.044745656503009
1017 => 0.045648767037341
1018 => 0.045321286603416
1019 => 0.043698131830377
1020 => 0.043636139257165
1021 => 0.042821697248702
1022 => 0.041547253212508
1023 => 0.040964798090068
1024 => 0.040661450405194
1025 => 0.040786617572101
1026 => 0.040723329222335
1027 => 0.040310329930216
1028 => 0.040747001858319
1029 => 0.039631485527314
1030 => 0.039187277935982
1031 => 0.038986639672515
1101 => 0.037996554722023
1102 => 0.039572220171031
1103 => 0.039882646114196
1104 => 0.040193683692364
1105 => 0.042901053455946
1106 => 0.042765800913505
1107 => 0.043988418026512
1108 => 0.043940909373749
1109 => 0.043592199168036
1110 => 0.042121048170174
1111 => 0.042707422737177
1112 => 0.040902652962783
1113 => 0.042254909190174
1114 => 0.041637795919563
1115 => 0.042046262572621
1116 => 0.04131180270047
1117 => 0.041718283118823
1118 => 0.039956259621364
1119 => 0.038310906871776
1120 => 0.038973044849051
1121 => 0.039692864555012
1122 => 0.041253617084184
1123 => 0.040324045753738
1124 => 0.04065835475515
1125 => 0.03953847556307
1126 => 0.037227844912133
1127 => 0.037240922830684
1128 => 0.036885482644862
1129 => 0.036578330429195
1130 => 0.04043081820323
1201 => 0.03995170044971
1202 => 0.039188289014856
1203 => 0.040210145557172
1204 => 0.040480340646004
1205 => 0.040488032720334
1206 => 0.041233552875673
1207 => 0.041631437116219
1208 => 0.041701565938144
1209 => 0.042874658010599
1210 => 0.043267862999827
1211 => 0.044887418702005
1212 => 0.041597679418271
1213 => 0.041529929402596
1214 => 0.040224525174288
1215 => 0.039396617175072
1216 => 0.040281212743301
1217 => 0.041064843657415
1218 => 0.040248874771153
1219 => 0.040355423081655
1220 => 0.039260051518955
1221 => 0.039651595310598
1222 => 0.039988845570605
1223 => 0.039802635799683
1224 => 0.039523870759958
1225 => 0.041000594858867
1226 => 0.040917272297878
1227 => 0.042292431728522
1228 => 0.043364466843304
1229 => 0.045285745418191
1230 => 0.043280791066779
1231 => 0.043207722561242
]
'min_raw' => 0.036578330429195
'max_raw' => 0.10575871042079
'avg_raw' => 0.07116852042499
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.036578'
'max' => '$0.105758'
'avg' => '$0.071168'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0064318649985866
'max_diff' => -0.035725346396493
'year' => 2030
]
5 => [
'items' => [
101 => 0.043921978923425
102 => 0.043267753650899
103 => 0.043681201440047
104 => 0.045219132587482
105 => 0.045251626649187
106 => 0.044707309249392
107 => 0.044674187486147
108 => 0.044778729596957
109 => 0.045391036005288
110 => 0.045177077331942
111 => 0.045424675725509
112 => 0.045734301308025
113 => 0.047015043995841
114 => 0.047323826721939
115 => 0.046573644783008
116 => 0.046641377812662
117 => 0.046360789174547
118 => 0.046089744065894
119 => 0.046699013887188
120 => 0.047812466460832
121 => 0.047805539730159
122 => 0.048063839084819
123 => 0.048224757442905
124 => 0.047533978050563
125 => 0.047084306066811
126 => 0.047256738918753
127 => 0.047532462804108
128 => 0.047167325378846
129 => 0.044913528042021
130 => 0.045597186180882
131 => 0.045483392037401
201 => 0.045321335339242
202 => 0.04600875888444
203 => 0.045942455206525
204 => 0.043956402635736
205 => 0.044083543277586
206 => 0.04396413447927
207 => 0.044349968735371
208 => 0.04324691733487
209 => 0.043586208516499
210 => 0.04379900876496
211 => 0.043924349746112
212 => 0.044377167317148
213 => 0.044324034401588
214 => 0.044373864500515
215 => 0.045045273418955
216 => 0.048441029328707
217 => 0.048625852830562
218 => 0.047715714311409
219 => 0.048079296698122
220 => 0.047381298022361
221 => 0.047849869209584
222 => 0.048170453715465
223 => 0.046721793978246
224 => 0.046636013750332
225 => 0.045935134185744
226 => 0.046311747163906
227 => 0.045712528836218
228 => 0.045859556054065
301 => 0.045448455135362
302 => 0.046188354939652
303 => 0.047015677889653
304 => 0.047224692338796
305 => 0.046674865309478
306 => 0.046276754304884
307 => 0.045577802526735
308 => 0.046740174910953
309 => 0.047080088018755
310 => 0.046738389492103
311 => 0.046659210477217
312 => 0.046509166387083
313 => 0.046691043040244
314 => 0.04707823677897
315 => 0.046895643362132
316 => 0.047016249530835
317 => 0.04655662318428
318 => 0.047534206727285
319 => 0.049086844661869
320 => 0.049091836646711
321 => 0.048909242245627
322 => 0.048834528550754
323 => 0.049021881487021
324 => 0.049123512769326
325 => 0.049729377810561
326 => 0.050379495138534
327 => 0.05341330903977
328 => 0.052561426236305
329 => 0.055253206411879
330 => 0.057382055046847
331 => 0.058020403669205
401 => 0.057433152973259
402 => 0.055424200065086
403 => 0.055325631251196
404 => 0.058327855054046
405 => 0.057479589319179
406 => 0.057378690809176
407 => 0.056305301133465
408 => 0.056939807373708
409 => 0.056801031551322
410 => 0.05658196712654
411 => 0.057792560832835
412 => 0.060058684180574
413 => 0.059705487605259
414 => 0.059441842746104
415 => 0.05828662771915
416 => 0.058982325191994
417 => 0.058734600647121
418 => 0.059798982501773
419 => 0.059168466270022
420 => 0.057473162871945
421 => 0.057743145525882
422 => 0.057702338190869
423 => 0.058542150253795
424 => 0.058290059517921
425 => 0.057653113428778
426 => 0.060050938817331
427 => 0.059895237374004
428 => 0.060115986422336
429 => 0.060213166980303
430 => 0.061672681039892
501 => 0.062270597250865
502 => 0.062406334698753
503 => 0.062974308854678
504 => 0.062392202984341
505 => 0.06472104150014
506 => 0.066269583221652
507 => 0.068068294118417
508 => 0.070696694186501
509 => 0.07168499692616
510 => 0.071506468882196
511 => 0.073499291816302
512 => 0.077080350330925
513 => 0.072230303194383
514 => 0.077337414605996
515 => 0.075720562097516
516 => 0.071887033885844
517 => 0.071640199863341
518 => 0.074236309676463
519 => 0.079994231375658
520 => 0.078551937295817
521 => 0.079996590452085
522 => 0.078311325808028
523 => 0.078227638213925
524 => 0.079914740909904
525 => 0.08385674831824
526 => 0.081984048362478
527 => 0.079299073771024
528 => 0.081281617226522
529 => 0.079564154609635
530 => 0.07569423064627
531 => 0.078550834400716
601 => 0.076640704821509
602 => 0.077198182180795
603 => 0.081212990445957
604 => 0.080729918093627
605 => 0.081355058448837
606 => 0.080251702084663
607 => 0.079220993257197
608 => 0.077297098689288
609 => 0.076727528354586
610 => 0.076884937104104
611 => 0.076727450350627
612 => 0.075651049021386
613 => 0.075418600256822
614 => 0.0750311754654
615 => 0.075151254608303
616 => 0.07442278265531
617 => 0.075797559740594
618 => 0.076052730482116
619 => 0.077053178597891
620 => 0.07715704844013
621 => 0.079943282202075
622 => 0.078408671466752
623 => 0.079438220839923
624 => 0.079346128253492
625 => 0.071970118066465
626 => 0.072986467191149
627 => 0.074567587481231
628 => 0.073855294933707
629 => 0.072848279922294
630 => 0.07203506130785
701 => 0.070802951951094
702 => 0.072537122210164
703 => 0.074817371692393
704 => 0.077214879329984
705 => 0.080095327665627
706 => 0.079452445129226
707 => 0.077161031351947
708 => 0.077263822500117
709 => 0.077899236931278
710 => 0.077076317509436
711 => 0.07683362250664
712 => 0.077865894364729
713 => 0.077873003053689
714 => 0.076926134805726
715 => 0.075873864023175
716 => 0.075869454970174
717 => 0.07568221354815
718 => 0.078344635641047
719 => 0.079808698590905
720 => 0.079976551048651
721 => 0.07979740078312
722 => 0.079866348610104
723 => 0.079014442638007
724 => 0.080961647065352
725 => 0.082748594406442
726 => 0.082269654346468
727 => 0.081551655111226
728 => 0.080979734136827
729 => 0.08213492794081
730 => 0.082083488979162
731 => 0.082732986980317
801 => 0.082703521999302
802 => 0.082485120250369
803 => 0.082269662146283
804 => 0.083123929174706
805 => 0.082877913989629
806 => 0.082631516675018
807 => 0.082137329139024
808 => 0.082204497432751
809 => 0.0814866221702
810 => 0.081154500226007
811 => 0.07616018305731
812 => 0.074825538315813
813 => 0.075245444720686
814 => 0.075383688812036
815 => 0.074802849710143
816 => 0.075635623776935
817 => 0.075505836820751
818 => 0.076010761944431
819 => 0.075695306648456
820 => 0.075708253043838
821 => 0.076635939807141
822 => 0.076905251221189
823 => 0.076768277262394
824 => 0.076864209127942
825 => 0.079074918479167
826 => 0.078760626303928
827 => 0.078593664849908
828 => 0.078639914313706
829 => 0.079204797951087
830 => 0.079362934528051
831 => 0.078692898739396
901 => 0.079008891490757
902 => 0.080354348520598
903 => 0.080825182334769
904 => 0.082327857856553
905 => 0.081689494586972
906 => 0.082861237996003
907 => 0.086462777758602
908 => 0.089339936928561
909 => 0.086693982452235
910 => 0.091977518863854
911 => 0.096091509838584
912 => 0.095933608012763
913 => 0.095216238527993
914 => 0.090532569179373
915 => 0.086222586815197
916 => 0.089828070074348
917 => 0.08983726119265
918 => 0.089527546983144
919 => 0.08760393862747
920 => 0.089460609582029
921 => 0.089607985379964
922 => 0.089525494123508
923 => 0.088050668107351
924 => 0.085798881374089
925 => 0.086238875111752
926 => 0.086959593829675
927 => 0.085595122938973
928 => 0.085159091813187
929 => 0.085969756634339
930 => 0.088581887596813
1001 => 0.088088079369402
1002 => 0.088075184040948
1003 => 0.090187905045092
1004 => 0.088675652759854
1005 => 0.086244424841839
1006 => 0.085630507728584
1007 => 0.083451515560649
1008 => 0.084956553212345
1009 => 0.085010716838063
1010 => 0.084186423097341
1011 => 0.086311311735957
1012 => 0.086291730513073
1013 => 0.088308996027503
1014 => 0.092165250040766
1015 => 0.091024765974309
1016 => 0.089698507089332
1017 => 0.089842708203299
1018 => 0.09142423850484
1019 => 0.090468009181703
1020 => 0.090811875913371
1021 => 0.091423718021357
1022 => 0.09179285755629
1023 => 0.089789594704957
1024 => 0.089322538307173
1025 => 0.088367104831826
1026 => 0.088117850072118
1027 => 0.088896030702015
1028 => 0.088691007599565
1029 => 0.085006164595054
1030 => 0.084621077998809
1031 => 0.084632888054939
1101 => 0.083664569498813
1102 => 0.082187651277639
1103 => 0.08606890418068
1104 => 0.085757185254466
1105 => 0.085413071685054
1106 => 0.085455223633823
1107 => 0.087139943971166
1108 => 0.086162721095091
1109 => 0.088760828274818
1110 => 0.088226735544917
1111 => 0.08767894535181
1112 => 0.087603224061025
1113 => 0.087392371571942
1114 => 0.08666927993212
1115 => 0.085796103325965
1116 => 0.085219556497319
1117 => 0.078610536180064
1118 => 0.079837131908044
1119 => 0.081248218485366
1120 => 0.081735319917284
1121 => 0.080902099211596
1122 => 0.086702180564121
1123 => 0.087761911318202
1124 => 0.084551917739564
1125 => 0.083951459004175
1126 => 0.086741546538848
1127 => 0.085058782681111
1128 => 0.085816531143213
1129 => 0.084178693434397
1130 => 0.087506653212083
1201 => 0.087481299734434
1202 => 0.086186648215534
1203 => 0.087280878813917
1204 => 0.087090729319756
1205 => 0.085629070943503
1206 => 0.087552990389723
1207 => 0.087553944629765
1208 => 0.086307870690975
1209 => 0.084852729131128
1210 => 0.084592584189137
1211 => 0.084396599920903
1212 => 0.085768331027281
1213 => 0.086998220847968
1214 => 0.089286740888723
1215 => 0.089862129200863
1216 => 0.092107908088918
1217 => 0.090770656106071
1218 => 0.091363442589755
1219 => 0.092006996172561
1220 => 0.092315539426058
1221 => 0.091812784751828
1222 => 0.095301403764445
1223 => 0.095595950097635
1224 => 0.095694708935338
1225 => 0.094518366232777
1226 => 0.095563233879088
1227 => 0.095074374909758
1228 => 0.096346250139022
1229 => 0.096545696415088
1230 => 0.096376772514767
1231 => 0.096440079910836
]
'min_raw' => 0.04324691733487
'max_raw' => 0.096545696415088
'avg_raw' => 0.069896306874979
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.043246'
'max' => '$0.096545'
'avg' => '$0.069896'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0066685869056749
'max_diff' => -0.0092130140056967
'year' => 2031
]
6 => [
'items' => [
101 => 0.093463159018133
102 => 0.093308789965338
103 => 0.091203956976944
104 => 0.092061691977855
105 => 0.090458197505961
106 => 0.090966682120822
107 => 0.091190817294033
108 => 0.091073741799107
109 => 0.092110187027871
110 => 0.09122899685165
111 => 0.088903391095526
112 => 0.086577151729668
113 => 0.086547947689343
114 => 0.085935489925849
115 => 0.085492795140076
116 => 0.085578073861257
117 => 0.085878607197778
118 => 0.085475327596218
119 => 0.085561387746006
120 => 0.086990559648257
121 => 0.087277169880865
122 => 0.086303156324614
123 => 0.082392351346779
124 => 0.081432629995707
125 => 0.082122458670756
126 => 0.081792764994739
127 => 0.066013145014325
128 => 0.069720332666312
129 => 0.067517647647699
130 => 0.06853274624494
131 => 0.066284375223457
201 => 0.06735741572213
202 => 0.06715926432319
203 => 0.073120312363927
204 => 0.073027238797925
205 => 0.073071788188626
206 => 0.070945329697603
207 => 0.074332835813443
208 => 0.076001643136886
209 => 0.075692791315186
210 => 0.075770522664757
211 => 0.074434840542849
212 => 0.073084720511223
213 => 0.071587229614167
214 => 0.074369382605428
215 => 0.074060054685736
216 => 0.074769541640839
217 => 0.076573966728075
218 => 0.076839675176515
219 => 0.077196790025767
220 => 0.077068789773476
221 => 0.080118275083722
222 => 0.0797489622915
223 => 0.080638899862214
224 => 0.078808230759528
225 => 0.076736654901132
226 => 0.077130393746896
227 => 0.077092473529801
228 => 0.076609705643384
229 => 0.076173884381537
301 => 0.075448364772441
302 => 0.077744016172319
303 => 0.077650816917835
304 => 0.079159604515638
305 => 0.078892911652146
306 => 0.077111871438929
307 => 0.077175481638574
308 => 0.077603290801206
309 => 0.079083943197713
310 => 0.079523501639499
311 => 0.079319880655888
312 => 0.079801836420701
313 => 0.08018275460629
314 => 0.079849673880092
315 => 0.084565394557971
316 => 0.082607098553617
317 => 0.083561558400403
318 => 0.083789191449858
319 => 0.083206114180287
320 => 0.083332562761625
321 => 0.083524097907177
322 => 0.084687061804538
323 => 0.08773901557753
324 => 0.089090705128237
325 => 0.093157329832724
326 => 0.088978466127477
327 => 0.088730509649065
328 => 0.089463031558644
329 => 0.091850570756121
330 => 0.093785447025522
331 => 0.094427357109772
401 => 0.094512196124186
402 => 0.095716462115615
403 => 0.096406724923671
404 => 0.095570232548916
405 => 0.094861392845713
406 => 0.092322417013263
407 => 0.092616310379271
408 => 0.094640944231036
409 => 0.097500858796993
410 => 0.09995496301798
411 => 0.099095621253958
412 => 0.10565179231271
413 => 0.10630180989363
414 => 0.10621199848153
415 => 0.10769283526645
416 => 0.10475367581555
417 => 0.10349712820676
418 => 0.095014652035218
419 => 0.097397881843715
420 => 0.10086204633255
421 => 0.1004035511725
422 => 0.097887782323328
423 => 0.099953054581714
424 => 0.099270210986057
425 => 0.098731623910955
426 => 0.10119899571224
427 => 0.09848601906268
428 => 0.10083498231515
429 => 0.097822412646945
430 => 0.09909954665475
501 => 0.098374583623899
502 => 0.098843723552987
503 => 0.096101141113641
504 => 0.097580972025487
505 => 0.096039575282475
506 => 0.096038844459723
507 => 0.096004818041189
508 => 0.097818264473743
509 => 0.097877400896803
510 => 0.096537261243181
511 => 0.096344126182178
512 => 0.097058247728889
513 => 0.09622219842642
514 => 0.096613380633014
515 => 0.096234046936954
516 => 0.096148650931981
517 => 0.095468201035423
518 => 0.095175044510626
519 => 0.095289998737712
520 => 0.094897600697702
521 => 0.094661166684939
522 => 0.095957785365093
523 => 0.095265054309735
524 => 0.095851614395697
525 => 0.095183155147959
526 => 0.092865984161466
527 => 0.091533354623495
528 => 0.087156433431873
529 => 0.088397722852263
530 => 0.089220699022189
531 => 0.088948705402938
601 => 0.089533052944647
602 => 0.089568927137833
603 => 0.089378949795306
604 => 0.089158980370264
605 => 0.089051911419225
606 => 0.089849915660319
607 => 0.090313183981862
608 => 0.089303295690841
609 => 0.089066692994094
610 => 0.090087745813776
611 => 0.090710587443939
612 => 0.095309300096583
613 => 0.094968612609629
614 => 0.09582367134534
615 => 0.095727404853645
616 => 0.09662364263021
617 => 0.098088612616548
618 => 0.095109919022272
619 => 0.095626917234763
620 => 0.095500161212293
621 => 0.096884050228413
622 => 0.096888370578865
623 => 0.096058659983317
624 => 0.096508459557681
625 => 0.096257393774877
626 => 0.096711103577979
627 => 0.094964062520533
628 => 0.097091769947074
629 => 0.098298042951485
630 => 0.098314792053322
701 => 0.098886555883838
702 => 0.09946750104997
703 => 0.1005825747067
704 => 0.099436402250891
705 => 0.09737454958053
706 => 0.097523408683586
707 => 0.096314545217355
708 => 0.096334866430622
709 => 0.096226390201604
710 => 0.096551935530596
711 => 0.095035501413245
712 => 0.095391405469582
713 => 0.094893137706539
714 => 0.095625834097956
715 => 0.094837573899843
716 => 0.095500100086701
717 => 0.095786024425857
718 => 0.096841091392856
719 => 0.094681739650969
720 => 0.090278675274
721 => 0.091204252788035
722 => 0.089835250942233
723 => 0.08996195727522
724 => 0.090217924233016
725 => 0.089388251575622
726 => 0.089546526972662
727 => 0.089540872261713
728 => 0.089492143017675
729 => 0.089276313116009
730 => 0.088963317057948
731 => 0.090210197018157
801 => 0.090422066220448
802 => 0.090893025212098
803 => 0.092294279716713
804 => 0.092154261347845
805 => 0.092382637116774
806 => 0.091884094095476
807 => 0.089985083256122
808 => 0.090088208681116
809 => 0.088802232978971
810 => 0.090860139922126
811 => 0.090372800394943
812 => 0.090058609431436
813 => 0.089972879516085
814 => 0.091377607459583
815 => 0.091797924076691
816 => 0.091536010967308
817 => 0.090998819538739
818 => 0.092030385887982
819 => 0.092306389524749
820 => 0.092368176560398
821 => 0.094195914348028
822 => 0.092470326799093
823 => 0.092885692872987
824 => 0.096126260410032
825 => 0.093187512821684
826 => 0.094744232961124
827 => 0.094668039611079
828 => 0.095464404957878
829 => 0.094602714408478
830 => 0.094613396095565
831 => 0.095320514573062
901 => 0.094327494200907
902 => 0.094081608391884
903 => 0.093741918907787
904 => 0.094483618469022
905 => 0.094928233811796
906 => 0.098511506940572
907 => 0.10082646479887
908 => 0.10072596637297
909 => 0.10164433386049
910 => 0.10123060089608
911 => 0.099894548016766
912 => 0.10217502736747
913 => 0.1014533882816
914 => 0.10151287933104
915 => 0.10151066507121
916 => 0.10199049197653
917 => 0.10165049063862
918 => 0.10098031310118
919 => 0.10142520822641
920 => 0.10274638769542
921 => 0.10684736930597
922 => 0.10914233294602
923 => 0.1067092096132
924 => 0.10838754550736
925 => 0.10738114202309
926 => 0.10719824857209
927 => 0.10825236754167
928 => 0.10930833160696
929 => 0.10924107126106
930 => 0.10847449557401
1001 => 0.10804147641954
1002 => 0.11132044252928
1003 => 0.11373632890321
1004 => 0.11357158164882
1005 => 0.11429872245104
1006 => 0.11643363033597
1007 => 0.11662881955743
1008 => 0.1166042302019
1009 => 0.11612043335062
1010 => 0.11822252741616
1011 => 0.11997613126846
1012 => 0.11600844835778
1013 => 0.11751929006939
1014 => 0.11819755559
1015 => 0.11919345060658
1016 => 0.12087369243093
1017 => 0.12269888071432
1018 => 0.12295698234976
1019 => 0.12277384688811
1020 => 0.12157008615153
1021 => 0.12356722895023
1022 => 0.12473710836294
1023 => 0.125433744781
1024 => 0.12720029882795
1025 => 0.11820174432695
1026 => 0.11183212019396
1027 => 0.11083741140711
1028 => 0.11286019084017
1029 => 0.1133935816453
1030 => 0.11317857248057
1031 => 0.106008981418
1101 => 0.11079966499395
1102 => 0.11595403770955
1103 => 0.1161520381574
1104 => 0.11873242491168
1105 => 0.1195727046125
1106 => 0.12165025416872
1107 => 0.12152030287832
1108 => 0.12202615313423
1109 => 0.1219098669205
1110 => 0.12575808999373
1111 => 0.13000325151015
1112 => 0.12985625506562
1113 => 0.12924596287117
1114 => 0.13015235085022
1115 => 0.13453381247432
1116 => 0.13413043769947
1117 => 0.13452228193386
1118 => 0.13968827211703
1119 => 0.14640479420869
1120 => 0.14328429536932
1121 => 0.15005487995141
1122 => 0.15431660405256
1123 => 0.161686815215
1124 => 0.16076402847841
1125 => 0.16363319759884
1126 => 0.1591120476285
1127 => 0.14873057342144
1128 => 0.14708766538949
1129 => 0.15037680887452
1130 => 0.15846284718254
1201 => 0.15012215075243
1202 => 0.1518094627773
1203 => 0.15132351680062
1204 => 0.15129762280466
1205 => 0.15228589131194
1206 => 0.15085235629752
1207 => 0.14501187676072
1208 => 0.14768853411427
1209 => 0.14665494816642
1210 => 0.1478017888345
1211 => 0.15399081492704
1212 => 0.15125449896357
1213 => 0.14837201237632
1214 => 0.15198729023171
1215 => 0.15659078128589
1216 => 0.15630270308899
1217 => 0.15574371097965
1218 => 0.15889472023209
1219 => 0.16409926435804
1220 => 0.16550603172173
1221 => 0.16654447862951
1222 => 0.16668766291339
1223 => 0.16816255002588
1224 => 0.16023171030261
1225 => 0.17281815662186
1226 => 0.17499148820763
1227 => 0.17458299194487
1228 => 0.17699855853468
1229 => 0.17628783756695
1230 => 0.17525811439341
1231 => 0.17908730124401
]
'min_raw' => 0.066013145014325
'max_raw' => 0.17908730124401
'avg_raw' => 0.12255022312917
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.066013'
'max' => '$0.179087'
'avg' => '$0.12255'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.022766227679455
'max_diff' => 0.082541604828917
'year' => 2032
]
7 => [
'items' => [
101 => 0.17469744751924
102 => 0.16846660282415
103 => 0.16504823819229
104 => 0.16954981649113
105 => 0.1722987732748
106 => 0.17411565884232
107 => 0.17466544731726
108 => 0.16084735881412
109 => 0.15340017549725
110 => 0.15817373462123
111 => 0.16399780620594
112 => 0.16019935729089
113 => 0.16034824929694
114 => 0.15493265935889
115 => 0.16447696574782
116 => 0.1630864405872
117 => 0.17030048758027
118 => 0.16857879736903
119 => 0.17446157264419
120 => 0.17291244076097
121 => 0.17934280059741
122 => 0.18190804523121
123 => 0.1862154902198
124 => 0.18938406428786
125 => 0.19124471158579
126 => 0.19113300530114
127 => 0.19850581686634
128 => 0.19415832747276
129 => 0.18869685616984
130 => 0.18859807538469
131 => 0.19142664876212
201 => 0.19735456258
202 => 0.19889158438534
203 => 0.19975056989015
204 => 0.19843500368803
205 => 0.19371611553867
206 => 0.19167852356108
207 => 0.19341461096071
208 => 0.19129152525465
209 => 0.19495656681594
210 => 0.19998945169023
211 => 0.19895018086587
212 => 0.2024243074155
213 => 0.2060196629056
214 => 0.21116118273396
215 => 0.21250536640702
216 => 0.21472725090387
217 => 0.21701429990215
218 => 0.2177488384027
219 => 0.21915130031417
220 => 0.21914390864762
221 => 0.22337032201439
222 => 0.22803218683906
223 => 0.22979193288795
224 => 0.23383837189442
225 => 0.22690898689998
226 => 0.2321650050173
227 => 0.2369060649258
228 => 0.23125357785193
301 => 0.23904421442268
302 => 0.23934670718676
303 => 0.24391398878841
304 => 0.23928417389986
305 => 0.23653500459792
306 => 0.24447175336258
307 => 0.24831209608455
308 => 0.24715535360294
309 => 0.23835248620252
310 => 0.23322883980273
311 => 0.21981926889689
312 => 0.23570348488521
313 => 0.24344022314418
314 => 0.23833244991949
315 => 0.2409085136326
316 => 0.25496268195987
317 => 0.26031359931889
318 => 0.25920064591395
319 => 0.25938871671861
320 => 0.26227597459952
321 => 0.27507966608541
322 => 0.26740739735982
323 => 0.2732725593261
324 => 0.27638342008461
325 => 0.27927296092726
326 => 0.27217716186647
327 => 0.26294563154637
328 => 0.26002161838071
329 => 0.2378245825355
330 => 0.23666913042291
331 => 0.23602054013834
401 => 0.23193127013901
402 => 0.22871822406485
403 => 0.22616309053393
404 => 0.21945765712134
405 => 0.22172054405803
406 => 0.21103348273107
407 => 0.21787068584186
408 => 0.20081387791592
409 => 0.21501929440243
410 => 0.20728793204985
411 => 0.21247933393528
412 => 0.21246122162316
413 => 0.20290220481662
414 => 0.1973887634142
415 => 0.20090214286217
416 => 0.20466876452281
417 => 0.20527988621481
418 => 0.21016340951671
419 => 0.21152629589928
420 => 0.20739668653299
421 => 0.20046041348403
422 => 0.20207155151376
423 => 0.19735611375345
424 => 0.1890924904552
425 => 0.19502756897702
426 => 0.19705406573136
427 => 0.19794908214504
428 => 0.18982275771476
429 => 0.18726929014768
430 => 0.18590984544063
501 => 0.1994114070461
502 => 0.2001510530689
503 => 0.19636691944085
504 => 0.21347156226591
505 => 0.2096002548011
506 => 0.21392545373264
507 => 0.20192535762471
508 => 0.20238377745631
509 => 0.19670273964874
510 => 0.1998837412139
511 => 0.19763551183611
512 => 0.1996267477227
513 => 0.20082028630295
514 => 0.20650039190811
515 => 0.21508415208436
516 => 0.20565197354553
517 => 0.20154223828488
518 => 0.20409189492656
519 => 0.21088196655318
520 => 0.22116927264487
521 => 0.21507898038726
522 => 0.21778174867132
523 => 0.21837218330359
524 => 0.2138814272677
525 => 0.22133485322546
526 => 0.22532920474775
527 => 0.22942658289503
528 => 0.23298422153439
529 => 0.22778999995973
530 => 0.23334856160703
531 => 0.22886934213752
601 => 0.22485101922018
602 => 0.22485711335736
603 => 0.22233636069298
604 => 0.21745208477047
605 => 0.21655134935212
606 => 0.22123708874871
607 => 0.2249946080036
608 => 0.22530409528674
609 => 0.22738445101456
610 => 0.22861558410491
611 => 0.24068236203467
612 => 0.24553571993964
613 => 0.25147031411647
614 => 0.25378217300375
615 => 0.26074003940717
616 => 0.25512099719613
617 => 0.25390528206833
618 => 0.23702777407438
619 => 0.2397914650629
620 => 0.24421640099202
621 => 0.23710073963805
622 => 0.24161398896767
623 => 0.24250499998903
624 => 0.23685895218808
625 => 0.2398747502699
626 => 0.23186568468642
627 => 0.21525872782783
628 => 0.2213533415158
629 => 0.22584102861493
630 => 0.21943654579664
701 => 0.23091633336071
702 => 0.22421007845669
703 => 0.22208451760913
704 => 0.21379194692562
705 => 0.21770572107792
706 => 0.22299915665875
707 => 0.21972842889773
708 => 0.22651568010409
709 => 0.23612823790607
710 => 0.24297871903347
711 => 0.24350461391167
712 => 0.23910021349334
713 => 0.24615829327222
714 => 0.24620970367793
715 => 0.23824816085425
716 => 0.2333717602048
717 => 0.23226383171721
718 => 0.23503165430138
719 => 0.23839230188681
720 => 0.24369110646374
721 => 0.24689306309385
722 => 0.2552420677986
723 => 0.25750106908698
724 => 0.25998302661651
725 => 0.26329968728332
726 => 0.26728218878817
727 => 0.2585687022195
728 => 0.25891490528484
729 => 0.25080102723853
730 => 0.24213018489823
731 => 0.24871027339876
801 => 0.25731286380072
802 => 0.25533942005749
803 => 0.25511736732258
804 => 0.25549079843041
805 => 0.25400288629466
806 => 0.24727311484928
807 => 0.24389346576001
808 => 0.24825407532561
809 => 0.25057154524132
810 => 0.25416573897597
811 => 0.25372267873395
812 => 0.26298093580619
813 => 0.2665784145493
814 => 0.26565802554202
815 => 0.26582739926976
816 => 0.27234046269618
817 => 0.27958432874002
818 => 0.28636916520238
819 => 0.29327099226741
820 => 0.28495057035762
821 => 0.28072597324412
822 => 0.28508467910399
823 => 0.28277188842151
824 => 0.2960618697013
825 => 0.29698203917025
826 => 0.31027105943312
827 => 0.32288392208968
828 => 0.314962009038
829 => 0.32243201623493
830 => 0.33051143805704
831 => 0.34609795359083
901 => 0.34084896349928
902 => 0.33682831935131
903 => 0.33302883005909
904 => 0.34093496412426
905 => 0.35110607929552
906 => 0.35329684008568
907 => 0.35684670950078
908 => 0.35311445586819
909 => 0.35760954427439
910 => 0.37347918159022
911 => 0.36919106550232
912 => 0.36310125130844
913 => 0.37562880583311
914 => 0.38016247911596
915 => 0.4119821725181
916 => 0.45215584984427
917 => 0.43552368363665
918 => 0.42519956135493
919 => 0.42762597498259
920 => 0.4422960419773
921 => 0.44700760189136
922 => 0.43419995787287
923 => 0.43872383426155
924 => 0.4636508379409
925 => 0.47702337566085
926 => 0.45886167326574
927 => 0.40875425666118
928 => 0.36255293017038
929 => 0.37480760242859
930 => 0.37341830290126
1001 => 0.40019925864769
1002 => 0.36908879535179
1003 => 0.36961261576647
1004 => 0.39694737331621
1005 => 0.38965492863832
1006 => 0.37784210220589
1007 => 0.36263917687619
1008 => 0.33453516330387
1009 => 0.30964265474447
1010 => 0.35846259643181
1011 => 0.35635739177295
1012 => 0.35330874345307
1013 => 0.36009318039076
1014 => 0.39303648036419
1015 => 0.39227703067275
1016 => 0.38744579921042
1017 => 0.39111024569407
1018 => 0.37719970701996
1019 => 0.38078476957336
1020 => 0.36254561164421
1021 => 0.37079047276271
1022 => 0.37781675718577
1023 => 0.37922738780962
1024 => 0.38240561063374
1025 => 0.35524804457897
1026 => 0.36744099443331
1027 => 0.37460321014784
1028 => 0.34224405898597
1029 => 0.37396357377197
1030 => 0.35477529177408
1031 => 0.34826250066568
1101 => 0.35703111589816
1102 => 0.35361397801431
1103 => 0.35067612352283
1104 => 0.34903675023785
1105 => 0.35547545350784
1106 => 0.35517508030438
1107 => 0.34464011205622
1108 => 0.33089767543674
1109 => 0.33551008824634
1110 => 0.33383435543102
1111 => 0.32776128353443
1112 => 0.33185380072723
1113 => 0.31383242618568
1114 => 0.28282758795648
1115 => 0.30331033379457
1116 => 0.30252177036075
1117 => 0.30212414091891
1118 => 0.31751635831471
1119 => 0.31603675177098
1120 => 0.31335125140576
1121 => 0.32771196221423
1122 => 0.32247010959032
1123 => 0.3386242642414
1124 => 0.34926443527982
1125 => 0.346565743731
1126 => 0.35657287602104
1127 => 0.33561634892171
1128 => 0.34257726659418
1129 => 0.34401190207906
1130 => 0.32753475327201
1201 => 0.31627883370014
1202 => 0.31552819219157
1203 => 0.29601197881522
1204 => 0.3064373824715
1205 => 0.31561130625651
1206 => 0.31121770868873
1207 => 0.30982682695377
1208 => 0.31693254009225
1209 => 0.31748471485943
1210 => 0.30489507165092
1211 => 0.30751285713612
1212 => 0.31842945778003
1213 => 0.307237786809
1214 => 0.28549419826138
1215 => 0.28010148767294
1216 => 0.27938200067306
1217 => 0.26475654185594
1218 => 0.28046185438071
1219 => 0.27360606458744
1220 => 0.2952634223994
1221 => 0.28289285576795
1222 => 0.2823595853652
1223 => 0.28155346893769
1224 => 0.2689647323637
1225 => 0.27172086561746
1226 => 0.2808826723239
1227 => 0.2841517081719
1228 => 0.28381072095053
1229 => 0.28083777447283
1230 => 0.28219877414638
1231 => 0.27781451999418
]
'min_raw' => 0.15340017549725
'max_raw' => 0.47702337566085
'avg_raw' => 0.31521177557905
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.15340017'
'max' => '$0.477023'
'avg' => '$0.315211'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.087387030482924
'max_diff' => 0.29793607441685
'year' => 2033
]
8 => [
'items' => [
101 => 0.27626634860268
102 => 0.27137989383301
103 => 0.26419815523919
104 => 0.26519682003883
105 => 0.25096791668034
106 => 0.24321525494558
107 => 0.24106942035584
108 => 0.23819992066183
109 => 0.24139353798172
110 => 0.25092760798489
111 => 0.23942749679528
112 => 0.2197113627997
113 => 0.22089633604749
114 => 0.22355861911357
115 => 0.2185974722327
116 => 0.21390216306746
117 => 0.21798435344417
118 => 0.20963036755704
119 => 0.22456815839639
120 => 0.22416413301686
121 => 0.22973201769498
122 => 0.2332137302487
123 => 0.22518951003019
124 => 0.22317144034504
125 => 0.22432102455385
126 => 0.20532095831255
127 => 0.22817930692885
128 => 0.2283769868769
129 => 0.22668433114674
130 => 0.23885569611258
131 => 0.26454107253444
201 => 0.25487720073267
202 => 0.25113505747895
203 => 0.24402124041814
204 => 0.253499979275
205 => 0.25277216002216
206 => 0.24948068534353
207 => 0.24748999118787
208 => 0.25115790620769
209 => 0.24703549592589
210 => 0.24629499776303
211 => 0.24180838456599
212 => 0.24020686778254
213 => 0.23902116851429
214 => 0.23771583012436
215 => 0.24059508134249
216 => 0.23407031928515
217 => 0.22620209587432
218 => 0.22554793823306
219 => 0.22735412499469
220 => 0.22655502180746
221 => 0.22554411243444
222 => 0.22361401113655
223 => 0.22304139131156
224 => 0.22490212794714
225 => 0.22280146477326
226 => 0.22590110771537
227 => 0.22505817634618
228 => 0.22034963023946
301 => 0.21448103846344
302 => 0.21442879568685
303 => 0.21316441721512
304 => 0.21155404113081
305 => 0.21110607134457
306 => 0.21764056275679
307 => 0.23116676441924
308 => 0.22851124737833
309 => 0.23043013058872
310 => 0.23986913679532
311 => 0.24286951302759
312 => 0.24073991704573
313 => 0.23782479471801
314 => 0.23795304530594
315 => 0.24791490076729
316 => 0.24853620947296
317 => 0.25010605613039
318 => 0.2521237527238
319 => 0.24108353950036
320 => 0.23743305225594
321 => 0.23570324887822
322 => 0.23037612399298
323 => 0.23612097146854
324 => 0.23277369486343
325 => 0.23322535683671
326 => 0.23293121138409
327 => 0.23309183469125
328 => 0.22456398297941
329 => 0.22767108393252
330 => 0.22250492596584
331 => 0.21558802037692
401 => 0.21556483248401
402 => 0.21725773532772
403 => 0.21625073047299
404 => 0.21354090630135
405 => 0.21392582403492
406 => 0.21055353965936
407 => 0.21433528041529
408 => 0.21444372720845
409 => 0.21298755102461
410 => 0.21881384443878
411 => 0.22120088160437
412 => 0.22024239524585
413 => 0.22113363164633
414 => 0.22862159610032
415 => 0.22984246102911
416 => 0.23038468858467
417 => 0.22965817549161
418 => 0.2212704978907
419 => 0.22164252705945
420 => 0.21891282386433
421 => 0.21660651231348
422 => 0.21669875268051
423 => 0.21788449661716
424 => 0.22306270993147
425 => 0.23395995457909
426 => 0.23437349704768
427 => 0.23487472258351
428 => 0.23283598643355
429 => 0.23222108410264
430 => 0.23303229899686
501 => 0.23712473113661
502 => 0.24765157768451
503 => 0.24393068705004
504 => 0.2409055450451
505 => 0.24355941015586
506 => 0.24315086842374
507 => 0.23970236506279
508 => 0.23960557705905
509 => 0.23298679655616
510 => 0.23053998410659
511 => 0.22849524448298
512 => 0.22626244219329
513 => 0.22493876215174
514 => 0.22697253629737
515 => 0.22743768450739
516 => 0.22299080179368
517 => 0.2223847081116
518 => 0.22601612852824
519 => 0.22441807579588
520 => 0.22606171266091
521 => 0.22644305051246
522 => 0.2263816463354
523 => 0.22471309574763
524 => 0.22577658013538
525 => 0.22326112251839
526 => 0.22052594016943
527 => 0.21878106423867
528 => 0.21725842856488
529 => 0.2181032753328
530 => 0.21509155086808
531 => 0.21412803959777
601 => 0.22541629555397
602 => 0.23375505159801
603 => 0.23363380278262
604 => 0.23289573180159
605 => 0.23179910803602
606 => 0.23704450627771
607 => 0.23521711441535
608 => 0.23654669467892
609 => 0.2368851286583
610 => 0.2379094663841
611 => 0.23827557907628
612 => 0.23716893223892
613 => 0.23345489028721
614 => 0.22419985086408
615 => 0.21989160502911
616 => 0.21846981214406
617 => 0.21852149161506
618 => 0.2170959410975
619 => 0.21751582961361
620 => 0.21694992100713
621 => 0.21587822701444
622 => 0.21803710124871
623 => 0.2182858913929
624 => 0.21778198435
625 => 0.2179006727003
626 => 0.21372853760657
627 => 0.21404573597634
628 => 0.21227953514581
629 => 0.21194839378196
630 => 0.20748359188308
701 => 0.19957354813583
702 => 0.20395648021833
703 => 0.19866251459618
704 => 0.1966576095984
705 => 0.20614851803118
706 => 0.20519589406135
707 => 0.20356541592069
708 => 0.20115359892924
709 => 0.20025903254646
710 => 0.19482393039
711 => 0.19450279555945
712 => 0.1971965789483
713 => 0.19595349060177
714 => 0.19420772376888
715 => 0.18788473326569
716 => 0.18077559846989
717 => 0.18099017856295
718 => 0.18325146207134
719 => 0.1898264488476
720 => 0.18725748776569
721 => 0.18539367702533
722 => 0.18504464129961
723 => 0.18941355416283
724 => 0.19559648117984
725 => 0.19849737220103
726 => 0.1956226773004
727 => 0.19232038258313
728 => 0.19252137796121
729 => 0.19385851016406
730 => 0.19399902385255
731 => 0.19184956947299
801 => 0.19245462829033
802 => 0.19153548861905
803 => 0.18589473015296
804 => 0.18579270671935
805 => 0.18440837362226
806 => 0.18436645656625
807 => 0.18201136063001
808 => 0.18168186642853
809 => 0.17700568050303
810 => 0.18008356023999
811 => 0.17801908010838
812 => 0.17490742158841
813 => 0.17437097048671
814 => 0.17435484411881
815 => 0.1775498216647
816 => 0.18004622506716
817 => 0.17805499262415
818 => 0.17760162759529
819 => 0.18244238000382
820 => 0.1818263501354
821 => 0.18129287224231
822 => 0.19504286788041
823 => 0.18415867340731
824 => 0.17941254336894
825 => 0.17353830618081
826 => 0.17545098742974
827 => 0.17585401747202
828 => 0.16172753594541
829 => 0.1559964241494
830 => 0.1540297225534
831 => 0.15289785797982
901 => 0.15341366287906
902 => 0.14825499007029
903 => 0.15172170351436
904 => 0.14725472891372
905 => 0.14650582608513
906 => 0.15449333002304
907 => 0.15560474453368
908 => 0.15086310494187
909 => 0.15390800516153
910 => 0.1528038820146
911 => 0.14733130237225
912 => 0.14712229008348
913 => 0.14437634198943
914 => 0.14007946494256
915 => 0.13811567683153
916 => 0.13709291893292
917 => 0.13751492877504
918 => 0.13730154768515
919 => 0.13590909173708
920 => 0.13738136163014
921 => 0.1336203204373
922 => 0.13212264352954
923 => 0.13144617761614
924 => 0.12810803708004
925 => 0.13342050315082
926 => 0.13446712589144
927 => 0.13551581080219
928 => 0.14464389698262
929 => 0.14418788359275
930 => 0.14831002254966
1001 => 0.14814984380992
1002 => 0.14697414300519
1003 => 0.14201405470341
1004 => 0.14399105749543
1005 => 0.13790615019606
1006 => 0.14246537647822
1007 => 0.14038473600088
1008 => 0.1417619098399
1009 => 0.13928562710259
1010 => 0.14065610421263
1011 => 0.13471531897039
1012 => 0.12916789730029
1013 => 0.13140034171967
1014 => 0.13382726411453
1015 => 0.1390894502349
1016 => 0.1359553355937
1017 => 0.13708248173267
1018 => 0.1333067308491
1019 => 0.12551627828639
1020 => 0.12556037140185
1021 => 0.12436197999931
1022 => 0.12332639485951
1023 => 0.13631532636177
1024 => 0.13469994740485
1025 => 0.13212605245255
1026 => 0.13557131312872
1027 => 0.13648229473513
1028 => 0.13650822910078
1029 => 0.13902180235506
1030 => 0.14036329685145
1031 => 0.14059974107081
1101 => 0.14455490289576
1102 => 0.14588062096964
1103 => 0.15134106609331
1104 => 0.14024948041593
1105 => 0.14002105650793
1106 => 0.13561979501178
1107 => 0.13282844538973
1108 => 0.1358109211085
1109 => 0.1384529874468
1110 => 0.13570189137764
1111 => 0.13606112644547
1112 => 0.13236800474542
1113 => 0.13368812197566
1114 => 0.13482518477334
1115 => 0.13419736552992
1116 => 0.13325748973573
1117 => 0.13823636813679
1118 => 0.13795544030502
1119 => 0.142591886336
1120 => 0.14620632757259
1121 => 0.15268405242721
1122 => 0.14592420884998
1123 => 0.14567785328208
1124 => 0.14808601847497
1125 => 0.1458802522921
1126 => 0.14727422037921
1127 => 0.15245946261771
1128 => 0.15256901861542
1129 => 0.15073381449898
1130 => 0.15062214216171
1201 => 0.15097461318721
1202 => 0.15303904699276
1203 => 0.15231767038746
1204 => 0.15315246565813
1205 => 0.15419638992696
1206 => 0.15851450331753
1207 => 0.15955558583709
1208 => 0.15702629505395
1209 => 0.1572546616924
1210 => 0.15630863750892
1211 => 0.15539479000133
1212 => 0.15744898574169
1213 => 0.1612030688325
1214 => 0.16117971487643
1215 => 0.16205058918455
1216 => 0.1625931366638
1217 => 0.16026412571384
1218 => 0.15874802522552
1219 => 0.15932939462473
1220 => 0.16025901695463
1221 => 0.15902793063228
1222 => 0.15142909555606
1223 => 0.15373409670272
1224 => 0.15335043180312
1225 => 0.15280404633084
1226 => 0.15512174280785
1227 => 0.15489819532859
1228 => 0.14820208042441
1229 => 0.14863074397509
1230 => 0.14822814887471
1231 => 0.14952901600724
]
'min_raw' => 0.12332639485951
'max_raw' => 0.27626634860268
'avg_raw' => 0.19979637173109
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.123326'
'max' => '$0.276266'
'avg' => '$0.199796'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.030073780637741
'max_diff' => -0.20075702705817
'year' => 2034
]
9 => [
'items' => [
101 => 0.14581000119786
102 => 0.14695394510528
103 => 0.1476714160002
104 => 0.14809401186918
105 => 0.14962071792465
106 => 0.14944157659021
107 => 0.14960958224777
108 => 0.15187328429257
109 => 0.1633223124264
110 => 0.16394545776687
111 => 0.16087686220571
112 => 0.16210270560702
113 => 0.15974935433898
114 => 0.1613291748113
115 => 0.16241004785537
116 => 0.15752579040914
117 => 0.15723657638175
118 => 0.15487351199589
119 => 0.15614328894604
120 => 0.15412298251815
121 => 0.15461869504824
122 => 0.15323263959868
123 => 0.155727263447
124 => 0.15851664053477
125 => 0.15922134734298
126 => 0.15736756712593
127 => 0.15602530807872
128 => 0.15366874335944
129 => 0.15758776300708
130 => 0.15873380378201
131 => 0.15758174334277
201 => 0.15731478576598
202 => 0.15680890164035
203 => 0.15742211147471
204 => 0.15872756219782
205 => 0.15811193574469
206 => 0.15851856786293
207 => 0.15696890554543
208 => 0.16026489671338
209 => 0.16549972391154
210 => 0.16551655473697
211 => 0.16490092496538
212 => 0.16464902252677
213 => 0.16528069603196
214 => 0.16562335299592
215 => 0.16766606928259
216 => 0.16985798524359
217 => 0.18008670062573
218 => 0.17721451827729
219 => 0.18629004307333
220 => 0.19346760487759
221 => 0.19561984182595
222 => 0.19363988510403
223 => 0.18686656011352
224 => 0.18653422847563
225 => 0.19665643563551
226 => 0.19379644848638
227 => 0.1934562621154
228 => 0.18983725388207
301 => 0.19197653597086
302 => 0.19150864359666
303 => 0.19077005259392
304 => 0.19485165379565
305 => 0.20249204687823
306 => 0.20130121996516
307 => 0.20041232291542
308 => 0.19651743479751
309 => 0.19886302739925
310 => 0.19802780680063
311 => 0.20161644453636
312 => 0.19949061503978
313 => 0.19377478127085
314 => 0.19468504663819
315 => 0.19454746185912
316 => 0.19737894686308
317 => 0.19652900534667
318 => 0.19438149713696
319 => 0.20246593284529
320 => 0.20194097455839
321 => 0.20268524538705
322 => 0.20301289642316
323 => 0.20793374997508
324 => 0.20994966622556
325 => 0.21040731450799
326 => 0.21232227902939
327 => 0.21035966844621
328 => 0.21821151009654
329 => 0.22343252662635
330 => 0.22949700599678
331 => 0.23835884033535
401 => 0.24169097202321
402 => 0.24108905225855
403 => 0.24780799391534
404 => 0.25988178271892
405 => 0.24352951017859
406 => 0.26074849286998
407 => 0.2552971617526
408 => 0.24237215373855
409 => 0.24153993559828
410 => 0.25029290108782
411 => 0.26970613610191
412 => 0.26484334091397
413 => 0.26971408989279
414 => 0.26403210248393
415 => 0.26374994391753
416 => 0.26943812844678
417 => 0.28272888164615
418 => 0.27641494299756
419 => 0.26736236370354
420 => 0.27404664738051
421 => 0.26825610225827
422 => 0.25520838342632
423 => 0.26483962242614
424 => 0.25839948718885
425 => 0.26027906102751
426 => 0.27381526739847
427 => 0.27218655523555
428 => 0.27429425958905
429 => 0.27057421657336
430 => 0.26709910979976
501 => 0.26061256494203
502 => 0.25869221879245
503 => 0.25922293338138
504 => 0.25869195579666
505 => 0.25506279356318
506 => 0.25427907632439
507 => 0.25297284659098
508 => 0.25337770180494
509 => 0.25092160775513
510 => 0.25555676468204
511 => 0.25641709065253
512 => 0.25979017132393
513 => 0.26014037574899
514 => 0.26953435740602
515 => 0.26436031016878
516 => 0.26783150776127
517 => 0.26752101117642
518 => 0.24265227785427
519 => 0.24607896988737
520 => 0.25140982733568
521 => 0.24900828328102
522 => 0.2456130618625
523 => 0.24287123852679
524 => 0.23871709580736
525 => 0.24456397191171
526 => 0.25225199224299
527 => 0.26033535663176
528 => 0.27004698930186
529 => 0.26787946594576
530 => 0.26015380441426
531 => 0.26050037194697
601 => 0.26264271606484
602 => 0.25986818577971
603 => 0.25904992263335
604 => 0.26253029927382
605 => 0.26255426671496
606 => 0.25936183430873
607 => 0.25581402989816
608 => 0.25579916446813
609 => 0.255167866941
610 => 0.26414440891158
611 => 0.26908059936463
612 => 0.26964652564501
613 => 0.2690425080169
614 => 0.26927497042936
615 => 0.26640270996626
616 => 0.27296784564252
617 => 0.27899266336369
618 => 0.27737788351296
619 => 0.27495709896223
620 => 0.2730288274668
621 => 0.27692364402998
622 => 0.27675021397944
623 => 0.27894004183683
624 => 0.27884069859616
625 => 0.27810434185131
626 => 0.27737790981058
627 => 0.28025813073993
628 => 0.27942867336721
629 => 0.27859792761809
630 => 0.27693173983741
701 => 0.27715820242925
702 => 0.27473783586111
703 => 0.27361806353825
704 => 0.2567793745119
705 => 0.25227952658402
706 => 0.25369527034498
707 => 0.25416136995086
708 => 0.25220303036594
709 => 0.25501078627455
710 => 0.25457320049034
711 => 0.25627559079758
712 => 0.25521201124281
713 => 0.25525566091873
714 => 0.25838342161023
715 => 0.25929142384541
716 => 0.25882960658012
717 => 0.25915304756256
718 => 0.26660660848702
719 => 0.26554695047502
720 => 0.26498402827591
721 => 0.26513996157215
722 => 0.26704450619449
723 => 0.26757767470447
724 => 0.26531860226261
725 => 0.26638399388574
726 => 0.27092029619865
727 => 0.2725077452757
728 => 0.27757412071085
729 => 0.27542183437836
730 => 0.27937244909042
731 => 0.2915152918515
801 => 0.30121583486985
802 => 0.29229481461828
803 => 0.31010862651478
804 => 0.32397923431576
805 => 0.32344685728565
806 => 0.32102819598261
807 => 0.30523687777039
808 => 0.29070547131621
809 => 0.30286160985124
810 => 0.3028925983483
811 => 0.30184837526739
812 => 0.29536279539419
813 => 0.30162269114612
814 => 0.3021195789383
815 => 0.30184145390781
816 => 0.29686897502527
817 => 0.28927691883934
818 => 0.29076038844526
819 => 0.29319034192171
820 => 0.28858993304939
821 => 0.28711982366608
822 => 0.28985303670941
823 => 0.29866001862255
824 => 0.29699510970724
825 => 0.29695163220704
826 => 0.30407481857798
827 => 0.29897615441622
828 => 0.29077909974772
829 => 0.28870923533805
830 => 0.28136261111148
831 => 0.28643695063255
901 => 0.28661956707824
902 => 0.28384040318105
903 => 0.29100461358113
904 => 0.29093859412106
905 => 0.29773994564394
906 => 0.31074157528471
907 => 0.3068963536286
908 => 0.30242477920146
909 => 0.302910963325
910 => 0.30824320315556
911 => 0.30501920923081
912 => 0.30617857992464
913 => 0.30824144830916
914 => 0.30948602802369
915 => 0.30273188745707
916 => 0.30115717420311
917 => 0.29793586353474
918 => 0.29709548370998
919 => 0.29971917403451
920 => 0.29902792433034
921 => 0.28660421887311
922 => 0.28530587252798
923 => 0.28534569095678
924 => 0.28208093733896
925 => 0.27710140444113
926 => 0.29018731958416
927 => 0.28913633746091
928 => 0.28797613453639
929 => 0.28811825277462
930 => 0.29379840501539
1001 => 0.29050362986118
1002 => 0.29926332961168
1003 => 0.29746259868366
1004 => 0.29561568580211
1005 => 0.29536038618353
1006 => 0.29464948229534
1007 => 0.29221152834703
1008 => 0.28926755245614
1009 => 0.28732368457014
1010 => 0.26504091114346
1011 => 0.26917646427852
1012 => 0.27393404119288
1013 => 0.27557633767892
1014 => 0.27276707589609
1015 => 0.29232245512487
1016 => 0.2958954113503
1017 => 0.28507269388532
1018 => 0.28304820533627
1019 => 0.29245518025711
1020 => 0.28678162442393
1021 => 0.28933642626821
1022 => 0.28381434208276
1023 => 0.29503479082396
1024 => 0.29494930980395
1025 => 0.29058430181829
1026 => 0.29427357667748
1027 => 0.2936324743821
1028 => 0.28870439111684
1029 => 0.29519101985353
1030 => 0.29519423714046
1031 => 0.29099301185772
1101 => 0.28608690049396
1102 => 0.2852098036593
1103 => 0.28454902901576
1104 => 0.28917391621212
1105 => 0.29332057561074
1106 => 0.30103648070751
1107 => 0.30297644257422
1108 => 0.31054824289057
1109 => 0.30603960446645
1110 => 0.30803822548322
1111 => 0.31020801131913
1112 => 0.31124828644009
1113 => 0.30955321395472
1114 => 0.32131533652336
1115 => 0.32230842005028
1116 => 0.32264139236671
1117 => 0.3186752708154
1118 => 0.32219811503527
1119 => 0.32054989288913
1120 => 0.32483810902409
1121 => 0.32551055606874
1122 => 0.32494101734492
1123 => 0.32515446265074
1124 => 0.31511756601902
1125 => 0.31459709997981
1126 => 0.3075005086047
1127 => 0.31039242204541
1128 => 0.30498612848102
1129 => 0.30670051986128
1130 => 0.30745620724638
1201 => 0.30706147904129
1202 => 0.31055592649236
1203 => 0.3075849322905
1204 => 0.29974399011512
1205 => 0.29190091168028
1206 => 0.29180244821936
1207 => 0.28973750410931
1208 => 0.28824492773111
1209 => 0.28853245089354
1210 => 0.28954572002019
1211 => 0.28818603468745
1212 => 0.28847619249099
1213 => 0.29329474534102
1214 => 0.29426107175075
1215 => 0.29097711704239
1216 => 0.27779156501594
1217 => 0.27455579747519
1218 => 0.27688160301542
1219 => 0.27577001776825
1220 => 0.2225679273064
1221 => 0.23506696930265
1222 => 0.22764046297584
1223 => 0.23106293876836
1224 => 0.22348239889318
1225 => 0.22710022985175
1226 => 0.22643214857574
1227 => 0.24653023823216
1228 => 0.2462164342062
1229 => 0.24636663558729
1230 => 0.23919713232021
1231 => 0.25061834569789
]
'min_raw' => 0.14581000119786
'max_raw' => 0.32551055606874
'avg_raw' => 0.2356602786333
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.14581'
'max' => '$0.32551'
'avg' => '$0.23566'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.022483606338353
'max_diff' => 0.049244207466061
'year' => 2035
]
10 => [
'items' => [
101 => 0.25624484610129
102 => 0.25520353062108
103 => 0.25546560729318
104 => 0.25096226176482
105 => 0.24641023781583
106 => 0.24136134270493
107 => 0.25074156575868
108 => 0.24969864508085
109 => 0.25209072988478
110 => 0.25817447504734
111 => 0.25907032963242
112 => 0.26027436727964
113 => 0.25984280549235
114 => 0.27012435812411
115 => 0.26887919426053
116 => 0.27187968091365
117 => 0.26570745222071
118 => 0.25872298958132
119 => 0.26005050758978
120 => 0.25992265693034
121 => 0.25829497129551
122 => 0.25682556948312
123 => 0.2543794294669
124 => 0.26211937843885
125 => 0.26180515064539
126 => 0.26689213337157
127 => 0.2659929597624
128 => 0.25998805833529
129 => 0.26020252456451
130 => 0.26164491302501
131 => 0.26663703595568
201 => 0.26811903793115
202 => 0.26743251556855
203 => 0.26905746307869
204 => 0.27034175533626
205 => 0.26921875041293
206 => 0.2851181319195
207 => 0.27851560021696
208 => 0.28173362822866
209 => 0.28250110894773
210 => 0.28053522322422
211 => 0.28096155344456
212 => 0.28160732756034
213 => 0.28552834153584
214 => 0.29581821676209
215 => 0.30037553245425
216 => 0.3140864415681
217 => 0.29999711082691
218 => 0.29916110824818
219 => 0.30163085700937
220 => 0.30968061210632
221 => 0.31620418253736
222 => 0.31836842720314
223 => 0.31865446786351
224 => 0.32271473473278
225 => 0.32504200398275
226 => 0.32222171153923
227 => 0.31983180899027
228 => 0.31127147470553
229 => 0.31226235670801
301 => 0.31908855109466
302 => 0.32873095272664
303 => 0.33700513644778
304 => 0.33410780569305
305 => 0.35621239415488
306 => 0.35840397381172
307 => 0.3581011683654
308 => 0.36309391297447
309 => 0.35318433168023
310 => 0.34894779368784
311 => 0.3203485330479
312 => 0.32838375873904
313 => 0.34006343117337
314 => 0.33851758273017
315 => 0.33003549240981
316 => 0.33699870202167
317 => 0.33469644716429
318 => 0.33288056323764
319 => 0.34119947953206
320 => 0.3320524893441
321 => 0.33997218294917
322 => 0.32981509398193
323 => 0.33412104045589
324 => 0.33167677698207
325 => 0.3332585150073
326 => 0.32401170683205
327 => 0.32900106006983
328 => 0.32380413333389
329 => 0.32380166931395
330 => 0.32368694686822
331 => 0.32980110812636
401 => 0.33000049070548
402 => 0.32548211629773
403 => 0.3248309479553
404 => 0.32723865860841
405 => 0.32441986001404
406 => 0.32573875813504
407 => 0.32445980809454
408 => 0.32417188950161
409 => 0.32187770516787
410 => 0.32088930747699
411 => 0.32127688367945
412 => 0.3199538862912
413 => 0.31915673250988
414 => 0.32352837291704
415 => 0.32119278179896
416 => 0.3231704100811
417 => 0.32091665305702
418 => 0.31310414929634
419 => 0.30861109576785
420 => 0.29385400038342
421 => 0.29803909432833
422 => 0.30081381594359
423 => 0.2998967704663
424 => 0.30186693900101
425 => 0.301987891348
426 => 0.30134736947387
427 => 0.30060572719957
428 => 0.30024473675583
429 => 0.30293526376955
430 => 0.30449720525999
501 => 0.30109229637867
502 => 0.30029457386751
503 => 0.3037371247367
504 => 0.30583707877821
505 => 0.32134195955846
506 => 0.32019330791016
507 => 0.3230761981359
508 => 0.32275162893804
509 => 0.32577335717505
510 => 0.33071260576493
511 => 0.32066973234608
512 => 0.32241282791516
513 => 0.32198546113558
514 => 0.32665133957347
515 => 0.32666590593666
516 => 0.32386847873523
517 => 0.3253850094042
518 => 0.32453852358862
519 => 0.32606823786679
520 => 0.32017796696709
521 => 0.32735168110747
522 => 0.33141871476113
523 => 0.33147518552736
524 => 0.33340292720122
525 => 0.33536162438913
526 => 0.33912117307475
527 => 0.33525677261679
528 => 0.3283050923847
529 => 0.32880698124367
530 => 0.32473121366712
531 => 0.32479972805643
601 => 0.32443399287673
602 => 0.32553159168228
603 => 0.32041882818158
604 => 0.32161878355594
605 => 0.3199388390049
606 => 0.32240917604379
607 => 0.31975150175129
608 => 0.32198525504638
609 => 0.32294926891844
610 => 0.3265065008601
611 => 0.31922609570121
612 => 0.30438085674212
613 => 0.30750150595244
614 => 0.30288582064867
615 => 0.30331301989668
616 => 0.30417603036594
617 => 0.30137873107564
618 => 0.30191236762719
619 => 0.30189330237443
620 => 0.30172900832599
621 => 0.30100132274376
622 => 0.29994603468132
623 => 0.30414997752154
624 => 0.3048643093293
625 => 0.30645218045096
626 => 0.31117660784573
627 => 0.31070452613932
628 => 0.31147451098896
629 => 0.30979363838549
630 => 0.3033909907559
701 => 0.30373868532625
702 => 0.29940292846252
703 => 0.30634130539984
704 => 0.30469820615898
705 => 0.30363888938941
706 => 0.30334984499433
707 => 0.30808598333081
708 => 0.30950311015095
709 => 0.30862005181648
710 => 0.30680887340955
711 => 0.31028687137768
712 => 0.311217436909
713 => 0.31142575621353
714 => 0.3175881017731
715 => 0.31177016287519
716 => 0.31317059859326
717 => 0.3240963982936
718 => 0.31418820562269
719 => 0.31943679625954
720 => 0.31917990506021
721 => 0.3218649064274
722 => 0.31895965657878
723 => 0.31899567063257
724 => 0.32137976994888
725 => 0.31803173243369
726 => 0.31720271126137
727 => 0.31605742444938
728 => 0.31855811630389
729 => 0.32005716797411
730 => 0.33213842350392
731 => 0.33994346554836
801 => 0.33960462808888
802 => 0.34270096819141
803 => 0.34130603861599
804 => 0.33680144305315
805 => 0.34449023840202
806 => 0.34205718184077
807 => 0.34225776006752
808 => 0.3422502945359
809 => 0.34386806444763
810 => 0.34272172619874
811 => 0.34046217584095
812 => 0.34196217081725
813 => 0.34641661963883
814 => 0.36024336546019
815 => 0.36798099560185
816 => 0.35977755041001
817 => 0.36543617705483
818 => 0.36204301744277
819 => 0.36142637940351
820 => 0.36498041510568
821 => 0.36854067167687
822 => 0.3683138987247
823 => 0.36572933527521
824 => 0.36426938096346
825 => 0.37532464413258
826 => 0.38346997371408
827 => 0.38291451684361
828 => 0.38536612282564
829 => 0.3925641138142
830 => 0.39322220790204
831 => 0.39313930317309
901 => 0.39150814831138
902 => 0.39859550521686
903 => 0.4045079030376
904 => 0.39113058308948
905 => 0.39622449140375
906 => 0.3985113109615
907 => 0.40186904054106
908 => 0.40753409316261
909 => 0.4136878428906
910 => 0.41455805057457
911 => 0.41394059657952
912 => 0.40988203321224
913 => 0.41661553959411
914 => 0.42055986971246
915 => 0.42290862803354
916 => 0.4288646883397
917 => 0.39852543358056
918 => 0.37704980110324
919 => 0.37369607098001
920 => 0.38051601306452
921 => 0.38231437740418
922 => 0.38158945899382
923 => 0.35741668216152
924 => 0.37356880631266
925 => 0.39094713379013
926 => 0.391614706124
927 => 0.40031466022291
928 => 0.40314772190069
929 => 0.41015232527936
930 => 0.40971418543088
1001 => 0.411419694886
1002 => 0.41102762779757
1003 => 0.42400218056331
1004 => 0.43831503900364
1005 => 0.43781943022795
1006 => 0.4357617874851
1007 => 0.43881773783846
1008 => 0.45359014160801
1009 => 0.45223013539186
1010 => 0.4535512655858
1011 => 0.47096876216629
1012 => 0.49361398533093
1013 => 0.48309300562772
1014 => 0.50592050425332
1015 => 0.52028920460443
1016 => 0.54513838611033
1017 => 0.542027146201
1018 => 0.55170075020953
1019 => 0.53645737742792
1020 => 0.50145551232743
1021 => 0.49591633319352
1022 => 0.50700591009396
1023 => 0.53426855279861
1024 => 0.50614731245568
1025 => 0.51183620275188
1026 => 0.51019780196386
1027 => 0.51011049854862
1028 => 0.51344251481962
1029 => 0.50860925143226
1030 => 0.48891766690468
1031 => 0.49794220405043
1101 => 0.49445739686459
1102 => 0.49832405024687
1103 => 0.51919078382187
1104 => 0.50996510350756
1105 => 0.50024659872985
1106 => 0.51243576042996
1107 => 0.52795675192459
1108 => 0.52698547617076
1109 => 0.52510079524656
1110 => 0.5357246429376
1111 => 0.55327212682789
1112 => 0.55801514121194
1113 => 0.56151633746358
1114 => 0.56199909327348
1115 => 0.56697177814658
1116 => 0.540232398306
1117 => 0.58266848082897
1118 => 0.58999602000757
1119 => 0.58861874633738
1120 => 0.5967629977444
1121 => 0.59436675238074
1122 => 0.59089496880817
1123 => 0.60380533962025
1124 => 0.5890046412974
1125 => 0.56799691338421
1126 => 0.55647165836529
1127 => 0.57164904389001
1128 => 0.58091734361219
1129 => 0.58704310015398
1130 => 0.58889675038224
1201 => 0.54230810024577
1202 => 0.51719940174721
1203 => 0.53329378961298
1204 => 0.55293005358453
1205 => 0.54012331786818
1206 => 0.5406253176619
1207 => 0.52236627808134
1208 => 0.55454557343381
1209 => 0.54985732077143
1210 => 0.57417998387724
1211 => 0.56837518512547
1212 => 0.58820937268791
1213 => 0.58298636638671
1214 => 0.60466677352865
1215 => 0.61331567491115
1216 => 0.6278385264264
1217 => 0.63852159511966
1218 => 0.64479489739088
1219 => 0.64441827185308
1220 => 0.66927622079843
1221 => 0.65461835677594
1222 => 0.6362046249704
1223 => 0.63587157865661
1224 => 0.6454083112833
1225 => 0.66539468659402
1226 => 0.67057686292216
1227 => 0.67347299252409
1228 => 0.66903746922373
1229 => 0.6531274083659
1230 => 0.64625752475333
1231 => 0.65211086463093
]
'min_raw' => 0.24136134270493
'max_raw' => 0.67347299252409
'avg_raw' => 0.45741716761451
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.241361'
'max' => '$0.673472'
'avg' => '$0.457417'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.095551341507065
'max_diff' => 0.34796243645535
'year' => 2036
]
11 => [
'items' => [
101 => 0.64495273294385
102 => 0.65730967645277
103 => 0.67427839919122
104 => 0.67077442504734
105 => 0.68248768526519
106 => 0.69460967731976
107 => 0.71194467039053
108 => 0.71647667949216
109 => 0.72396791820029
110 => 0.73167886357468
111 => 0.73415541141313
112 => 0.73888390966439
113 => 0.73885898814455
114 => 0.75310863588937
115 => 0.76882643862676
116 => 0.77475954529216
117 => 0.78840239691582
118 => 0.76503949161284
119 => 0.78276052365886
120 => 0.79874533815058
121 => 0.77968758333701
122 => 0.80595425846015
123 => 0.80697413393361
124 => 0.82237304273102
125 => 0.80676329859088
126 => 0.79749428234854
127 => 0.82425358493468
128 => 0.83720156854598
129 => 0.83330153050807
130 => 0.80362204847095
131 => 0.78634731691249
201 => 0.74113601237711
202 => 0.79469075558227
203 => 0.82077570878423
204 => 0.80355449474382
205 => 0.81223987340761
206 => 0.85962448315371
207 => 0.87766547461875
208 => 0.87391307451007
209 => 0.87454716835868
210 => 0.88428175988606
211 => 0.92745029965592
212 => 0.9015827099869
213 => 0.92135751304877
214 => 0.93184599728943
215 => 0.94158828598174
216 => 0.9176643040354
217 => 0.88653955503631
218 => 0.87668104050022
219 => 0.80184218440054
220 => 0.79794649693187
221 => 0.7957597295043
222 => 0.78197247019783
223 => 0.77113946103111
224 => 0.76252464993789
225 => 0.73991681302892
226 => 0.74754629432568
227 => 0.71151412091506
228 => 0.73456622856136
301 => 0.67705800977076
302 => 0.72495256324552
303 => 0.69888573528734
304 => 0.71638890919617
305 => 0.7163278422713
306 => 0.6840989497188
307 => 0.66550999709434
308 => 0.67735560119951
309 => 0.69005502910546
310 => 0.6921154685572
311 => 0.70858060832626
312 => 0.7131756749188
313 => 0.69925240862024
314 => 0.67586627976055
315 => 0.68129834411385
316 => 0.6653999164836
317 => 0.63753853358579
318 => 0.65754906519608
319 => 0.6643815404888
320 => 0.66739915081559
321 => 0.64000068063704
322 => 0.63139148645721
323 => 0.62680802371401
324 => 0.67232948131575
325 => 0.67482324952206
326 => 0.66206477879531
327 => 0.71973427628803
328 => 0.7066818928844
329 => 0.72126460305783
330 => 0.68080544120999
331 => 0.68235103567806
401 => 0.66319702007246
402 => 0.67392198893981
403 => 0.66634192662625
404 => 0.67305551744154
405 => 0.67707961609505
406 => 0.69623048871516
407 => 0.72517123544837
408 => 0.69336998697104
409 => 0.6795137276072
410 => 0.68811007298597
411 => 0.71100327354277
412 => 0.74568764426769
413 => 0.72515379871052
414 => 0.73426637068148
415 => 0.73625706226703
416 => 0.72111616475745
417 => 0.74624591075562
418 => 0.75971314578973
419 => 0.7735277422831
420 => 0.78552256934208
421 => 0.76800988865416
422 => 0.7867509673344
423 => 0.77164896616385
424 => 0.75810090989769
425 => 0.75812145670665
426 => 0.74962256310536
427 => 0.73315488582336
428 => 0.73011799347307
429 => 0.74591629099654
430 => 0.75858502950603
501 => 0.75962848748884
502 => 0.76664255207098
503 => 0.77079340324007
504 => 0.81147738750578
505 => 0.82784082253301
506 => 0.84784972114034
507 => 0.85564431478763
508 => 0.87910324714949
509 => 0.86015825402596
510 => 0.85605938559409
511 => 0.7991556890425
512 => 0.80847366616502
513 => 0.82339264658923
514 => 0.79940169753469
515 => 0.81461843275453
516 => 0.81762253862145
517 => 0.79858649426607
518 => 0.8087544680552
519 => 0.7817513442654
520 => 0.72575982975597
521 => 0.74630824531729
522 => 0.76143879569232
523 => 0.73984563472375
524 => 0.77855053998918
525 => 0.75593993336453
526 => 0.74877345656505
527 => 0.7208144755368
528 => 0.73401003834226
529 => 0.75185722597891
530 => 0.74082973897772
531 => 0.76371343029069
601 => 0.79612284004741
602 => 0.81921971545377
603 => 0.82099280675243
604 => 0.80614306323661
605 => 0.8299398719905
606 => 0.83011320576271
607 => 0.8032703082755
608 => 0.78682918302646
609 => 0.78309372477746
610 => 0.7924256318632
611 => 0.80375628983037
612 => 0.82162157941224
613 => 0.83241719974412
614 => 0.86056645201506
615 => 0.86818283257727
616 => 0.87655092567283
617 => 0.88773327867285
618 => 0.90116056054582
619 => 0.87178243222333
620 => 0.87294968002927
621 => 0.84559317370325
622 => 0.81635882337404
623 => 0.83854405116069
624 => 0.86754828531457
625 => 0.86089468195284
626 => 0.86014601565386
627 => 0.86140506470603
628 => 0.85638846505765
629 => 0.83369857077192
630 => 0.82230384790788
701 => 0.83700594750633
702 => 0.84481945912773
703 => 0.85693753424271
704 => 0.85544372570326
705 => 0.88665858581318
706 => 0.89878773656353
707 => 0.89568458076596
708 => 0.89625563611433
709 => 0.91821488418408
710 => 0.94263808430144
711 => 0.96551363413647
712 => 0.98878362595638
713 => 0.96073074257423
714 => 0.94648721845409
715 => 0.96118289957578
716 => 0.95338516431593
717 => 0.99819326407758
718 => 1.0012956796863
719 => 1.0461005393124
720 => 1.0886256863609
721 => 1.0619164034169
722 => 1.0871020542206
723 => 1.114342388981
724 => 1.166893414319
725 => 1.1491960777525
726 => 1.1356401952952
727 => 1.1228299518746
728 => 1.149486034864
729 => 1.1837786597885
730 => 1.1911649627466
731 => 1.2031335953235
801 => 1.1905500416236
802 => 1.2057055460222
803 => 1.2592111362152
804 => 1.2447534534381
805 => 1.2242212197062
806 => 1.2664587444321
807 => 1.2817443404362
808 => 1.3890266583215
809 => 1.5244750162633
810 => 1.4683985066735
811 => 1.4335900075935
812 => 1.4417708305459
813 => 1.49123198565
814 => 1.5071173388508
815 => 1.4639354728414
816 => 1.4791880379328
817 => 1.5632311711855
818 => 1.6083176157491
819 => 1.5470841681144
820 => 1.378143514644
821 => 1.2223725167067
822 => 1.2636899998191
823 => 1.259005879465
824 => 1.3492997415507
825 => 1.2444086424854
826 => 1.2461747395854
827 => 1.3383357831162
828 => 1.3137487967424
829 => 1.2739210276803
830 => 1.2226633034969
831 => 1.1279086595782
901 => 1.0439818290308
902 => 1.2085816709291
903 => 1.2014838264411
904 => 1.1912050957808
905 => 1.2140792985905
906 => 1.3251499344786
907 => 1.3225893968208
908 => 1.3063005626398
909 => 1.3186554998029
910 => 1.2717551474604
911 => 1.2838424361602
912 => 1.2223478417848
913 => 1.2501459666836
914 => 1.2738355751755
915 => 1.2785916148108
916 => 1.2893072149588
917 => 1.1977435849244
918 => 1.2388529666429
919 => 1.2630008769744
920 => 1.1538997395883
921 => 1.2608442982751
922 => 1.1961496658362
923 => 1.1741913359057
924 => 1.2037553343672
925 => 1.1922342154148
926 => 1.1823290338823
927 => 1.1768017723946
928 => 1.1985103100053
929 => 1.1974975807784
930 => 1.1619781998018
1001 => 1.1156446152729
1002 => 1.1311956870889
1003 => 1.1255458369061
1004 => 1.1050700509984
1005 => 1.1188682584443
1006 => 1.0581079359653
1007 => 0.9535729591869
1008 => 1.0226319668397
1009 => 1.0199732701668
1010 => 1.018632634742
1011 => 1.0705285703423
1012 => 1.0655399735772
1013 => 1.0564856216003
1014 => 1.1049037607238
1015 => 1.0872304886278
1016 => 1.141695348881
1017 => 1.1775694284101
1018 => 1.1684706014366
1019 => 1.2022103466281
1020 => 1.1315539523748
1021 => 1.1550231723032
1022 => 1.1598601460036
1023 => 1.1043062884028
1024 => 1.066356169703
1025 => 1.0638253294488
1026 => 0.9980250534719
1027 => 1.0331750297775
1028 => 1.0641055543215
1029 => 1.0492922333706
1030 => 1.0446027784929
1031 => 1.0685601864444
1101 => 1.0704218822235
1102 => 1.0279750211652
1103 => 1.0368010676965
1104 => 1.0736071489401
1105 => 1.0358736488838
1106 => 0.96256362200663
1107 => 0.94438172175067
1108 => 0.94195592109762
1109 => 0.89264516557875
1110 => 0.94559672326591
1111 => 0.92248194932195
1112 => 0.99550124325342
1113 => 0.95379301417009
1114 => 0.95199505577549
1115 => 0.9492771779589
1116 => 0.90683337368215
1117 => 0.91612586937428
1118 => 0.94701554034197
1119 => 0.95803732294029
1120 => 0.95688766071649
1121 => 0.94686416410243
1122 => 0.95145286952374
1123 => 0.93667105055075
1124 => 0.93145128261444
1125 => 0.91497625919714
1126 => 0.89076252611509
1127 => 0.89412959421161
1128 => 0.84615585310816
1129 => 0.82001721279586
1130 => 0.81278238165915
1201 => 0.80310766309875
1202 => 0.813875166864
1203 => 0.8460199495272
1204 => 0.8072465217393
1205 => 0.74077219943668
1206 => 0.7447674194738
1207 => 0.75374349270574
1208 => 0.73701663962069
1209 => 0.72118607695407
1210 => 0.73494946681855
1211 => 0.70678342014342
1212 => 0.75714722488155
1213 => 0.75578502510632
1214 => 0.7745575370359
1215 => 0.78629637399619
1216 => 0.75924215529631
1217 => 0.75243809245568
1218 => 0.75631399587712
1219 => 0.6922539460023
1220 => 0.76932246428109
1221 => 0.7699889560275
1222 => 0.76428204905582
1223 => 0.80531865581573
1224 => 0.89191869571775
1225 => 0.85933627722807
1226 => 0.84671937998006
1227 => 0.82273464908869
1228 => 0.85469287892904
1229 => 0.85223898550335
1230 => 0.84114154882093
1231 => 0.83442978448929
]
'min_raw' => 0.62680802371401
'max_raw' => 1.6083176157491
'avg_raw' => 1.1175628197316
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.626808'
'max' => '$1.60'
'avg' => '$1.11'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.38544668100908
'max_diff' => 0.93484462322501
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.019674787626897
]
1 => [
'year' => 2028
'avg' => 0.033767647199414
]
2 => [
'year' => 2029
'avg' => 0.09224712612253
]
3 => [
'year' => 2030
'avg' => 0.07116852042499
]
4 => [
'year' => 2031
'avg' => 0.069896306874979
]
5 => [
'year' => 2032
'avg' => 0.12255022312917
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.019674787626897
'min' => '$0.019674'
'max_raw' => 0.12255022312917
'max' => '$0.12255'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.12255022312917
]
1 => [
'year' => 2033
'avg' => 0.31521177557905
]
2 => [
'year' => 2034
'avg' => 0.19979637173109
]
3 => [
'year' => 2035
'avg' => 0.2356602786333
]
4 => [
'year' => 2036
'avg' => 0.45741716761451
]
5 => [
'year' => 2037
'avg' => 1.1175628197316
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.12255022312917
'min' => '$0.12255'
'max_raw' => 1.1175628197316
'max' => '$1.11'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.1175628197316
]
]
]
]
'prediction_2025_max_price' => '$0.03364'
'last_price' => 0.03261852
'sma_50day_nextmonth' => '$0.030086'
'sma_200day_nextmonth' => '$0.032776'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.032812'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.03262'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.032098'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.030127'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.029374'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.03061'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.033427'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.032657'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.032494'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.03189'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.030878'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.030281'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.031127'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.033823'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.032192'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.032281'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.031743'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.03131'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.032318'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.023157'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.011578'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.005789'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '61.62'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 94.41
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.032095'
'vwma_10_action' => 'BUY'
'hma_9' => '0.033177'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 92.71
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 79.6
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.53
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002886'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -7.29
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 75.92
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000785'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 10
'buy_signals' => 21
'sell_pct' => 32.26
'buy_pct' => 67.74
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767713349
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Ecorpay para 2026
A previsão de preço para Ecorpay em 2026 sugere que o preço médio poderia variar entre $0.011269 na extremidade inferior e $0.03364 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Ecorpay poderia potencialmente ganhar 3.13% até 2026 se ECOR atingir a meta de preço prevista.
Previsão de preço de Ecorpay 2027-2032
A previsão de preço de ECOR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.019674 na extremidade inferior e $0.12255 na extremidade superior. Considerando a volatilidade de preços no mercado, se Ecorpay atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Ecorpay | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.010849 | $0.019674 | $0.02850052 |
| 2028 | $0.019579 | $0.033767 | $0.047955 |
| 2029 | $0.04301 | $0.092247 | $0.141484 |
| 2030 | $0.036578 | $0.071168 | $0.105758 |
| 2031 | $0.043246 | $0.069896 | $0.096545 |
| 2032 | $0.066013 | $0.12255 | $0.179087 |
Previsão de preço de Ecorpay 2032-2037
A previsão de preço de Ecorpay para 2032-2037 é atualmente estimada entre $0.12255 na extremidade inferior e $1.11 na extremidade superior. Comparado ao preço atual, Ecorpay poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Ecorpay | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.066013 | $0.12255 | $0.179087 |
| 2033 | $0.15340017 | $0.315211 | $0.477023 |
| 2034 | $0.123326 | $0.199796 | $0.276266 |
| 2035 | $0.14581 | $0.23566 | $0.32551 |
| 2036 | $0.241361 | $0.457417 | $0.673472 |
| 2037 | $0.626808 | $1.11 | $1.60 |
Ecorpay Histograma de preços potenciais
Previsão de preço de Ecorpay baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Ecorpay é Altista, com 21 indicadores técnicos mostrando sinais de alta e 10 indicando sinais de baixa. A previsão de preço de ECOR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Ecorpay
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Ecorpay está projetado para aumentar no próximo mês, alcançando $0.032776 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Ecorpay é esperado para alcançar $0.030086 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 61.62, sugerindo que o mercado de ECOR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de ECOR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.032812 | SELL |
| SMA 5 | $0.03262 | SELL |
| SMA 10 | $0.032098 | BUY |
| SMA 21 | $0.030127 | BUY |
| SMA 50 | $0.029374 | BUY |
| SMA 100 | $0.03061 | BUY |
| SMA 200 | $0.033427 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.032657 | SELL |
| EMA 5 | $0.032494 | BUY |
| EMA 10 | $0.03189 | BUY |
| EMA 21 | $0.030878 | BUY |
| EMA 50 | $0.030281 | BUY |
| EMA 100 | $0.031127 | BUY |
| EMA 200 | $0.033823 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.032192 | BUY |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.032318 | BUY |
| EMA 50 | $0.023157 | BUY |
| EMA 100 | $0.011578 | BUY |
| EMA 200 | $0.005789 | BUY |
Osciladores de Ecorpay
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 61.62 | NEUTRAL |
| Stoch RSI (14) | 94.41 | SELL |
| Estocástico Rápido (14) | 92.71 | SELL |
| Índice de Canal de Commodities (20) | 79.6 | NEUTRAL |
| Índice Direcional Médio (14) | 17.53 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.002886 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -7.29 | SELL |
| Oscilador Ultimate (7, 14, 28) | 75.92 | SELL |
| VWMA (10) | 0.032095 | BUY |
| Média Móvel de Hull (9) | 0.033177 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000785 | NEUTRAL |
Previsão do preço de Ecorpay com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Ecorpay
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Ecorpay por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.045834 | $0.064405 | $0.090499 | $0.127167 | $0.178691 | $0.251091 |
| Amazon.com stock | $0.06806 | $0.142012 | $0.296316 | $0.618282 | $1.29 | $2.69 |
| Apple stock | $0.046266 | $0.065626 | $0.093085 | $0.132034 | $0.187281 | $0.265644 |
| Netflix stock | $0.051466 | $0.0812067 | $0.128131 | $0.202171 | $0.318994 | $0.503323 |
| Google stock | $0.04224 | $0.0547016 | $0.070838 | $0.091735 | $0.118797 | $0.153841 |
| Tesla stock | $0.073943 | $0.167624 | $0.379992 | $0.861414 | $1.95 | $4.42 |
| Kodak stock | $0.02446 | $0.018342 | $0.013755 | $0.010314 | $0.007735 | $0.00580045 |
| Nokia stock | $0.0216084 | $0.014314 | $0.009482 | $0.006282 | $0.004161 | $0.002756 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Ecorpay
Você pode fazer perguntas como: 'Devo investir em Ecorpay agora?', 'Devo comprar ECOR hoje?', 'Ecorpay será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Ecorpay regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Ecorpay, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Ecorpay para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Ecorpay é de $0.03261 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Ecorpay com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Ecorpay tiver 1% da média anterior do crescimento anual do Bitcoin | $0.033466 | $0.034336 | $0.035228 | $0.036144 |
| Se Ecorpay tiver 2% da média anterior do crescimento anual do Bitcoin | $0.034314 | $0.036098 | $0.037974 | $0.039948 |
| Se Ecorpay tiver 5% da média anterior do crescimento anual do Bitcoin | $0.036857 | $0.041648 | $0.04706 | $0.053177 |
| Se Ecorpay tiver 10% da média anterior do crescimento anual do Bitcoin | $0.041097 | $0.051779 | $0.065238 | $0.082196 |
| Se Ecorpay tiver 20% da média anterior do crescimento anual do Bitcoin | $0.049575 | $0.075348 | $0.114519 | $0.174053 |
| Se Ecorpay tiver 50% da média anterior do crescimento anual do Bitcoin | $0.075011 | $0.172501 | $0.396693 | $0.912261 |
| Se Ecorpay tiver 100% da média anterior do crescimento anual do Bitcoin | $0.1174045 | $0.422576 | $1.52 | $5.47 |
Perguntas Frequentes sobre Ecorpay
ECOR é um bom investimento?
A decisão de adquirir Ecorpay depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Ecorpay experimentou uma queda de -1.8163% nas últimas 24 horas, e Ecorpay registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Ecorpay dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Ecorpay pode subir?
Parece que o valor médio de Ecorpay pode potencialmente subir para $0.03364 até o final deste ano. Observando as perspectivas de Ecorpay em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.105758. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Ecorpay na próxima semana?
Com base na nossa nova previsão experimental de Ecorpay, o preço de Ecorpay aumentará 0.86% na próxima semana e atingirá $0.032897 até 13 de janeiro de 2026.
Qual será o preço de Ecorpay no próximo mês?
Com base na nossa nova previsão experimental de Ecorpay, o preço de Ecorpay diminuirá -11.62% no próximo mês e atingirá $0.028828 até 5 de fevereiro de 2026.
Até onde o preço de Ecorpay pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Ecorpay em 2026, espera-se que ECOR fluctue dentro do intervalo de $0.011269 e $0.03364. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Ecorpay não considera flutuações repentinas e extremas de preço.
Onde estará Ecorpay em 5 anos?
O futuro de Ecorpay parece seguir uma tendência de alta, com um preço máximo de $0.105758 projetada após um período de cinco anos. Com base na previsão de Ecorpay para 2030, o valor de Ecorpay pode potencialmente atingir seu pico mais alto de aproximadamente $0.105758, enquanto seu pico mais baixo está previsto para cerca de $0.036578.
Quanto será Ecorpay em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Ecorpay, espera-se que o valor de ECOR em 2026 aumente 3.13% para $0.03364 se o melhor cenário ocorrer. O preço ficará entre $0.03364 e $0.011269 durante 2026.
Quanto será Ecorpay em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Ecorpay, o valor de ECOR pode diminuir -12.62% para $0.02850052 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.02850052 e $0.010849 ao longo do ano.
Quanto será Ecorpay em 2028?
Nosso novo modelo experimental de previsão de preços de Ecorpay sugere que o valor de ECOR em 2028 pode aumentar 47.02%, alcançando $0.047955 no melhor cenário. O preço é esperado para variar entre $0.047955 e $0.019579 durante o ano.
Quanto será Ecorpay em 2029?
Com base no nosso modelo de previsão experimental, o valor de Ecorpay pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.141484 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.141484 e $0.04301.
Quanto será Ecorpay em 2030?
Usando nossa nova simulação experimental para previsões de preços de Ecorpay, espera-se que o valor de ECOR em 2030 aumente 224.23%, alcançando $0.105758 no melhor cenário. O preço está previsto para variar entre $0.105758 e $0.036578 ao longo de 2030.
Quanto será Ecorpay em 2031?
Nossa simulação experimental indica que o preço de Ecorpay poderia aumentar 195.98% em 2031, potencialmente atingindo $0.096545 sob condições ideais. O preço provavelmente oscilará entre $0.096545 e $0.043246 durante o ano.
Quanto será Ecorpay em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Ecorpay, ECOR poderia ver um 449.04% aumento em valor, atingindo $0.179087 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.179087 e $0.066013 ao longo do ano.
Quanto será Ecorpay em 2033?
De acordo com nossa previsão experimental de preços de Ecorpay, espera-se que o valor de ECOR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.477023. Ao longo do ano, o preço de ECOR poderia variar entre $0.477023 e $0.15340017.
Quanto será Ecorpay em 2034?
Os resultados da nossa nova simulação de previsão de preços de Ecorpay sugerem que ECOR pode aumentar 746.96% em 2034, atingindo potencialmente $0.276266 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.276266 e $0.123326.
Quanto será Ecorpay em 2035?
Com base em nossa previsão experimental para o preço de Ecorpay, ECOR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.32551 em 2035. A faixa de preço esperada para o ano está entre $0.32551 e $0.14581.
Quanto será Ecorpay em 2036?
Nossa recente simulação de previsão de preços de Ecorpay sugere que o valor de ECOR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.673472 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.673472 e $0.241361.
Quanto será Ecorpay em 2037?
De acordo com a simulação experimental, o valor de Ecorpay poderia aumentar 4830.69% em 2037, com um pico de $1.60 sob condições favoráveis. O preço é esperado para cair entre $1.60 e $0.626808 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Ecorpay?
Traders de Ecorpay utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Ecorpay
Médias móveis são ferramentas populares para a previsão de preço de Ecorpay. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ECOR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ECOR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ECOR.
Como ler gráficos de Ecorpay e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Ecorpay em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ECOR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Ecorpay?
A ação de preço de Ecorpay é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ECOR. A capitalização de mercado de Ecorpay pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ECOR, grandes detentores de Ecorpay, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Ecorpay.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


