Previsão de Preço Donut - Projeção DONUT
Previsão de Preço Donut até $0.002176 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000729 | $0.002176 |
| 2027 | $0.0007019 | $0.001844 |
| 2028 | $0.001266 | $0.0031028 |
| 2029 | $0.002782 | $0.009154 |
| 2030 | $0.002366 | $0.006842 |
| 2031 | $0.002798 | $0.006246 |
| 2032 | $0.004271 | $0.011587 |
| 2033 | $0.009925 | $0.030864 |
| 2034 | $0.007979 | $0.017875 |
| 2035 | $0.009434 | $0.021061 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Donut hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,958.75, com um retorno de 39.59% nos próximos 90 dias.
Previsão de preço de longo prazo de Donut para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Donut'
'name_with_ticker' => 'Donut <small>DONUT</small>'
'name_lang' => 'Donut'
'name_lang_with_ticker' => 'Donut <small>DONUT</small>'
'name_with_lang' => 'Donut'
'name_with_lang_with_ticker' => 'Donut <small>DONUT</small>'
'image' => '/uploads/coins/donut.png?1734823139'
'price_for_sd' => 0.00211
'ticker' => 'DONUT'
'marketcap' => '$454.27K'
'low24h' => '$0.00206'
'high24h' => '$0.002393'
'volume24h' => '$32.01'
'current_supply' => '215.24M'
'max_supply' => '227.3M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00211'
'change_24h_pct' => '1.4662%'
'ath_price' => '$0.09302'
'ath_days' => 1803
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 de jan. de 2021'
'ath_pct' => '-97.73%'
'fdv' => '$479.72K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.104061'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002128'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001865'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000729'
'current_year_max_price_prediction' => '$0.002176'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002366'
'grand_prediction_max_price' => '$0.006842'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0021504826753823
107 => 0.0021585117970669
108 => 0.0021766018181996
109 => 0.0020220245682614
110 => 0.002091425215334
111 => 0.002132191593528
112 => 0.0019480076137543
113 => 0.0021285508684445
114 => 0.0020193337222433
115 => 0.0019822637824362
116 => 0.0020321735727933
117 => 0.0020127236789523
118 => 0.0019960018023639
119 => 0.0019866707079092
120 => 0.0020233189496049
121 => 0.0020216092653257
122 => 0.0019616456287943
123 => 0.0018834255093696
124 => 0.0019096787489364
125 => 0.0019001407008764
126 => 0.001865573584274
127 => 0.0018888676472144
128 => 0.0017862923828803
129 => 0.0016098169719918
130 => 0.0017264020340128
131 => 0.0017219136359451
201 => 0.0017196503821068
202 => 0.0018072608340411
203 => 0.0017988391106046
204 => 0.0017835536001017
205 => 0.0018652928538866
206 => 0.001835456926707
207 => 0.0019274042240459
208 => 0.0019879666608517
209 => 0.0019726060678882
210 => 0.0020295653324276
211 => 0.0019102835705519
212 => 0.0019499041870934
213 => 0.0019580699412508
214 => 0.0018642842041829
215 => 0.001800217008712
216 => 0.0017959444571936
217 => 0.0016848607692505
218 => 0.0017442007787135
219 => 0.0017964175313845
220 => 0.0017714097590388
221 => 0.0017634930454001
222 => 0.0018039378184546
223 => 0.001807080723707
224 => 0.0017354221508824
225 => 0.0017503222373045
226 => 0.0018124580746179
227 => 0.0017487565736283
228 => 0.0016249949627866
301 => 0.0015943003721597
302 => 0.0015902051479565
303 => 0.0015069589837577
304 => 0.0015963515314773
305 => 0.0015573292888264
306 => 0.0016806000858024
307 => 0.0016101884676842
308 => 0.0016071531635571
309 => 0.0016025648561866
310 => 0.0015309114438049
311 => 0.0015465989873046
312 => 0.0015987467711778
313 => 0.0016173536879506
314 => 0.0016154128340892
315 => 0.0015984912185877
316 => 0.0016062378475116
317 => 0.0015812832566433
318 => 0.0015724712712228
319 => 0.0015446582213081
320 => 0.0015037807214847
321 => 0.0015094649885514
322 => 0.0014284759652216
323 => 0.0013843488468987
324 => 0.001372135042133
325 => 0.0013558022319503
326 => 0.0013739798765031
327 => 0.0014282465334943
328 => 0.0013627894318494
329 => 0.0012505678223612
330 => 0.0012573125323078
331 => 0.0012724658930353
401 => 0.001244227705569
402 => 0.0012175026309836
403 => 0.0012407379150618
404 => 0.0011931881397303
405 => 0.0012782120562124
406 => 0.0012759123975483
407 => 0.0013076040557692
408 => 0.0013274215000329
409 => 0.0012817487069787
410 => 0.0012702621230379
411 => 0.0012768054032867
412 => 0.001168659556111
413 => 0.0012987662328327
414 => 0.0012998914007758
415 => 0.0012902570297378
416 => 0.0013595348184991
417 => 0.0015057325610696
418 => 0.001450727089524
419 => 0.0014294273083924
420 => 0.0013889364088911
421 => 0.0014428881283649
422 => 0.0014387454780872
423 => 0.0014200108424782
424 => 0.0014086800764063
425 => 0.0014295573603141
426 => 0.0014060931498914
427 => 0.0014018783329461
428 => 0.0013763411280237
429 => 0.0013672255077352
430 => 0.0013604766653769
501 => 0.0013530468530679
502 => 0.0013694351676276
503 => 0.0013322970907731
504 => 0.0012875122107771
505 => 0.0012837888325845
506 => 0.0012940694071369
507 => 0.0012895210181962
508 => 0.0012837670566482
509 => 0.0012727811770547
510 => 0.0012695219012555
511 => 0.0012801129664271
512 => 0.0012681562713458
513 => 0.0012857990262531
514 => 0.0012810011731365
515 => 0.0012542007556426
516 => 0.0012207975126599
517 => 0.0012205001537317
518 => 0.0012133034798234
519 => 0.001204137433574
520 => 0.0012015876491981
521 => 0.0012387811042452
522 => 0.0013157704430863
523 => 0.001300655593673
524 => 0.0013115776214062
525 => 0.0013653031879251
526 => 0.0013823809299373
527 => 0.0013702595531655
528 => 0.0013536670650263
529 => 0.0013543970502961
530 => 0.0014110986051554
531 => 0.0014146350115804
601 => 0.0014235703697285
602 => 0.0014350548300807
603 => 0.0013722154064237
604 => 0.001351437319093
605 => 0.0013415915085913
606 => 0.0013112702230542
607 => 0.0013439691299554
608 => 0.0013249168772109
609 => 0.0013274876770237
610 => 0.0013258134402731
611 => 0.0013267276867503
612 => 0.001278188290295
613 => 0.0012958734952077
614 => 0.0012664684119383
615 => 0.0012270983063162
616 => 0.0012269663239172
617 => 0.0012366021014926
618 => 0.0012308703639427
619 => 0.0012154464055724
620 => 0.0012176373060599
621 => 0.0011984427124158
622 => 0.0012199678772576
623 => 0.0012205851419645
624 => 0.0012122967810168
625 => 0.0012454592673559
626 => 0.0012590459650671
627 => 0.0012535903883374
628 => 0.0012586631872603
629 => 0.0013012836839056
630 => 0.0013082326845214
701 => 0.0013113189715698
702 => 0.0013071837557797
703 => 0.0012594422116994
704 => 0.0012615597521921
705 => 0.001246022645067
706 => 0.0012328954268063
707 => 0.0012334204466935
708 => 0.0012401695432984
709 => 0.0012696432440014
710 => 0.0013316689095613
711 => 0.0013340227382291
712 => 0.0013368756472405
713 => 0.0013252714325339
714 => 0.0013217714903409
715 => 0.0013263888175051
716 => 0.0013496823963348
717 => 0.0014095998052298
718 => 0.0013884209911772
719 => 0.0013712022856844
720 => 0.0013863077325312
721 => 0.0013839823673896
722 => 0.0013643539454292
723 => 0.0013638030409993
724 => 0.0013261298236713
725 => 0.0013122028930028
726 => 0.0013005645073235
727 => 0.0012878556939895
728 => 0.0012803214834418
729 => 0.0012918974550805
730 => 0.0012945450167572
731 => 0.0012692339524557
801 => 0.0012657841479191
802 => 0.0012864537094049
803 => 0.0012773578060339
804 => 0.0012867131682185
805 => 0.0012888836924941
806 => 0.0012885341880943
807 => 0.0012790370203172
808 => 0.0012850902318487
809 => 0.0012707725820274
810 => 0.0012552042882882
811 => 0.0012452726868216
812 => 0.0012366060473062
813 => 0.0012414148026174
814 => 0.001224272467977
815 => 0.0012187882901185
816 => 0.0012830395399834
817 => 0.0013305026290759
818 => 0.0013298124969631
819 => 0.0013256114952136
820 => 0.0013193696587561
821 => 0.00134922576712
822 => 0.0013388244959577
823 => 0.0013463922897835
824 => 0.0013483186109315
825 => 0.0013541490048756
826 => 0.0013562328695714
827 => 0.0013499339831238
828 => 0.0013287941508615
829 => 0.0012761156987789
830 => 0.0012515937371317
831 => 0.0012435010813425
901 => 0.0012437952340103
902 => 0.0012356811902772
903 => 0.0012380711398025
904 => 0.0012348500633654
905 => 0.0012287501238557
906 => 0.0012410381485418
907 => 0.001242454228916
908 => 0.0012395860571234
909 => 0.0012402616154099
910 => 0.0012165143779785
911 => 0.0012183198288641
912 => 0.0012082668489074
913 => 0.001206382036356
914 => 0.0011809689784385
915 => 0.0011359460626561
916 => 0.0011608931284797
917 => 0.001130760581053
918 => 0.0011193489287599
919 => 0.0011733699158394
920 => 0.0011679477070456
921 => 0.001158667242568
922 => 0.0011449395013875
923 => 0.0011398477486487
924 => 0.0011089118708612
925 => 0.001107084014165
926 => 0.0011224166705355
927 => 0.001115341177185
928 => 0.001105404504822
929 => 0.0010694148847877
930 => 0.0010289506361154
1001 => 0.0010301719974336
1002 => 0.0010430429220722
1003 => 0.0010804668713394
1004 => 0.0010658446869198
1005 => 0.0010552361243532
1006 => 0.0010532494594766
1007 => 0.0010781167297709
1008 => 0.0011133091270914
1009 => 0.0011298206125286
1010 => 0.0011134582319216
1011 => 0.0010946620100933
1012 => 0.0010958060490227
1013 => 0.0011034168274814
1014 => 0.0011042166126868
1015 => 0.0010919822045594
1016 => 0.0010954261187838
1017 => 0.0010901944981588
1018 => 0.0010580880520401
1019 => 0.0010575073482405
1020 => 0.0010496279085766
1021 => 0.001049389322275
1022 => 0.0010359844297884
1023 => 0.0010341089926659
1024 => 0.0010074927650148
1025 => 0.0010250116466561
1026 => 0.0010132609006337
1027 => 0.00099554975465714
1028 => 0.00099249634641505
1029 => 0.0009924045572762
1030 => 0.0010105899440543
1031 => 0.0010247991398235
1101 => 0.0010134653098917
1102 => 0.0010108848165132
1103 => 0.0010384377346736
1104 => 0.0010349313746873
1105 => 0.0010318948895527
1106 => 0.0011101580339049
1107 => 0.0010482066482008
1108 => 0.0010211923079724
1109 => 0.0009877569320556
1110 => 0.0009986436590499
1111 => 0.0010009376523869
1112 => 0.00092053160048655
1113 => 0.00088791087524451
1114 => 0.00087671667162754
1115 => 0.00087027424918317
1116 => 0.00087321014198992
1117 => 0.00084384766324264
1118 => 0.00086357973457139
1119 => 0.00083815430992479
1120 => 0.00083389165474129
1121 => 0.00087935546361513
1122 => 0.00088568148702421
1123 => 0.00085869270581967
1124 => 0.00087602387243977
1125 => 0.00086973935050209
1126 => 0.00083859015585496
1127 => 0.0008374004857374
1128 => 0.00082177091481061
1129 => 0.00079731366279147
1130 => 0.00078613604234305
1201 => 0.00078031464056495
1202 => 0.00078271666439545
1203 => 0.00078150212764361
1204 => 0.00077357645379352
1205 => 0.00078195641799124
1206 => 0.00076054907230635
1207 => 0.00075202449476393
1208 => 0.00074817414085671
1209 => 0.00072917388940053
1210 => 0.00075941173891749
1211 => 0.00076536897619872
1212 => 0.00077133795107767
1213 => 0.00082329380220678
1214 => 0.00082069823471008
1215 => 0.0008441609007876
1216 => 0.0008432491847289
1217 => 0.0008365572522936
1218 => 0.00080832509011853
1219 => 0.00081957792677161
1220 => 0.00078494344463251
1221 => 0.00081089395356699
1222 => 0.00079905122500846
1223 => 0.00080688991512864
1224 => 0.00079279524350636
1225 => 0.00080059581673686
1226 => 0.00076678165815703
1227 => 0.00073520647265324
1228 => 0.00074791324903709
1229 => 0.00076172696816248
1230 => 0.00079167863089649
1231 => 0.00077383966766797
]
'min_raw' => 0.00072917388940053
'max_raw' => 0.0021766018181996
'avg_raw' => 0.0014528878538001
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000729'
'max' => '$0.002176'
'avg' => '$0.001452'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0013813161105995
'max_diff' => 6.6111818199596E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00078025523341083
102 => 0.00075876416212498
103 => 0.00071442194344125
104 => 0.00071467291558345
105 => 0.00070785183128671
106 => 0.00070195741855971
107 => 0.00077588868718688
108 => 0.00076669416525269
109 => 0.00075204389789984
110 => 0.00077165386293011
111 => 0.00077683904893611
112 => 0.00077698666389219
113 => 0.00079129358817182
114 => 0.00079892919622452
115 => 0.00080027500523843
116 => 0.00082278725971399
117 => 0.00083033307047038
118 => 0.00086141319705284
119 => 0.00079828136822827
120 => 0.00079698120975868
121 => 0.00077192981535311
122 => 0.00075604182497421
123 => 0.00077301767964712
124 => 0.00078805596945206
125 => 0.00077239709693642
126 => 0.00077444181511012
127 => 0.00075342105813475
128 => 0.0007609349896349
129 => 0.00076740699967871
130 => 0.00076383353613968
131 => 0.00075848388826418
201 => 0.00078682300118245
202 => 0.00078522399736972
203 => 0.00081161403083261
204 => 0.00083218694908633
205 => 0.00086905729644603
206 => 0.00083058116688151
207 => 0.00082917894379141
208 => 0.00084288589942075
209 => 0.00083033097200689
210 => 0.00083826525275108
211 => 0.00086777896115463
212 => 0.00086840253930611
213 => 0.00085795680183384
214 => 0.00085732117775935
215 => 0.00085932739590474
216 => 0.0008710778782454
217 => 0.00086697189865972
218 => 0.00087172344218696
219 => 0.00087766532012598
220 => 0.0009022434465858
221 => 0.00090816914966641
222 => 0.00089377276330533
223 => 0.00089507259580423
224 => 0.00088968795211554
225 => 0.00088448645378165
226 => 0.0008961786624184
227 => 0.00091754640351299
228 => 0.00091741347590463
301 => 0.00092237037650904
302 => 0.00092545848452041
303 => 0.0009122020643024
304 => 0.00090357262219255
305 => 0.00090688169940314
306 => 0.00091217298592519
307 => 0.00090516580649822
308 => 0.0008619142490337
309 => 0.00087503400864824
310 => 0.00087285023912491
311 => 0.00086974028576825
312 => 0.00088293230551277
313 => 0.00088165990302627
314 => 0.00084354650858325
315 => 0.00084598640443689
316 => 0.0008436948867313
317 => 0.00085109924923847
318 => 0.00082993111213246
319 => 0.00083644228853669
320 => 0.00084052603733893
321 => 0.00084293139675629
322 => 0.00085162120434219
323 => 0.00085060155571937
324 => 0.00085155782155214
325 => 0.00086444251217788
326 => 0.00092960885587097
327 => 0.00093315571617675
328 => 0.00091568967882787
329 => 0.0009226670162464
330 => 0.00090927205417878
331 => 0.00091826418195322
401 => 0.0009244163674012
402 => 0.00089661582435898
403 => 0.00089496965662405
404 => 0.00088151940878314
405 => 0.00088874681011187
406 => 0.00087724749492931
407 => 0.00088006902464614
408 => 0.00087217978158134
409 => 0.00088637884836535
410 => 0.00090225561134178
411 => 0.000906266708662
412 => 0.00089571523849848
413 => 0.00088807527872433
414 => 0.00087466202612012
415 => 0.00089696856413475
416 => 0.00090349167562966
417 => 0.00089693430100704
418 => 0.00089541481402552
419 => 0.00089253538894118
420 => 0.00089602569766908
421 => 0.00090345614936355
422 => 0.00089995208556334
423 => 0.00090226658143704
424 => 0.00089344610986427
425 => 0.00091220645272909
426 => 0.0009420023921208
427 => 0.00094209819093807
428 => 0.00093859410824965
429 => 0.00093716031311006
430 => 0.0009407557145939
501 => 0.00094270607240779
502 => 0.00095433294152266
503 => 0.00096680903531781
504 => 0.0010250295213136
505 => 0.001008681441819
506 => 0.0010603381205467
507 => 0.0011011918466401
508 => 0.0011134420927785
509 => 0.0011021724427498
510 => 0.0010636195787759
511 => 0.0010617279913432
512 => 0.0011193422467195
513 => 0.0011030635806756
514 => 0.001101127285148
515 => 0.0010805283721569
516 => 0.0010927048809596
517 => 0.0010900416998658
518 => 0.0010858377382221
519 => 0.0011090696687947
520 => 0.001152557768898
521 => 0.0011457797406681
522 => 0.0011407202570182
523 => 0.0011185510724576
524 => 0.0011319018732297
525 => 0.0011271479087925
526 => 0.0011475739569551
527 => 0.0011354740185159
528 => 0.0011029402537698
529 => 0.0011081213630383
530 => 0.0011073382487953
531 => 0.001123454684424
601 => 0.0011186169304828
602 => 0.0011063935996951
603 => 0.0011524091312997
604 => 0.0011494211386291
605 => 0.0011536574290857
606 => 0.0011555223751564
607 => 0.0011835312183594
608 => 0.0011950055452367
609 => 0.0011976104183242
610 => 0.0012085101414013
611 => 0.0011973392232846
612 => 0.0012420308604811
613 => 0.0012717481913874
614 => 0.0013062664004749
615 => 0.0013567067815717
616 => 0.0013756728314638
617 => 0.0013722467843093
618 => 0.0014104901055888
619 => 0.0014792125038268
620 => 0.0013861375458418
621 => 0.0014841457026037
622 => 0.0014531174517314
623 => 0.0013795500270878
624 => 0.0013748131522437
625 => 0.0014246338663477
626 => 0.0015351314151645
627 => 0.0015074530324387
628 => 0.0015351766870831
629 => 0.0015028355713118
630 => 0.0015012295623214
701 => 0.0015336059512768
702 => 0.0016092551488162
703 => 0.001573317050733
704 => 0.0015217909747476
705 => 0.0015598370274207
706 => 0.0015268780155993
707 => 0.0014526121373191
708 => 0.0015074318673011
709 => 0.0014707754750382
710 => 0.0014814737590615
711 => 0.0015585200433713
712 => 0.0015492496306039
713 => 0.001561246403142
714 => 0.0015400724136225
715 => 0.0015202925685797
716 => 0.0014833720189367
717 => 0.0014724416643485
718 => 0.0014754624211237
719 => 0.0014724401674114
720 => 0.0014517834592035
721 => 0.0014473226450328
722 => 0.0014398877593154
723 => 0.0014421921412865
724 => 0.0014282123809854
725 => 0.0014545950770395
726 => 0.0014594919379107
727 => 0.0014786910639646
728 => 0.0014806843809222
729 => 0.0015341536736999
730 => 0.0015047036857529
731 => 0.0015244612802574
801 => 0.0015226939750392
802 => 0.0013811444562557
803 => 0.0014006487310421
804 => 0.0014309912618311
805 => 0.001417321992839
806 => 0.0013979968446005
807 => 0.001382390751249
808 => 0.0013587459240165
809 => 0.0013920255642875
810 => 0.0014357847523488
811 => 0.0014817941861451
812 => 0.0015370715061938
813 => 0.0015247342518579
814 => 0.0014807608150969
815 => 0.0014827334313474
816 => 0.0014949273688119
817 => 0.0014791351118593
818 => 0.0014744776669824
819 => 0.0014942875074058
820 => 0.0014944239268895
821 => 0.0014762530267074
822 => 0.0014560593963947
823 => 0.0014559747843463
824 => 0.0014523815228795
825 => 0.0015034748045443
826 => 0.0015315709433465
827 => 0.001534792120381
828 => 0.0015313541324671
829 => 0.0015326772775663
830 => 0.0015163287534534
831 => 0.0015536966315711
901 => 0.0015879890918321
902 => 0.0015787979799306
903 => 0.0015650191965967
904 => 0.0015540437319952
905 => 0.0015762125092757
906 => 0.0015752253685203
907 => 0.0015876895771078
908 => 0.0015871241286095
909 => 0.0015829328840641
910 => 0.0015787981296131
911 => 0.0015951919636399
912 => 0.0015904708027171
913 => 0.0015857423085274
914 => 0.0015762585895336
915 => 0.0015775475844528
916 => 0.0015637711802201
917 => 0.0015573975852567
918 => 0.0014615540093999
919 => 0.0014359414741517
920 => 0.001443999699132
921 => 0.0014466526760273
922 => 0.0014355060678639
923 => 0.0014514874406415
924 => 0.0014489967606225
925 => 0.0014586865395771
926 => 0.0014526327863676
927 => 0.0014528812345109
928 => 0.0014706840319038
929 => 0.0014758522597254
930 => 0.0014732236573426
1001 => 0.0014750646403483
1002 => 0.0015174893166844
1003 => 0.0015114578843742
1004 => 0.0015082538061703
1005 => 0.0015091413577298
1006 => 0.001519981772129
1007 => 0.0015230164962961
1008 => 0.0015101581567539
1009 => 0.0015162222240152
1010 => 0.001542042252769
1011 => 0.0015510778015458
1012 => 0.0015799149359319
1013 => 0.0015676644087055
1014 => 0.0015901507816199
1015 => 0.0016592662257894
1016 => 0.001714480425017
1017 => 0.0016637031655841
1018 => 0.0017650970109796
1019 => 0.0018440466637034
1020 => 0.0018410164445343
1021 => 0.0018272497464436
1022 => 0.0017373676658027
1023 => 0.0016546568351307
1024 => 0.0017238479570752
1025 => 0.0017240243394743
1026 => 0.0017180807607367
1027 => 0.0016811657036572
1028 => 0.0017167961967684
1029 => 0.0017196244159206
1030 => 0.0017180413652795
1031 => 0.0016897386775686
1101 => 0.0016465257046449
1102 => 0.001654969416117
1103 => 0.0016688003877552
1104 => 0.0016426154730011
1105 => 0.0016342478061372
1106 => 0.0016498048908509
1107 => 0.0016999330592458
1108 => 0.0016904566193834
1109 => 0.0016902091512413
1110 => 0.0017307533796084
1111 => 0.0017017324620897
1112 => 0.0016550759183591
1113 => 0.001643294525743
1114 => 0.0016014785188526
1115 => 0.0016303609837553
1116 => 0.0016314004122487
1117 => 0.0016155817813931
1118 => 0.0016563595130716
1119 => 0.0016559837390954
1120 => 0.0016946961263598
1121 => 0.0017686996711006
1122 => 0.0017468131814275
1123 => 0.0017213615751809
1124 => 0.0017241288704764
1125 => 0.0017544792696012
1126 => 0.0017361287254581
1127 => 0.0017427277090765
1128 => 0.0017544692812491
1129 => 0.0017615532632677
1130 => 0.0017231095944802
1201 => 0.0017141465363126
1202 => 0.0016958112649077
1203 => 0.0016910279348421
1204 => 0.0017059616308235
1205 => 0.0017020271295477
1206 => 0.0016313130523087
1207 => 0.0016239230377878
1208 => 0.0016241496789826
1209 => 0.0016055671360938
1210 => 0.0015772242978671
1211 => 0.001651707584464
1212 => 0.0016457255341574
1213 => 0.0016391218135927
1214 => 0.0016399307316816
1215 => 0.0016722614019205
1216 => 0.0016535079804439
1217 => 0.0017033670250647
1218 => 0.0016931175043908
1219 => 0.0016826051221865
1220 => 0.0016811519907509
1221 => 0.0016771056204765
1222 => 0.0016632291112178
1223 => 0.0016464723924389
1224 => 0.0016354081552589
1225 => 0.0015085775758783
1226 => 0.0015321165936718
1227 => 0.0015591960879943
1228 => 0.0015685438209201
1229 => 0.001552553876907
1230 => 0.0016638604916673
1231 => 0.0016841972827612
]
'min_raw' => 0.00070195741855971
'max_raw' => 0.0018440466637034
'avg_raw' => 0.0012730020411315
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0007019'
'max' => '$0.001844'
'avg' => '$0.001273'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.7216470840829E-5
'max_diff' => -0.00033255515449622
'year' => 2027
]
2 => [
'items' => [
101 => 0.0016225958160016
102 => 0.0016110726967422
103 => 0.0016646159454475
104 => 0.0016323228210823
105 => 0.0016468644130066
106 => 0.0016154334450917
107 => 0.0016792987453174
108 => 0.0016788121987333
109 => 0.0016539671544823
110 => 0.0016749660157518
111 => 0.0016713169468496
112 => 0.0016432669530808
113 => 0.0016801879801517
114 => 0.0016802062925205
115 => 0.0016562934776068
116 => 0.0016283685449758
117 => 0.0016233762265789
118 => 0.0016196151852904
119 => 0.0016459394274057
120 => 0.0016695416605725
121 => 0.0017134595650061
122 => 0.0017245015696444
123 => 0.0017675992488554
124 => 0.0017419366792732
125 => 0.0017533125639831
126 => 0.0017656626960528
127 => 0.0017715838035281
128 => 0.0017619356766413
129 => 0.0018288841121686
130 => 0.0018345366113741
131 => 0.0018364318454638
201 => 0.0018138572096851
202 => 0.0018339087699159
203 => 0.0018245273089218
204 => 0.0018489352641835
205 => 0.001852762743225
206 => 0.0018495210046434
207 => 0.0018507359069038
208 => 0.0017936072276946
209 => 0.0017906448042998
210 => 0.0017502519511079
211 => 0.0017667123373525
212 => 0.001735940434235
213 => 0.0017456985216993
214 => 0.0017499997936751
215 => 0.0017477530532899
216 => 0.0017676429828938
217 => 0.0017507324794864
218 => 0.0017061028806501
219 => 0.0016614611225094
220 => 0.0016609006816003
221 => 0.0016491472946744
222 => 0.0016406517486671
223 => 0.0016422882922238
224 => 0.0016480556851753
225 => 0.0016403165373042
226 => 0.0016419680768873
227 => 0.0016693946381166
228 => 0.0016748948393738
229 => 0.0016562030064343
301 => 0.0015811525999636
302 => 0.001562735041966
303 => 0.0015759732174186
304 => 0.0015696462221999
305 => 0.0012668270071801
306 => 0.0013379698899681
307 => 0.0012956992047995
308 => 0.0013151794813059
309 => 0.0012720320576896
310 => 0.0012926242697896
311 => 0.0012888216401219
312 => 0.001403217290374
313 => 0.0014014311596414
314 => 0.0014022860859032
315 => 0.0013614782279305
316 => 0.0014264862537351
317 => 0.0014585115448595
318 => 0.0014525845157979
319 => 0.0014540762213198
320 => 0.0014284437781955
321 => 0.0014025342639824
322 => 0.0013737966252744
323 => 0.0014271876059143
324 => 0.0014212514402816
325 => 0.0014348668684781
326 => 0.0014694947358892
327 => 0.0014745938209039
328 => 0.0014814470428736
329 => 0.001478990650643
330 => 0.0015375118792283
331 => 0.0015304245723111
401 => 0.0015475029428242
402 => 0.0015123714389398
403 => 0.0014726168075816
404 => 0.001480172863326
405 => 0.0014794451543958
406 => 0.0014701805844896
407 => 0.0014618169450252
408 => 0.0014478938417578
409 => 0.0014919486007275
410 => 0.0014901600579667
411 => 0.0015191144863095
412 => 0.0015139965098516
413 => 0.0014798174104845
414 => 0.001481038123705
415 => 0.0014892480067673
416 => 0.0015176625057846
417 => 0.0015260978636996
418 => 0.0015221902698225
419 => 0.0015314392546875
420 => 0.0015387492752133
421 => 0.0015323572807185
422 => 0.0016228544432421
423 => 0.0015852737119221
424 => 0.0016035902988824
425 => 0.0016079586969449
426 => 0.0015967691371655
427 => 0.0015991957520135
428 => 0.0016028714122954
429 => 0.0016251893017586
430 => 0.0016837579014436
501 => 0.0017096975355542
502 => 0.0017877382046147
503 => 0.0017075436100384
504 => 0.0017027851946745
505 => 0.0017168426757747
506 => 0.0017626608099571
507 => 0.0017997921042333
508 => 0.0018121106967005
509 => 0.0018137388020529
510 => 0.0018368493004459
511 => 0.0018500958071395
512 => 0.0018340430780745
513 => 0.0018204400709828
514 => 0.0017717157880475
515 => 0.0017773557564691
516 => 0.0018162095460061
517 => 0.0018710928122041
518 => 0.0019181883642325
519 => 0.0019016971433578
520 => 0.0020275135176438
521 => 0.0020399876972405
522 => 0.0020382641689587
523 => 0.0020666822064867
524 => 0.0020102781892264
525 => 0.0019861643790712
526 => 0.0018233811955167
527 => 0.0018691166302557
528 => 0.0019355957705968
529 => 0.0019267970070887
530 => 0.0018785180783805
531 => 0.0019181517403358
601 => 0.0019050476122341
602 => 0.0018947118427096
603 => 0.001942062006589
604 => 0.0018899985563661
605 => 0.0019350763978544
606 => 0.0018772635998751
607 => 0.0019017724738657
608 => 0.0018878600516278
609 => 0.001896863093858
610 => 0.0018442314929424
611 => 0.0018726302272366
612 => 0.0018430500122293
613 => 0.001843035987356
614 => 0.0018423830024702
615 => 0.0018771839942474
616 => 0.0018783188533399
617 => 0.0018526008678351
618 => 0.0018488945043335
619 => 0.0018625988727829
620 => 0.0018465546465084
621 => 0.0018540616390011
622 => 0.0018467820256635
623 => 0.0018451432313691
624 => 0.0018320850396134
625 => 0.0018264592115626
626 => 0.0018286652437011
627 => 0.001821134918725
628 => 0.0018165976255432
629 => 0.0018414804206543
630 => 0.0018281865469955
701 => 0.0018394429438551
702 => 0.0018266148589631
703 => 0.0017821471277967
704 => 0.0017565732653652
705 => 0.0016725778433528
706 => 0.0016963988408395
707 => 0.0017121921868178
708 => 0.0017069724860662
709 => 0.0017181864230367
710 => 0.0017188748676909
711 => 0.0017152291024692
712 => 0.001711007773394
713 => 0.0017089530638543
714 => 0.0017242671853712
715 => 0.0017331575483614
716 => 0.0017137772603744
717 => 0.0017092367300582
718 => 0.0017288312712279
719 => 0.0017407839300221
720 => 0.0018290356469395
721 => 0.001822497674701
722 => 0.0018389067020074
723 => 0.0018370592973498
724 => 0.00185425857213
725 => 0.0018823721174398
726 => 0.0018252094191541
727 => 0.0018351308870391
728 => 0.0018326983722338
729 => 0.0018592559310379
730 => 0.0018593388408377
731 => 0.0018434162576861
801 => 0.001852048148327
802 => 0.0018472300637748
803 => 0.0018559369937638
804 => 0.0018224103560957
805 => 0.0018632421817985
806 => 0.0018863911958273
807 => 0.0018867126199096
808 => 0.0018976850688373
809 => 0.0019088337124292
810 => 0.0019302325629617
811 => 0.0019082369101021
812 => 0.0018686688718413
813 => 0.0018715255563998
814 => 0.0018483268300448
815 => 0.0018487168048261
816 => 0.001846635088881
817 => 0.0018528824751363
818 => 0.0018237813060577
819 => 0.0018306112922739
820 => 0.0018210492715749
821 => 0.0018351101010735
822 => 0.0018199829728714
823 => 0.0018326971992015
824 => 0.0018381842378023
825 => 0.0018584315283668
826 => 0.0018169924315925
827 => 0.0017324953080895
828 => 0.0017502576278784
829 => 0.0017239857617105
830 => 0.0017264173229484
831 => 0.001731329463629
901 => 0.0017154076085306
902 => 0.0017184449967281
903 => 0.0017183364798479
904 => 0.00171740134
905 => 0.0017132594505577
906 => 0.0017072528914185
907 => 0.0017311811743077
908 => 0.0017352470558437
909 => 0.0017442850068422
910 => 0.0017711758185131
911 => 0.0017684887922981
912 => 0.0017728714435383
913 => 0.0017633041404885
914 => 0.0017268611226972
915 => 0.0017288401538959
916 => 0.001704161603136
917 => 0.0017436539208144
918 => 0.001734301618715
919 => 0.0017282721287112
920 => 0.0017266269265009
921 => 0.0017535843952926
922 => 0.0017616504924616
923 => 0.0017566242420015
924 => 0.0017463152556687
925 => 0.0017661115570059
926 => 0.0017714082121048
927 => 0.0017725939378483
928 => 0.0018076691882535
929 => 0.0017745542547086
930 => 0.001782525348347
1001 => 0.0018447135454648
1002 => 0.0017883174320635
1003 => 0.0018181917111156
1004 => 0.0018167295206142
1005 => 0.0018320121908868
1006 => 0.0018154758955842
1007 => 0.001815680882783
1008 => 0.0018292508586473
1009 => 0.001810194274904
1010 => 0.0018054755967758
1011 => 0.0017989567767375
1012 => 0.0018131903818048
1013 => 0.0018217227843121
1014 => 0.0018904876821616
1015 => 0.0019349129422327
1016 => 0.0019329843245298
1017 => 0.0019506082801139
1018 => 0.0019426685267063
1019 => 0.0019170289685521
1020 => 0.0019607925679103
1021 => 0.0019469439339266
1022 => 0.0019480855984861
1023 => 0.0019480431056742
1024 => 0.0019572512366048
1025 => 0.0019507264319277
1026 => 0.0019378653721516
1027 => 0.0019464031438315
1028 => 0.0019717572734115
1029 => 0.0020504572695875
1030 => 0.0020944988300839
1031 => 0.0020478059123454
1101 => 0.0020800140617583
1102 => 0.0020607006490477
1103 => 0.0020571908274339
1104 => 0.0020774199254287
1105 => 0.0020976844317817
1106 => 0.0020963936703329
1107 => 0.0020816826793145
1108 => 0.0020733728137658
1109 => 0.0021362978997098
1110 => 0.0021826600311324
1111 => 0.002179498444585
1112 => 0.002193452659402
1113 => 0.0022344226656922
1114 => 0.0022381684496146
1115 => 0.0022376965669362
1116 => 0.0022284122506526
1117 => 0.0022687525424729
1118 => 0.0023024051236294
1119 => 0.0022262631996826
1120 => 0.0022552570475506
1121 => 0.0022682733199819
1122 => 0.0022873850696652
1123 => 0.002319629794882
1124 => 0.0023546561189584
1125 => 0.0023596092252269
1126 => 0.0023560947593014
1127 => 0.0023329939570149
1128 => 0.0023713201787703
1129 => 0.0023937707806141
1130 => 0.0024071396002392
1201 => 0.0024410407024489
1202 => 0.0022683537040492
1203 => 0.0021461172634811
1204 => 0.0021270282781708
1205 => 0.0021658464804366
1206 => 0.0021760825308047
1207 => 0.0021719563917363
1208 => 0.0020343681646259
1209 => 0.0021263039046296
1210 => 0.002225219030697
1211 => 0.0022290187635338
1212 => 0.0022785377438609
1213 => 0.002294663153707
1214 => 0.0023345324234714
1215 => 0.0023320385897924
1216 => 0.0023417461225214
1217 => 0.0023395145288581
1218 => 0.0024133639556314
1219 => 0.0024948308401084
1220 => 0.0024920099009478
1221 => 0.0024802980724318
1222 => 0.0024976921349416
1223 => 0.0025817746902438
1224 => 0.0025740337159471
1225 => 0.0025815534131017
1226 => 0.0026806914844882
1227 => 0.0028095850795168
1228 => 0.0027497010639206
1229 => 0.0028796321466029
1230 => 0.0029614168758007
1231 => 0.0031028551082495
]
'min_raw' => 0.0012668270071801
'max_raw' => 0.0031028551082495
'avg_raw' => 0.0021848410577148
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001266'
'max' => '$0.0031028'
'avg' => '$0.002184'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00056486958862043
'max_diff' => 0.0012588084445461
'year' => 2028
]
3 => [
'items' => [
101 => 0.0030851463449489
102 => 0.0031402072109195
103 => 0.0030534439627105
104 => 0.002854218007077
105 => 0.0028226897369917
106 => 0.0028858101321255
107 => 0.0030409854643637
108 => 0.0028809231086911
109 => 0.0029133035147781
110 => 0.0029039779556467
111 => 0.0029034810362316
112 => 0.0029224464291862
113 => 0.0028949361375372
114 => 0.0027828542603521
115 => 0.0028342207241634
116 => 0.0028143856656656
117 => 0.0028363941418704
118 => 0.0029551648109618
119 => 0.0029026534670174
120 => 0.0028473370318471
121 => 0.0029167161172502
122 => 0.0030050595342087
123 => 0.0029995311619439
124 => 0.0029888038090696
125 => 0.0030492733355556
126 => 0.0031491512774015
127 => 0.0031761478837404
128 => 0.0031960762266185
129 => 0.0031988240084092
130 => 0.003227127868591
131 => 0.0030749308789023
201 => 0.0033164714102342
202 => 0.0033581787875727
203 => 0.0033503395292267
204 => 0.0033966955238237
205 => 0.0033830564142752
206 => 0.0033632954844501
207 => 0.0034367795960892
208 => 0.0033525359919571
209 => 0.0032329628018663
210 => 0.003167362584893
211 => 0.003253750242422
212 => 0.0033065041703612
213 => 0.003341371160949
214 => 0.0033519218912337
215 => 0.0030867454979626
216 => 0.0029438301293465
217 => 0.0030354372421014
218 => 0.0031472042420475
219 => 0.0030743100075744
220 => 0.0030771673235587
221 => 0.0029732393014678
222 => 0.0031563995659223
223 => 0.0031297146560115
224 => 0.0032681560158332
225 => 0.0032351158742504
226 => 0.0033480094289223
227 => 0.0033182807725022
228 => 0.0034416827631954
301 => 0.0034909111582584
302 => 0.0035735732953571
303 => 0.0036343798999024
304 => 0.0036700867011364
305 => 0.0036679429987231
306 => 0.0038094311342698
307 => 0.0037260005239569
308 => 0.0036211920143187
309 => 0.003619296359046
310 => 0.0036735781713356
311 => 0.0037873379584068
312 => 0.0038168342160568
313 => 0.0038333186001297
314 => 0.0038080721920966
315 => 0.0037175142441275
316 => 0.0036784117813337
317 => 0.0037117282125415
318 => 0.003670985080088
319 => 0.0037413191572066
320 => 0.0038379028676387
321 => 0.0038179587133678
322 => 0.0038846290309005
323 => 0.0039536257956249
324 => 0.0040522942680194
325 => 0.0040780898603862
326 => 0.0041207289936502
327 => 0.0041646186680043
328 => 0.004178714848547
329 => 0.0042056288309909
330 => 0.0042054869810183
331 => 0.004286594078633
401 => 0.0043760577189798
402 => 0.0044098281721226
403 => 0.0044874814670109
404 => 0.0043545029208107
405 => 0.004455368675651
406 => 0.0045463521113506
407 => 0.0044378779085028
408 => 0.0045873843258808
409 => 0.0045931893212787
410 => 0.0046808378597799
411 => 0.0045919892745807
412 => 0.0045392312683042
413 => 0.0046915416556079
414 => 0.0047652398542919
415 => 0.0047430413570725
416 => 0.0045741096971574
417 => 0.004475784225267
418 => 0.004218447499763
419 => 0.0045232739672418
420 => 0.0046717460476408
421 => 0.0045737251903374
422 => 0.0046231612092284
423 => 0.0048928680986152
424 => 0.0049955550198657
425 => 0.0049741968580814
426 => 0.0049778060358377
427 => 0.005033214034645
428 => 0.0052789236150991
429 => 0.0051316887389875
430 => 0.0052442442849893
501 => 0.0053039433407394
502 => 0.0053593951507846
503 => 0.0052232230310381
504 => 0.0050460651040136
505 => 0.004989951751941
506 => 0.0045639789478585
507 => 0.0045418052134999
508 => 0.0045293584244715
509 => 0.0044508831802806
510 => 0.004389223134525
511 => 0.0043401887768495
512 => 0.0042115079794102
513 => 0.0042549339710815
514 => 0.0040498436377329
515 => 0.0041810531650542
516 => 0.0038537240409506
517 => 0.0041263334621415
518 => 0.0039779645482167
519 => 0.0040775902835481
520 => 0.0040772426987428
521 => 0.0038938001336296
522 => 0.003787994290421
523 => 0.0038554178917386
524 => 0.0039277013444431
525 => 0.0039394290914537
526 => 0.0040331464746763
527 => 0.0040593009818853
528 => 0.0039800516040048
529 => 0.003846940872412
530 => 0.0038778594594285
531 => 0.003787367726242
601 => 0.0036287844445468
602 => 0.0037426817260587
603 => 0.0037815712656769
604 => 0.0037987471018604
605 => 0.0036427986577262
606 => 0.0035937962707738
607 => 0.0035677078111302
608 => 0.003826809886591
609 => 0.0038410040831746
610 => 0.0037683845665957
611 => 0.0040966316675974
612 => 0.0040223392391963
613 => 0.0041053420838072
614 => 0.0038750539217301
615 => 0.0038838512396455
616 => 0.0037748291331867
617 => 0.0038358742279439
618 => 0.0037927295225447
619 => 0.0038309423875469
620 => 0.0038538470212716
621 => 0.0039628512382755
622 => 0.0041275781152038
623 => 0.0039465696432254
624 => 0.0038677016598954
625 => 0.003916630913183
626 => 0.0040469359625094
627 => 0.0042443547824317
628 => 0.0041274788676137
629 => 0.0041793464139282
630 => 0.0041906771653714
701 => 0.0041044971927661
702 => 0.0042475323609475
703 => 0.0043241860695916
704 => 0.0044028169134103
705 => 0.0044710898719119
706 => 0.0043714100252598
707 => 0.0044780817497223
708 => 0.0043921231698997
709 => 0.0043150094375642
710 => 0.004315126387265
711 => 0.0042667518165191
712 => 0.0041730199901106
713 => 0.0041557344032167
714 => 0.0042456562091679
715 => 0.0043177649819141
716 => 0.0043237042058152
717 => 0.00436362732749
718 => 0.0043872534196563
719 => 0.0046188212410007
720 => 0.0047119597343749
721 => 0.0048258477210514
722 => 0.0048702135102371
723 => 0.0050037386296705
724 => 0.0048959062513481
725 => 0.0048725760380005
726 => 0.004548687773989
727 => 0.0046017244590763
728 => 0.0046866413091801
729 => 0.0045500880215703
730 => 0.0046366996523246
731 => 0.0046537986229206
801 => 0.0045454479931101
802 => 0.0046033227460463
803 => 0.0044496245609162
804 => 0.004130928315631
805 => 0.0042478871609727
806 => 0.0043340082390658
807 => 0.0042111028419746
808 => 0.0044314060091649
809 => 0.0043027094468728
810 => 0.0042619188151506
811 => 0.0041027800178922
812 => 0.0041778874043841
813 => 0.0042794712200486
814 => 0.0042167042323541
815 => 0.0043469551563308
816 => 0.0045314252013345
817 => 0.0046628895407852
818 => 0.004672981740369
819 => 0.0045884589775289
820 => 0.0047239072443973
821 => 0.0047248938371492
822 => 0.0045721076387992
823 => 0.004478526943027
824 => 0.0044572652120521
825 => 0.0045103811846354
826 => 0.0045748737811009
827 => 0.0046765606306272
828 => 0.0047380078641132
829 => 0.0048982296599502
830 => 0.0049415810839849
831 => 0.0049892111556684
901 => 0.0050528596200077
902 => 0.0051292859205784
903 => 0.0049620695258815
904 => 0.0049687133449732
905 => 0.0048130037535
906 => 0.0046466057239968
907 => 0.0047728810865826
908 => 0.0049379693254559
909 => 0.0049000979010521
910 => 0.0048958365921636
911 => 0.0049030029317255
912 => 0.0048744491144901
913 => 0.0047453012573882
914 => 0.00468044401206
915 => 0.0047641264053813
916 => 0.0048085998731568
917 => 0.0048775743431825
918 => 0.0048690717838774
919 => 0.0050467426113465
920 => 0.005115780122414
921 => 0.0050981173728013
922 => 0.0051013677438078
923 => 0.0052263568599343
924 => 0.0053653704630392
925 => 0.0054955750468075
926 => 0.0056280247418335
927 => 0.00546835146488
928 => 0.0053872792221216
929 => 0.0054709250823279
930 => 0.0054265414115017
1001 => 0.0056815831491207
1002 => 0.0056992416856773
1003 => 0.0059542649808757
1004 => 0.0061963124556282
1005 => 0.0060442867734671
1006 => 0.0061876401443579
1007 => 0.0063426885027481
1008 => 0.0066418019417724
1009 => 0.0065410710584467
1010 => 0.0064639127804734
1011 => 0.0063909985806147
1012 => 0.0065427214557173
1013 => 0.0067379105107048
1014 => 0.0067799523636516
1015 => 0.0068480762266493
1016 => 0.0067764523144968
1017 => 0.0068627154275693
1018 => 0.0071672621226477
1019 => 0.0070849709173295
1020 => 0.0069681041768062
1021 => 0.0072085145435951
1022 => 0.0072955181207643
1023 => 0.0079061547894653
1024 => 0.0086771088078428
1025 => 0.0083579287818775
1026 => 0.0081598034398858
1027 => 0.0082063675948498
1028 => 0.0084878939039208
1029 => 0.008578311219196
1030 => 0.0083325257875603
1031 => 0.0084193413571728
1101 => 0.0088977036812559
1102 => 0.0091543297204256
1103 => 0.0088057970897578
1104 => 0.0078442093847498
1105 => 0.0069575816054888
1106 => 0.0071927552179181
1107 => 0.0071660938285554
1108 => 0.0076800344688674
1109 => 0.0070830082992981
1110 => 0.0070930606888347
1111 => 0.0076176290773158
1112 => 0.0074776832246479
1113 => 0.0072509888662366
1114 => 0.0069592367251802
1115 => 0.0064199059086307
1116 => 0.0059422055640603
1117 => 0.0068790859475819
1118 => 0.006838685961838
1119 => 0.0067801807955384
1120 => 0.006910377712218
1121 => 0.0075425769825742
1122 => 0.0075280027431631
1123 => 0.0074352888678723
1124 => 0.0075056115251378
1125 => 0.0072386609644129
1126 => 0.007307460202263
1127 => 0.0069574411591186
1128 => 0.0071156643847063
1129 => 0.0072505024819571
1130 => 0.0072775732262923
1201 => 0.007338564995546
1202 => 0.0068173970051405
1203 => 0.0070513861321443
1204 => 0.0071888328224428
1205 => 0.0065678436753209
1206 => 0.0071765578636365
1207 => 0.0068083246299217
1208 => 0.0066833407397213
1209 => 0.0068516150825007
1210 => 0.0067860384074674
1211 => 0.0067296594330654
1212 => 0.0066981989966353
1213 => 0.0068217611022109
1214 => 0.0068159967822972
1215 => 0.0066138251952042
1216 => 0.0063501006014094
1217 => 0.0064386152315516
1218 => 0.0064064570365919
1219 => 0.0062899115895681
1220 => 0.0063684491491112
1221 => 0.0060226094838326
1222 => 0.0054276103149023
1223 => 0.0058206849912151
1224 => 0.00580555204376
1225 => 0.0057979213254286
1226 => 0.0060933060808916
1227 => 0.0060649116523396
1228 => 0.0060133754864787
1229 => 0.0062889650874669
1230 => 0.006188371175903
1231 => 0.0064983779084365
]
'min_raw' => 0.0027828542603521
'max_raw' => 0.0091543297204256
'avg_raw' => 0.0059685919903888
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002782'
'max' => '$0.009154'
'avg' => '$0.005968'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0015160272531719
'max_diff' => 0.0060514746121761
'year' => 2029
]
4 => [
'items' => [
101 => 0.0067025683924615
102 => 0.0066507790808426
103 => 0.0068428212180063
104 => 0.0064406544298557
105 => 0.0065742381047483
106 => 0.0066017695150047
107 => 0.0062855643545693
108 => 0.0060695573320105
109 => 0.0060551521262662
110 => 0.0056806257167505
111 => 0.0058806947016422
112 => 0.0060567471289298
113 => 0.0059724316784793
114 => 0.0059457399257191
115 => 0.0060821023018361
116 => 0.0060926988263252
117 => 0.0058510969450052
118 => 0.0059013336266682
119 => 0.0061108289403562
120 => 0.0058960548822729
121 => 0.0054787839705603
122 => 0.0053752950152338
123 => 0.0053614876809134
124 => 0.0050808174262556
125 => 0.0053822106420804
126 => 0.0052506444265369
127 => 0.0056662605250337
128 => 0.0054288628385662
129 => 0.0054186290987833
130 => 0.0054031593001382
131 => 0.005161574817612
201 => 0.0052144664657905
202 => 0.005390286359961
203 => 0.005453020878954
204 => 0.0054464771546543
205 => 0.0053894247465614
206 => 0.0054155430468307
207 => 0.0053314069014442
208 => 0.0053016966773658
209 => 0.0052079230377334
210 => 0.0050701016931029
211 => 0.0050892665963812
212 => 0.0048162064497517
213 => 0.0046674287894691
214 => 0.004626249093961
215 => 0.0045711818841095
216 => 0.0046324690818419
217 => 0.0048154329046645
218 => 0.0045947397164001
219 => 0.0042163767249479
220 => 0.0042391169854334
221 => 0.0042902075991002
222 => 0.0041950005785303
223 => 0.0041048951236804
224 => 0.0041832345061858
225 => 0.0040229171188363
226 => 0.0043095811894361
227 => 0.0043018277296931
228 => 0.0044086783680255
301 => 0.0044754942649706
302 => 0.0043215052544157
303 => 0.0042827774346917
304 => 0.0043048385608877
305 => 0.0039402172866329
306 => 0.0043788810309581
307 => 0.0043826746132349
308 => 0.0043501916586301
309 => 0.0045837665602596
310 => 0.0050766824565366
311 => 0.0048912276688612
312 => 0.0048194139696726
313 => 0.0046828960750197
314 => 0.0048647980640142
315 => 0.0048508308293725
316 => 0.0047876656974063
317 => 0.0047494632285059
318 => 0.0048198524488065
319 => 0.0047407412251476
320 => 0.0047265306755475
321 => 0.0046404302062009
322 => 0.0046096962559659
323 => 0.0045869420627657
324 => 0.0045618919318331
325 => 0.0046171462785666
326 => 0.0044919326595539
327 => 0.0043409373098669
328 => 0.0043283836803327
329 => 0.0043630453552029
330 => 0.004347710144331
331 => 0.0043283102612429
401 => 0.004291270601184
402 => 0.0042802817252716
403 => 0.0043159902409421
404 => 0.0042756774086859
405 => 0.0043351611886336
406 => 0.0043189848918755
407 => 0.0042286254131496
408 => 0.0041160040472934
409 => 0.004115001480906
410 => 0.0040907373923684
411 => 0.0040598334274855
412 => 0.004051236651442
413 => 0.0041766369818975
414 => 0.0044362119130241
415 => 0.0043852511429423
416 => 0.0044220755219962
417 => 0.0046032150205139
418 => 0.0046607938200379
419 => 0.0046199257519644
420 => 0.0045639830197527
421 => 0.0045664442160558
422 => 0.0047576174670399
423 => 0.0047695407082059
424 => 0.004799666892049
425 => 0.0048383875519459
426 => 0.0046265200477777
427 => 0.0045564652756624
428 => 0.0045232694381434
429 => 0.0044210391069908
430 => 0.0045312857545727
501 => 0.0044670497542589
502 => 0.0044757173853154
503 => 0.004470072579219
504 => 0.0044731550250478
505 => 0.0043095010609861
506 => 0.0043691279640911
507 => 0.004269986672851
508 => 0.0041372476130128
509 => 0.0041368026251399
510 => 0.004169290321984
511 => 0.0041499653686574
512 => 0.0040979624161456
513 => 0.0041053491901029
514 => 0.0040406332775082
515 => 0.0041132068736113
516 => 0.0041152880246667
517 => 0.0040873432370565
518 => 0.0041991528750798
519 => 0.0042449613750059
520 => 0.0042265675171655
521 => 0.0042436708129055
522 => 0.0043873687930133
523 => 0.0044107978337533
524 => 0.0044212034660144
525 => 0.0044072612972666
526 => 0.0042462973481918
527 => 0.0042534367838048
528 => 0.0042010523423664
529 => 0.0041567930094873
530 => 0.0041585631506928
531 => 0.0041813182011032
601 => 0.0042806908408113
602 => 0.0044898147027401
603 => 0.0044977508004327
604 => 0.0045073695823485
605 => 0.0044682451622845
606 => 0.004456444862823
607 => 0.0044720125037285
608 => 0.0045505484310586
609 => 0.004752564158448
610 => 0.0046811583082118
611 => 0.0046231042404715
612 => 0.004674033309144
613 => 0.0046661931782171
614 => 0.0046000145831652
615 => 0.0045981571704168
616 => 0.0044711392879355
617 => 0.0044241836688394
618 => 0.0043849440389555
619 => 0.0043420953874988
620 => 0.0043166932706154
621 => 0.0043557224672039
622 => 0.0043646489062436
623 => 0.0042793108857893
624 => 0.0042676796289362
625 => 0.0043373684985883
626 => 0.0043067010253173
627 => 0.0043382432820932
628 => 0.0043455613562297
629 => 0.0043443829777442
630 => 0.0043123626135124
701 => 0.0043327714388127
702 => 0.0042844984828139
703 => 0.0042320088935286
704 => 0.0041985238057816
705 => 0.00416930362557
706 => 0.0041855166798383
707 => 0.0041277201017587
708 => 0.0041092298132157
709 => 0.0043258573880141
710 => 0.0044858825066566
711 => 0.0044835556780546
712 => 0.0044693917073519
713 => 0.0044483469199442
714 => 0.0045490088737799
715 => 0.0045139402618628
716 => 0.004539455607113
717 => 0.0045459503333549
718 => 0.0045656079136026
719 => 0.004572633808915
720 => 0.0045513966734828
721 => 0.0044801222530746
722 => 0.0043025131739859
723 => 0.0042198356682236
724 => 0.0041925507142193
725 => 0.0041935424704758
726 => 0.0041661854055252
727 => 0.0041742432872108
728 => 0.0041633832031149
729 => 0.0041428168311737
730 => 0.0041842467643254
731 => 0.0041890211781746
801 => 0.0041793509367262
802 => 0.0041816286286551
803 => 0.0041015631596762
804 => 0.0041076503633896
805 => 0.0040737560395889
806 => 0.0040674012624784
807 => 0.0039817193634266
808 => 0.0038299214594664
809 => 0.0039140322336394
810 => 0.003812438246203
811 => 0.0037739630637607
812 => 0.0039560985933239
813 => 0.003937817237809
814 => 0.0039065275038817
815 => 0.0038602434660512
816 => 0.0038430762661977
817 => 0.0037387737943629
818 => 0.0037326110478948
819 => 0.0037843061693398
820 => 0.0037604506495135
821 => 0.0037269484648854
822 => 0.0036056069482247
823 => 0.0034691789087025
824 => 0.0034732968136596
825 => 0.0035166920346977
826 => 0.0036428694925088
827 => 0.0035935697768498
828 => 0.0035578022674901
829 => 0.0035511040881545
830 => 0.0036349458261288
831 => 0.0037535994507496
901 => 0.0038092690766965
902 => 0.0037541021680948
903 => 0.0036907293938905
904 => 0.0036945866010152
905 => 0.0037202468719563
906 => 0.0037229434036155
907 => 0.0036816942424349
908 => 0.0036933056396889
909 => 0.0036756668654917
910 => 0.003567417740802
911 => 0.0035654598573981
912 => 0.0035388937764463
913 => 0.0035380893660731
914 => 0.0034928938351546
915 => 0.0034865706679572
916 => 0.003396832198146
917 => 0.0034558983307288
918 => 0.0034162798701034
919 => 0.0033565655048908
920 => 0.0033462707258204
921 => 0.0033459612523303
922 => 0.0034072745535159
923 => 0.0034551818491061
924 => 0.0034169690501881
925 => 0.0034082687365985
926 => 0.0035011653238594
927 => 0.0034893433863593
928 => 0.0034791056647275
929 => 0.0037429753200692
930 => 0.0035341018978602
1001 => 0.003443021163699
1002 => 0.0033302914594122
1003 => 0.0033669968195605
1004 => 0.0033747311782577
1005 => 0.0031036365605044
1006 => 0.0029936535078445
1007 => 0.0029559114687956
1008 => 0.0029341903917288
1009 => 0.0029440889593043
1010 => 0.002845091312185
1011 => 0.0029116193683191
1012 => 0.0028258957739766
1013 => 0.0028115239344164
1014 => 0.0029648083402163
1015 => 0.0029861369698089
1016 => 0.0028951424096812
1017 => 0.0029535756479643
1018 => 0.0029323869434801
1019 => 0.00282736525896
1020 => 0.0028233542030985
1021 => 0.0027706580134971
1022 => 0.0026881986807637
1023 => 0.0026505125530253
1024 => 0.0026308852904932
1025 => 0.0026389838815417
1026 => 0.0026348889860866
1027 => 0.0026081670233481
1028 => 0.0026364206577111
1029 => 0.0025642442971214
1030 => 0.0025355030887701
1031 => 0.0025225213517488
1101 => 0.0024584606774091
1102 => 0.0025604096981948
1103 => 0.0025804949396095
1104 => 0.0026006197551544
1105 => 0.0027757925346779
1106 => 0.002767041397646
1107 => 0.0028461474144374
1108 => 0.0028430735000915
1109 => 0.0028205111826701
1110 => 0.0027253244767902
1111 => 0.002763264201214
1112 => 0.0026464916265798
1113 => 0.002733985579259
1114 => 0.002694056993091
1115 => 0.0027204856841111
1116 => 0.002672964514678
1117 => 0.0026992646919433
1118 => 0.0025852578954622
1119 => 0.0024787999530271
1120 => 0.0025216417367641
1121 => 0.0025682156552384
1122 => 0.0026691997773044
1123 => 0.0026090544673028
1124 => 0.0026306849951254
1125 => 0.0025582263478265
1126 => 0.0024087234616594
1127 => 0.0024095696317592
1128 => 0.0023865718698198
1129 => 0.002366698445776
1130 => 0.0026159628796688
1201 => 0.0025849629070267
1202 => 0.0025355685077975
1203 => 0.0026016848740211
1204 => 0.0026191670906585
1205 => 0.0026196647847891
1206 => 0.0026679015788754
1207 => 0.0026936455645262
1208 => 0.002698183053578
1209 => 0.0027740846912977
1210 => 0.0027995259190946
1211 => 0.0029043147358125
1212 => 0.0026914613672069
1213 => 0.0026870777921526
1214 => 0.0026026152668816
1215 => 0.0025490477980551
1216 => 0.0026062830773012
1217 => 0.0026569857213184
1218 => 0.0026041907393643
1219 => 0.0026110846494446
1220 => 0.0025402116996798
1221 => 0.0025655454443385
1222 => 0.0025873662780625
1223 => 0.0025753180962494
1224 => 0.0025572813849367
1225 => 0.0026528286827143
1226 => 0.0026474375297208
1227 => 0.0027364133700342
1228 => 0.0028057764002819
1229 => 0.0029300873506106
1230 => 0.0028003623934662
1231 => 0.0027956347004179
]
'min_raw' => 0.002366698445776
'max_raw' => 0.0068428212180063
'avg_raw' => 0.0046047598318911
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002366'
'max' => '$0.006842'
'avg' => '$0.0046047'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00041615581457611
'max_diff' => -0.0023115085024193
'year' => 2030
]
5 => [
'items' => [
101 => 0.0028418486583113
102 => 0.0027995188439784
103 => 0.0028262698254613
104 => 0.0029257773539252
105 => 0.0029278797911997
106 => 0.0028926612580138
107 => 0.0028905182070688
108 => 0.0028972823116157
109 => 0.0029368998832197
110 => 0.0029230562863763
111 => 0.0029390764471205
112 => 0.0029591099034406
113 => 0.0030419767727899
114 => 0.0030619556944455
115 => 0.0030134172727055
116 => 0.003017799748727
117 => 0.0029996450465867
118 => 0.002982107831797
119 => 0.0030215289295398
120 => 0.0030935717604882
121 => 0.0030931235857759
122 => 0.0031098361222435
123 => 0.0031202478940086
124 => 0.0030755529477099
125 => 0.0030464581811481
126 => 0.003057614965996
127 => 0.0030754549079309
128 => 0.0030518297132672
129 => 0.0029060040675483
130 => 0.0029502382530811
131 => 0.0029428755216673
201 => 0.0029323900967953
202 => 0.0029768679124013
203 => 0.0029725779185818
204 => 0.0028440759482249
205 => 0.0028523022274436
206 => 0.0028445762155105
207 => 0.0028695405406595
208 => 0.0027981706884944
209 => 0.0028201235743371
210 => 0.0028338922185421
211 => 0.0028420020557546
212 => 0.0028713003487334
213 => 0.002867862532212
214 => 0.0028710866492316
215 => 0.0029145282832566
216 => 0.0031342411607867
217 => 0.0031461996479415
218 => 0.00308731168358
219 => 0.0031108362638287
220 => 0.0030656742140113
221 => 0.0030959918006131
222 => 0.0031167343233829
223 => 0.0030230028515441
224 => 0.003017452682094
225 => 0.0029721042324321
226 => 0.0029964719206129
227 => 0.0029577011766184
228 => 0.0029672141610516
301 => 0.0029406150272493
302 => 0.0029884881722587
303 => 0.003042017787114
304 => 0.003055541481775
305 => 0.0030199664634385
306 => 0.002994207805655
307 => 0.0029489840880165
308 => 0.0030241921383256
309 => 0.0030461852641598
310 => 0.0030240766177984
311 => 0.003018953561353
312 => 0.0030092453786461
313 => 0.0030210131982078
314 => 0.0030460654848732
315 => 0.0030342512891249
316 => 0.003042054773556
317 => 0.0030123159378228
318 => 0.0030755677435968
319 => 0.0031760268335421
320 => 0.0031763498259429
321 => 0.0031645355665117
322 => 0.0031597014260942
323 => 0.0031718235732199
324 => 0.003178399340759
325 => 0.0032176001417419
326 => 0.0032596641630253
327 => 0.0034559585963846
328 => 0.0034008399049822
329 => 0.0035750040038667
330 => 0.0037127451937065
331 => 0.0037540477538472
401 => 0.0037160513419534
402 => 0.0035860676693904
403 => 0.0035796900502946
404 => 0.0037739405347947
405 => 0.0037190558756876
406 => 0.0037125275201284
407 => 0.0036430768468087
408 => 0.0036841307963739
409 => 0.0036751516953789
410 => 0.0036609777451856
411 => 0.003739305821113
412 => 0.0038859289868535
413 => 0.0038630763914495
414 => 0.0038460179890818
415 => 0.0037712730355328
416 => 0.0038162861924591
417 => 0.0038002578694479
418 => 0.0038691257169291
419 => 0.0038283299296909
420 => 0.0037186400704143
421 => 0.0037361085420466
422 => 0.0037334682177011
423 => 0.0037878059056368
424 => 0.0037714950804628
425 => 0.0037302832673065
426 => 0.003885427844813
427 => 0.0038753536189092
428 => 0.0038896365679521
429 => 0.0038959243638356
430 => 0.0039903581342097
501 => 0.0040290446283884
502 => 0.0040378271398693
503 => 0.0040745763172182
504 => 0.0040369127868592
505 => 0.0041875937619374
506 => 0.0042877878178858
507 => 0.0044041683698089
508 => 0.0045742316363118
509 => 0.00463817699769
510 => 0.0046266258405098
511 => 0.0047555658682671
512 => 0.0049872682319711
513 => 0.0046734595128385
514 => 0.0050039008560722
515 => 0.0048992869419332
516 => 0.0046512492334335
517 => 0.0046352785291786
518 => 0.0048032525451516
519 => 0.0051758027456798
520 => 0.0050824831458769
521 => 0.0051759553831143
522 => 0.0050669150533067
523 => 0.0050615002818677
524 => 0.0051706595376781
525 => 0.0054257160888404
526 => 0.0053045482820351
527 => 0.0051308245194144
528 => 0.0052590994422924
529 => 0.0051479758328118
530 => 0.0048975832391122
531 => 0.0050824117861377
601 => 0.0049588222003557
602 => 0.0049948922118706
603 => 0.0052546591386209
604 => 0.0052234032947362
605 => 0.0052638512509362
606 => 0.0051924616669506
607 => 0.005125772538404
608 => 0.0050012923275721
609 => 0.004964439873945
610 => 0.0049746245663151
611 => 0.0049644348269172
612 => 0.0048947892929889
613 => 0.0048797493465681
614 => 0.004854682110285
615 => 0.0048624514949874
616 => 0.0048153177570964
617 => 0.0049042688588239
618 => 0.004920778967139
619 => 0.00498551016107
620 => 0.0049922307683614
621 => 0.0051725062220683
622 => 0.0050732135315724
623 => 0.0051398276408755
624 => 0.0051338690479431
625 => 0.0046566249626928
626 => 0.0047223849868801
627 => 0.0048246869478831
628 => 0.0047786000531183
629 => 0.0047134439665933
630 => 0.0046608269332761
701 => 0.0045811067474326
702 => 0.0046933113781167
703 => 0.0048408485358342
704 => 0.0049959725541545
705 => 0.0051823438980379
706 => 0.0051407479836847
707 => 0.0049924884715178
708 => 0.0049991392849299
709 => 0.0050402519964453
710 => 0.0049870072995492
711 => 0.0049713043989745
712 => 0.0050380946590408
713 => 0.0050385546068546
714 => 0.004977290148239
715 => 0.0049092059137653
716 => 0.0049089206383369
717 => 0.004896805706428
718 => 0.0050690702727798
719 => 0.0051637983663612
720 => 0.0051746587896283
721 => 0.005163067373344
722 => 0.005167528449425
723 => 0.0051124082589611
724 => 0.0052383966689768
725 => 0.0053540160929697
726 => 0.0053230276174909
727 => 0.0052765714874768
728 => 0.0052395669422902
729 => 0.0053143105226663
730 => 0.0053109823086894
731 => 0.0053530062581653
801 => 0.0053510998090749
802 => 0.0053369687354669
803 => 0.005323028122156
804 => 0.0053783010781582
805 => 0.0053623833544861
806 => 0.0053464409061925
807 => 0.005314465885473
808 => 0.0053188118218377
809 => 0.0052723637131294
810 => 0.0052508746927201
811 => 0.004927731385134
812 => 0.0048413769343348
813 => 0.0048685458024632
814 => 0.0048774904992904
815 => 0.0048399089316364
816 => 0.0048937912457396
817 => 0.0048853937441621
818 => 0.0049180635104261
819 => 0.0048976528588207
820 => 0.0048984905190821
821 => 0.0049585138934437
822 => 0.0049759389343786
823 => 0.0049670764179218
824 => 0.0049732834206589
825 => 0.0051163211789222
826 => 0.0050959857837872
827 => 0.0050851830104211
828 => 0.005088175452471
829 => 0.0051247246664714
830 => 0.0051349564508784
831 => 0.0050916036613712
901 => 0.0051120490875223
902 => 0.0051991031171628
903 => 0.0052295671007056
904 => 0.0053267935126326
905 => 0.0052854900047843
906 => 0.0053613043810138
907 => 0.0055943319265176
908 => 0.0057804904541457
909 => 0.0056092913788124
910 => 0.0059511478076558
911 => 0.0062173320739026
912 => 0.0062071154784109
913 => 0.0061607000946378
914 => 0.0058576563843907
915 => 0.0055787910440941
916 => 0.0058120737425
917 => 0.0058126684280733
918 => 0.005792629237392
919 => 0.0056681675451213
920 => 0.0057882982402873
921 => 0.005797833778619
922 => 0.0057924964128576
923 => 0.0056970719252095
924 => 0.0055513763699641
925 => 0.0055798449327132
926 => 0.0056264770192391
927 => 0.0055381927509732
928 => 0.0055099805779297
929 => 0.005562432375203
930 => 0.0057314429947833
1001 => 0.0056994925161635
1002 => 0.0056986581600447
1003 => 0.0058353558566918
1004 => 0.0057375098071018
1005 => 0.0055802040124584
1006 => 0.0055404822247024
1007 => 0.0053994966379711
1008 => 0.0054968758848998
1009 => 0.0055003803906359
1010 => 0.0054470467722848
1011 => 0.0055845317416492
1012 => 0.0055832647934528
1013 => 0.0057137863099271
1014 => 0.0059632944277832
1015 => 0.0058895025997844
1016 => 0.0058036907323498
1017 => 0.0058130208616449
1018 => 0.0059153493512912
1019 => 0.0058534792105188
1020 => 0.0058757281445145
1021 => 0.0059153156748649
1022 => 0.0059391998148284
1023 => 0.0058095843014602
1024 => 0.0057793647250674
1025 => 0.0057175460773978
1026 => 0.0057014187461205
1027 => 0.005751768744759
1028 => 0.0057385032990094
1029 => 0.0055000858504989
1030 => 0.0054751699005874
1031 => 0.0054759340371994
1101 => 0.005413281696458
1102 => 0.0053177218385428
1103 => 0.0055688474395614
1104 => 0.0055486785392991
1105 => 0.0055264136343584
1106 => 0.0055291409581718
1107 => 0.0056381460701377
1108 => 0.0055749176003074
1109 => 0.0057430208502937
1110 => 0.0057084638757427
1111 => 0.0056730206451899
1112 => 0.0056681213111003
1113 => 0.0056544786912119
1114 => 0.005607693071419
1115 => 0.0055511966241392
1116 => 0.0055138927760066
1117 => 0.0050862746225967
1118 => 0.0051656380645292
1119 => 0.0052569384702672
1120 => 0.0052884550044646
1121 => 0.0052345437918422
1122 => 0.005609821814686
1123 => 0.0056783887257286
1124 => 0.0054706950796717
1125 => 0.0054318440785702
1126 => 0.0056123688798503
1127 => 0.0055034903564189
1128 => 0.0055525183488533
1129 => 0.0054465466460882
1130 => 0.005661872964732
1201 => 0.0056602325389541
1202 => 0.0055764657376363
1203 => 0.0056472648644998
1204 => 0.0056349617739263
1205 => 0.005540389261547
1206 => 0.0056648710820603
1207 => 0.0056649328234902
1208 => 0.0055843090984691
1209 => 0.0054901582384472
1210 => 0.0054733262884194
1211 => 0.0054606456751277
1212 => 0.0055493996953193
1213 => 0.0056289762722965
1214 => 0.0057770485533446
1215 => 0.0058142774429107
1216 => 0.0059595842773547
1217 => 0.0058730611323046
1218 => 0.005911415721843
1219 => 0.0059530550543749
1220 => 0.0059730184816264
1221 => 0.0059404891482166
1222 => 0.0061662104727874
1223 => 0.0061852682685038
1224 => 0.0061916581825583
1225 => 0.0061155462219197
1226 => 0.006183151457193
1227 => 0.0061515212064587
1228 => 0.0062338143317325
1229 => 0.0062467189445469
1230 => 0.006235789196588
1231 => 0.0062398853243808
]
'min_raw' => 0.0027981706884944
'max_raw' => 0.0062467189445469
'avg_raw' => 0.0045224448165206
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002798'
'max' => '$0.006246'
'avg' => '$0.004522'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00043147224271849
'max_diff' => -0.00059610227345945
'year' => 2031
]
6 => [
'items' => [
101 => 0.0060472719938299
102 => 0.0060372839765246
103 => 0.0059010966518491
104 => 0.0059565939933002
105 => 0.0058528443735141
106 => 0.0058857444466878
107 => 0.0059002464854593
108 => 0.0058926714433885
109 => 0.0059597317297183
110 => 0.0059027167868266
111 => 0.0057522449784109
112 => 0.0056017321740517
113 => 0.005599842608398
114 => 0.0055602152437819
115 => 0.0055315719172783
116 => 0.0055370896381395
117 => 0.005556534806142
118 => 0.0055304417287646
119 => 0.0055360100097757
120 => 0.0056284805758216
121 => 0.0056470248883722
122 => 0.0055840040685946
123 => 0.0053309663833265
124 => 0.0052688703006647
125 => 0.0053135037334632
126 => 0.0052921718273468
127 => 0.004271195701745
128 => 0.0045110588981022
129 => 0.0043685403318112
130 => 0.0044342194441221
131 => 0.0042887448929428
201 => 0.0043581729737401
202 => 0.0043453521423244
203 => 0.0047310450639988
204 => 0.0047250229995301
205 => 0.0047279054431107
206 => 0.004590318900842
207 => 0.0048094979985577
208 => 0.0049174735035179
209 => 0.0048974901112248
210 => 0.0049025195005397
211 => 0.0048160979289458
212 => 0.0047287421928319
213 => 0.0046318512375302
214 => 0.0048118626563968
215 => 0.0047918484595162
216 => 0.0048377538262795
217 => 0.0049545040988964
218 => 0.0049716960200304
219 => 0.0049948021363778
220 => 0.0049865202384726
221 => 0.0051838286464697
222 => 0.0051599332963785
223 => 0.005217514214937
224 => 0.0050990658967874
225 => 0.0049650303815835
226 => 0.0049905061510726
227 => 0.0049880526296076
228 => 0.0049568164853373
229 => 0.0049286178909524
301 => 0.0048816751762063
302 => 0.0050302088718776
303 => 0.0050241786750877
304 => 0.0051218005517788
305 => 0.0051045449368254
306 => 0.0049893077170008
307 => 0.0049934234368511
308 => 0.0050211036307913
309 => 0.0051169050980652
310 => 0.0051453454962134
311 => 0.0051321707706372
312 => 0.0051633543688532
313 => 0.0051880006134254
314 => 0.0051664495577112
315 => 0.0054715670594697
316 => 0.0053448610000216
317 => 0.0054066166517815
318 => 0.0054213450108408
319 => 0.0053836186288144
320 => 0.0053918001301955
321 => 0.0054041928754621
322 => 0.0054794391979728
323 => 0.0056769073209398
324 => 0.005764364608391
325 => 0.0060274841727542
326 => 0.0057571024981324
327 => 0.0057410591685109
328 => 0.0057884549475023
329 => 0.005942933985818
330 => 0.0060681247368947
331 => 0.0061096577314545
401 => 0.0061151470023206
402 => 0.0061930656611761
403 => 0.0062377271833351
404 => 0.0061836042865268
405 => 0.0061377407983854
406 => 0.0059734634766483
407 => 0.0059924790239516
408 => 0.0061234772880609
409 => 0.0063085200518744
410 => 0.0064673059936447
411 => 0.0064117046910855
412 => 0.0068359033812095
413 => 0.0068779609486391
414 => 0.0068721499527042
415 => 0.0069679633503139
416 => 0.0067777932681178
417 => 0.0066964918736072
418 => 0.0061476570050943
419 => 0.006301857216463
420 => 0.0065259962795484
421 => 0.0064963306340707
422 => 0.0063335548552038
423 => 0.0064671825136199
424 => 0.0064230010308243
425 => 0.006388153262252
426 => 0.006547797645654
427 => 0.0063722620882737
428 => 0.0065242451780858
429 => 0.006329325293338
430 => 0.0064119586731521
501 => 0.0063650519702428
502 => 0.0063954063556944
503 => 0.0062179552385862
504 => 0.0063137035539954
505 => 0.0062139717938739
506 => 0.0062139245080341
507 => 0.0062117229239018
508 => 0.0063290568974064
509 => 0.00633288315407
510 => 0.0062461731703683
511 => 0.0062336769070524
512 => 0.0062798821420881
513 => 0.0062257879130315
514 => 0.006251098262342
515 => 0.006226554537728
516 => 0.0062210292283475
517 => 0.0061770026231494
518 => 0.0061580347510933
519 => 0.0061654725424683
520 => 0.0061400835260611
521 => 0.0061247857253148
522 => 0.0062086798062933
523 => 0.0061638585831041
524 => 0.0062018103110128
525 => 0.0061585595271709
526 => 0.0060086334669057
527 => 0.0059224094042078
528 => 0.0056392129745198
529 => 0.0057195271306753
530 => 0.0057727754992973
531 => 0.0057551769137854
601 => 0.0057929854852135
602 => 0.0057953066244307
603 => 0.0057830146724467
604 => 0.0057687821667457
605 => 0.0057618545700774
606 => 0.0058134871999694
607 => 0.0058434616794962
608 => 0.0057781196854598
609 => 0.0057628109704887
610 => 0.0058288753340899
611 => 0.0058691745577224
612 => 0.0061667213828474
613 => 0.0061446781529786
614 => 0.006200002334184
615 => 0.006193773680399
616 => 0.0062517622361355
617 => 0.0063465490169726
618 => 0.0061538209887302
619 => 0.0061872719103992
620 => 0.0061790705169006
621 => 0.0062686111805982
622 => 0.0062688907167765
623 => 0.006215206616002
624 => 0.0062443096379569
625 => 0.0062280651295013
626 => 0.0062574211518576
627 => 0.0061443837522046
628 => 0.0062820511033487
629 => 0.0063600996203593
630 => 0.0063611833240937
701 => 0.0063981777017253
702 => 0.006435766131969
703 => 0.0065079138505593
704 => 0.0064337539712557
705 => 0.0063003475677073
706 => 0.0063099790791434
707 => 0.0062317629535545
708 => 0.0062330777807566
709 => 0.0062260591301072
710 => 0.0062471226290454
711 => 0.0061490060057182
712 => 0.0061720337811004
713 => 0.0061397947607149
714 => 0.0061872018290651
715 => 0.0061361996601894
716 => 0.0061790665619403
717 => 0.0061975664956757
718 => 0.0062658316494344
719 => 0.0061261168414745
720 => 0.0058412288901834
721 => 0.0059011157914773
722 => 0.005812538360449
723 => 0.0058207365389288
724 => 0.0058372981641883
725 => 0.0057836165180957
726 => 0.0057938572844671
727 => 0.0057934914122291
728 => 0.0057903385229426
729 => 0.0057763738535104
730 => 0.005756122320008
731 => 0.0058367981963882
801 => 0.0058505065998578
802 => 0.0058809786826588
803 => 0.0059716429316635
804 => 0.0059625834351777
805 => 0.005977359849821
806 => 0.0059451030196208
807 => 0.0058222328407669
808 => 0.005828905282625
809 => 0.0057456998257367
810 => 0.0058788509320548
811 => 0.00584731899257
812 => 0.0058269901460567
813 => 0.0058214432319401
814 => 0.0059123322200816
815 => 0.0059395276298439
816 => 0.0059225812754961
817 => 0.0058878238083246
818 => 0.0059545684204166
819 => 0.0059724264628833
820 => 0.0059764242200123
821 => 0.0060946828756292
822 => 0.0059830335651715
823 => 0.0060099086638974
824 => 0.0062195805123215
825 => 0.0060294370785381
826 => 0.0061301602961177
827 => 0.0061252304187555
828 => 0.0061767570085814
829 => 0.0061210037344413
830 => 0.006121694863094
831 => 0.0061674469841459
901 => 0.006103196381567
902 => 0.0060872870288103
903 => 0.0060653083719217
904 => 0.0061132979651648
905 => 0.0061420655559314
906 => 0.0063739112100429
907 => 0.0065236940760453
908 => 0.0065171916068079
909 => 0.0065766120035251
910 => 0.0065498425705756
911 => 0.0064633970101619
912 => 0.0066109490408751
913 => 0.0065642574045182
914 => 0.0065681066062891
915 => 0.006567963338807
916 => 0.0065990091951306
917 => 0.0065770103606144
918 => 0.0065336483996489
919 => 0.0065624340929557
920 => 0.0066479173110035
921 => 0.0069132598427693
922 => 0.0070617490388664
923 => 0.0069043206067157
924 => 0.0070129126311625
925 => 0.006947796111789
926 => 0.0069359625031702
927 => 0.0070041663194104
928 => 0.0070724895174022
929 => 0.0070681376250594
930 => 0.0070185384917524
1001 => 0.0069905211998787
1002 => 0.0072026775204278
1003 => 0.0073589906834198
1004 => 0.0073483311736405
1005 => 0.0073953787831481
1006 => 0.0075335120197902
1007 => 0.0075461411918066
1008 => 0.0075445502064108
1009 => 0.0075132474858501
1010 => 0.0076492575961917
1011 => 0.0077627196231088
1012 => 0.0075060018104629
1013 => 0.0076037565928355
1014 => 0.007647641864105
1015 => 0.0077120784625018
1016 => 0.0078207938048251
1017 => 0.0079388875019086
1018 => 0.0079555872455077
1019 => 0.0079437379782678
1020 => 0.0078658520105123
1021 => 0.0079950715430119
1022 => 0.0080707653145792
1023 => 0.0081158392233264
1024 => 0.008230139156326
1025 => 0.0076479128846
1026 => 0.0072357841909491
1027 => 0.007171424344225
1028 => 0.0073023026233644
1029 => 0.0073368141818387
1030 => 0.0073229026158916
1031 => 0.0068590143020859
1101 => 0.0071689820682567
1102 => 0.0075024813218265
1103 => 0.0075152923863746
1104 => 0.0076822490858522
1105 => 0.0077366170309884
1106 => 0.0078710390575827
1107 => 0.0078626309232201
1108 => 0.0078953605475742
1109 => 0.0078878365737333
1110 => 0.008136825072102
1111 => 0.0084114963609525
1112 => 0.0084019853676208
1113 => 0.0083624981200854
1114 => 0.0084211434162517
1115 => 0.0087046336219096
1116 => 0.0086785343866106
1117 => 0.008703887570576
1118 => 0.0090381384998545
1119 => 0.0094727122545569
1120 => 0.009270809115006
1121 => 0.009708880831768
1122 => 0.0099846237562858
1123 => 0.010461492631889
1124 => 0.010401786300035
1125 => 0.010587427853881
1126 => 0.010294899504928
1127 => 0.0096231952859977
1128 => 0.0095168955221716
1129 => 0.0097297103412903
1130 => 0.010252894807927
1201 => 0.0097132334005805
1202 => 0.0098224062004302
1203 => 0.0097909644267291
1204 => 0.0097892890282274
1205 => 0.0098532321746954
1206 => 0.0097604793056934
1207 => 0.0093825874314569
1208 => 0.0095557730504887
1209 => 0.009488897765924
1210 => 0.0095631008800313
1211 => 0.0099635444831759
1212 => 0.0097864988208425
1213 => 0.0095999955975959
1214 => 0.0098339120279255
1215 => 0.010131768026141
1216 => 0.010113128733072
1217 => 0.010076960713897
1218 => 0.010280837944291
1219 => 0.01061758339848
1220 => 0.010708604341595
1221 => 0.01077579414096
1222 => 0.010785058479112
1223 => 0.010880486919827
1224 => 0.010367344143037
1225 => 0.011181714908244
1226 => 0.011322334242857
1227 => 0.011295903636024
1228 => 0.01145219610828
1229 => 0.011406210898185
1230 => 0.011339585543616
1231 => 0.011587342356504
]
'min_raw' => 0.004271195701745
'max_raw' => 0.011587342356504
'avg_raw' => 0.0079292690291243
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.004271'
'max' => '$0.011587'
'avg' => '$0.007929'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0014730250132506
'max_diff' => 0.0053406234119568
'year' => 2032
]
7 => [
'items' => [
101 => 0.011303309163471
102 => 0.010900159804747
103 => 0.01067898409316
104 => 0.010970246111913
105 => 0.011148109663122
106 => 0.011265666156224
107 => 0.011301238680008
108 => 0.010407177956069
109 => 0.0099253288127478
110 => 0.010234188589205
111 => 0.010611018832847
112 => 0.010365250832007
113 => 0.01037488447234
114 => 0.010024483889838
115 => 0.010642021509287
116 => 0.010552051472442
117 => 0.011018816182748
118 => 0.010907419038613
119 => 0.011288047540165
120 => 0.011187815299456
121 => 0.01160387372673
122 => 0.011769850697702
123 => 0.012048551864217
124 => 0.012253565576822
125 => 0.012373953550152
126 => 0.012366725907797
127 => 0.012843763035179
128 => 0.01256247090757
129 => 0.012209101699828
130 => 0.012202710365726
131 => 0.012385725285696
201 => 0.012769274350261
202 => 0.012868723042291
203 => 0.012924301294095
204 => 0.012839181266764
205 => 0.012533858822632
206 => 0.012402022139276
207 => 0.012514350813172
208 => 0.01237698249751
209 => 0.012614118749084
210 => 0.012939757472065
211 => 0.012872514363485
212 => 0.013097297993819
213 => 0.013329925403288
214 => 0.013662593046778
215 => 0.013749564687434
216 => 0.013893325502202
217 => 0.014041302603567
218 => 0.01408882886043
219 => 0.014179571231314
220 => 0.014179092974228
221 => 0.014452551216553
222 => 0.014754184126134
223 => 0.014868043566682
224 => 0.015129857071978
225 => 0.014681510619198
226 => 0.015021586553865
227 => 0.015328343559587
228 => 0.014962615211258
301 => 0.015466686535653
302 => 0.015486258482929
303 => 0.015781771649911
304 => 0.015482212441702
305 => 0.015304335140094
306 => 0.01581786024486
307 => 0.016066338867167
308 => 0.015991495083942
309 => 0.015421930198107
310 => 0.015090419004763
311 => 0.01422279026805
312 => 0.015250533985459
313 => 0.015751117970514
314 => 0.015420633806518
315 => 0.015587310795722
316 => 0.016496646403623
317 => 0.016842862527991
318 => 0.016770851994356
319 => 0.016783020589146
320 => 0.016969832525588
321 => 0.017798259530984
322 => 0.017301846866563
323 => 0.017681335748285
324 => 0.017882615282802
325 => 0.018069574931891
326 => 0.017610461122932
327 => 0.017013160803197
328 => 0.016823970718975
329 => 0.015387773669539
330 => 0.015313013376029
331 => 0.015271048157812
401 => 0.015006463393056
402 => 0.014798572243824
403 => 0.014633249483452
404 => 0.014199393190679
405 => 0.014345806953505
406 => 0.01365433057567
407 => 0.01409671265779
408 => 0.012993099662485
409 => 0.013912221359013
410 => 0.013411985206928
411 => 0.013747880329245
412 => 0.013746708422806
413 => 0.013128219006976
414 => 0.01277148721947
415 => 0.012998810598678
416 => 0.013242519306141
417 => 0.013282060223992
418 => 0.013598034924666
419 => 0.013686216671771
420 => 0.013419021861232
421 => 0.012970229736172
422 => 0.013074473910965
423 => 0.012769374714595
424 => 0.012234700108429
425 => 0.012618712745101
426 => 0.012749831543104
427 => 0.012807741073976
428 => 0.012281950006604
429 => 0.012116735037757
430 => 0.01202877597463
501 => 0.012902356711976
502 => 0.012950213436765
503 => 0.012705371666486
504 => 0.013812079684994
505 => 0.013561597575708
506 => 0.013841447461387
507 => 0.013065014844738
508 => 0.013094675616299
509 => 0.012727099972693
510 => 0.012932917771699
511 => 0.012787452385179
512 => 0.01291628972747
513 => 0.012993514299224
514 => 0.013361029627284
515 => 0.013916417793711
516 => 0.013306135092828
517 => 0.013040226180644
518 => 0.013205194574234
519 => 0.013644527145647
520 => 0.014310138480356
521 => 0.013916083173532
522 => 0.014090958227207
523 => 0.014129160646786
524 => 0.013838598852254
525 => 0.014320851908174
526 => 0.014579295238658
527 => 0.014844404618423
528 => 0.015074591664677
529 => 0.014738514102265
530 => 0.015098165268872
531 => 0.014808349915564
601 => 0.014548355583086
602 => 0.014548749887167
603 => 0.014385651644493
604 => 0.01406962824761
605 => 0.014011348684556
606 => 0.01431452633146
607 => 0.014557646093248
608 => 0.014577670601294
609 => 0.014712274193363
610 => 0.014791931212623
611 => 0.015572678289835
612 => 0.015886701222968
613 => 0.016270682521453
614 => 0.016420264877213
615 => 0.016870454139809
616 => 0.016506889747679
617 => 0.016428230304514
618 => 0.015336218409243
619 => 0.015515035295918
620 => 0.015801338384748
621 => 0.015340939441725
622 => 0.015632956601844
623 => 0.015690606975021
624 => 0.015325295261815
625 => 0.015520424032026
626 => 0.015002219869995
627 => 0.013927713228355
628 => 0.01432204814123
629 => 0.014612411368803
630 => 0.014198027241529
701 => 0.014940794750787
702 => 0.014506885305712
703 => 0.01436935684295
704 => 0.013832809277277
705 => 0.014086039074665
706 => 0.014428536001533
707 => 0.01421691272027
708 => 0.014656062804287
709 => 0.015278016440304
710 => 0.015721257639309
711 => 0.015755284194821
712 => 0.015470309798714
713 => 0.015926983087157
714 => 0.015930309453502
715 => 0.015415180118573
716 => 0.015099666269182
717 => 0.015027980858753
718 => 0.015207065068756
719 => 0.015424506360469
720 => 0.015767350673196
721 => 0.015974524311003
722 => 0.016514723281996
723 => 0.016660885634829
724 => 0.016821473746935
725 => 0.017036068988249
726 => 0.017293745596537
727 => 0.016729963847141
728 => 0.016752363947065
729 => 0.016227378188117
730 => 0.015666355614107
731 => 0.016092101815329
801 => 0.016648708338783
802 => 0.016521022187307
803 => 0.016506654886875
804 => 0.016530816701046
805 => 0.016434545512673
806 => 0.015999114495638
807 => 0.015780443764826
808 => 0.016062584796427
809 => 0.01621253019807
810 => 0.016445082439406
811 => 0.016416415467079
812 => 0.017015445066472
813 => 0.017248209855081
814 => 0.017188658661588
815 => 0.01719961751437
816 => 0.017621027045852
817 => 0.01808972111434
818 => 0.018528714959108
819 => 0.018975278353231
820 => 0.01843692875195
821 => 0.018163588025207
822 => 0.01844560588286
823 => 0.018295963237901
824 => 0.019155854262729
825 => 0.019215391251609
826 => 0.020075220096528
827 => 0.020891300056871
828 => 0.020378734855371
829 => 0.020862060753942
830 => 0.021384817119385
831 => 0.022393298962489
901 => 0.02205367775655
902 => 0.021793533235345
903 => 0.021547697919814
904 => 0.022059242186176
905 => 0.02271733571273
906 => 0.022859082755209
907 => 0.023088767115562
908 => 0.022847282095118
909 => 0.02313812420354
910 => 0.024164924648768
911 => 0.023887474104649
912 => 0.0234934497296
913 => 0.024304010066144
914 => 0.024597348700966
915 => 0.026656152862782
916 => 0.029255478162033
917 => 0.028179340420053
918 => 0.027511346996858
919 => 0.027668341296325
920 => 0.028617526902897
921 => 0.028922375194083
922 => 0.028093692451132
923 => 0.02838639720535
924 => 0.029999229179187
925 => 0.030864461787306
926 => 0.029689359689238
927 => 0.026447299605894
928 => 0.023457972145741
929 => 0.024250876399343
930 => 0.024160985663669
1001 => 0.02589377241467
1002 => 0.023880857000931
1003 => 0.023914749334089
1004 => 0.025683368280048
1005 => 0.025211531067071
1006 => 0.024447215210393
1007 => 0.023463552497337
1008 => 0.021645160994465
1009 => 0.020034560930773
1010 => 0.023193318554716
1011 => 0.023057107182143
1012 => 0.022859852929264
1013 => 0.023298820923908
1014 => 0.025430324902657
1015 => 0.025381186836942
1016 => 0.025068595533323
1017 => 0.025305693282065
1018 => 0.024405650828688
1019 => 0.024637612262509
1020 => 0.023457498620998
1021 => 0.02399095927286
1022 => 0.024445575331836
1023 => 0.024536846236381
1024 => 0.02474248424473
1025 => 0.02298532997829
1026 => 0.023774240656583
1027 => 0.024237651769145
1028 => 0.022143943503547
1029 => 0.02419626588852
1030 => 0.022954741831827
1031 => 0.02253334991992
1101 => 0.02310069861514
1102 => 0.022879602276848
1103 => 0.022689516628397
1104 => 0.022583445570476
1105 => 0.023000043836255
1106 => 0.022980609029214
1107 => 0.02229897340816
1108 => 0.021409807527518
1109 => 0.021708240782937
1110 => 0.021599817183416
1111 => 0.021206876071832
1112 => 0.021471670937149
1113 => 0.020305648359908
1114 => 0.018299567120344
1115 => 0.01962484583513
1116 => 0.019573824046237
1117 => 0.019548096546623
1118 => 0.020544006872771
1119 => 0.020448273074472
1120 => 0.020274515293132
1121 => 0.021203684873915
1122 => 0.020864525477835
1123 => 0.021909734820551
1124 => 0.022598177293565
1125 => 0.022423566013628
1126 => 0.023071049487029
1127 => 0.021715116082391
1128 => 0.022165502768806
1129 => 0.022258326840667
1130 => 0.02119221906552
1201 => 0.020463936307834
1202 => 0.020415368150928
1203 => 0.019152626212647
1204 => 0.019827172763579
1205 => 0.020420745813768
1206 => 0.020136470385857
1207 => 0.020046477277867
1208 => 0.020506232549463
1209 => 0.020541959471603
1210 => 0.019727381860629
1211 => 0.019896758340268
1212 => 0.020603086416863
1213 => 0.019878960684989
1214 => 0.018472102673225
1215 => 0.018123182434974
1216 => 0.018076630043316
1217 => 0.017130330683965
1218 => 0.018146498953721
1219 => 0.017702914272356
1220 => 0.019104192965828
1221 => 0.018303790091325
1222 => 0.01826928632315
1223 => 0.018217128816952
1224 => 0.017402609867225
1225 => 0.017580937751835
1226 => 0.018173726800384
1227 => 0.018385240611153
1228 => 0.018363177987809
1229 => 0.018170821810652
1230 => 0.018258881483531
1231 => 0.017975210595162
]
'min_raw' => 0.0099253288127478
'max_raw' => 0.030864461787306
'avg_raw' => 0.020394895300027
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.009925'
'max' => '$0.030864'
'avg' => '$0.020394'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0056541331110028
'max_diff' => 0.019277119430802
'year' => 2033
]
8 => [
'items' => [
101 => 0.01787504050038
102 => 0.017558876127293
103 => 0.017094201841493
104 => 0.017158817650946
105 => 0.016238176302134
106 => 0.015736562033167
107 => 0.015597721814687
108 => 0.015412058872003
109 => 0.015618692938093
110 => 0.016235568240866
111 => 0.015491485748326
112 => 0.014215808506184
113 => 0.014292478882085
114 => 0.014464734453096
115 => 0.014143737336102
116 => 0.013839940504114
117 => 0.014104067201712
118 => 0.01356354593726
119 => 0.014530053865534
120 => 0.014503912534681
121 => 0.014864166921892
122 => 0.015089441383379
123 => 0.014570256683124
124 => 0.014439683135035
125 => 0.014514063762263
126 => 0.013284717679069
127 => 0.014763703119586
128 => 0.014776493447092
129 => 0.014666974897754
130 => 0.015454488986277
131 => 0.017116389344864
201 => 0.016491115580176
202 => 0.01624899067949
203 => 0.015788711066292
204 => 0.016402006322179
205 => 0.016354914815423
206 => 0.01614194916295
207 => 0.016013146871841
208 => 0.016250469042503
209 => 0.015983740028568
210 => 0.015935828168442
211 => 0.015645534424697
212 => 0.015541912765704
213 => 0.015465195414682
214 => 0.015380737149299
215 => 0.015567031037046
216 => 0.015144864578409
217 => 0.014635773214781
218 => 0.01459344777634
219 => 0.014710312033166
220 => 0.014658608299041
221 => 0.014593200238753
222 => 0.014468318438837
223 => 0.01443126867648
224 => 0.014551662430152
225 => 0.014415744901648
226 => 0.014616298618767
227 => 0.014561759104854
228 => 0.014257105813632
301 => 0.013877395015676
302 => 0.013874014793103
303 => 0.013792206724534
304 => 0.013688011849286
305 => 0.013659027218647
306 => 0.014081823187949
307 => 0.014956998191186
308 => 0.014785180396888
309 => 0.014909336361864
310 => 0.015520060827872
311 => 0.015714191770491
312 => 0.015576402225664
313 => 0.015387787398215
314 => 0.015396085493386
315 => 0.016040639456369
316 => 0.016080839496415
317 => 0.016182412028584
318 => 0.016312961436817
319 => 0.015598635354397
320 => 0.015362440799142
321 => 0.015250518715288
322 => 0.014905842016313
323 => 0.01527754628581
324 => 0.015060970125938
325 => 0.0150901936492
326 => 0.015071161791338
327 => 0.015081554472659
328 => 0.01452978370687
329 => 0.014730819973706
330 => 0.014396558188466
331 => 0.013949019180677
401 => 0.013947518872995
402 => 0.014057053411124
403 => 0.013991897981758
404 => 0.013816566396634
405 => 0.013841471420759
406 => 0.013623277203125
407 => 0.013867964149314
408 => 0.013874980895398
409 => 0.013780763092928
410 => 0.014157737093823
411 => 0.014312183649571
412 => 0.014250167473644
413 => 0.014307832429346
414 => 0.014792320201951
415 => 0.01487131284857
416 => 0.014906396164236
417 => 0.014859389168892
418 => 0.014316687976442
419 => 0.014340759082071
420 => 0.014164141280396
421 => 0.014014917849507
422 => 0.014020886004168
423 => 0.014097606245334
424 => 0.014432648038086
425 => 0.01513772373914
426 => 0.015164480846592
427 => 0.015196911241383
428 => 0.015065000527557
429 => 0.015025214994052
430 => 0.015077702382263
501 => 0.01534249174446
502 => 0.016023601873641
503 => 0.015782852064172
504 => 0.01558711872158
505 => 0.015758829632364
506 => 0.015732396083563
507 => 0.015509270329904
508 => 0.015503007933142
509 => 0.015074758274251
510 => 0.014916444126132
511 => 0.014784144974355
512 => 0.014639677754371
513 => 0.01455403274378
514 => 0.014685622405009
515 => 0.014715718517456
516 => 0.014427995423384
517 => 0.014388779828835
518 => 0.014623740718388
519 => 0.014520343191121
520 => 0.014626690112051
521 => 0.014651363509934
522 => 0.014647390524598
523 => 0.014539431631
524 => 0.014608241410399
525 => 0.014445485768938
526 => 0.014268513453957
527 => 0.014155616142764
528 => 0.014057098265093
529 => 0.014111761709517
530 => 0.013916896511294
531 => 0.013854555212521
601 => 0.014584930205408
602 => 0.015124466065508
603 => 0.015116621000422
604 => 0.015068866184301
605 => 0.014997912214256
606 => 0.015337301019606
607 => 0.015219064746115
608 => 0.015305091514051
609 => 0.015326988937023
610 => 0.015393265841276
611 => 0.015416954137855
612 => 0.015345351653015
613 => 0.015105044968388
614 => 0.014506223557971
615 => 0.014227470574934
616 => 0.014135477447534
617 => 0.014138821222995
618 => 0.014046584968504
619 => 0.014073752679191
620 => 0.014037137147435
621 => 0.013967796188537
622 => 0.014107480100703
623 => 0.014123577370335
624 => 0.014090973476137
625 => 0.014098652873498
626 => 0.013828706554843
627 => 0.013849229987158
628 => 0.013734952908038
629 => 0.013713527333334
630 => 0.013424644828561
701 => 0.012912847597168
702 => 0.013196432944719
703 => 0.012853901723012
704 => 0.012724179959156
705 => 0.013338262613375
706 => 0.013276625746893
707 => 0.013171130224378
708 => 0.013015080359384
709 => 0.012957199946502
710 => 0.012605536880545
711 => 0.012584758750559
712 => 0.012759052461749
713 => 0.012678621911115
714 => 0.012565666956594
715 => 0.012156555561378
716 => 0.011696578901027
717 => 0.011710462705093
718 => 0.01185677272258
719 => 0.012282188831019
720 => 0.012115971397679
721 => 0.011995378742665
722 => 0.011972795363383
723 => 0.012255473636606
724 => 0.012655522616147
725 => 0.012843216646756
726 => 0.012657217562775
727 => 0.012443551829999
728 => 0.012456556673122
729 => 0.012543072068143
730 => 0.012552163612897
731 => 0.012413089186053
801 => 0.012452237822576
802 => 0.012392767463871
803 => 0.012027797982267
804 => 0.012021196841675
805 => 0.011931627444962
806 => 0.011928915319227
807 => 0.011776535431284
808 => 0.011755216431608
809 => 0.0114526569153
810 => 0.011651802505169
811 => 0.011518226099097
812 => 0.011316894947659
813 => 0.011282185381265
814 => 0.011281141969786
815 => 0.011487864045491
816 => 0.011649386837355
817 => 0.01152054971787
818 => 0.011491216003166
819 => 0.011804423332949
820 => 0.011764564845286
821 => 0.011730047652029
822 => 0.012619702617805
823 => 0.011915471291751
824 => 0.011608386237472
825 => 0.011228310168933
826 => 0.011352064853359
827 => 0.011378141783702
828 => 0.010464127352725
829 => 0.010093311811911
830 => 0.0099660618921927
831 => 0.0098928277643449
901 => 0.0099262014760214
902 => 0.0095924239969639
903 => 0.0098167279830605
904 => 0.0095277048997046
905 => 0.0094792492392176
906 => 0.0099960583153474
907 => 0.010067969279136
908 => 0.0097611747666285
909 => 0.0099581865091783
910 => 0.0098867473126616
911 => 0.0095326593709222
912 => 0.0095191358160424
913 => 0.0093414669336705
914 => 0.0090634495362333
915 => 0.0089363881254019
916 => 0.0088702134394431
917 => 0.0088975184045886
918 => 0.0088837121786653
919 => 0.0087936172156247
920 => 0.0088888763164854
921 => 0.0086455286775645
922 => 0.0085486256869611
923 => 0.0085048568542378
924 => 0.0082888718181281
925 => 0.0086326000595602
926 => 0.0087003188532966
927 => 0.0087681710739761
928 => 0.0093587783303124
929 => 0.0093292732608246
930 => 0.0095959847194425
1001 => 0.0095856208026115
1002 => 0.0095095503741745
1003 => 0.0091886217495769
1004 => 0.0093165381793388
1005 => 0.0089228312911585
1006 => 0.0092178232612493
1007 => 0.0090832012452591
1008 => 0.0091723074222254
1009 => 0.0090120864816598
1010 => 0.0091007593655293
1011 => 0.0087163774914931
1012 => 0.0083574471059171
1013 => 0.008501891170904
1014 => 0.0086589183887273
1015 => 0.0089993934067593
1016 => 0.0087966092948774
1017 => 0.0088695381296263
1018 => 0.0086252387413568
1019 => 0.0081211793226865
1020 => 0.0081240322442555
1021 => 0.0080464936842244
1022 => 0.0079794890475424
1023 => 0.0088199014894992
1024 => 0.0087153829173873
1025 => 0.0085488462517794
1026 => 0.0087717621965996
1027 => 0.0088307047105618
1028 => 0.0088323827210709
1029 => 0.0089950164401184
1030 => 0.0090818140851277
1031 => 0.0090971125462632
1101 => 0.0093530202171185
1102 => 0.0094387970928854
1103 => 0.0097920999045714
1104 => 0.0090744499113701
1105 => 0.0090596703820228
1106 => 0.0087748990810867
1107 => 0.0085942926199769
1108 => 0.0087872653599945
1109 => 0.0089582128642441
1110 => 0.0087802108965581
1111 => 0.0088034541957113
1112 => 0.0085645010973878
1113 => 0.0086499155862502
1114 => 0.0087234860506326
1115 => 0.0086828647644726
1116 => 0.0086220527329987
1117 => 0.0089441971183553
1118 => 0.0089260204696395
1119 => 0.009226008727351
1120 => 0.0094598710266032
1121 => 0.0098789940747497
1122 => 0.0094416173246302
1123 => 0.0094256775774407
1124 => 0.0095814911630338
1125 => 0.0094387732386373
1126 => 0.0095289660404005
1127 => 0.0098644626200103
1128 => 0.0098715511340689
1129 => 0.0097528093905534
1130 => 0.0097455839446692
1201 => 0.0097683895954037
1202 => 0.0099019630040772
1203 => 0.0098552883507904
1204 => 0.0099093014412315
1205 => 0.0099768456379059
1206 => 0.010256237073497
1207 => 0.010323597402743
1208 => 0.010159946725002
1209 => 0.010174722548883
1210 => 0.010113512703097
1211 => 0.010054384759024
1212 => 0.010187295742357
1213 => 0.010430193176769
1214 => 0.010428682124436
1215 => 0.010485029607968
1216 => 0.010520133623401
1217 => 0.010369441491454
1218 => 0.010271346454659
1219 => 0.010308962333715
1220 => 0.010369110943494
1221 => 0.010289456950227
1222 => 0.009797795604464
1223 => 0.00994693424932
1224 => 0.0099221102863088
1225 => 0.0098867579442838
1226 => 0.010036718004942
1227 => 0.010022253991261
1228 => 0.0095890006264821
1229 => 0.0096167361012081
1230 => 0.0095906873125629
1231 => 0.0096748562777563
]
'min_raw' => 0.0079794890475424
'max_raw' => 0.01787504050038
'avg_raw' => 0.012927264773961
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.007979'
'max' => '$0.017875'
'avg' => '$0.012927'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0019458397652053
'max_diff' => -0.012989421286925
'year' => 2034
]
9 => [
'items' => [
101 => 0.0094342278382978
102 => 0.009508243525618
103 => 0.0095546654708512
104 => 0.0095820083532238
105 => 0.0096807895935434
106 => 0.0096691987551207
107 => 0.0096800690907528
108 => 0.0098265355928662
109 => 0.010567312899322
110 => 0.01060763177368
111 => 0.010409086890408
112 => 0.01048840165515
113 => 0.010336134651078
114 => 0.010438352511012
115 => 0.010508287374727
116 => 0.0101922651733
117 => 0.010173552389499
118 => 0.010020656925336
119 => 0.010102814287335
120 => 0.0099720960170707
121 => 0.010004169708263
122 => 0.0099144888715559
123 => 0.010075896522352
124 => 0.010256375356154
125 => 0.010301971436898
126 => 0.010182027778808
127 => 0.010095180665679
128 => 0.0099427057442418
129 => 0.010196274936717
130 => 0.010270426295978
131 => 0.010195885451194
201 => 0.010178612708708
202 => 0.010145880892908
203 => 0.010185556918163
204 => 0.010270022451751
205 => 0.010230190065945
206 => 0.010256500058526
207 => 0.010156233497552
208 => 0.010369491376819
209 => 0.010708196212399
210 => 0.01070928520383
211 => 0.010669452603312
212 => 0.010653153961385
213 => 0.010694024626761
214 => 0.010716195286125
215 => 0.010848363523551
216 => 0.010990185308124
217 => 0.011652005695035
218 => 0.011466169178707
219 => 0.012053375597845
220 => 0.012517779636173
221 => 0.01265703410134
222 => 0.012528926545815
223 => 0.012090677518599
224 => 0.012069174930547
225 => 0.012724104001174
226 => 0.01253905654107
227 => 0.012517045734507
228 => 0.012282887940519
301 => 0.012421304197773
302 => 0.012391030531867
303 => 0.012343242069197
304 => 0.012607330645878
305 => 0.013101680886074
306 => 0.013024631765153
307 => 0.01296711817059
308 => 0.012715110341174
309 => 0.012866875342469
310 => 0.012812834732375
311 => 0.013045027488358
312 => 0.012907481643413
313 => 0.012537654624561
314 => 0.012596550796279
315 => 0.012587648758406
316 => 0.012770852067018
317 => 0.012715858981158
318 => 0.012576910475785
319 => 0.013099991250696
320 => 0.013066025294702
321 => 0.013114181254603
322 => 0.013135380997425
323 => 0.013453771047396
324 => 0.013584205263524
325 => 0.013613816114158
326 => 0.013737718531335
327 => 0.013610733309146
328 => 0.014118764736832
329 => 0.014456575991788
330 => 0.014848961148027
331 => 0.01542234132448
401 => 0.015637937574889
402 => 0.01559899204198
403 => 0.016033722347869
404 => 0.016814923044039
405 => 0.015756895038058
406 => 0.016871001097449
407 => 0.016518287982019
408 => 0.015682011530372
409 => 0.015628165185938
410 => 0.016194501308362
411 => 0.017450580320067
412 => 0.017135946773966
413 => 0.017451094947835
414 => 0.017083457862936
415 => 0.017065201582982
416 => 0.017433239635202
417 => 0.018293180604926
418 => 0.017884654884615
419 => 0.017298933089934
420 => 0.017731420948286
421 => 0.01735675994052
422 => 0.016512543829009
423 => 0.017135706179623
424 => 0.016719015262409
425 => 0.01684062782456
426 => 0.017716450154446
427 => 0.017611068894575
428 => 0.01774744200289
429 => 0.017506747036221
430 => 0.01728189998324
501 => 0.016862206261489
502 => 0.016737955641129
503 => 0.016772294042527
504 => 0.016737938624723
505 => 0.016503123844587
506 => 0.016452415615174
507 => 0.016367899677907
508 => 0.016394094700872
509 => 0.0162351800128
510 => 0.016535084862642
511 => 0.016590749845525
512 => 0.016808995585251
513 => 0.016831654581952
514 => 0.017439465860555
515 => 0.017104693622154
516 => 0.017329287742518
517 => 0.017309197930431
518 => 0.015700136176891
519 => 0.015921850689657
520 => 0.016266768893674
521 => 0.01611138371029
522 => 0.015891705415518
523 => 0.015714303414085
524 => 0.015445521241628
525 => 0.015823826987857
526 => 0.016321258815817
527 => 0.016844270273997
528 => 0.017472634271932
529 => 0.017332390742556
530 => 0.016832523446136
531 => 0.0168549471279
601 => 0.016993561505172
602 => 0.016814043292161
603 => 0.016761099866532
604 => 0.016986287891493
605 => 0.016987838637659
606 => 0.016781281238089
607 => 0.016551730488071
608 => 0.016550768662047
609 => 0.016509922323279
610 => 0.017090724335862
611 => 0.017410106717076
612 => 0.017446723392371
613 => 0.017407642123082
614 => 0.017422682952551
615 => 0.017236841382033
616 => 0.017661620102632
617 => 0.018051439062914
618 => 0.017946959254291
619 => 0.017790329168485
620 => 0.017665565760813
621 => 0.017917568960481
622 => 0.01790634765469
623 => 0.018048034334366
624 => 0.018041606608154
625 => 0.017993962706885
626 => 0.017946960955804
627 => 0.018133317586001
628 => 0.0180796498693
629 => 0.018025898791812
630 => 0.017918092777032
701 => 0.017932745404908
702 => 0.017776142363495
703 => 0.01770369063087
704 => 0.016614190408198
705 => 0.016323040348253
706 => 0.016414642084018
707 => 0.01644479975387
708 => 0.016318090874663
709 => 0.016499758858605
710 => 0.016471446095742
711 => 0.016581594493631
712 => 0.016512778556717
713 => 0.016515602786772
714 => 0.01671797578413
715 => 0.01677672552622
716 => 0.016746844933225
717 => 0.016767772276312
718 => 0.017250034064874
719 => 0.017181471860404
720 => 0.017145049555775
721 => 0.017155138783072
722 => 0.017278367009859
723 => 0.017312864185347
724 => 0.017166697228729
725 => 0.017235630410451
726 => 0.017529139149302
727 => 0.017631850596744
728 => 0.017959656232688
729 => 0.017820398572258
730 => 0.018076012034907
731 => 0.018861680674036
801 => 0.019489327147108
802 => 0.018912117511884
803 => 0.020064710329383
804 => 0.020962169167426
805 => 0.020927723202426
806 => 0.020771230495416
807 => 0.019749497468482
808 => 0.018809283503916
809 => 0.019595812408869
810 => 0.019597817432799
811 => 0.019530253902326
812 => 0.019110622617197
813 => 0.019515651643207
814 => 0.019547801376442
815 => 0.019529806075134
816 => 0.019208075752704
817 => 0.018716853016055
818 => 0.018812836762975
819 => 0.018970060098446
820 => 0.018672403524176
821 => 0.018577284213049
822 => 0.018754129109624
823 => 0.019323960213483
824 => 0.019216236944105
825 => 0.019213423854198
826 => 0.019674309682372
827 => 0.019344414894786
828 => 0.018814047425406
829 => 0.0186801226447
830 => 0.018204779895736
831 => 0.018533100825559
901 => 0.018544916511324
902 => 0.018365098493419
903 => 0.018828638666526
904 => 0.018824367062226
905 => 0.01926442946774
906 => 0.020105663507193
907 => 0.019856869207114
908 => 0.019567548504865
909 => 0.019599005687192
910 => 0.019944013334381
911 => 0.019735413835132
912 => 0.01981042766947
913 => 0.019943899791959
914 => 0.020024426837383
915 => 0.019587419084596
916 => 0.019485531672924
917 => 0.019277105786266
918 => 0.01922273136289
919 => 0.019392489898625
920 => 0.019347764522116
921 => 0.018543923448688
922 => 0.018459917583986
923 => 0.018462493923923
924 => 0.018251257182867
925 => 0.01792907045013
926 => 0.018775757946993
927 => 0.018707757091611
928 => 0.018632689410118
929 => 0.01864188477277
930 => 0.019009403118257
1001 => 0.018796223917754
1002 => 0.019362995761676
1003 => 0.019246484509287
1004 => 0.019126985182911
1005 => 0.019110466735967
1006 => 0.019064469690516
1007 => 0.018906728706917
1008 => 0.018716246990457
1009 => 0.018590474462006
1010 => 0.017148730002439
1011 => 0.017416309387893
1012 => 0.017724135080229
1013 => 0.01783039527569
1014 => 0.017648629858373
1015 => 0.018913905913466
1016 => 0.019145084041234
1017 => 0.018444830412846
1018 => 0.018313841550142
1019 => 0.018922493521497
1020 => 0.018555401978093
1021 => 0.01872070327761
1022 => 0.01836341228303
1023 => 0.019089399999941
1024 => 0.0190838691899
1025 => 0.018801443570845
1026 => 0.019040147770103
1027 => 0.01899866704126
1028 => 0.018679809212931
1029 => 0.019099508361835
1030 => 0.019099716527377
1031 => 0.018827888009499
1101 => 0.018510451811532
1102 => 0.018453701716844
1103 => 0.018410948143799
1104 => 0.018710188519483
1105 => 0.018978486504621
1106 => 0.019477722538251
1107 => 0.019603242338661
1108 => 0.020093154475988
1109 => 0.019801435651599
1110 => 0.01993075082806
1111 => 0.020071140744856
1112 => 0.020138448833637
1113 => 0.02002877391492
1114 => 0.02078980912007
1115 => 0.020854063808901
1116 => 0.020875607850265
1117 => 0.020618991061005
1118 => 0.020846926831775
1119 => 0.020740283233071
1120 => 0.021017740250454
1121 => 0.021061249053529
1122 => 0.021024398645195
1123 => 0.021038209026031
1124 => 0.020388799734245
1125 => 0.020355124436559
1126 => 0.019895959363121
1127 => 0.020083072524524
1128 => 0.019733273437848
1129 => 0.019844198331563
1130 => 0.019893092967781
1201 => 0.019867553184567
1202 => 0.020093651621927
1203 => 0.019901421761312
1204 => 0.019394095553632
1205 => 0.018886631125266
1206 => 0.01888026032274
1207 => 0.018746653896242
1208 => 0.018650080921122
1209 => 0.018668684302241
1210 => 0.018734245043779
1211 => 0.018646270411641
1212 => 0.018665044259835
1213 => 0.018976815229347
1214 => 0.019039338673834
1215 => 0.018826859579981
1216 => 0.017973725357573
1217 => 0.017764364079468
1218 => 0.017914848814355
1219 => 0.017842926803537
1220 => 0.014400634513794
1221 => 0.015209350027026
1222 => 0.014728838730448
1223 => 0.014950280443173
1224 => 0.014459802837163
1225 => 0.014693884458885
1226 => 0.014650658130645
1227 => 0.01595104874429
1228 => 0.015930744933487
1229 => 0.015940463293265
1230 => 0.01547658066002
1231 => 0.016215558290565
]
'min_raw' => 0.0094342278382978
'max_raw' => 0.021061249053529
'avg_raw' => 0.015247738445913
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.009434'
'max' => '$0.021061'
'avg' => '$0.015247'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0014547387907554
'max_diff' => 0.0031862085531486
'year' => 2035
]
10 => [
'items' => [
101 => 0.016579605244147
102 => 0.016512229841835
103 => 0.016529186779051
104 => 0.01623781041666
105 => 0.01594328445337
106 => 0.015616609832859
107 => 0.016223530899564
108 => 0.016156051637435
109 => 0.016310824786487
110 => 0.016704456481859
111 => 0.016762420244264
112 => 0.016840324128747
113 => 0.016812401131736
114 => 0.017477640204931
115 => 0.017397075363778
116 => 0.01759121345087
117 => 0.017191856676431
118 => 0.01673994657886
119 => 0.016825839914354
120 => 0.016817567695436
121 => 0.01671225285419
122 => 0.016617179324459
123 => 0.016458908684256
124 => 0.016959700409504
125 => 0.016939369180012
126 => 0.017268508153018
127 => 0.017210329642453
128 => 0.016821799310209
129 => 0.016835675747035
130 => 0.016929001453473
131 => 0.017252002789032
201 => 0.017347891577034
202 => 0.017303472069924
203 => 0.017408609748479
204 => 0.0174917062828
205 => 0.017419045393813
206 => 0.018447770353615
207 => 0.018020572027851
208 => 0.018228785519402
209 => 0.018278443210271
210 => 0.018151246079297
211 => 0.018178830582418
212 => 0.018220613588318
213 => 0.018474311818193
214 => 0.019140089381561
215 => 0.019434957732275
216 => 0.020322083713947
217 => 0.019410473020514
218 => 0.019356381814586
219 => 0.019516179992523
220 => 0.020037016855586
221 => 0.02045910621338
222 => 0.02059913760428
223 => 0.020617645064253
224 => 0.020880353262692
225 => 0.021030932702819
226 => 0.02084845357749
227 => 0.020693821625134
228 => 0.020139949165421
229 => 0.020204061410778
301 => 0.020645731204229
302 => 0.021269615801699
303 => 0.021804973690458
304 => 0.021617510016921
305 => 0.023047725517281
306 => 0.023189525542235
307 => 0.02316993336373
308 => 0.023492974923249
309 => 0.022851803213874
310 => 0.022577689885999
311 => 0.020727254808381
312 => 0.021247151586926
313 => 0.022002852087008
314 => 0.02190283229209
315 => 0.021354022388998
316 => 0.021804557368934
317 => 0.021655596415036
318 => 0.021538104730301
319 => 0.022076356914956
320 => 0.021484526527746
321 => 0.021996948126168
322 => 0.021339762125869
323 => 0.021618366335191
324 => 0.021460217111411
325 => 0.021562559041236
326 => 0.020964270210665
327 => 0.021287092341001
328 => 0.020950839748702
329 => 0.020950680321192
330 => 0.02094325752658
331 => 0.021338857210247
401 => 0.021351757701729
402 => 0.021059408937781
403 => 0.02101727691355
404 => 0.02117306108942
405 => 0.020990678619417
406 => 0.02107601422923
407 => 0.020993263348105
408 => 0.020974634381764
409 => 0.020826195608499
410 => 0.020762244103568
411 => 0.020787321136479
412 => 0.020701720295057
413 => 0.020650142691783
414 => 0.020932997443099
415 => 0.020781879559799
416 => 0.020909836460148
417 => 0.020764013422752
418 => 0.020258527243065
419 => 0.019967816795707
420 => 0.019013000260871
421 => 0.019283785045704
422 => 0.019463315638196
423 => 0.019403980778448
424 => 0.019531455016728
425 => 0.019539280899656
426 => 0.019497837725345
427 => 0.019449851838692
428 => 0.019426494962856
429 => 0.019600577979412
430 => 0.019701639029887
501 => 0.019481333934962
502 => 0.019429719533616
503 => 0.019652460147964
504 => 0.019788331794043
505 => 0.020791531689008
506 => 0.020717211400496
507 => 0.020903740740041
508 => 0.020882740398934
509 => 0.021078252863232
510 => 0.021397833112625
511 => 0.020748037109565
512 => 0.020860819227441
513 => 0.020833167656657
514 => 0.021135060255843
515 => 0.021136002731585
516 => 0.020955003037719
517 => 0.021053125908149
518 => 0.020998356413735
519 => 0.021097332292681
520 => 0.020716218807732
521 => 0.021180373893742
522 => 0.021443519918017
523 => 0.021447173700819
524 => 0.021571902827869
525 => 0.021698634844776
526 => 0.021941885915196
527 => 0.021691850704447
528 => 0.021242061700745
529 => 0.021274535014003
530 => 0.021010823885704
531 => 0.021015256917414
601 => 0.020991593046723
602 => 0.021062610104
603 => 0.020731803058169
604 => 0.020809442810618
605 => 0.020700746702531
606 => 0.02086058294333
607 => 0.020688625570108
608 => 0.020833154322233
609 => 0.020895528140446
610 => 0.021125688872464
611 => 0.020654630642851
612 => 0.019694111024831
613 => 0.019896023893714
614 => 0.019597378900723
615 => 0.019625019631846
616 => 0.019680858307704
617 => 0.01949986688997
618 => 0.019534394348779
619 => 0.019533160784984
620 => 0.019522530598627
621 => 0.019475447740654
622 => 0.019407168281534
623 => 0.019679172631359
624 => 0.019725391470747
625 => 0.019828130225404
626 => 0.020133811070899
627 => 0.020103266345983
628 => 0.020153086059609
629 => 0.02004432990449
630 => 0.019630064517962
701 => 0.019652561121541
702 => 0.019372028114423
703 => 0.019820956365688
704 => 0.019714644230225
705 => 0.01964610410489
706 => 0.019627402296673
707 => 0.019933840865859
708 => 0.020025532088595
709 => 0.019968396271755
710 => 0.019851209044498
711 => 0.020076243164126
712 => 0.020136452801111
713 => 0.020149931518386
714 => 0.020548648832354
715 => 0.02017221538704
716 => 0.020262826658754
717 => 0.020969749934536
718 => 0.020328668072145
719 => 0.020668263432485
720 => 0.020651642006766
721 => 0.020825367501835
722 => 0.020637391445503
723 => 0.020639721634008
724 => 0.020793978104446
725 => 0.020577352712017
726 => 0.020523713218442
727 => 0.020449610642242
728 => 0.020611410906387
729 => 0.020708402847146
730 => 0.021490086656929
731 => 0.021995090047162
801 => 0.021973166518141
802 => 0.022173506534272
803 => 0.022083251522101
804 => 0.02179179427973
805 => 0.022289276253033
806 => 0.02213185214115
807 => 0.022144829993663
808 => 0.022144346957344
809 => 0.022249020229492
810 => 0.022174849623011
811 => 0.02202865174418
812 => 0.022125704718917
813 => 0.022413917356813
814 => 0.023308538228285
815 => 0.023809179920111
816 => 0.023278398969813
817 => 0.023644524561889
818 => 0.023424979670531
819 => 0.023385081832876
820 => 0.023615035761168
821 => 0.023845392193371
822 => 0.023830719484498
823 => 0.023663492543652
824 => 0.023569030287995
825 => 0.024284330135008
826 => 0.024811350877472
827 => 0.024775411596028
828 => 0.024934035896242
829 => 0.025399761747735
830 => 0.02544234188293
831 => 0.025436977764588
901 => 0.025331438456732
902 => 0.025790006039671
903 => 0.026172551185088
904 => 0.025307009156287
905 => 0.025636596230077
906 => 0.025784558486134
907 => 0.026001810976449
908 => 0.026368352343354
909 => 0.02676651348811
910 => 0.026822817839593
911 => 0.026782867207805
912 => 0.026520269229692
913 => 0.026955941905334
914 => 0.027211148740944
915 => 0.027363118571245
916 => 0.027748488775519
917 => 0.025785472250655
918 => 0.024395951586105
919 => 0.024178957869413
920 => 0.024620223125161
921 => 0.024736581254078
922 => 0.024689677438212
923 => 0.023125645600569
924 => 0.024170723565472
925 => 0.025295139583057
926 => 0.025338332981621
927 => 0.025901239150454
928 => 0.026084544473329
929 => 0.026537757721038
930 => 0.026509409108997
1001 => 0.026619759322617
1002 => 0.026594391719505
1003 => 0.027433873825577
1004 => 0.028359947252873
1005 => 0.028327880274819
1006 => 0.028194746262842
1007 => 0.028392472973351
1008 => 0.02934827999438
1009 => 0.029260284600379
1010 => 0.029345764630221
1011 => 0.030472714974939
1012 => 0.031937910729888
1013 => 0.031257180198465
1014 => 0.032734169576719
1015 => 0.033663856098487
1016 => 0.035271652806504
1017 => 0.035070348740094
1018 => 0.035696252199968
1019 => 0.034709972447795
1020 => 0.032445274776781
1021 => 0.032086877701428
1022 => 0.032804397722343
1023 => 0.034568350679183
1024 => 0.032748844566357
1025 => 0.033116928283252
1026 => 0.033010920148024
1027 => 0.033005271425003
1028 => 0.033220860207688
1029 => 0.032908137434049
1030 => 0.031634048596492
1031 => 0.032217956002492
1101 => 0.031992481311499
1102 => 0.032242662291407
1103 => 0.033592785857489
1104 => 0.032995864045999
1105 => 0.032367055407583
1106 => 0.033155720983963
1107 => 0.03415996327759
1108 => 0.034097119599652
1109 => 0.033975176597832
1110 => 0.034662562914362
1111 => 0.035797923723976
1112 => 0.036104807188566
1113 => 0.03633134228817
1114 => 0.036362577651063
1115 => 0.036684321301536
1116 => 0.034954224603104
1117 => 0.03769993249555
1118 => 0.038174040399926
1119 => 0.038084927763662
1120 => 0.038611878745865
1121 => 0.038456836399445
1122 => 0.038232204364881
1123 => 0.039067533757361
1124 => 0.038109896016489
1125 => 0.036750649806559
1126 => 0.036004940452951
1127 => 0.03698695068444
1128 => 0.037586630065377
1129 => 0.037982979989404
1130 => 0.038102915236933
1201 => 0.03508852708485
1202 => 0.033463939056508
1203 => 0.034505281356735
1204 => 0.035775790832619
1205 => 0.034947166858816
1206 => 0.034979647349796
1207 => 0.033798247321702
1208 => 0.035880318520777
1209 => 0.035576978260047
1210 => 0.037150708069314
1211 => 0.036775124820361
1212 => 0.038058440387979
1213 => 0.037720500390438
1214 => 0.039123270426263
1215 => 0.039682873372037
1216 => 0.040622533813234
1217 => 0.041313751858885
1218 => 0.041719648316186
1219 => 0.041695279815369
1220 => 0.043303643796006
1221 => 0.042355247748582
1222 => 0.041163838793231
1223 => 0.041142289964076
1224 => 0.041759337544447
1225 => 0.04305249999417
1226 => 0.043387798202634
1227 => 0.043575184158943
1228 => 0.043288196043904
1229 => 0.042258780106582
1230 => 0.041814283524104
1231 => 0.042193007490681
]
'min_raw' => 0.015616609832859
'max_raw' => 0.043575184158943
'avg_raw' => 0.029595896995901
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.015616'
'max' => '$0.043575'
'avg' => '$0.029595'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0061823819945616
'max_diff' => 0.022513935105414
'year' => 2036
]
11 => [
'items' => [
101 => 0.041729860623679
102 => 0.042529382052184
103 => 0.043627295742084
104 => 0.043400580906741
105 => 0.044158454610306
106 => 0.044942774162856
107 => 0.046064386348998
108 => 0.046357617307635
109 => 0.046842316931686
110 => 0.047341232060367
111 => 0.04750147015356
112 => 0.047807414392425
113 => 0.047805801915268
114 => 0.04872778547151
115 => 0.0497447618855
116 => 0.050128646938722
117 => 0.051011369451063
118 => 0.049499738082966
119 => 0.050646327840037
120 => 0.051680580501918
121 => 0.050447501841191
122 => 0.052147013504523
123 => 0.052213001691234
124 => 0.053209344965786
125 => 0.052199360180753
126 => 0.051599634439385
127 => 0.053331020183282
128 => 0.054168783206614
129 => 0.053916442166045
130 => 0.0519961143877
131 => 0.05087840125397
201 => 0.047953130392237
202 => 0.051418240090257
203 => 0.053105993945526
204 => 0.051991743512946
205 => 0.052553706619063
206 => 0.055619595108886
207 => 0.056786886944231
208 => 0.056544098402465
209 => 0.056585125669384
210 => 0.057214975155891
211 => 0.06000807464351
212 => 0.05833438468699
213 => 0.059613857946783
214 => 0.060292485950294
215 => 0.060922833460304
216 => 0.059374899199096
217 => 0.057361059468934
218 => 0.05672319189115
219 => 0.051880953266902
220 => 0.051628893717733
221 => 0.051487405054599
222 => 0.050595339047505
223 => 0.049894419523374
224 => 0.049337022294311
225 => 0.047874245512347
226 => 0.048367889735997
227 => 0.046036528850789
228 => 0.047528050926789
301 => 0.043807142661319
302 => 0.046906025632188
303 => 0.045219444520063
304 => 0.046351938376402
305 => 0.046347987212024
306 => 0.044262706965001
307 => 0.043059960837207
308 => 0.043826397481417
309 => 0.044648078403827
310 => 0.044781393369021
311 => 0.045846724132992
312 => 0.046144035050008
313 => 0.04524316909133
314 => 0.043730035108026
315 => 0.044081501621436
316 => 0.043052838379531
317 => 0.041250145615052
318 => 0.042544871030497
319 => 0.042986947212387
320 => 0.043182193238835
321 => 0.041409451945633
322 => 0.040852418143223
323 => 0.040555858020786
324 => 0.043501196468206
325 => 0.043662548757081
326 => 0.04283704763428
327 => 0.046568390986566
328 => 0.045723873067006
329 => 0.046667406495069
330 => 0.044049609719242
331 => 0.044149613081409
401 => 0.042910306135678
402 => 0.043604235214767
403 => 0.043113788508045
404 => 0.043548172602718
405 => 0.043808540638032
406 => 0.045047644225688
407 => 0.04692017420476
408 => 0.044862563470155
409 => 0.043966033007559
410 => 0.044522235464275
411 => 0.046003475902011
412 => 0.048247630988485
413 => 0.046919046009463
414 => 0.047508649462317
415 => 0.047637451587134
416 => 0.046657802210492
417 => 0.048283752058359
418 => 0.049155111791025
419 => 0.050048946574249
420 => 0.05082503827184
421 => 0.049691929305981
422 => 0.05090451832424
423 => 0.049927385626299
424 => 0.049050796582125
425 => 0.049052126005865
426 => 0.048502228893532
427 => 0.047436733946892
428 => 0.047240240331106
429 => 0.048262424934832
430 => 0.049082120185778
501 => 0.049149634212721
502 => 0.049603459621107
503 => 0.049872028823017
504 => 0.052504372103856
505 => 0.053563122347295
506 => 0.054857742103857
507 => 0.055362069459809
508 => 0.05687991398986
509 => 0.055654131258538
510 => 0.055388925454082
511 => 0.051707131107338
512 => 0.052310024725359
513 => 0.053275315578393
514 => 0.051723048397966
515 => 0.052707604641293
516 => 0.052901976899479
517 => 0.051670302953157
518 => 0.052328193225377
519 => 0.050581031713232
520 => 0.046958257551283
521 => 0.048287785241627
522 => 0.049266765135901
523 => 0.047869640119421
524 => 0.050373932635256
525 => 0.048910976646596
526 => 0.048447289832463
527 => 0.046638282254243
528 => 0.047492064196075
529 => 0.048646816497384
530 => 0.047933313829539
531 => 0.049413938998281
601 => 0.051510899105529
602 => 0.053005317754087
603 => 0.053120040661653
604 => 0.052159229588904
605 => 0.053698935464799
606 => 0.053710150541169
607 => 0.051973356023277
608 => 0.050909579051579
609 => 0.050667886685404
610 => 0.05127168160269
611 => 0.052004800098966
612 => 0.053160723635951
613 => 0.053859224020218
614 => 0.055680542566409
615 => 0.056173339143714
616 => 0.056714773175585
617 => 0.057438296014236
618 => 0.058307070689484
619 => 0.05640624115941
620 => 0.056481764660229
621 => 0.0547117385206
622 => 0.052820211742982
623 => 0.054255644785053
624 => 0.056132282539905
625 => 0.055701779765442
626 => 0.055653339408941
627 => 0.055734802652341
628 => 0.055410217619301
629 => 0.053942131544547
630 => 0.05320486790851
701 => 0.054156126095011
702 => 0.054661677485505
703 => 0.055445743603447
704 => 0.055349090904783
705 => 0.057368761022047
706 => 0.058153543757962
707 => 0.057952762751369
708 => 0.057989711288647
709 => 0.059410522945911
710 => 0.060990757720993
711 => 0.062470856118202
712 => 0.063976475779547
713 => 0.062161392512459
714 => 0.061239805168205
715 => 0.062190648065139
716 => 0.061686117439943
717 => 0.064585300065825
718 => 0.064786033180574
719 => 0.067685006162553
720 => 0.070436476725733
721 => 0.068708327362715
722 => 0.070337894374484
723 => 0.07210040395826
724 => 0.075500570902237
725 => 0.074355514294821
726 => 0.073478418878865
727 => 0.07264956794888
728 => 0.074374275157798
729 => 0.076593083429201
730 => 0.07707099347938
731 => 0.077845390336359
801 => 0.077031206729988
802 => 0.07801180120448
803 => 0.081473730594484
804 => 0.080538286714009
805 => 0.079209806023626
806 => 0.081942666789802
807 => 0.082931678477353
808 => 0.089873080450032
809 => 0.098636887175553
810 => 0.09500861364493
811 => 0.092756427180817
812 => 0.093285744422461
813 => 0.096485989965041
814 => 0.097513807262602
815 => 0.094719845537963
816 => 0.095706720052802
817 => 0.10114449565693
818 => 0.10406168780381
819 => 0.10009974903717
820 => 0.089168917112765
821 => 0.07909019087268
822 => 0.081763522922508
823 => 0.081460450031209
824 => 0.087302661541519
825 => 0.080515976686831
826 => 0.080630247054361
827 => 0.086593269311694
828 => 0.08500243720552
829 => 0.082425492931899
830 => 0.079109005417694
831 => 0.072978171509722
901 => 0.067547920946479
902 => 0.078197892813015
903 => 0.077738646660413
904 => 0.077073590174978
905 => 0.078553601416686
906 => 0.085740115897895
907 => 0.085574443478626
908 => 0.084520520074046
909 => 0.085319911687565
910 => 0.082285355717048
911 => 0.083067429886205
912 => 0.079088594350949
913 => 0.080887194183735
914 => 0.082419963966852
915 => 0.082727690193858
916 => 0.083421013096191
917 => 0.077496644806298
918 => 0.080156512238146
919 => 0.081718935158481
920 => 0.074659851562972
921 => 0.081579399772482
922 => 0.077393514734901
923 => 0.075972762483263
924 => 0.077885618220218
925 => 0.077140176479213
926 => 0.076499289444105
927 => 0.076141663466678
928 => 0.077546253605714
929 => 0.07748072779688
930 => 0.075182545710218
1001 => 0.072184660864054
1002 => 0.073190849420642
1003 => 0.072825291684966
1004 => 0.071500463292988
1005 => 0.072393237668791
1006 => 0.068461911140525
1007 => 0.061698268181216
1008 => 0.066166537896123
1009 => 0.065994514372641
1010 => 0.065907772311456
1011 => 0.069265553508304
1012 => 0.068942780323419
1013 => 0.06835694383225
1014 => 0.071489703946409
1015 => 0.070346204363171
1016 => 0.073870200636323
1017 => 0.07619133249961
1018 => 0.075602618378331
1019 => 0.077785654114756
1020 => 0.073214029972771
1021 => 0.074732540131013
1022 => 0.075045502970063
1023 => 0.071451046172886
1024 => 0.06899559000827
1025 => 0.06883183907634
1026 => 0.064574416469598
1027 => 0.066848697261405
1028 => 0.068849970242061
1029 => 0.067891515789384
1030 => 0.067588097742678
1031 => 0.069138194739951
1101 => 0.069258650552322
1102 => 0.066512245264927
1103 => 0.067083309891521
1104 => 0.069464744316011
1105 => 0.067023303854155
1106 => 0.062279983843804
1107 => 0.061103574899707
1108 => 0.060946620261046
1109 => 0.057756105902485
1110 => 0.06118218817057
1111 => 0.059686611447254
1112 => 0.064411120396447
1113 => 0.061712506222718
1114 => 0.06159617435934
1115 => 0.061420321685671
1116 => 0.058674114178769
1117 => 0.059275359092189
1118 => 0.061273988756582
1119 => 0.061987122337012
1120 => 0.061912736662042
1121 => 0.061264194380878
1122 => 0.061561093716121
1123 => 0.060604677510717
1124 => 0.060266947042507
1125 => 0.059200976784752
1126 => 0.057634294987653
1127 => 0.057852151700557
1128 => 0.054748145115911
1129 => 0.053056917586498
1130 => 0.052588808096377
1201 => 0.051962832522545
1202 => 0.052659513703099
1203 => 0.054739351855255
1204 => 0.052230625781476
1205 => 0.047929590894655
1206 => 0.04818809041996
1207 => 0.048768862104122
1208 => 0.047686597912876
1209 => 0.046662325683409
1210 => 0.047552847285097
1211 => 0.04573044210401
1212 => 0.048989091063613
1213 => 0.048900953741514
1214 => 0.050115576560154
1215 => 0.050875105135218
1216 => 0.04912463766999
1217 => 0.048684399836252
1218 => 0.048935179314043
1219 => 0.04479035316435
1220 => 0.049776855836519
1221 => 0.049819979318697
1222 => 0.049450729883264
1223 => 0.052105888615196
1224 => 0.05770910170435
1225 => 0.055600947551486
1226 => 0.0547846065442
1227 => 0.053232741692609
1228 => 0.055300509466737
1229 => 0.055141737163886
1230 => 0.054423708597787
1231 => 0.053989442680625
]
'min_raw' => 0.040555858020786
'max_raw' => 0.10406168780381
'avg_raw' => 0.072308772912298
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.040555'
'max' => '$0.104061'
'avg' => '$0.0723087'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.024939248187927
'max_diff' => 0.060486503644867
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0012730020411315
]
1 => [
'year' => 2028
'avg' => 0.0021848410577148
]
2 => [
'year' => 2029
'avg' => 0.0059685919903888
]
3 => [
'year' => 2030
'avg' => 0.0046047598318911
]
4 => [
'year' => 2031
'avg' => 0.0045224448165206
]
5 => [
'year' => 2032
'avg' => 0.0079292690291243
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0012730020411315
'min' => '$0.001273'
'max_raw' => 0.0079292690291243
'max' => '$0.007929'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0079292690291243
]
1 => [
'year' => 2033
'avg' => 0.020394895300027
]
2 => [
'year' => 2034
'avg' => 0.012927264773961
]
3 => [
'year' => 2035
'avg' => 0.015247738445913
]
4 => [
'year' => 2036
'avg' => 0.029595896995901
]
5 => [
'year' => 2037
'avg' => 0.072308772912298
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0079292690291243
'min' => '$0.007929'
'max_raw' => 0.072308772912298
'max' => '$0.0723087'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.072308772912298
]
]
]
]
'prediction_2025_max_price' => '$0.002176'
'last_price' => 0.00211049
'sma_50day_nextmonth' => '$0.002047'
'sma_200day_nextmonth' => '$0.0032063'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.002086'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002151'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.002189'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.002213'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.002191'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002646'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003676'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002113'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.002135'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.002169'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.00220075'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.002323'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002696'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.003245'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.003034'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003417'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0064068'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.005284'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.00213'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.002168'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002356'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.002857'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.003778'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.004837'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005444'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '44.80'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => -0.72
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002230'
'vwma_10_action' => 'SELL'
'hma_9' => '0.002077'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 10.01
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -109.15
'cci_20_action' => 'BUY'
'adx_14' => 8.02
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000076'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -89.99
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 34.73
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000527'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 31
'buy_signals' => 3
'sell_pct' => 91.18
'buy_pct' => 8.82
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767701560
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Donut para 2026
A previsão de preço para Donut em 2026 sugere que o preço médio poderia variar entre $0.000729 na extremidade inferior e $0.002176 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Donut poderia potencialmente ganhar 3.13% até 2026 se DONUT atingir a meta de preço prevista.
Previsão de preço de Donut 2027-2032
A previsão de preço de DONUT para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.001273 na extremidade inferior e $0.007929 na extremidade superior. Considerando a volatilidade de preços no mercado, se Donut atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Donut | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0007019 | $0.001273 | $0.001844 |
| 2028 | $0.001266 | $0.002184 | $0.0031028 |
| 2029 | $0.002782 | $0.005968 | $0.009154 |
| 2030 | $0.002366 | $0.0046047 | $0.006842 |
| 2031 | $0.002798 | $0.004522 | $0.006246 |
| 2032 | $0.004271 | $0.007929 | $0.011587 |
Previsão de preço de Donut 2032-2037
A previsão de preço de Donut para 2032-2037 é atualmente estimada entre $0.007929 na extremidade inferior e $0.0723087 na extremidade superior. Comparado ao preço atual, Donut poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Donut | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.004271 | $0.007929 | $0.011587 |
| 2033 | $0.009925 | $0.020394 | $0.030864 |
| 2034 | $0.007979 | $0.012927 | $0.017875 |
| 2035 | $0.009434 | $0.015247 | $0.021061 |
| 2036 | $0.015616 | $0.029595 | $0.043575 |
| 2037 | $0.040555 | $0.0723087 | $0.104061 |
Donut Histograma de preços potenciais
Previsão de preço de Donut baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Donut é Baixista, com 3 indicadores técnicos mostrando sinais de alta e 31 indicando sinais de baixa. A previsão de preço de DONUT foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Donut
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Donut está projetado para aumentar no próximo mês, alcançando $0.0032063 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Donut é esperado para alcançar $0.002047 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 44.80, sugerindo que o mercado de DONUT está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DONUT para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.002086 | BUY |
| SMA 5 | $0.002151 | SELL |
| SMA 10 | $0.002189 | SELL |
| SMA 21 | $0.002213 | SELL |
| SMA 50 | $0.002191 | SELL |
| SMA 100 | $0.002646 | SELL |
| SMA 200 | $0.003676 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.002113 | SELL |
| EMA 5 | $0.002135 | SELL |
| EMA 10 | $0.002169 | SELL |
| EMA 21 | $0.00220075 | SELL |
| EMA 50 | $0.002323 | SELL |
| EMA 100 | $0.002696 | SELL |
| EMA 200 | $0.003245 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.003034 | SELL |
| SMA 50 | $0.003417 | SELL |
| SMA 100 | $0.0064068 | SELL |
| SMA 200 | $0.005284 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.002857 | SELL |
| EMA 50 | $0.003778 | SELL |
| EMA 100 | $0.004837 | SELL |
| EMA 200 | $0.005444 | SELL |
Osciladores de Donut
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 44.80 | NEUTRAL |
| Stoch RSI (14) | -0.72 | BUY |
| Estocástico Rápido (14) | 10.01 | BUY |
| Índice de Canal de Commodities (20) | -109.15 | BUY |
| Índice Direcional Médio (14) | 8.02 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000076 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Williams Percent Range (14) | -89.99 | BUY |
| Oscilador Ultimate (7, 14, 28) | 34.73 | NEUTRAL |
| VWMA (10) | 0.002230 | SELL |
| Média Móvel de Hull (9) | 0.002077 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000527 | SELL |
Previsão do preço de Donut com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Donut
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Donut por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.002965 | $0.004167 | $0.005855 | $0.008228 | $0.011561 | $0.016246 |
| Amazon.com stock | $0.0044036 | $0.009188 | $0.019172 | $0.0400042 | $0.083471 | $0.174167 |
| Apple stock | $0.002993 | $0.004246 | $0.006022 | $0.008542 | $0.012117 | $0.017187 |
| Netflix stock | $0.00333 | $0.005254 | $0.00829 | $0.01308 | $0.020639 | $0.032566 |
| Google stock | $0.002733 | $0.003539 | $0.004583 | $0.005935 | $0.007686 | $0.009953 |
| Tesla stock | $0.004784 | $0.010845 | $0.024586 | $0.055735 | $0.126348 | $0.286421 |
| Kodak stock | $0.001582 | $0.001186 | $0.000889 | $0.000667 | $0.00050047 | $0.000375 |
| Nokia stock | $0.001398 | $0.000926 | $0.000613 | $0.0004064 | $0.000269 | $0.000178 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Donut
Você pode fazer perguntas como: 'Devo investir em Donut agora?', 'Devo comprar DONUT hoje?', 'Donut será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Donut regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Donut, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Donut para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Donut é de $0.00211 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Donut com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Donut tiver 1% da média anterior do crescimento anual do Bitcoin | $0.002165 | $0.002221 | $0.002279 | $0.002338 |
| Se Donut tiver 2% da média anterior do crescimento anual do Bitcoin | $0.00222 | $0.002335 | $0.002457 | $0.002584 |
| Se Donut tiver 5% da média anterior do crescimento anual do Bitcoin | $0.002384 | $0.002694 | $0.003044 | $0.00344 |
| Se Donut tiver 10% da média anterior do crescimento anual do Bitcoin | $0.002659 | $0.00335 | $0.004221 | $0.005318 |
| Se Donut tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0032076 | $0.004875 | $0.0074096 | $0.011261 |
| Se Donut tiver 50% da média anterior do crescimento anual do Bitcoin | $0.004853 | $0.011161 | $0.025666 | $0.059025 |
| Se Donut tiver 100% da média anterior do crescimento anual do Bitcoin | $0.007596 | $0.027341 | $0.098411 | $0.354214 |
Perguntas Frequentes sobre Donut
DONUT é um bom investimento?
A decisão de adquirir Donut depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Donut experimentou uma escalada de 1.4662% nas últimas 24 horas, e Donut registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Donut dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Donut pode subir?
Parece que o valor médio de Donut pode potencialmente subir para $0.002176 até o final deste ano. Observando as perspectivas de Donut em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.006842. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Donut na próxima semana?
Com base na nossa nova previsão experimental de Donut, o preço de Donut aumentará 0.86% na próxima semana e atingirá $0.002128 até 13 de janeiro de 2026.
Qual será o preço de Donut no próximo mês?
Com base na nossa nova previsão experimental de Donut, o preço de Donut diminuirá -11.62% no próximo mês e atingirá $0.001865 até 5 de fevereiro de 2026.
Até onde o preço de Donut pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Donut em 2026, espera-se que DONUT fluctue dentro do intervalo de $0.000729 e $0.002176. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Donut não considera flutuações repentinas e extremas de preço.
Onde estará Donut em 5 anos?
O futuro de Donut parece seguir uma tendência de alta, com um preço máximo de $0.006842 projetada após um período de cinco anos. Com base na previsão de Donut para 2030, o valor de Donut pode potencialmente atingir seu pico mais alto de aproximadamente $0.006842, enquanto seu pico mais baixo está previsto para cerca de $0.002366.
Quanto será Donut em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Donut, espera-se que o valor de DONUT em 2026 aumente 3.13% para $0.002176 se o melhor cenário ocorrer. O preço ficará entre $0.002176 e $0.000729 durante 2026.
Quanto será Donut em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Donut, o valor de DONUT pode diminuir -12.62% para $0.001844 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.001844 e $0.0007019 ao longo do ano.
Quanto será Donut em 2028?
Nosso novo modelo experimental de previsão de preços de Donut sugere que o valor de DONUT em 2028 pode aumentar 47.02%, alcançando $0.0031028 no melhor cenário. O preço é esperado para variar entre $0.0031028 e $0.001266 durante o ano.
Quanto será Donut em 2029?
Com base no nosso modelo de previsão experimental, o valor de Donut pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.009154 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.009154 e $0.002782.
Quanto será Donut em 2030?
Usando nossa nova simulação experimental para previsões de preços de Donut, espera-se que o valor de DONUT em 2030 aumente 224.23%, alcançando $0.006842 no melhor cenário. O preço está previsto para variar entre $0.006842 e $0.002366 ao longo de 2030.
Quanto será Donut em 2031?
Nossa simulação experimental indica que o preço de Donut poderia aumentar 195.98% em 2031, potencialmente atingindo $0.006246 sob condições ideais. O preço provavelmente oscilará entre $0.006246 e $0.002798 durante o ano.
Quanto será Donut em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Donut, DONUT poderia ver um 449.04% aumento em valor, atingindo $0.011587 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.011587 e $0.004271 ao longo do ano.
Quanto será Donut em 2033?
De acordo com nossa previsão experimental de preços de Donut, espera-se que o valor de DONUT seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.030864. Ao longo do ano, o preço de DONUT poderia variar entre $0.030864 e $0.009925.
Quanto será Donut em 2034?
Os resultados da nossa nova simulação de previsão de preços de Donut sugerem que DONUT pode aumentar 746.96% em 2034, atingindo potencialmente $0.017875 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.017875 e $0.007979.
Quanto será Donut em 2035?
Com base em nossa previsão experimental para o preço de Donut, DONUT poderia aumentar 897.93%, com o valor potencialmente atingindo $0.021061 em 2035. A faixa de preço esperada para o ano está entre $0.021061 e $0.009434.
Quanto será Donut em 2036?
Nossa recente simulação de previsão de preços de Donut sugere que o valor de DONUT pode aumentar 1964.7% em 2036, possivelmente atingindo $0.043575 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.043575 e $0.015616.
Quanto será Donut em 2037?
De acordo com a simulação experimental, o valor de Donut poderia aumentar 4830.69% em 2037, com um pico de $0.104061 sob condições favoráveis. O preço é esperado para cair entre $0.104061 e $0.040555 ao longo do ano.
Previsões relacionadas
Previsão de Preço do V.SYSTEMS
Previsão de Preço do Polkamarkets
Previsão de Preço do Fold
Previsão de Preço do AIMX
Previsão de Preço do Quadrant Protocol
Previsão de Preço do Minto
Previsão de Preço do El Hippo
Previsão de Preço do Cum Inu
Previsão de Preço do ZambesiGold
Previsão de Preço do Archimedes Finance
Previsão de Preço do Orcfax
Previsão de Preço do Quantstamp
Previsão de Preço do eUSD (OLD)
Previsão de Preço do LockTrip
Previsão de Preço do NOOT (Ordinals)
Previsão de Preço do AssetMantle
Previsão de Preço do Renewable Energy
Previsão de Preço do Allbridge
Previsão de Preço do DOMO
Previsão de Preço do ATN
Previsão de Preço do Linda
Previsão de Preço do RealFevr
Previsão de Preço do PanoVerse
Previsão de Preço do Modern Investment Coin
Previsão de Preço do Monolith
Como ler e prever os movimentos de preço de Donut?
Traders de Donut utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Donut
Médias móveis são ferramentas populares para a previsão de preço de Donut. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DONUT em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DONUT acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DONUT.
Como ler gráficos de Donut e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Donut em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DONUT dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Donut?
A ação de preço de Donut é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DONUT. A capitalização de mercado de Donut pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DONUT, grandes detentores de Donut, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Donut.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


