Previsão de Preço Donkey - Projeção DONKEY
Previsão de Preço Donkey até $0.001847 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000618 | $0.001847 |
| 2027 | $0.000595 | $0.001565 |
| 2028 | $0.001075 | $0.002633 |
| 2029 | $0.002362 | $0.00777 |
| 2030 | $0.0020089 | $0.0058085 |
| 2031 | $0.002375 | $0.0053025 |
| 2032 | $0.003625 | $0.009836 |
| 2033 | $0.008425 | $0.026199 |
| 2034 | $0.006773 | $0.015173 |
| 2035 | $0.0080083 | $0.017878 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Donkey hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.82, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Donkey para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Donkey'
'name_with_ticker' => 'Donkey <small>DONKEY</small>'
'name_lang' => 'Donkey'
'name_lang_with_ticker' => 'Donkey <small>DONKEY</small>'
'name_with_lang' => 'Donkey'
'name_with_lang_with_ticker' => 'Donkey <small>DONKEY</small>'
'image' => '/uploads/coins/donkey-2.png?1746497492'
'price_for_sd' => 0.001791
'ticker' => 'DONKEY'
'marketcap' => '$1.8M'
'low24h' => '$0.001793'
'high24h' => '$0.001941'
'volume24h' => '$3.98M'
'current_supply' => '1B'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001791'
'change_24h_pct' => '-7.497%'
'ath_price' => '$0.07413'
'ath_days' => 134
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '25 de ago. de 2025'
'ath_pct' => '-97.55%'
'fdv' => '$1.8M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.088333'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001806'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001583'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000618'
'current_year_max_price_prediction' => '$0.001847'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0020089'
'grand_prediction_max_price' => '$0.0058085'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0018254581721657
107 => 0.0018322737703393
108 => 0.0018476296610374
109 => 0.0017164152563083
110 => 0.0017753266717791
111 => 0.0018099316091151
112 => 0.0016535852432928
113 => 0.0018068411441547
114 => 0.0017141311054476
115 => 0.0016826639258524
116 => 0.0017250303376917
117 => 0.0017085201057952
118 => 0.001694325577924
119 => 0.0016864047874789
120 => 0.0017175140045235
121 => 0.0017160627223648
122 => 0.0016651620052411
123 => 0.0015987640947319
124 => 0.0016210494129359
125 => 0.0016129529479064
126 => 0.0015836103141748
127 => 0.0016033837064668
128 => 0.0015163116938976
129 => 0.0013665088218817
130 => 0.0014654731877215
131 => 0.0014616631672891
201 => 0.0014597419822165
202 => 0.0015341109679709
203 => 0.0015269621059751
204 => 0.0015139868514507
205 => 0.0015833720134501
206 => 0.0015580454959582
207 => 0.0016360958551903
208 => 0.0016875048697613
209 => 0.0016744658807587
210 => 0.001722816307444
211 => 0.0016215628216573
212 => 0.0016551951680509
213 => 0.0016621267480302
214 => 0.0015825158113214
215 => 0.0015281317482091
216 => 0.0015245049512232
217 => 0.0014302104803718
218 => 0.0014805818255822
219 => 0.0015249065248595
220 => 0.0015036784336413
221 => 0.0014969582541328
222 => 0.0015312901938126
223 => 0.0015339580795589
224 => 0.0014731300018134
225 => 0.0014857780853514
226 => 0.0015385226962737
227 => 0.0014844490564849
228 => 0.0013793928072541
301 => 0.0013533374049286
302 => 0.0013498611339621
303 => 0.0012791968163752
304 => 0.0013550785515008
305 => 0.0013219541406144
306 => 0.0014265937577131
307 => 0.0013668241696198
308 => 0.0013642476221371
309 => 0.0013603527927196
310 => 0.0012995290954664
311 => 0.0013128456196173
312 => 0.0013571117740585
313 => 0.0013729064366571
314 => 0.0013712589239462
315 => 0.0013568948457524
316 => 0.0013634706471936
317 => 0.0013422876995906
318 => 0.0013348075599071
319 => 0.0013111981814914
320 => 0.0012764989174775
321 => 0.0012813240629616
322 => 0.0012125757413938
323 => 0.0011751180070541
324 => 0.0011647501998739
325 => 0.001150885934812
326 => 0.001166316205504
327 => 0.0012123809860366
328 => 0.0011568170875259
329 => 0.0010615566808837
330 => 0.0010672819936388
331 => 0.0010801450715387
401 => 0.0010561748109699
402 => 0.0010334889710131
403 => 0.0010532124682952
404 => 0.0010128493782052
405 => 0.0010850227581391
406 => 0.0010830706704755
407 => 0.001109972443343
408 => 0.001126794673997
409 => 0.0010880248786014
410 => 0.001078274379904
411 => 0.0010838287070975
412 => 0.00099202805100637
413 => 0.0011024703712323
414 => 0.0011034254810038
415 => 0.001095247251276
416 => 0.0011540543772723
417 => 0.0012781557555269
418 => 0.0012314638250611
419 => 0.0012133832983137
420 => 0.0011790122037501
421 => 0.0012248096465024
422 => 0.0012212931174505
423 => 0.0012053900394734
424 => 0.0011957718082922
425 => 0.0012134936941546
426 => 0.0011935758705144
427 => 0.0011899980820834
428 => 0.001168320576864
429 => 0.0011605826937643
430 => 0.0011548538731713
501 => 0.0011485470046007
502 => 0.0011624583850938
503 => 0.001130933366702
504 => 0.0010929172849572
505 => 0.0010897566590998
506 => 0.0010984834249771
507 => 0.0010946224807077
508 => 0.001089738174384
509 => 0.0010804127034505
510 => 0.0010776460354317
511 => 0.0010866363642963
512 => 0.0010764868071769
513 => 0.0010914630315816
514 => 0.0010873903272158
515 => 0.0010646405316971
516 => 0.0010362858634276
517 => 0.0010360334474041
518 => 0.0010299244806364
519 => 0.0010221437929685
520 => 0.0010199793836573
521 => 0.0010515514103674
522 => 0.0011169045607861
523 => 0.0011040741735906
524 => 0.0011133454432503
525 => 0.0011589509138634
526 => 0.001173447521567
527 => 0.00116315817279
528 => 0.0011490734775646
529 => 0.0011496931326735
530 => 0.0011978247999858
531 => 0.0012008267130365
601 => 0.0012084115788619
602 => 0.0012181602749304
603 => 0.001164818417885
604 => 0.0011471807360036
605 => 0.0011388230238269
606 => 0.0011130845051642
607 => 0.0011408412908881
608 => 0.0011246686005108
609 => 0.0011268508489805
610 => 0.0011254296568018
611 => 0.0011262057238319
612 => 0.0010850025842086
613 => 0.0011000148427141
614 => 0.0010750540512732
615 => 0.0010416343535143
616 => 0.001041522318969
617 => 0.0010497017426498
618 => 0.0010448363013836
619 => 0.0010317435240381
620 => 0.0010336032912638
621 => 0.0010173097734271
622 => 0.0010355816193329
623 => 0.0010361055904936
624 => 0.0010290699345457
625 => 0.0010572202341925
626 => 0.0010687534349262
627 => 0.0010641224154629
628 => 0.0010684285102553
629 => 0.0011046073341043
630 => 0.0011105060609844
701 => 0.0011131258858165
702 => 0.0011096156676018
703 => 0.0010690897927408
704 => 0.0010708872876202
705 => 0.0010576984628517
706 => 0.0010465552957265
707 => 0.0010470009639733
708 => 0.001052730000386
709 => 0.0010777490384039
710 => 0.0011304001289597
711 => 0.0011323981993588
712 => 0.0011348199189704
713 => 0.0011249695682513
714 => 0.0011219986082193
715 => 0.0011259180713714
716 => 0.0011456910527213
717 => 0.0011965525290654
718 => 0.0011785746864016
719 => 0.0011639584204742
720 => 0.0011767808262096
721 => 0.0011748069173519
722 => 0.0011581451401219
723 => 0.0011576774995289
724 => 0.0011256982219321
725 => 0.0011138762111375
726 => 0.0011039968540553
727 => 0.0010932088540287
728 => 0.001086813365996
729 => 0.0010966397423116
730 => 0.0010988871508373
731 => 0.0010774016072874
801 => 0.0010744732070934
802 => 0.0010920187657539
803 => 0.0010842976195517
804 => 0.0010922390098959
805 => 0.0010940814805757
806 => 0.0010937848003605
807 => 0.0010857230369575
808 => 0.0010908613645453
809 => 0.0010787076879909
810 => 0.0010654923901612
811 => 0.0010570618534879
812 => 0.0010497050920921
813 => 0.001053787050892
814 => 0.0010392356131067
815 => 0.0010345803152966
816 => 0.0010891206147746
817 => 0.0011294101204061
818 => 0.0011288242950378
819 => 0.0011252582337704
820 => 0.0011199597900763
821 => 0.0011453034385631
822 => 0.0011364742181926
823 => 0.0011428982137182
824 => 0.0011445333901937
825 => 0.0011494825769015
826 => 0.0011512514857525
827 => 0.0011459046146185
828 => 0.0011279598620273
829 => 0.0010832432447059
830 => 0.0010624275386326
831 => 0.0010555580089154
901 => 0.0010558077032735
902 => 0.0010489200181917
903 => 0.0010509487501327
904 => 0.0010482145080146
905 => 0.0010430365149272
906 => 0.0010534673244101
907 => 0.0010546693780332
908 => 0.0010522347024611
909 => 0.0010528081566949
910 => 0.0010326500828207
911 => 0.0010341826573963
912 => 0.0010256490874091
913 => 0.0010240491459103
914 => 0.0010024770240856
915 => 0.00096425888334414
916 => 0.00098543544323959
917 => 0.00095985713676081
918 => 0.00095017024452271
919 => 0.00099602648575707
920 => 0.00099142379099128
921 => 0.00098354597829558
922 => 0.00097189305143862
923 => 0.00096757086751499
924 => 0.00094131064623215
925 => 0.00093975905226593
926 => 0.00095277432701932
927 => 0.00094676822554889
928 => 0.0009383333843959
929 => 0.00090778324476591
930 => 0.00087343477301818
1001 => 0.00087447153747345
1002 => 0.00088539714726037
1003 => 0.00091716483123505
1004 => 0.00090475264751963
1005 => 0.00089574746582069
1006 => 0.00089406106598325
1007 => 0.00091516989066604
1008 => 0.00094504330002769
1009 => 0.00095905923532032
1010 => 0.00094516986911561
1011 => 0.00092921451307623
1012 => 0.00093018564166835
1013 => 0.00093664612511842
1014 => 0.00093732503058271
1015 => 0.00092693973403817
1016 => 0.00092986313418323
1017 => 0.00092542222204157
1018 => 0.00089816835242546
1019 => 0.00089767541634706
1020 => 0.00089098687721525
1021 => 0.00089078435090853
1022 => 0.00087940547731104
1023 => 0.00087781349423632
1024 => 0.00085522005006025
1025 => 0.00087009112343619
1026 => 0.000860116388182
1027 => 0.00084508210935177
1028 => 0.00084249019401468
1029 => 0.00084241227790981
1030 => 0.00085784912066523
1031 => 0.00086991073494082
1101 => 0.00086028990297231
1102 => 0.00085809942602507
1103 => 0.00088148798906657
1104 => 0.00087851158122805
1105 => 0.00087593403123567
1106 => 0.00094236846387378
1107 => 0.00088978042649729
1108 => 0.00086684904058091
1109 => 0.0008384670959573
1110 => 0.00084770840024094
1111 => 0.0008496556788365
1112 => 0.00078140221824678
1113 => 0.00075371179778596
1114 => 0.00074420948897529
1115 => 0.00073874077591182
1116 => 0.00074123293712662
1117 => 0.00071630831094951
1118 => 0.00073305807195579
1119 => 0.00071147545251262
1120 => 0.00070785705612705
1121 => 0.00074644945326495
1122 => 0.00075181935987318
1123 => 0.00072890966998327
1124 => 0.00074362139963448
1125 => 0.00073828672195461
1126 => 0.0007118454245771
1127 => 0.00071083556150629
1128 => 0.0006975682479388
1129 => 0.00067680747126381
1130 => 0.00066731923923733
1201 => 0.00066237768561733
1202 => 0.0006644166669499
1203 => 0.0006633856955943
1204 => 0.00065665791012307
1205 => 0.00066377132438224
1206 => 0.00064559949041576
1207 => 0.00063836331970989
1208 => 0.00063509490927993
1209 => 0.00061896636070294
1210 => 0.00064463405388704
1211 => 0.00064969091279739
1212 => 0.00065475773528193
1213 => 0.00069886096574325
1214 => 0.00069665769298384
1215 => 0.00071657420569157
1216 => 0.00071580028663186
1217 => 0.0007101197745815
1218 => 0.00068615462863991
1219 => 0.00069570670867458
1220 => 0.0006663068910507
1221 => 0.00068833523340778
1222 => 0.00067828241788158
1223 => 0.00068493636636615
1224 => 0.00067297196702855
1225 => 0.00067959355961992
1226 => 0.00065089008164213
1227 => 0.0006240871777753
1228 => 0.00063487344871686
1229 => 0.00064659935879003
1230 => 0.00067202411953498
1231 => 0.00065688134178501
]
'min_raw' => 0.00061896636070294
'max_raw' => 0.0018476296610374
'avg_raw' => 0.0012332980108702
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000618'
'max' => '$0.001847'
'avg' => '$0.001233'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0011725436392971
'max_diff' => 5.611966103737E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00066232725727572
102 => 0.00064408435201708
103 => 0.00060644402764024
104 => 0.00060665706778848
105 => 0.00060086692392215
106 => 0.00059586339424679
107 => 0.0006586206719682
108 => 0.0006508158124378
109 => 0.00063837979025086
110 => 0.00065502590013595
111 => 0.00065942739579886
112 => 0.00065955270019261
113 => 0.00067169727226649
114 => 0.00067817883255935
115 => 0.00067932123565366
116 => 0.00069843098221276
117 => 0.00070483631719572
118 => 0.00073121898547358
119 => 0.00067762891745265
120 => 0.00067652526526768
121 => 0.00065526014503894
122 => 0.00064177346960163
123 => 0.00065618358924449
124 => 0.00066894898807057
125 => 0.00065565680156388
126 => 0.00065739248050828
127 => 0.00063954880613459
128 => 0.00064592708010027
129 => 0.0006514209088858
130 => 0.00064838753954276
131 => 0.00064384643881949
201 => 0.00066790237094152
202 => 0.00066654504097524
203 => 0.00068894647801076
204 => 0.00070641000012208
205 => 0.00073770775372355
206 => 0.00070504691625162
207 => 0.00070385662551908
208 => 0.00071549190835837
209 => 0.00070483453589454
210 => 0.00071156962741169
211 => 0.00073662262635603
212 => 0.00073715195674572
213 => 0.00072828499071464
214 => 0.00072774543502582
215 => 0.00072944843284607
216 => 0.00073942294427144
217 => 0.00073593754349364
218 => 0.00073997093751326
219 => 0.00074501475849631
220 => 0.00076587814061802
221 => 0.00077090823141492
222 => 0.00075868771858153
223 => 0.0007597910940631
224 => 0.00075522028680283
225 => 0.00075080494426146
226 => 0.00076072998948547
227 => 0.0007788682047096
228 => 0.00077875536781407
301 => 0.00078296308118954
302 => 0.00078558445176388
303 => 0.00077433161029827
304 => 0.0007670064242826
305 => 0.0007698153667147
306 => 0.00077430692683444
307 => 0.00076835881430361
308 => 0.00073164430832951
309 => 0.00074278114411033
310 => 0.00074092743007296
311 => 0.00073828751586441
312 => 0.00074948569036062
313 => 0.00074840559911233
314 => 0.00071605267288259
315 => 0.00071812380225101
316 => 0.00071617862511928
317 => 0.00072246389037769
318 => 0.0007044951109441
319 => 0.0007100221864763
320 => 0.00071348871643697
321 => 0.00071553052921495
322 => 0.00072290695705314
323 => 0.00072204141838474
324 => 0.00072285315395424
325 => 0.00073379044913351
326 => 0.00078910753492383
327 => 0.00079211832185313
328 => 0.00077729210586969
329 => 0.00078321488672089
330 => 0.00077184444265637
331 => 0.00077947749793224
401 => 0.00078469984049341
402 => 0.00076110107865821
403 => 0.00075970371313702
404 => 0.00074828633920515
405 => 0.00075442138924302
406 => 0.00074466008350706
407 => 0.00074705516649868
408 => 0.00074035830565451
409 => 0.00075241132184233
410 => 0.00076588846678966
411 => 0.00076929332583194
412 => 0.00076033660757569
413 => 0.00075385135328167
414 => 0.00074246538311693
415 => 0.00076140050525378
416 => 0.00076693771200399
417 => 0.00076137142066398
418 => 0.00076008158933463
419 => 0.0007576373612962
420 => 0.0007606001438676
421 => 0.00076690755518685
422 => 0.00076393309648829
423 => 0.0007658977788619
424 => 0.00075841043562535
425 => 0.00077433533545702
426 => 0.00079962790892557
427 => 0.00079970922868503
428 => 0.00079673475395303
429 => 0.00079551766297865
430 => 0.0007985696545599
501 => 0.00080022523479348
502 => 0.0008100948159277
503 => 0.00082068526970619
504 => 0.00087010629651338
505 => 0.00085622906994736
506 => 0.00090007834500074
507 => 0.00093475742845222
508 => 0.00094515616924679
509 => 0.00093558981701435
510 => 0.00090286384279136
511 => 0.00090125815036848
512 => 0.00095016457240755
513 => 0.00093634626812548
514 => 0.0009347026248006
515 => 0.00091721703680318
516 => 0.00092755318494186
517 => 0.00092529251772179
518 => 0.00092172394391927
519 => 0.00094144459454556
520 => 0.00097835989204333
521 => 0.00097260629673884
522 => 0.00096831150474564
523 => 0.00094949297642658
524 => 0.00096082593374512
525 => 0.00095679048471249
526 => 0.00097412933471591
527 => 0.00096385818407644
528 => 0.00093624158087986
529 => 0.00094063961596443
530 => 0.00093997486180901
531 => 0.00095365545522245
601 => 0.00094954888065294
602 => 0.00093917298721615
603 => 0.00097823371956969
604 => 0.00097569733287786
605 => 0.00097929334930815
606 => 0.00098087642695127
607 => 0.0010046520064076
608 => 0.0010143921005771
609 => 0.001016603272478
610 => 0.0010258556086131
611 => 0.0010163730659262
612 => 0.0010543099976121
613 => 0.0010795358435019
614 => 0.0011088369616131
615 => 0.0011516537705716
616 => 0.0011677532868176
617 => 0.0011648450533089
618 => 0.0011973082691998
619 => 0.0012556439465388
620 => 0.00117663636158
621 => 0.0012598315403871
622 => 0.0012334929073113
623 => 0.0011710444821004
624 => 0.0011670235397353
625 => 0.0012093143383293
626 => 0.0013031112592722
627 => 0.0012796161944119
628 => 0.0013031496887814
629 => 0.0012756966175442
630 => 0.0012743333411646
701 => 0.0013018163543878
702 => 0.001366031912805
703 => 0.0013355255080852
704 => 0.0012917870964421
705 => 0.0013240828589543
706 => 0.0012961052806345
707 => 0.0012330639662489
708 => 0.0012795982281786
709 => 0.0012484820924457
710 => 0.0012575634350773
711 => 0.0013229649242119
712 => 0.0013150956440084
713 => 0.0013252792212675
714 => 0.0013073054739558
715 => 0.0012905151597668
716 => 0.001259174791468
717 => 0.0012498964534762
718 => 0.0012524606522975
719 => 0.0012498951827866
720 => 0.0012323605347562
721 => 0.0012285739291836
722 => 0.0012222627540008
723 => 0.0012242188510897
724 => 0.0012123519953466
725 => 0.0012347472039512
726 => 0.0012389039520142
727 => 0.0012552013172312
728 => 0.0012568933637524
729 => 0.0013022812939034
730 => 0.0012772823846894
731 => 0.0012940538112921
801 => 0.001292553617038
802 => 0.0011723979288349
803 => 0.0011889543225266
804 => 0.0012147108754285
805 => 0.0012031075832584
806 => 0.0011867032428821
807 => 0.0011734558584831
808 => 0.0011533847165041
809 => 0.0011816344634074
810 => 0.0012187798765597
811 => 0.0012578354327293
812 => 0.0013047581244456
813 => 0.0012942855258949
814 => 0.0012569582456464
815 => 0.0012586327201707
816 => 0.0012689836627988
817 => 0.0012555782516131
818 => 0.0012516247341497
819 => 0.0012684405102097
820 => 0.0012685563112177
821 => 0.0012531317655505
822 => 0.0012359902057034
823 => 0.0012359183819418
824 => 0.0012328682069348
825 => 0.0012762392369019
826 => 0.0013000889180781
827 => 0.0013028232455893
828 => 0.0012999048760506
829 => 0.0013010280406601
830 => 0.0012871504366755
831 => 0.0013188705241086
901 => 0.0013479800131287
902 => 0.0013401780482378
903 => 0.0013284817937517
904 => 0.0013191651636855
905 => 0.001337983346281
906 => 0.0013371454022326
907 => 0.0013477257671367
908 => 0.0013472457806695
909 => 0.0013436880018999
910 => 0.0013401781752973
911 => 0.0013540942410438
912 => 0.001350086637594
913 => 0.0013460728092291
914 => 0.0013380224619569
915 => 0.0013391166378533
916 => 0.0013274224028904
917 => 0.0013220121147048
918 => 0.0012406543614895
919 => 0.0012189129113891
920 => 0.0012257532141787
921 => 0.0012280052194654
922 => 0.0012185433125193
923 => 0.0012321092565156
924 => 0.0012299950185137
925 => 0.0012382202817913
926 => 0.0012330814943949
927 => 0.0012332923920221
928 => 0.0012484044700501
929 => 0.001252791570593
930 => 0.0012505602558486
1001 => 0.0012521229922106
1002 => 0.0012881355920821
1003 => 0.0012830157519984
1004 => 0.0012802959389962
1005 => 0.0012810493457854
1006 => 0.0012902513371714
1007 => 0.0012928273923494
1008 => 0.0012819124655441
1009 => 0.0012870600081239
1010 => 0.0013089775911083
1011 => 0.0013166475047251
1012 => 0.0013411261872225
1013 => 0.0013307272078238
1014 => 0.0013498149845675
1015 => 0.0014084843027752
1016 => 0.0014553534137675
1017 => 0.0014122506423511
1018 => 0.0014983197959432
1019 => 0.0015653369779014
1020 => 0.0015627647468349
1021 => 0.0015510787510252
1022 => 0.0014747814711096
1023 => 0.001404571576603
1024 => 0.0014633051346274
1025 => 0.0014634548585455
1026 => 0.001458409593823
1027 => 0.0014270738879402
1028 => 0.0014573191791823
1029 => 0.0014597199405664
1030 => 0.0014583761526053
1031 => 0.0014343511403754
1101 => 0.0013976693872648
1102 => 0.0014048369140189
1103 => 0.0014165774690557
1104 => 0.0013943501490347
1105 => 0.0013872471734871
1106 => 0.0014004529564264
1107 => 0.0014430047405908
1108 => 0.0014349605722802
1109 => 0.0014347505065366
1110 => 0.0014691668698275
1111 => 0.0014445321812272
1112 => 0.0014049273194849
1113 => 0.0013949265695709
1114 => 0.001359430644689
1115 => 0.0013839478064371
1116 => 0.0013848301354414
1117 => 0.0013714023365112
1118 => 0.0014060169113632
1119 => 0.0014056979319622
1120 => 0.0014385593190846
1121 => 0.0015013779490893
1122 => 0.0014827993890798
1123 => 0.0014611945451304
1124 => 0.0014635435907051
1125 => 0.0014893068227204
1126 => 0.0014737297845266
1127 => 0.001479331396068
1128 => 0.0014892983440104
1129 => 0.0014953116511695
1130 => 0.0014626783683444
1201 => 0.0014550699890876
1202 => 0.0014395059153063
1203 => 0.0014354455389739
1204 => 0.0014481221523137
1205 => 0.0014447823125701
1206 => 0.0013847559791051
1207 => 0.0013784828932746
1208 => 0.0013786752798612
1209 => 0.0013629013072715
1210 => 0.0013388422128851
1211 => 0.0014020680764387
1212 => 0.00139699015475
1213 => 0.0013913845222055
1214 => 0.0013920711802069
1215 => 0.0014195153846522
1216 => 0.0014035963601084
1217 => 0.0014459196959349
1218 => 0.0014372192904449
1219 => 0.0014282957523837
1220 => 0.0014270622476061
1221 => 0.001423627446773
1222 => 0.0014118482366833
1223 => 0.0013976241326792
1224 => 0.0013882321471449
1225 => 0.0012805707740675
1226 => 0.0013005520986733
1227 => 0.0013235387912772
1228 => 0.0013314737054507
1229 => 0.0013179004856776
1230 => 0.0014123841901297
1231 => 0.0014296472734007
]
'min_raw' => 0.00059586339424679
'max_raw' => 0.0015653369779014
'avg_raw' => 0.0010806001860741
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000595'
'max' => '$0.001565'
'avg' => '$0.00108'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.3102966456156E-5
'max_diff' => -0.00028229268313592
'year' => 2027
]
2 => [
'items' => [
101 => 0.0013773562681297
102 => 0.0013675747560712
103 => 0.0014130254644318
104 => 0.0013856131311672
105 => 0.0013979569031578
106 => 0.0013712764197965
107 => 0.0014254891021628
108 => 0.0014250760923543
109 => 0.0014039861344648
110 => 0.0014218112224552
111 => 0.001418713674763
112 => 0.001394903164248
113 => 0.0014262439378162
114 => 0.0014262594824489
115 => 0.0014059608565155
116 => 0.0013822565053659
117 => 0.0013780187272521
118 => 0.0013748261307088
119 => 0.0013971717201178
120 => 0.0014172067057092
121 => 0.0014544868468005
122 => 0.0014638599600252
123 => 0.0015004438449445
124 => 0.0014786599227121
125 => 0.0014883164532887
126 => 0.0014987999832293
127 => 0.0015038261730019
128 => 0.0014956362664877
129 => 0.0015524660982952
130 => 0.0015572642773208
131 => 0.001558873065244
201 => 0.001539710365708
202 => 0.0015567313279817
203 => 0.0015487677834088
204 => 0.001569486714051
205 => 0.0015727357069282
206 => 0.0015699839255474
207 => 0.0015710152071686
208 => 0.0015225209711901
209 => 0.0015200062892272
210 => 0.0014857184222286
211 => 0.0014996909814736
212 => 0.0014735699516872
213 => 0.0014818531993089
214 => 0.0014855043759349
215 => 0.0014835972084679
216 => 0.0015004809690091
217 => 0.0014861263234247
218 => 0.0014482420536053
219 => 0.0014103474622418
220 => 0.0014098717265155
221 => 0.0013998947495047
222 => 0.0013926832225003
223 => 0.001394072418444
224 => 0.0013989681261453
225 => 0.0013923986750688
226 => 0.0013938006005356
227 => 0.001417081904265
228 => 0.0014217508036933
229 => 0.0014058840591792
301 => 0.001342176790395
302 => 0.0013265428668378
303 => 0.0013377802210565
304 => 0.0013324094895183
305 => 0.0010753584483382
306 => 0.0011357487775715
307 => 0.0010998668946029
308 => 0.0011164029171209
309 => 0.0010797768061785
310 => 0.0010972567060591
311 => 0.0010940288068149
312 => 0.0011911346691422
313 => 0.0011896184946667
314 => 0.001190344207154
315 => 0.0011557040593036
316 => 0.0012108867554118
317 => 0.0012380717358202
318 => 0.0012330405194514
319 => 0.0012343067682181
320 => 0.001212548419123
321 => 0.0011905548755346
322 => 0.001166160650913
323 => 0.0012114821050427
324 => 0.0012064431330065
325 => 0.0012180007218926
326 => 0.0012473949245402
327 => 0.0012517233325377
328 => 0.0012575407567809
329 => 0.0012554556243022
330 => 0.0013051319393867
331 => 0.0012991158098551
401 => 0.0013136129510677
402 => 0.0012837912316926
403 => 0.0012500451255161
404 => 0.0012564591570569
405 => 0.0012558414342412
406 => 0.0012479771138072
407 => 0.001240877556957
408 => 0.0012290587950891
409 => 0.0012664551064868
410 => 0.0012649368845377
411 => 0.0012895151331531
412 => 0.00128517068897
413 => 0.0012561574274491
414 => 0.0012571936417603
415 => 0.0012641626809905
416 => 0.0012882826053372
417 => 0.001295443041093
418 => 0.0012921260419569
419 => 0.0012999771328768
420 => 0.0013061823150252
421 => 0.001300756408218
422 => 0.0013775758063827
423 => 0.001345675036435
424 => 0.0013612232497434
425 => 0.001364931407002
426 => 0.0013554330401581
427 => 0.0013574928958155
428 => 0.0013606130158595
429 => 0.0013795577737841
430 => 0.0014292743002882
501 => 0.001451293411445
502 => 0.0015175389937642
503 => 0.0014494650307843
504 => 0.0014454258035391
505 => 0.0014573586333397
506 => 0.0014962518029681
507 => 0.0015277710639023
508 => 0.0015382278211439
509 => 0.0015396098542356
510 => 0.001559227425973
511 => 0.0015704718522468
512 => 0.0015568453367707
513 => 0.0015452982916604
514 => 0.0015039382093471
515 => 0.0015087257514946
516 => 0.001541707169314
517 => 0.0015882953645796
518 => 0.0016282728827931
519 => 0.0016142741492719
520 => 0.0017210746044729
521 => 0.0017316634333654
522 => 0.0017302003995903
523 => 0.0017543233276363
524 => 0.0017064442280138
525 => 0.0016859749853114
526 => 0.0015477948938778
527 => 0.0015866178632779
528 => 0.0016430493292941
529 => 0.0016355804131597
530 => 0.0015945983741214
531 => 0.0016282417942416
601 => 0.0016171182274228
602 => 0.0016083446087557
603 => 0.0016485382567196
604 => 0.0016043436897192
605 => 0.0016426084546812
606 => 0.0015935334978191
607 => 0.0016143380943075
608 => 0.0016025283991356
609 => 0.0016101707192536
610 => 0.0015654938720018
611 => 0.0015896004143097
612 => 0.0015644909605869
613 => 0.0015644790554365
614 => 0.0015639247628538
615 => 0.0015934659238064
616 => 0.0015944292600045
617 => 0.0015725982974263
618 => 0.0015694521146551
619 => 0.0015810852013415
620 => 0.001567465903542
621 => 0.0015738382872635
622 => 0.0015676589165532
623 => 0.0015662678100489
624 => 0.0015551832367449
625 => 0.0015504076977889
626 => 0.0015522803096641
627 => 0.0015458881199366
628 => 0.0015420365944102
629 => 0.0015631585974851
630 => 0.0015518739633014
701 => 0.001561429065452
702 => 0.0015505398206014
703 => 0.0015127929537307
704 => 0.0014910843314275
705 => 0.0014197839990452
706 => 0.001440004684861
707 => 0.0014534110204768
708 => 0.0014489802266357
709 => 0.0014584992862958
710 => 0.0014590836792484
711 => 0.0014559889359175
712 => 0.0014524056196016
713 => 0.0014506614593888
714 => 0.0014636610006512
715 => 0.0014712076718984
716 => 0.0014547565256094
717 => 0.0014509022522099
718 => 0.0014675352694007
719 => 0.0014776814002786
720 => 0.001552594730062
721 => 0.0015470449086248
722 => 0.0015609738713348
723 => 0.001559405683891
724 => 0.0015740054558688
725 => 0.0015978699127286
726 => 0.0015493467993256
727 => 0.0015577687340093
728 => 0.0015557038701158
729 => 0.0015782475126695
730 => 0.0015783178914608
731 => 0.0015648018516114
801 => 0.0015721291160864
802 => 0.0015680392380695
803 => 0.0015754302004263
804 => 0.0015469707873759
805 => 0.0015816312804675
806 => 0.0016012815465776
807 => 0.0016015543905416
808 => 0.0016108684607236
809 => 0.0016203320954631
810 => 0.0016384967182368
811 => 0.0016198254939929
812 => 0.0015862377791851
813 => 0.0015886627037066
814 => 0.0015689702388041
815 => 0.0015693012726968
816 => 0.0015675341878338
817 => 0.0015728373425278
818 => 0.001548134531609
819 => 0.0015539322319564
820 => 0.0015458154175188
821 => 0.0015577510896399
822 => 0.0015449102794748
823 => 0.0015557028743759
824 => 0.001560360600555
825 => 0.0015775477104295
826 => 0.001542371729372
827 => 0.0014706455227911
828 => 0.0014857232410106
829 => 0.0014634221114348
830 => 0.0014654861658834
831 => 0.0014696558843615
901 => 0.0014561404625271
902 => 0.0014587187790932
903 => 0.0014586266634821
904 => 0.0014578328609107
905 => 0.0014543169777012
906 => 0.0014492182514512
907 => 0.0014695300075262
908 => 0.0014729813706839
909 => 0.00148065332345
910 => 0.0015034798509466
911 => 0.0015011989425631
912 => 0.0015049191987706
913 => 0.001496797900358
914 => 0.0014658628896243
915 => 0.00146754280954
916 => 0.0014465941812727
917 => 0.0014801176199262
918 => 0.0014721788271653
919 => 0.0014670606358274
920 => 0.0014656640899012
921 => 0.0014885471999444
922 => 0.0014953941851181
923 => 0.0014911276034419
924 => 0.001482376719948
925 => 0.0014991810032228
926 => 0.0015036771205113
927 => 0.0015046836353618
928 => 0.001534457603423
929 => 0.0015063476694289
930 => 0.00151311400993
1001 => 0.0015659030669824
1002 => 0.0015180306766278
1003 => 0.0015433897494803
1004 => 0.0015421485548264
1005 => 0.0015551213983935
1006 => 0.001541084403005
1007 => 0.001541258408386
1008 => 0.0015527774146171
1009 => 0.0015366010478293
1010 => 0.0015325955519238
1011 => 0.0015270619880184
1012 => 0.0015391443223645
1013 => 0.0015463871353681
1014 => 0.0016047588889165
1015 => 0.0016424697037841
1016 => 0.0016408325778555
1017 => 0.0016557928442716
1018 => 0.0016490531072308
1019 => 0.0016272887184733
1020 => 0.001664437876198
1021 => 0.0016526823283071
1022 => 0.0016536514413922
1023 => 0.0016536153709548
1024 => 0.0016614317826144
1025 => 0.00165589313859
1026 => 0.0016449759026877
1027 => 0.0016522232733657
1028 => 0.0016737453732969
1029 => 0.0017405506318621
1030 => 0.0017779357396072
1031 => 0.0017383000014338
1101 => 0.0017656402028821
1102 => 0.001749245824323
1103 => 0.0017462664780482
1104 => 0.0017634381449828
1105 => 0.0017806398686472
1106 => 0.0017795441932149
1107 => 0.0017670566251528
1108 => 0.0017600027148149
1109 => 0.0018134172871272
1110 => 0.0018527722341134
1111 => 0.0018500884905678
1112 => 0.0018619336617777
1113 => 0.0018967114508073
1114 => 0.0018998910959867
1115 => 0.0018994905337774
1116 => 0.0018916094514386
1117 => 0.0019258527012048
1118 => 0.0019544190226124
1119 => 0.0018897852085835
1120 => 0.0019143969188469
1121 => 0.001925445908524
1122 => 0.0019416691034574
1123 => 0.0019690403526333
1124 => 0.0019987727891035
1125 => 0.00200297728162
1126 => 0.0019999939929761
1127 => 0.0019803846518732
1128 => 0.0020129182386407
1129 => 0.0020319756507626
1130 => 0.0020433239035601
1201 => 0.0020721011844853
1202 => 0.0019255141433227
1203 => 0.0018217525497392
1204 => 0.0018055486785656
1205 => 0.0018384998877829
1206 => 0.0018471888588726
1207 => 0.0018436863455214
1208 => 0.0017268932383518
1209 => 0.0018049337870272
1210 => 0.0018888988555663
1211 => 0.0018921242958074
1212 => 0.0019341589647448
1213 => 0.0019478471760101
1214 => 0.0019816905941148
1215 => 0.0019795736790978
1216 => 0.0019878140128398
1217 => 0.0019859197028152
1218 => 0.0020486075082816
1219 => 0.0021177614669402
1220 => 0.002115366885248
1221 => 0.0021054251854983
1222 => 0.0021201903049383
1223 => 0.0021915646012626
1224 => 0.0021849935998068
1225 => 0.0021913767680045
1226 => 0.0022755310858499
1227 => 0.0023849436698611
1228 => 0.0023341105397441
1229 => 0.0024444038052588
1230 => 0.0025138275695055
1231 => 0.0026338887912191
]
'min_raw' => 0.0010753584483382
'max_raw' => 0.0026338887912191
'avg_raw' => 0.0018546236197786
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001075'
'max' => '$0.002633'
'avg' => '$0.001854'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00047949505409141
'max_diff' => 0.0010685518133176
'year' => 2028
]
3 => [
'items' => [
101 => 0.0026188565349466
102 => 0.0026655954875097
103 => 0.0025919456588922
104 => 0.0024228307653002
105 => 0.0023960676860435
106 => 0.0024496480484646
107 => 0.0025813701411815
108 => 0.0024454996510058
109 => 0.0024729860742103
110 => 0.0024650699824783
111 => 0.0024646481675911
112 => 0.0024807471261894
113 => 0.0024573947470774
114 => 0.0023622529535621
115 => 0.002405855876856
116 => 0.0023890186941879
117 => 0.0024077008036533
118 => 0.0025085204433502
119 => 0.0024639456774002
120 => 0.0024169897824318
121 => 0.0024758828950694
122 => 0.0025508740653262
123 => 0.0025461812526636
124 => 0.0025370752346547
125 => 0.0025884053813954
126 => 0.0026731877454893
127 => 0.0026961040778207
128 => 0.002713020445844
129 => 0.00271535292719
130 => 0.0027393789346832
131 => 0.0026101850370588
201 => 0.0028152190705233
202 => 0.0028506227841517
203 => 0.0028439683533232
204 => 0.0028833180910052
205 => 0.0028717403999726
206 => 0.0028549661421505
207 => 0.0029173438463057
208 => 0.002845832842113
209 => 0.0027443319746464
210 => 0.0026886465912947
211 => 0.002761977596104
212 => 0.0028067582818416
213 => 0.0028363554665276
214 => 0.0028453115567305
215 => 0.0026202139915635
216 => 0.0024988988884219
217 => 0.0025766604786552
218 => 0.0026715349855581
219 => 0.0026096580043827
220 => 0.0026120834648961
221 => 0.0025238631507245
222 => 0.0026793405258236
223 => 0.0026566887800422
224 => 0.0027742060772263
225 => 0.0027461596311181
226 => 0.0028419904249765
227 => 0.0028167549653139
228 => 0.0029215059474777
301 => 0.0029632939502824
302 => 0.0030334625107749
303 => 0.0030850787895105
304 => 0.0031153888556462
305 => 0.0031135691529656
306 => 0.0032336727354101
307 => 0.0031628518489422
308 => 0.003073884124337
309 => 0.0030722749788885
310 => 0.0031183526241439
311 => 0.0032149187278146
312 => 0.0032399569135167
313 => 0.0032539498435521
314 => 0.0032325191841055
315 => 0.0031556481876232
316 => 0.003122455681087
317 => 0.0031507366583353
318 => 0.0031161514533726
319 => 0.0031758552200329
320 => 0.0032578412436938
321 => 0.0032409114540157
322 => 0.0032975052026537
323 => 0.003356073778658
324 => 0.0034398294728236
325 => 0.0034617263127428
326 => 0.0034979209564671
327 => 0.0035351771341804
328 => 0.0035471428143798
329 => 0.003569989010613
330 => 0.0035698685998816
331 => 0.0036387171499566
401 => 0.0037146592327514
402 => 0.0037433256109431
403 => 0.0038092423669218
404 => 0.003696362232307
405 => 0.0037819831110858
406 => 0.003859215286974
407 => 0.0037671359029713
408 => 0.0038940458820741
409 => 0.0038989735089785
410 => 0.0039733748248863
411 => 0.0038979548376463
412 => 0.0038531706899723
413 => 0.003982460846267
414 => 0.0040450202802963
415 => 0.0040261768696411
416 => 0.0038827775841413
417 => 0.0037993130492957
418 => 0.0035808702624985
419 => 0.003839625179486
420 => 0.0039656571515662
421 => 0.0038824511917807
422 => 0.0039244154380949
423 => 0.0041533587590323
424 => 0.004240525552663
425 => 0.0042223954689297
426 => 0.004225459154634
427 => 0.0042724927742879
428 => 0.0044810657457208
429 => 0.0043560839865546
430 => 0.00445162785846
501 => 0.0045023039836095
502 => 0.0045493747928596
503 => 0.0044337837622235
504 => 0.0042834015297354
505 => 0.0042357691640898
506 => 0.0038741779988903
507 => 0.0038553556084308
508 => 0.0038447900302891
509 => 0.0037781755546364
510 => 0.0037258348240138
511 => 0.0036842115317361
512 => 0.0035749795830319
513 => 0.0036118421591821
514 => 0.0034377492314273
515 => 0.0035491277171303
516 => 0.0032712712008128
517 => 0.003502678364153
518 => 0.0033767339659395
519 => 0.0034613022420761
520 => 0.0034610071913275
521 => 0.0033052901825637
522 => 0.0032154758616398
523 => 0.0032727090425582
524 => 0.0033340675556782
525 => 0.0033440227679971
526 => 0.0034235756818783
527 => 0.0034457771901584
528 => 0.0033785055835804
529 => 0.0032655132421072
530 => 0.0032917587859505
531 => 0.0032149439965315
601 => 0.0030803290327128
602 => 0.0031770118498792
603 => 0.0032100236145032
604 => 0.0032246034903999
605 => 0.0030922251341172
606 => 0.0030506289804993
607 => 0.0030284835373387
608 => 0.0032484248586474
609 => 0.0032604737407181
610 => 0.0031988299565039
611 => 0.0034774657064556
612 => 0.0034144018547411
613 => 0.003484859628125
614 => 0.0032893772779395
615 => 0.0032968449669685
616 => 0.0032043004896471
617 => 0.0032561192131229
618 => 0.0032194954095656
619 => 0.0032519327723486
620 => 0.0032713755938565
621 => 0.0033639048855399
622 => 0.0035037349000321
623 => 0.0033500840949423
624 => 0.0032831362388446
625 => 0.0033246703122386
626 => 0.0034352810229829
627 => 0.0036028619118187
628 => 0.0035036506527482
629 => 0.0035476789248073
630 => 0.0035572971435707
701 => 0.0034841424341326
702 => 0.0036055592303025
703 => 0.0036706274777582
704 => 0.0037373740356712
705 => 0.0037953282017109
706 => 0.0037107139926525
707 => 0.0038012633253154
708 => 0.003728296547298
709 => 0.0036628378042496
710 => 0.0036629370781426
711 => 0.0036218738524286
712 => 0.0035423086783084
713 => 0.0035276356394519
714 => 0.0036039666405841
715 => 0.0036651768749195
716 => 0.0036702184429966
717 => 0.0037041075738201
718 => 0.0037241628123556
719 => 0.0039207314137784
720 => 0.0039997929313713
721 => 0.0040964678585261
722 => 0.0041341281909532
723 => 0.0042474722895825
724 => 0.0041559377245818
725 => 0.0041361336456644
726 => 0.003861197936962
727 => 0.0039062186438598
728 => 0.0039783011394554
729 => 0.0038623865507647
730 => 0.0039359076774285
731 => 0.0039504223052223
801 => 0.0038584478173963
802 => 0.0039075753653272
803 => 0.0037771071633256
804 => 0.0035065787503073
805 => 0.0036058604057608
806 => 0.0036789651220185
807 => 0.0035746356781723
808 => 0.0037616421681595
809 => 0.0036523968373065
810 => 0.0036177713121268
811 => 0.0034826847935096
812 => 0.00354644043034
813 => 0.0036326708420458
814 => 0.003579390472973
815 => 0.0036899552388868
816 => 0.0038465444339669
817 => 0.0039581392194287
818 => 0.0039667060813785
819 => 0.0038949581105965
820 => 0.0040099346916641
821 => 0.0040107721705344
822 => 0.003881078117397
823 => 0.0038016412319899
824 => 0.0037835930044888
825 => 0.00382868101535
826 => 0.0038834261842416
827 => 0.003969744057245
828 => 0.004021904140099
829 => 0.0041579099726118
830 => 0.004194709251297
831 => 0.0042351405017278
901 => 0.0042891691208392
902 => 0.0043540443307361
903 => 0.0042121010648295
904 => 0.0042177407353993
905 => 0.0040855651315253
906 => 0.003944316542887
907 => 0.0040515066147783
908 => 0.0041916433748786
909 => 0.0041594958472742
910 => 0.0041558785937043
911 => 0.0041619618108664
912 => 0.0041377236248928
913 => 0.0040280952080434
914 => 0.0039730405034118
915 => 0.0040440751183396
916 => 0.0040818268547868
917 => 0.004140376505719
918 => 0.0041331590254084
919 => 0.0042839766384363
920 => 0.004342579802371
921 => 0.0043275866052657
922 => 0.0043303457143645
923 => 0.0044364439434164
924 => 0.0045544469948871
925 => 0.0046649724244635
926 => 0.0047774036386063
927 => 0.0046418634216922
928 => 0.0045730444585016
929 => 0.0046440480619388
930 => 0.0046063725505069
1001 => 0.0048228672144768
1002 => 0.0048378568352883
1003 => 0.0050543358442299
1004 => 0.0052598002015563
1005 => 0.0051307517199959
1006 => 0.005252438625636
1007 => 0.0053840529353649
1008 => 0.005637958292484
1009 => 0.0055524519007045
1010 => 0.0054869553446573
1011 => 0.0054250614156698
1012 => 0.0055538528565083
1013 => 0.0057195409876534
1014 => 0.0057552286241609
1015 => 0.0058130562290295
1016 => 0.0057522575733333
1017 => 0.0058254828573671
1018 => 0.0060840002868265
1019 => 0.0060141465953901
1020 => 0.0059149431240092
1021 => 0.0061190178062895
1022 => 0.0061928716404866
1023 => 0.0067112165264346
1024 => 0.0073656483567032
1025 => 0.0070947092817409
1026 => 0.0069265286547625
1027 => 0.0069660550914002
1028 => 0.0072050314418988
1029 => 0.0072817830609488
1030 => 0.0070731457025014
1031 => 0.007146839944652
1101 => 0.0075529024643598
1102 => 0.0077707419781376
1103 => 0.0074748866586773
1104 => 0.0066586335660786
1105 => 0.00590601093682
1106 => 0.0061056403491381
1107 => 0.0060830085690031
1108 => 0.0065192720890981
1109 => 0.0060124806079515
1110 => 0.0060210136767548
1111 => 0.0064662986644343
1112 => 0.0063475042638387
1113 => 0.0061550725489112
1114 => 0.0059074159012966
1115 => 0.005449599682714
1116 => 0.0050440990907655
1117 => 0.0058393791327855
1118 => 0.0058050852112507
1119 => 0.0057554225307938
1120 => 0.0058659414520872
1121 => 0.0064025899625449
1122 => 0.0063902184774172
1123 => 0.0063115174010215
1124 => 0.0063712114738282
1125 => 0.0061446078893316
1126 => 0.006203008792724
1127 => 0.0059058917175502
1128 => 0.0060402010442339
1129 => 0.0061546596768764
1130 => 0.0061776389419684
1201 => 0.006229412399571
1202 => 0.0057870138729297
1203 => 0.0059856378232533
1204 => 0.0061023107855211
1205 => 0.0055751780973965
1206 => 0.0060918910671377
1207 => 0.0057793126988287
1208 => 0.0056732189058551
1209 => 0.0058160602212997
1210 => 0.0057603948217532
1211 => 0.0057125369800051
1212 => 0.0056858314820075
1213 => 0.0057907183792493
1214 => 0.0057858252801261
1215 => 0.005614209958569
1216 => 0.0053903447675331
1217 => 0.0054654812737692
1218 => 0.0054381834766451
1219 => 0.0053392527383817
1220 => 0.0054059201110283
1221 => 0.0051123507414775
1222 => 0.0046072798995734
1223 => 0.0049409451684735
1224 => 0.0049280994185788
1225 => 0.0049216220089736
1226 => 0.0051723622367214
1227 => 0.0051482593493847
1228 => 0.0051045123728525
1229 => 0.0053384492908508
1230 => 0.0052530591688859
1231 => 0.0055162114043389
]
'min_raw' => 0.0023622529535621
'max_raw' => 0.0077707419781376
'avg_raw' => 0.0050664974658499
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002362'
'max' => '$0.00777'
'avg' => '$0.005066'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0012868945052239
'max_diff' => 0.0051368531869185
'year' => 2029
]
4 => [
'items' => [
101 => 0.0056895404862277
102 => 0.0056455786244523
103 => 0.0058085954637409
104 => 0.0054672122671184
105 => 0.0055806060711198
106 => 0.0056039763769675
107 => 0.0053355625455958
108 => 0.0051522028798384
109 => 0.0051399748805856
110 => 0.0048220544886807
111 => 0.0049918849958726
112 => 0.0051413288141375
113 => 0.0050697568224974
114 => 0.0050470992680965
115 => 0.0051628517997064
116 => 0.0051718467627659
117 => 0.0049667606517663
118 => 0.0050094045484756
119 => 0.0051872366867114
120 => 0.0050049236348624
121 => 0.0046507191557877
122 => 0.0045628715477171
123 => 0.0045511510574479
124 => 0.0043129013770788
125 => 0.0045687419449481
126 => 0.0044570606809722
127 => 0.0048098604557251
128 => 0.0046083431164894
129 => 0.0045996561067625
130 => 0.0045865244174531
131 => 0.0043814530755891
201 => 0.0044263506664937
202 => 0.0045755970967566
203 => 0.0046288499044558
204 => 0.0046232952003254
205 => 0.0045748657078272
206 => 0.0045970364814937
207 => 0.0045256166947042
208 => 0.0045003968815145
209 => 0.0044207962138318
210 => 0.0043038052225838
211 => 0.0043200735374643
212 => 0.004088283771444
213 => 0.0039619924049021
214 => 0.0039270366191368
215 => 0.0038802922815086
216 => 0.0039323165164538
217 => 0.0040876271401597
218 => 0.0039002895769835
219 => 0.0035791124651202
220 => 0.0035984157568023
221 => 0.0036417845220134
222 => 0.0035609671149557
223 => 0.0034844802216664
224 => 0.0035509793698036
225 => 0.0034148923935041
226 => 0.003658229982936
227 => 0.0036516483830876
228 => 0.0037423495885322
301 => 0.0037990669136728
302 => 0.0036683518416757
303 => 0.0036354773545596
304 => 0.0036542041564831
305 => 0.0033446918351547
306 => 0.003717055828633
307 => 0.0037202760479114
308 => 0.0036927025753983
309 => 0.003890974906477
310 => 0.0043093913677439
311 => 0.0041519662642522
312 => 0.0040910065059812
313 => 0.0039751219609468
314 => 0.0041295312366617
315 => 0.0041176750134467
316 => 0.0040640566757295
317 => 0.0040316281377787
318 => 0.0040913787132663
319 => 0.0040242243802455
320 => 0.0040121616167573
321 => 0.0039390743944349
322 => 0.0039129855813225
323 => 0.0038936704627197
324 => 0.0038724064150024
325 => 0.0039193096055963
326 => 0.0038130208050819
327 => 0.0036848469312812
328 => 0.0036741906605352
329 => 0.0037036135609738
330 => 0.003690596117807
331 => 0.0036741283380255
401 => 0.0036426868616895
402 => 0.0036333588473015
403 => 0.0036636703687533
404 => 0.0036294504283057
405 => 0.0036799438144928
406 => 0.0036662124073764
407 => 0.0035895098834449
408 => 0.0034939101397148
409 => 0.0034930591014683
410 => 0.0034724622934967
411 => 0.003446229161794
412 => 0.003438931704687
413 => 0.0035453789970287
414 => 0.0037657217064766
415 => 0.0037224631602578
416 => 0.003753721893215
417 => 0.0039074839214594
418 => 0.0039563602464528
419 => 0.0039216689886717
420 => 0.0038741814553573
421 => 0.0038762706658199
422 => 0.0040385499426089
423 => 0.0040486711020464
424 => 0.0040742440067353
425 => 0.0041071124161624
426 => 0.0039272666209242
427 => 0.0038677999450374
428 => 0.0038396213349167
429 => 0.0037528421222394
430 => 0.0038464260632244
501 => 0.0037918987084764
502 => 0.0037992563115516
503 => 0.0037944646628966
504 => 0.0037970812270721
505 => 0.0036581619651205
506 => 0.0037087768427942
507 => 0.0036246197917447
508 => 0.0035119429474618
509 => 0.0035115652151701
510 => 0.0035391427131792
511 => 0.0035227385382558
512 => 0.0034785953253268
513 => 0.0034848656603733
514 => 0.0034299309274096
515 => 0.0034915357315805
516 => 0.0034933023369316
517 => 0.0034695811316894
518 => 0.0035644918323395
519 => 0.0036033768238356
520 => 0.0035877630183877
521 => 0.0036022813176221
522 => 0.0037242607481538
523 => 0.0037441487176662
524 => 0.0037529816399981
525 => 0.0037411466942113
526 => 0.0036045108776915
527 => 0.0036105712571745
528 => 0.0035661042136531
529 => 0.0035285342476992
530 => 0.0035300368493088
531 => 0.0035493526955628
601 => 0.0036337061290136
602 => 0.0038112229568043
603 => 0.0038179595906558
604 => 0.0038261245874054
605 => 0.0037929134422264
606 => 0.0037828966430526
607 => 0.0037961113867181
608 => 0.0038627773738449
609 => 0.0040342603923739
610 => 0.00397364684066
611 => 0.0039243670796105
612 => 0.0039675987157791
613 => 0.0039609435442517
614 => 0.0039047671990326
615 => 0.0039031905161234
616 => 0.003795370148984
617 => 0.0037555114142035
618 => 0.0037222024720464
619 => 0.0036858299767627
620 => 0.0036642671423415
621 => 0.0036973974561455
622 => 0.0037049747508988
623 => 0.0036325347407476
624 => 0.003622661435039
625 => 0.0036818175110547
626 => 0.003655785127561
627 => 0.0036825600795563
628 => 0.0036887720980905
629 => 0.0036877718200316
630 => 0.003660591021864
701 => 0.0036779152520729
702 => 0.0036369382830271
703 => 0.0035923819837315
704 => 0.0035639578407364
705 => 0.0035391540060578
706 => 0.0035529166151448
707 => 0.0035038554267027
708 => 0.0034881597651134
709 => 0.0036720461926857
710 => 0.0038078850738455
711 => 0.0038059099227154
712 => 0.0037938866981781
713 => 0.0037760226253378
714 => 0.0038614705056482
715 => 0.0038317021727323
716 => 0.003853361122156
717 => 0.0038588742338076
718 => 0.0038755607623339
719 => 0.0038815247620265
720 => 0.0038634974126914
721 => 0.0038029954264676
722 => 0.0036522302291541
723 => 0.0035820486228218
724 => 0.0035588875237651
725 => 0.0035597293857266
726 => 0.0035365070745905
727 => 0.003543347085971
728 => 0.0035341283977713
729 => 0.0035166704325612
730 => 0.0035518386349884
731 => 0.0035558914427036
801 => 0.0035476827640284
802 => 0.0035496162050149
803 => 0.0034816518515565
804 => 0.0034868190337391
805 => 0.0034580475067325
806 => 0.0034526531922647
807 => 0.0033799212774153
808 => 0.0032510661476001
809 => 0.0033224643977879
810 => 0.0032362253516743
811 => 0.0032035653181763
812 => 0.0033581728370785
813 => 0.0033426545303258
814 => 0.0033160939348109
815 => 0.0032768052783313
816 => 0.0032622327334675
817 => 0.0031736945639823
818 => 0.0031684632565964
819 => 0.0032123451641249
820 => 0.0031920951736847
821 => 0.0031636565178356
822 => 0.0030606545891305
823 => 0.0029448463184993
824 => 0.0029483418422448
825 => 0.0029851782984431
826 => 0.0030922852629126
827 => 0.0030504367189251
828 => 0.0030200751201054
829 => 0.0030143893053128
830 => 0.0030855591815019
831 => 0.0031862794668596
901 => 0.00323353517126
902 => 0.0031867062033762
903 => 0.0031329116065221
904 => 0.0031361858343724
905 => 0.0031579678053809
906 => 0.0031602567825534
907 => 0.0031252420301753
908 => 0.0031350984778696
909 => 0.0031201256325294
910 => 0.0030282373083143
911 => 0.0030265753399103
912 => 0.0030040244632485
913 => 0.0030033416316654
914 => 0.0029649769648839
915 => 0.0029596094827988
916 => 0.0028834341083353
917 => 0.0029335729704874
918 => 0.0028999424541642
919 => 0.0028492533334282
920 => 0.0028405145099074
921 => 0.00284025181032
922 => 0.0028922982034358
923 => 0.002932964778081
924 => 0.0029005274713941
925 => 0.0028931421254323
926 => 0.002971998298664
927 => 0.0029619631318303
928 => 0.0029532727420722
929 => 0.0031772610700155
930 => 0.0029999568304212
1001 => 0.0029226420617859
1002 => 0.0028269503539233
1003 => 0.0028581080565228
1004 => 0.0028646734422624
1005 => 0.0026345521345797
1006 => 0.0025411919487127
1007 => 0.0025091542511275
1008 => 0.0024907161032206
1009 => 0.0024991185987535
1010 => 0.0024150834814155
1011 => 0.0024715564700792
1012 => 0.0023987891617761
1013 => 0.0023865894857338
1014 => 0.0025167064471194
1015 => 0.0025348114621639
1016 => 0.0024575698431966
1017 => 0.0025071714668558
1018 => 0.0024891852286029
1019 => 0.0024000365484221
1020 => 0.0023966317245725
1021 => 0.0023519000505855
1022 => 0.0022819036425546
1023 => 0.0022499134058301
1024 => 0.002233252612792
1025 => 0.0022401271807119
1026 => 0.0022366511888064
1027 => 0.0022139679903712
1028 => 0.0022379513631887
1029 => 0.0021766837562538
1030 => 0.0021522865015056
1031 => 0.0021412668275479
1101 => 0.0020868882999613
1102 => 0.0021734287195926
1103 => 0.0021904782724674
1104 => 0.0022075614182283
1105 => 0.0023562585389178
1106 => 0.0023488300509819
1107 => 0.0024159799641025
1108 => 0.0024133706419594
1109 => 0.0023942183989809
1110 => 0.0023134182362458
1111 => 0.0023456237409876
1112 => 0.002246500203239
1113 => 0.0023207702974657
1114 => 0.0022868765280539
1115 => 0.0023093107799335
1116 => 0.0022689719722391
1117 => 0.0022912971339657
1118 => 0.0021945213539508
1119 => 0.0021041534922448
1120 => 0.0021405201577976
1121 => 0.0021800548822862
1122 => 0.0022657762382379
1123 => 0.0022147213058189
1124 => 0.0022330825901175
1125 => 0.002171575361359
1126 => 0.002044668379759
1127 => 0.0020453866594928
1128 => 0.0020258647851925
1129 => 0.0020089950355567
1130 => 0.0022205855789677
1201 => 0.002194270950143
1202 => 0.0021523420330844
1203 => 0.0022084655547563
1204 => 0.0022233055046864
1205 => 0.0022237279771984
1206 => 0.0022646742498524
1207 => 0.0022865272829079
1208 => 0.0022903789747004
1209 => 0.0023548088194243
1210 => 0.0023764048535256
1211 => 0.0024653558616035
1212 => 0.0022846732057318
1213 => 0.0022809521653356
1214 => 0.0022092553278012
1215 => 0.0021637840599547
1216 => 0.002212368784413
1217 => 0.0022554082178068
1218 => 0.0022105926829687
1219 => 0.002216444645711
1220 => 0.0021562834517545
1221 => 0.0021777882477467
1222 => 0.002196311075064
1223 => 0.0021860838585408
1224 => 0.0021707732204028
1225 => 0.0022518794750838
1226 => 0.0022473031423367
1227 => 0.0023228311513203
1228 => 0.0023817106353828
1229 => 0.0024872331967896
1230 => 0.0023771149029461
1231 => 0.0023731017546379
]
'min_raw' => 0.0020089950355567
'max_raw' => 0.0058085954637409
'avg_raw' => 0.0039087952496488
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0020089'
'max' => '$0.0058085'
'avg' => '$0.0039087'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00035325791800541
'max_diff' => -0.0019621465143967
'year' => 2030
]
5 => [
'items' => [
101 => 0.0024123309230801
102 => 0.0023763988477443
103 => 0.0023991066790234
104 => 0.0024835746141088
105 => 0.0024853592884743
106 => 0.0024554636934287
107 => 0.0024536445437533
108 => 0.0024593863198038
109 => 0.0024930160814725
110 => 0.0024812648094073
111 => 0.002494863678947
112 => 0.0025118692735397
113 => 0.0025822116229979
114 => 0.0025991709253093
115 => 0.0025579686130826
116 => 0.0025616887205539
117 => 0.0025462779247524
118 => 0.0025313912891048
119 => 0.002564854272022
120 => 0.0026260085310199
121 => 0.0026256280935486
122 => 0.0026398146929672
123 => 0.0026486528268769
124 => 0.0026107130862272
125 => 0.0025860157101472
126 => 0.0025954862556712
127 => 0.0026106298642056
128 => 0.0025905753875239
129 => 0.0024667898673073
130 => 0.0025043384866914
131 => 0.0024980885603922
201 => 0.0024891879053251
202 => 0.0025269433324707
203 => 0.0025233017294176
204 => 0.0024142215798248
205 => 0.0024212045370921
206 => 0.0024146462365845
207 => 0.0024358374472264
208 => 0.002375254452826
209 => 0.0023938893738709
210 => 0.0024055770216587
211 => 0.0024124611359945
212 => 0.0024373312774566
213 => 0.0024344130534061
214 => 0.0024371498765523
215 => 0.0024740257308668
216 => 0.0026605311477244
217 => 0.002670682226063
218 => 0.0026206946037415
219 => 0.0026406636728967
220 => 0.0026023274268741
221 => 0.0026280628056596
222 => 0.0026456702982169
223 => 0.0025661054250765
224 => 0.0025613941096609
225 => 0.002522899636314
226 => 0.0025435843858522
227 => 0.0025106734620508
228 => 0.0025187486515764
301 => 0.0024961697176804
302 => 0.0025368073032724
303 => 0.0025822464384065
304 => 0.0025937261583872
305 => 0.0025635279574482
306 => 0.0025416624698099
307 => 0.0025032738764564
308 => 0.0025671149627488
309 => 0.0025857840419026
310 => 0.0025670169020237
311 => 0.0025626681456436
312 => 0.0025544272601615
313 => 0.0025644164884559
314 => 0.0025856823660881
315 => 0.0025756537709158
316 => 0.0025822778347082
317 => 0.0025570337342366
318 => 0.0026107256458601
319 => 0.0026960013231804
320 => 0.0026962754984269
321 => 0.0026862468491968
322 => 0.0026821433420021
323 => 0.0026924333447015
324 => 0.002698015249048
325 => 0.0027312912309142
326 => 0.0027669976852302
327 => 0.0029336241275766
328 => 0.0028868360893322
329 => 0.0030346769816333
330 => 0.0031515999327062
331 => 0.003186660013312
401 => 0.003154406388859
402 => 0.0030440684819116
403 => 0.003038654777802
404 => 0.0032035461942441
405 => 0.0031569568165938
406 => 0.0031514151583685
407 => 0.0030924612776304
408 => 0.0031273103227268
409 => 0.0031196883253596
410 => 0.0031076566296346
411 => 0.0031741461800729
412 => 0.0032986086829305
413 => 0.0032792100346582
414 => 0.0032647298436003
415 => 0.0032012818615049
416 => 0.0032394917183462
417 => 0.0032258859201866
418 => 0.003284345063533
419 => 0.0032497151620432
420 => 0.0031566038562362
421 => 0.0031714321385849
422 => 0.0031691908735382
423 => 0.0032153159493802
424 => 0.0032014703465072
425 => 0.0031664872973633
426 => 0.0032981832836265
427 => 0.0032896316788101
428 => 0.0033017558992707
429 => 0.0033070933560714
430 => 0.0033872543821663
501 => 0.0034200937896906
502 => 0.0034275489101333
503 => 0.0034587438073905
504 => 0.0034267727526717
505 => 0.0035546797665227
506 => 0.0036397304671525
507 => 0.003738521232603
508 => 0.0038828810933807
509 => 0.0039371617364364
510 => 0.0039273564241156
511 => 0.0040368084230009
512 => 0.0042334912320165
513 => 0.0039671116431944
514 => 0.0042476099970443
515 => 0.0041588074567246
516 => 0.0039482582311162
517 => 0.0039347013431993
518 => 0.0040772877233081
519 => 0.0043935305909589
520 => 0.0043143153394093
521 => 0.0043936601587324
522 => 0.0043011002123438
523 => 0.0042965038308491
524 => 0.0043891647287339
525 => 0.0046056719673244
526 => 0.0045028174939226
527 => 0.0043553503853494
528 => 0.0044642378034775
529 => 0.0043699094448401
530 => 0.004157361251985
531 => 0.0043142547649994
601 => 0.0042093445409167
602 => 0.0042399629216383
603 => 0.004460468608442
604 => 0.00443393678082
605 => 0.0044682714225439
606 => 0.0044076716785953
607 => 0.0043510619620449
608 => 0.0042453957222108
609 => 0.0042141131578786
610 => 0.0042227585332312
611 => 0.0042141088736599
612 => 0.0041549895835956
613 => 0.004142222778535
614 => 0.0041209442107741
615 => 0.0041275393286796
616 => 0.0040875293960245
617 => 0.0041630364054185
618 => 0.0041770511717275
619 => 0.0042319988764024
620 => 0.0042377037293837
621 => 0.0043907323047717
622 => 0.0043064467369887
623 => 0.0043629927727233
624 => 0.0043579347630553
625 => 0.0039528214712762
626 => 0.0040086425085386
627 => 0.0040954825249122
628 => 0.0040563612152448
629 => 0.0040010528363516
630 => 0.0039563883549476
701 => 0.003888717098443
702 => 0.0039839630924619
703 => 0.0041092014463145
704 => 0.0042408799807122
705 => 0.0043990831118716
706 => 0.0043637740146843
707 => 0.004237922483219
708 => 0.0042435680909859
709 => 0.0042784670167363
710 => 0.0042332697369878
711 => 0.0042199401768342
712 => 0.0042766357398605
713 => 0.0042770261710438
714 => 0.0042250212384193
715 => 0.0041672272726095
716 => 0.0041669851137825
717 => 0.0041567012357902
718 => 0.0043029296913929
719 => 0.00438334055661
720 => 0.0043925595327185
721 => 0.0043827200460649
722 => 0.0043865068739626
723 => 0.0043397175632253
724 => 0.0044466640526317
725 => 0.0045448087272226
726 => 0.0045185038578771
727 => 0.0044790691192707
728 => 0.0044476574505363
729 => 0.0045111042670005
730 => 0.0045082790801379
731 => 0.0045439515191096
801 => 0.0045423332112239
802 => 0.004530337911706
803 => 0.004518504286267
804 => 0.00456542327352
805 => 0.0045519113586871
806 => 0.0045383784561182
807 => 0.0045112361482328
808 => 0.0045149252386604
809 => 0.0044754973090176
810 => 0.0044572561446655
811 => 0.0041829527994833
812 => 0.0041096499825302
813 => 0.0041327125409601
814 => 0.0041403053340143
815 => 0.0041084038541362
816 => 0.0041541423814636
817 => 0.0041470140804287
818 => 0.0041747461298388
819 => 0.004157420349353
820 => 0.0041581314054276
821 => 0.0042090828315905
822 => 0.0042238742473685
823 => 0.0042163512139224
824 => 0.0042216200886735
825 => 0.0043430390834597
826 => 0.004325777185162
827 => 0.0043166071457337
828 => 0.0043191473093245
829 => 0.004350172465745
830 => 0.004358857815632
831 => 0.0043220573778521
901 => 0.0043394126770499
902 => 0.0044133093383187
903 => 0.004439168987574
904 => 0.0045217005746611
905 => 0.0044866396895845
906 => 0.0045509954615421
907 => 0.0047488031640404
908 => 0.0049068256440478
909 => 0.0047615016408778
910 => 0.00505168980137
911 => 0.0052776429093325
912 => 0.0052689704527043
913 => 0.0052295703019415
914 => 0.0049723286958004
915 => 0.004735611134573
916 => 0.0049336354260983
917 => 0.0049341402307415
918 => 0.0049171297684804
919 => 0.0048114792483074
920 => 0.0049134533593891
921 => 0.0049215476940112
922 => 0.0049170170190802
923 => 0.0048360150129743
924 => 0.0047123399213237
925 => 0.0047365057381958
926 => 0.0047760898392018
927 => 0.004701148877889
928 => 0.0046772006999166
929 => 0.0047217249190946
930 => 0.0048651912302755
1001 => 0.0048380697551905
1002 => 0.0048373615038696
1003 => 0.0049533986755786
1004 => 0.0048703411030239
1005 => 0.0047368105465363
1006 => 0.0047030923199715
1007 => 0.0045834153309855
1008 => 0.0046660766535529
1009 => 0.004669051487393
1010 => 0.0046237787258011
1011 => 0.004740484181627
1012 => 0.004739408720306
1013 => 0.004850203181298
1014 => 0.0050620005782155
1015 => 0.00499936166603
1016 => 0.0049265194262526
1017 => 0.0049344393974127
1018 => 0.0050213019328837
1019 => 0.0049687828610591
1020 => 0.0049876690854632
1021 => 0.0050212733463211
1022 => 0.0050415476312435
1023 => 0.0049315222398159
1024 => 0.0049058700579512
1025 => 0.0048533946965486
1026 => 0.0048397048542577
1027 => 0.0048824449411858
1028 => 0.0048711844383098
1029 => 0.0046688014641279
1030 => 0.0046476513172776
1031 => 0.0046482999620861
1101 => 0.0045951169121965
1102 => 0.0045139999957203
1103 => 0.0047271704089802
1104 => 0.0047100498414774
1105 => 0.004691150059981
1106 => 0.0046934651753737
1107 => 0.0047859952267542
1108 => 0.0047323231240739
1109 => 0.004875019205734
1110 => 0.0048456851811815
1111 => 0.0048155988495867
1112 => 0.0048114400021082
1113 => 0.0047998593312894
1114 => 0.0047601449020738
1115 => 0.0047121873423288
1116 => 0.0046805216073725
1117 => 0.0043175337713651
1118 => 0.004384902202325
1119 => 0.0044624034413186
1120 => 0.0044891565584525
1121 => 0.0044433935003356
1122 => 0.0047619519065374
1123 => 0.0048201555970557
1124 => 0.0046438528219431
1125 => 0.0046108737711144
1126 => 0.0047641140076193
1127 => 0.0046716914121498
1128 => 0.0047133093012306
1129 => 0.0046233541888062
1130 => 0.0048061360324128
1201 => 0.0048047435410079
1202 => 0.0047336372755297
1203 => 0.0047937358041972
1204 => 0.004783292205889
1205 => 0.0047030134072912
1206 => 0.0048086810135191
1207 => 0.0048087334233334
1208 => 0.0047402951887942
1209 => 0.0046603743139084
1210 => 0.0046460863491257
1211 => 0.0046353222869798
1212 => 0.0047106620017918
1213 => 0.004778211354511
1214 => 0.0049039039530168
1215 => 0.0049355060586636
1216 => 0.0050588511808745
1217 => 0.0049854051661629
1218 => 0.0050179628331994
1219 => 0.0050533087863307
1220 => 0.0050702549360663
1221 => 0.0050426420944527
1222 => 0.005234247840124
1223 => 0.005250425235707
1224 => 0.0052558493765121
1225 => 0.0051912409971293
1226 => 0.0052486283598007
1227 => 0.0052217787132764
1228 => 0.0052916340344859
1229 => 0.0053025882408091
1230 => 0.0052933104177606
1231 => 0.0052967874557479
]
'min_raw' => 0.002375254452826
'max_raw' => 0.0053025882408091
'avg_raw' => 0.0038389213468175
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002375'
'max' => '$0.0053025'
'avg' => '$0.003838'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00036625941726926
'max_diff' => -0.0005060072229318
'year' => 2031
]
6 => [
'items' => [
101 => 0.0051332857533872
102 => 0.0051248073275796
103 => 0.0050092033900915
104 => 0.0050563128491191
105 => 0.0049682439734821
106 => 0.0049961715211565
107 => 0.005008481718068
108 => 0.005002051569799
109 => 0.00505897634725
110 => 0.0050105786574529
111 => 0.0048828491967614
112 => 0.0047550849362638
113 => 0.0047534809600477
114 => 0.0047198428854852
115 => 0.0046955287186972
116 => 0.004700212489812
117 => 0.0047167187101343
118 => 0.0046945693471654
119 => 0.004699296036756
120 => 0.0047777905777285
121 => 0.0047935320981231
122 => 0.0047400362612132
123 => 0.0045252427566078
124 => 0.004472531891809
125 => 0.0045104194161245
126 => 0.0044923116197708
127 => 0.0036256460877015
128 => 0.0038292562990296
129 => 0.0037082780254079
130 => 0.0037640303798356
131 => 0.0036405428896399
201 => 0.0036994775924951
202 => 0.0036885945048285
203 => 0.00401599369938
204 => 0.0040108818112799
205 => 0.0040133286015983
206 => 0.003896536924623
207 => 0.0040825892372843
208 => 0.004174245296726
209 => 0.0041572821994704
210 => 0.0041615514455941
211 => 0.0040881916525005
212 => 0.004014038884752
213 => 0.0039317920532898
214 => 0.004084596500131
215 => 0.0040676072541011
216 => 0.0041065744719558
217 => 0.0042056790784197
218 => 0.0042202726081833
219 => 0.0042398864601785
220 => 0.0042328562904473
221 => 0.0044003434550445
222 => 0.0043800596542959
223 => 0.0044289377780524
224 => 0.0043283917690932
225 => 0.0042146144160412
226 => 0.0042362397711944
227 => 0.0042341570755931
228 => 0.0042076419701807
229 => 0.0041837053185849
301 => 0.0041438575377876
302 => 0.0042699418125921
303 => 0.0042648230212919
304 => 0.0043476903024972
305 => 0.0043330427056144
306 => 0.0042352224687557
307 => 0.0042387161376519
308 => 0.0042622127399793
309 => 0.0043435347489137
310 => 0.00436767665799
311 => 0.0043564931638171
312 => 0.0043829636649992
313 => 0.0044038848698443
314 => 0.0043855910462192
315 => 0.0046445930104907
316 => 0.0045370373373712
317 => 0.0045894592240821
318 => 0.004601961535175
319 => 0.0045699371282059
320 => 0.0045768820753695
321 => 0.0045874017779374
322 => 0.0046512753519611
323 => 0.0048188980921667
324 => 0.0048931370627572
325 => 0.005116488668665
326 => 0.004886972549706
327 => 0.0048733540130391
328 => 0.0049135863818355
329 => 0.0050447174186719
330 => 0.0051509868075159
331 => 0.0051862424946236
401 => 0.0051909021156828
402 => 0.0052570441284505
403 => 0.0052949554966935
404 => 0.0052490127483929
405 => 0.0052100810796144
406 => 0.0050706326744264
407 => 0.0050867742070323
408 => 0.0051979733598993
409 => 0.0053550487129214
410 => 0.0054898357067195
411 => 0.0054426379992924
412 => 0.0058027231905722
413 => 0.0058384241664715
414 => 0.0058334914459529
415 => 0.0059148235820691
416 => 0.00575339585488
417 => 0.0056843823739918
418 => 0.0052184985482975
419 => 0.0053493929001633
420 => 0.005539655527756
421 => 0.0055144735555459
422 => 0.0053762997496534
423 => 0.0054897308894973
424 => 0.0054522270073452
425 => 0.0054226461394544
426 => 0.0055581618297958
427 => 0.0054091567615877
428 => 0.0055381690882177
429 => 0.0053727094448531
430 => 0.0054428535944443
501 => 0.0054030363826455
502 => 0.0054288029984933
503 => 0.005278171888746
504 => 0.0053594487792021
505 => 0.0052747905028894
506 => 0.0052747503638436
507 => 0.0052728815277018
508 => 0.0053724816143515
509 => 0.0053757295696013
510 => 0.0053021249550799
511 => 0.0052915173802071
512 => 0.0053307391441666
513 => 0.0052848207307663
514 => 0.0053063056673893
515 => 0.0052854714876096
516 => 0.0052807812749062
517 => 0.0052434088621118
518 => 0.0052273077991041
519 => 0.0052336214407827
520 => 0.0052120697268282
521 => 0.0051990840396111
522 => 0.0052702983476693
523 => 0.0052322514156508
524 => 0.0052644671096676
525 => 0.0052277532603907
526 => 0.0051004870633342
527 => 0.0050272949275914
528 => 0.0047869008789343
529 => 0.0048550763329255
530 => 0.0049002767294544
531 => 0.0048853379986712
601 => 0.0049174321729148
602 => 0.0049194024945553
603 => 0.0049089683513473
604 => 0.004896886950209
605 => 0.0048910063922783
606 => 0.0049348352532432
607 => 0.004960279382245
608 => 0.0049048131939493
609 => 0.0048918182420861
610 => 0.0049478976208252
611 => 0.00498210600946
612 => 0.0052346815311065
613 => 0.0052159699206548
614 => 0.0052629323909206
615 => 0.0052576451374665
616 => 0.0053068692880133
617 => 0.0053873299704791
618 => 0.0052237309058655
619 => 0.0052521260466524
620 => 0.005245164213871
621 => 0.0053211716786876
622 => 0.0053214089656963
623 => 0.0052758386936843
624 => 0.0053005430774352
625 => 0.0052867537681547
626 => 0.0053116729137615
627 => 0.0052157200156893
628 => 0.0053325802880659
629 => 0.0053988325321939
630 => 0.0053997524446678
701 => 0.0054311554825742
702 => 0.0054630627878283
703 => 0.005524306081723
704 => 0.0054613547456014
705 => 0.0053481114201078
706 => 0.0053562872224347
707 => 0.0052898927021319
708 => 0.0052910088060134
709 => 0.0052850509560236
710 => 0.0053029309123289
711 => 0.0052196436606211
712 => 0.0052391910121247
713 => 0.0052118246055505
714 => 0.005252066557429
715 => 0.0052087728694407
716 => 0.0052451608566644
717 => 0.0052608647056693
718 => 0.005318812246577
719 => 0.0052002139705329
720 => 0.0049583840572817
721 => 0.0050092196369514
722 => 0.0049340298215713
723 => 0.0049409889252526
724 => 0.0049550474222218
725 => 0.0049094792338905
726 => 0.0049181722082055
727 => 0.0049178616339914
728 => 0.0049151852732005
729 => 0.0049033312274886
730 => 0.0048861405159549
731 => 0.0049546230196833
801 => 0.0049662595315359
802 => 0.0049921260559255
803 => 0.0050690872870777
804 => 0.0050613970452147
805 => 0.0050739401487582
806 => 0.0050465586241493
807 => 0.0049422590756471
808 => 0.004947923042931
809 => 0.0048772932801414
810 => 0.0049903198940936
811 => 0.0049635537000313
812 => 0.0049462973605949
813 => 0.0049415888085009
814 => 0.0050187408116591
815 => 0.0050418259002135
816 => 0.0050274408222091
817 => 0.0049979366075422
818 => 0.0050545934218407
819 => 0.0050697523951878
820 => 0.0050731459302789
821 => 0.0051735309423492
822 => 0.0050787563373152
823 => 0.0051015695267255
824 => 0.005279551518192
825 => 0.0051181464117678
826 => 0.0052036462964041
827 => 0.0051994615219711
828 => 0.0052432003697927
829 => 0.0051958736598084
830 => 0.0051964603310992
831 => 0.0052352974648386
901 => 0.0051807577148156
902 => 0.0051672529057157
903 => 0.0051485961086674
904 => 0.005189332542477
905 => 0.0052137521921955
906 => 0.0054105566346697
907 => 0.005537701279881
908 => 0.0055321815955122
909 => 0.0055826211782265
910 => 0.0055598976842401
911 => 0.005486517528003
912 => 0.005611768506943
913 => 0.0055721338564828
914 => 0.0055754012889107
915 => 0.0055752796749125
916 => 0.0056016332525472
917 => 0.0055829593275231
918 => 0.0055461511044615
919 => 0.0055705861206976
920 => 0.0056431493832408
921 => 0.0058683879766877
922 => 0.005994434477595
923 => 0.0058607998190644
924 => 0.0059529792170794
925 => 0.0058977044251483
926 => 0.0058876593511718
927 => 0.0059455548251292
928 => 0.0060035516374497
929 => 0.005999857491232
930 => 0.0059577547836566
1001 => 0.0059339720324639
1002 => 0.0061140629923012
1003 => 0.0062467509437398
1004 => 0.006237702515003
1005 => 0.0062776393367406
1006 => 0.0063948950805615
1007 => 0.0064056154762797
1008 => 0.0064042649528247
1009 => 0.0063776933334796
1010 => 0.0064931468408537
1011 => 0.0065894601879164
1012 => 0.0063715427713291
1013 => 0.0064545228708171
1014 => 0.0064917753109291
1015 => 0.0065464729453144
1016 => 0.0066387570229104
1017 => 0.0067390020083224
1018 => 0.00675317774839
1019 => 0.0067431193824404
1020 => 0.0066770051198314
1021 => 0.0067866943790405
1022 => 0.0068509477745556
1023 => 0.006889209201172
1024 => 0.0069862338129769
1025 => 0.006492005369317
1026 => 0.0061421659121471
1027 => 0.006087533429167
1028 => 0.0061986307316233
1029 => 0.0062279262042966
1030 => 0.0062161172359954
1031 => 0.0058223411209387
1101 => 0.006085460279415
1102 => 0.0063685543702484
1103 => 0.0063794291672142
1104 => 0.0065211519883037
1105 => 0.0065673027482651
1106 => 0.0066814081952769
1107 => 0.0066742708684988
1108 => 0.0067020537290319
1109 => 0.0066956669305274
1110 => 0.0069070232433802
1111 => 0.0071401806431729
1112 => 0.0071321071438132
1113 => 0.0070985880089999
1114 => 0.0071483696400595
1115 => 0.0073890130633111
1116 => 0.0073668584731303
1117 => 0.0073883797703674
1118 => 0.00767211192845
1119 => 0.0080410040943862
1120 => 0.0078696166471409
1121 => 0.0082414780922538
1122 => 0.0084755451604241
1123 => 0.0088803399518382
1124 => 0.0088296576502968
1125 => 0.0089872412920729
1126 => 0.0087389257528221
1127 => 0.008168743081852
1128 => 0.0080785094915994
1129 => 0.0082591594243635
1130 => 0.0087032696565015
1201 => 0.0082451728126994
1202 => 0.008337845207574
1203 => 0.0083111555516157
1204 => 0.0083097333732734
1205 => 0.0083640121361809
1206 => 0.0082852779595937
1207 => 0.0079645007601692
1208 => 0.0081115110603135
1209 => 0.0080547433234133
1210 => 0.0081177313598192
1211 => 0.0084576518140596
1212 => 0.0083073648785484
1213 => 0.0081490498003066
1214 => 0.0083476120413501
1215 => 0.0086004500075872
1216 => 0.0085846278620536
1217 => 0.0085539262865746
1218 => 0.0087269894600674
1219 => 0.0090128391199254
1220 => 0.0090901031343481
1221 => 0.0091471378502016
1222 => 0.0091550019739084
1223 => 0.009236007335614
1224 => 0.0088004210897436
1225 => 0.0094917076485881
1226 => 0.0096110737408947
1227 => 0.0095886378627587
1228 => 0.0097213082506645
1229 => 0.0096822732570197
1230 => 0.0096257176756313
1231 => 0.0098360284602628
]
'min_raw' => 0.0036256460877015
'max_raw' => 0.0098360284602628
'avg_raw' => 0.0067308372739821
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.003625'
'max' => '$0.009836'
'avg' => '$0.00673'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0012503916348756
'max_diff' => 0.0045334402194537
'year' => 2032
]
7 => [
'items' => [
101 => 0.0095949241168879
102 => 0.0092527068556602
103 => 0.0090649596978607
104 => 0.0093122003003823
105 => 0.0094631815088342
106 => 0.0095629704834126
107 => 0.0095931665668259
108 => 0.0088342344100555
109 => 0.0084252120698633
110 => 0.0086873907004758
111 => 0.0090072667244256
112 => 0.0087986441622796
113 => 0.008806821771741
114 => 0.0085093808231656
115 => 0.009033583648396
116 => 0.0089572117059996
117 => 0.0093534294782515
118 => 0.0092588689270573
119 => 0.0095819691392433
120 => 0.0094968860251075
121 => 0.0098500612749525
122 => 0.0099909524439539
123 => 0.010227530644667
124 => 0.010401558532158
125 => 0.010503751036315
126 => 0.01049761578168
127 => 0.010902553395256
128 => 0.010663775831973
129 => 0.010363814936939
130 => 0.010358389590712
131 => 0.010513743588729
201 => 0.010839322949285
202 => 0.01092374094049
203 => 0.010970919081059
204 => 0.010898664116494
205 => 0.010639488184892
206 => 0.010527577331679
207 => 0.010622928620986
208 => 0.010506322187793
209 => 0.010707617605472
210 => 0.010984039208326
211 => 0.010926959240426
212 => 0.011117769015208
213 => 0.011315237058334
214 => 0.011597625228849
215 => 0.011671451953425
216 => 0.011793484721771
217 => 0.011919096526075
218 => 0.011959439652284
219 => 0.012036467197955
220 => 0.012036061224767
221 => 0.012268188918197
222 => 0.012524232952447
223 => 0.012620883647943
224 => 0.012843126592886
225 => 0.012462543337993
226 => 0.012751220108655
227 => 0.01301161378184
228 => 0.012701161709897
301 => 0.013129047565014
302 => 0.013145661403158
303 => 0.013396510634276
304 => 0.013142226881641
305 => 0.012991234001028
306 => 0.013427144789726
307 => 0.013638068289316
308 => 0.013574536414687
309 => 0.013091055711806
310 => 0.012809649205267
311 => 0.012073154098392
312 => 0.012945564366706
313 => 0.013370489959846
314 => 0.013089955257175
315 => 0.013231440643473
316 => 0.014003339034326
317 => 0.014297227964843
318 => 0.014236101121734
319 => 0.014246430551986
320 => 0.014405007684431
321 => 0.015108226019717
322 => 0.014686841292741
323 => 0.01500897412753
324 => 0.015179832221566
325 => 0.015338534741331
326 => 0.014948811511233
327 => 0.014441787315048
328 => 0.014281191468688
329 => 0.013062061609729
330 => 0.012998600606157
331 => 0.012962978021787
401 => 0.01273838266625
402 => 0.012561912238643
403 => 0.012421576402683
404 => 0.012053293261296
405 => 0.012177578010449
406 => 0.011590611549744
407 => 0.011966131890489
408 => 0.011029319246402
409 => 0.011809524653936
410 => 0.011384894322202
411 => 0.011670022169565
412 => 0.011669027385366
413 => 0.011144016618505
414 => 0.010841201364874
415 => 0.011034167030234
416 => 0.011241041541132
417 => 0.011274606234516
418 => 0.011542824437874
419 => 0.0116176783731
420 => 0.011390867454769
421 => 0.011009905886618
422 => 0.011098394570092
423 => 0.010839408144528
424 => 0.010385544395497
425 => 0.010711517263752
426 => 0.010822818732989
427 => 0.010871975802509
428 => 0.010425652931941
429 => 0.010285408595867
430 => 0.010210743688106
501 => 0.010952291208711
502 => 0.010992914855838
503 => 0.010785078533529
504 => 0.011724518418217
505 => 0.011511894239185
506 => 0.011749447541353
507 => 0.011090365149561
508 => 0.011115542984499
509 => 0.010803522817961
510 => 0.010978233262028
511 => 0.010854753551342
512 => 0.010964118384669
513 => 0.011029671214838
514 => 0.011341640181937
515 => 0.011813086838417
516 => 0.0112950424215
517 => 0.011069323050517
518 => 0.011209358078781
519 => 0.011582289812649
520 => 0.012147300479483
521 => 0.011812802792818
522 => 0.011961247186021
523 => 0.011993675682104
524 => 0.011747029471735
525 => 0.012156394677072
526 => 0.012375776816289
527 => 0.012600817496388
528 => 0.012796214013422
529 => 0.012510931300006
530 => 0.012816224697031
531 => 0.012570212110568
601 => 0.012349513388196
602 => 0.012349848097058
603 => 0.01221140056462
604 => 0.011943141025011
605 => 0.011893669850067
606 => 0.012151025149645
607 => 0.012357399728269
608 => 0.012374397727032
609 => 0.012488657297667
610 => 0.012556274934601
611 => 0.01321901969828
612 => 0.013485581124743
613 => 0.013811527391273
614 => 0.013938501831412
615 => 0.014320649373373
616 => 0.014012034196733
617 => 0.013945263361987
618 => 0.013018298424699
619 => 0.01317008888125
620 => 0.013413120047789
621 => 0.013022305919121
622 => 0.013270187530749
623 => 0.013319124611735
624 => 0.013009026204576
625 => 0.0131746631624
626 => 0.012734780510353
627 => 0.011822675078171
628 => 0.012157410111157
629 => 0.012403887766028
630 => 0.012052133762051
701 => 0.012682639199419
702 => 0.012314310939183
703 => 0.012197568563562
704 => 0.011742114934605
705 => 0.011957071515455
706 => 0.012247803368936
707 => 0.012068164884691
708 => 0.012440941712355
709 => 0.012968893116276
710 => 0.013345142726759
711 => 0.013374026499942
712 => 0.013132123207167
713 => 0.013519774777645
714 => 0.013522598396127
715 => 0.013085325841025
716 => 0.012817498835769
717 => 0.012756647976662
718 => 0.012908665353225
719 => 0.013093242512328
720 => 0.013384269247681
721 => 0.013560130608724
722 => 0.014018683768665
723 => 0.014142755105995
724 => 0.014279071889643
725 => 0.014461233151135
726 => 0.014679964450745
727 => 0.014201392819578
728 => 0.014220407362653
729 => 0.013774768085986
730 => 0.01329853860773
731 => 0.013659937418884
801 => 0.014132418289598
802 => 0.014024030655811
803 => 0.014011834832852
804 => 0.01403234482423
805 => 0.013950624087964
806 => 0.013581004226545
807 => 0.013395383446083
808 => 0.01363488160979
809 => 0.013762164224964
810 => 0.013959568460888
811 => 0.013935234222113
812 => 0.014443726334185
813 => 0.014641310992934
814 => 0.014590760382102
815 => 0.014600062911063
816 => 0.014957780497853
817 => 0.015355636024597
818 => 0.015728280227053
819 => 0.016107349915232
820 => 0.01565036661079
821 => 0.015418338671606
822 => 0.015657732277908
823 => 0.015530706660695
824 => 0.016260633535445
825 => 0.016311172088553
826 => 0.017041046181281
827 => 0.01773378360707
828 => 0.017298687641612
829 => 0.017708963539886
830 => 0.018152710374155
831 => 0.019008770012788
901 => 0.018720479243037
902 => 0.018499653031501
903 => 0.018290973328623
904 => 0.018725202663341
905 => 0.019283831765473
906 => 0.01940415512359
907 => 0.019599124930798
908 => 0.019394138018292
909 => 0.019641022175838
910 => 0.020512631738371
911 => 0.020277115140664
912 => 0.019942643710738
913 => 0.020630695750086
914 => 0.020879699108391
915 => 0.022627335081049
916 => 0.024833797687771
917 => 0.023920307680173
918 => 0.023353274954319
919 => 0.023486541095091
920 => 0.024292266545593
921 => 0.024551039987847
922 => 0.023847604567247
923 => 0.024096069849825
924 => 0.025465137985399
925 => 0.026199599115171
926 => 0.025202102249652
927 => 0.022450047958984
928 => 0.019912528218004
929 => 0.020585592719315
930 => 0.02050928809249
1001 => 0.021980181009436
1002 => 0.020271498147699
1003 => 0.02030026798493
1004 => 0.021801577409696
1005 => 0.021401053794128
1006 => 0.020752256832096
1007 => 0.019917265153829
1008 => 0.01837370580917
1009 => 0.017006532252268
1010 => 0.019687874438618
1011 => 0.019572250087838
1012 => 0.01940480889334
1013 => 0.019777431152666
1014 => 0.021586779073276
1015 => 0.021545067747419
1016 => 0.021279721573617
1017 => 0.021480984307792
1018 => 0.020716974501704
1019 => 0.020913877224913
1020 => 0.019912126261913
1021 => 0.020364959534005
1022 => 0.020750864805205
1023 => 0.020828341001824
1024 => 0.021002898828839
1025 => 0.019511321308989
1026 => 0.020180995824986
1027 => 0.020574366863118
1028 => 0.018797102201877
1029 => 0.020539236055107
1030 => 0.019485356262828
1031 => 0.019127653632586
1101 => 0.019609253100469
1102 => 0.019421573319464
1103 => 0.019260217264683
1104 => 0.019170177813666
1105 => 0.019523811310686
1106 => 0.019507313885366
1107 => 0.018928700846937
1108 => 0.018173923725592
1109 => 0.01842725170223
1110 => 0.018335215273355
1111 => 0.018001663382176
1112 => 0.018226437083621
1113 => 0.017236647457822
1114 => 0.015533765851422
1115 => 0.016658741601284
1116 => 0.016615431258652
1117 => 0.01659359221993
1118 => 0.017438980403905
1119 => 0.01735771583644
1120 => 0.017210219850745
1121 => 0.017998954502731
1122 => 0.017711055744778
1123 => 0.01859829187931
1124 => 0.019182682980348
1125 => 0.019034462494053
1126 => 0.019584085149187
1127 => 0.018433087867161
1128 => 0.018815402994254
1129 => 0.018894197612082
1130 => 0.017989221639557
1201 => 0.017371011724693
1202 => 0.017329784171481
1203 => 0.01625789337368
1204 => 0.016830488785865
1205 => 0.01733434905298
1206 => 0.017093039086168
1207 => 0.017016647559606
1208 => 0.017406915301512
1209 => 0.017437242447475
1210 => 0.016745780305585
1211 => 0.016889557180642
1212 => 0.017489130650548
1213 => 0.016874449467548
1214 => 0.015680224336581
1215 => 0.015384039992647
1216 => 0.015344523541405
1217 => 0.01454124810998
1218 => 0.015403832446769
1219 => 0.015027291267937
1220 => 0.01621678034021
1221 => 0.015537350561486
1222 => 0.015508061701684
1223 => 0.015463787294352
1224 => 0.014772374947634
1225 => 0.014923750310018
1226 => 0.015426945069703
1227 => 0.015606490628853
1228 => 0.01558776255606
1229 => 0.015424479140863
1230 => 0.015499229452194
1231 => 0.015258432654663
]
'min_raw' => 0.0084252120698633
'max_raw' => 0.026199599115171
'avg_raw' => 0.017312405592517
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.008425'
'max' => '$0.026199'
'avg' => '$0.017312'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0047995659821618
'max_diff' => 0.016363570654908
'year' => 2033
]
8 => [
'items' => [
101 => 0.015173402293703
102 => 0.014905023085069
103 => 0.014510579790026
104 => 0.014565429549463
105 => 0.013783934170281
106 => 0.013358134010604
107 => 0.013240278138361
108 => 0.013082676340462
109 => 0.013258079680796
110 => 0.013781720292062
111 => 0.013150098618322
112 => 0.012067227561805
113 => 0.012132309957424
114 => 0.012278530777244
115 => 0.012006049246858
116 => 0.011748168345988
117 => 0.011972374866755
118 => 0.011513548124872
119 => 0.01233397779693
120 => 0.012311787473528
121 => 0.012617592920241
122 => 0.01280881934183
123 => 0.012368104350357
124 => 0.012257265721821
125 => 0.01232040444197
126 => 0.011276862041151
127 => 0.012532313242787
128 => 0.012543170436912
129 => 0.012450204549216
130 => 0.01311869355638
131 => 0.014529413868446
201 => 0.013998644140954
202 => 0.013793114059869
203 => 0.013402401225485
204 => 0.013923002879069
205 => 0.013883028794725
206 => 0.013702250825598
207 => 0.013592915745809
208 => 0.013794368982717
209 => 0.013567953460372
210 => 0.013527283011076
211 => 0.013280864338229
212 => 0.013192904083358
213 => 0.01312778181245
214 => 0.013056088590963
215 => 0.013214225972726
216 => 0.012855865860945
217 => 0.012423718696612
218 => 0.012387790335794
219 => 0.012486991698864
220 => 0.012443102480379
221 => 0.012387580211102
222 => 0.012281573078461
223 => 0.012250123026691
224 => 0.012352320437549
225 => 0.012236945519169
226 => 0.012407187496035
227 => 0.012360891098246
228 => 0.012102283183612
301 => 0.011779961973065
302 => 0.011777092638199
303 => 0.011707649062099
304 => 0.011619202227025
305 => 0.011594598340897
306 => 0.011953492818939
307 => 0.01269639364768
308 => 0.012550544438888
309 => 0.012655935439468
310 => 0.013174354853016
311 => 0.013339144795167
312 => 0.013222180797492
313 => 0.013062073263449
314 => 0.013069117182387
315 => 0.013616253094059
316 => 0.013650377289739
317 => 0.013736598123341
318 => 0.013847416260523
319 => 0.013241053605445
320 => 0.013040557555862
321 => 0.012945551404473
322 => 0.0126529692302
323 => 0.012968494021053
324 => 0.012784651237542
325 => 0.012809457910001
326 => 0.012793302532019
327 => 0.012802124460819
328 => 0.012333748470116
329 => 0.012504400064011
330 => 0.01222065869074
331 => 0.011840760843394
401 => 0.0118394872926
402 => 0.011932466752537
403 => 0.01187715893148
404 => 0.011728327007109
405 => 0.011749467879499
406 => 0.011564251591892
407 => 0.011771956490264
408 => 0.011777912723545
409 => 0.01169793502391
410 => 0.012017933077605
411 => 0.012149036541298
412 => 0.012096393506109
413 => 0.012145342965613
414 => 0.012556605131983
415 => 0.012623658809727
416 => 0.012653439624064
417 => 0.012613537278055
418 => 0.01215286008305
419 => 0.012173293075599
420 => 0.012023369333777
421 => 0.011896699570512
422 => 0.011901765696747
423 => 0.011966890420982
424 => 0.01225129391123
425 => 0.012849804289955
426 => 0.012872517321322
427 => 0.012900046177925
428 => 0.012788072483226
429 => 0.012754300145461
430 => 0.012798854576353
501 => 0.013023623606422
502 => 0.013601790575955
503 => 0.013397427754448
504 => 0.013231277599467
505 => 0.013377036079146
506 => 0.013354597703692
507 => 0.013165195233678
508 => 0.01315987933717
509 => 0.012796355441581
510 => 0.012661968934421
511 => 0.012549665510382
512 => 0.012427033103087
513 => 0.012354332501366
514 => 0.012466033667441
515 => 0.012491581045732
516 => 0.012247344493907
517 => 0.012214055954378
518 => 0.012413504794811
519 => 0.012325734796339
520 => 0.012416008416358
521 => 0.012436952670556
522 => 0.012433580163243
523 => 0.012341938204518
524 => 0.012400348056207
525 => 0.012262191344148
526 => 0.012111966670251
527 => 0.012016132687633
528 => 0.011932504827266
529 => 0.011978906424677
530 => 0.011813493202502
531 => 0.011760574183617
601 => 0.012380560112718
602 => 0.012838550384516
603 => 0.01283189102458
604 => 0.012791353883618
605 => 0.012731123914807
606 => 0.013019217409054
607 => 0.01291885139627
608 => 0.012991876056431
609 => 0.013010463897278
610 => 0.013066723693221
611 => 0.013086831734577
612 => 0.013026051267665
613 => 0.012822064596997
614 => 0.012313749208165
615 => 0.012077127022492
616 => 0.011999037759966
617 => 0.012001876156346
618 => 0.011923580513021
619 => 0.011946642088945
620 => 0.011915560638051
621 => 0.011856699889469
622 => 0.011975271939318
623 => 0.011988936263488
624 => 0.011961260130223
625 => 0.011967778861497
626 => 0.011738632298692
627 => 0.011756053814182
628 => 0.011659048602116
629 => 0.011640861294268
630 => 0.011395640565374
701 => 0.010961196498824
702 => 0.011201920684198
703 => 0.010911159719209
704 => 0.010801044136019
705 => 0.01132231418035
706 => 0.01126999312568
707 => 0.0111804422235
708 => 0.011047977775133
709 => 0.010998845422702
710 => 0.010700332802745
711 => 0.010682695084655
712 => 0.010830645999624
713 => 0.010762371743046
714 => 0.010666488829327
715 => 0.010319210635333
716 => 0.0099287549654246
717 => 0.0099405403677823
718 => 0.010064737051694
719 => 0.010425855660372
720 => 0.010284760372547
721 => 0.010182394122347
722 => 0.010163224000803
723 => 0.010403178207296
724 => 0.010742763681445
725 => 0.010902089588119
726 => 0.010744202453405
727 => 0.010562830214293
728 => 0.010573869502089
729 => 0.010647308938113
730 => 0.010655026384461
731 => 0.010536971702167
801 => 0.010570203403723
802 => 0.010519721410288
803 => 0.010209913509759
804 => 0.01020431006725
805 => 0.010128278212133
806 => 0.010125975997777
807 => 0.0099966268451873
808 => 0.0099785300045916
809 => 0.009721699411193
810 => 0.0098907460855226
811 => 0.0097773584517311
812 => 0.0096064565421684
813 => 0.009576992988543
814 => 0.0095761072785427
815 => 0.0097515853266959
816 => 0.0098886955223616
817 => 0.0097793308781663
818 => 0.0097544306686276
819 => 0.010020299762241
820 => 0.0099864654966278
821 => 0.0099571652408147
822 => 0.010712357526841
823 => 0.010114563904062
824 => 0.0098538917636636
825 => 0.0095312604896232
826 => 0.0096363108592988
827 => 0.0096584465157005
828 => 0.0088825764602917
829 => 0.0085678060754408
830 => 0.0084597887412317
831 => 0.0083976232382535
901 => 0.0084259528385859
902 => 0.0081426225733364
903 => 0.0083330251974341
904 => 0.0080876851370392
905 => 0.0080465530775084
906 => 0.0084852514972959
907 => 0.0085462938195704
908 => 0.0082858683083846
909 => 0.0084531036456264
910 => 0.0083924617875974
911 => 0.008091890788206
912 => 0.0080804111868799
913 => 0.0079295952249667
914 => 0.0076935974482975
915 => 0.0075857401316939
916 => 0.0075295671047466
917 => 0.0075527451904555
918 => 0.00754102564106
919 => 0.0074645476538453
920 => 0.0075454092697652
921 => 0.0073388412554164
922 => 0.0072565842076711
923 => 0.0072194306075535
924 => 0.0070360896052076
925 => 0.0073278666720537
926 => 0.0073853504299331
927 => 0.007442947448573
928 => 0.0079442901726793
929 => 0.0079192445069628
930 => 0.0081456451273062
1001 => 0.0081368476155236
1002 => 0.0080722744911548
1003 => 0.0077998511012061
1004 => 0.0079084342089597
1005 => 0.0075742322808558
1006 => 0.0078246390889134
1007 => 0.0077103638789542
1008 => 0.0077860025254757
1009 => 0.0076499974189683
1010 => 0.0077252682604227
1011 => 0.0073989819614331
1012 => 0.0070943004064087
1013 => 0.0072169131583596
1014 => 0.0073502072421992
1015 => 0.0076392227786643
1016 => 0.0074670875094721
1017 => 0.0075289938614288
1018 => 0.007321617945372
1019 => 0.0068937421965449
1020 => 0.0068961639268161
1021 => 0.006830344564639
1022 => 0.0067734670259337
1023 => 0.0074868593158237
1024 => 0.0073981377075127
1025 => 0.0072567714362661
1026 => 0.007445995808002
1027 => 0.0074960297352835
1028 => 0.0074974541308538
1029 => 0.0076355073478844
1030 => 0.007709186374561
1031 => 0.0077221726223559
1101 => 0.0079394023421906
1102 => 0.00801221487895
1103 => 0.0083121194130457
1104 => 0.0077029352239142
1105 => 0.0076903894764238
1106 => 0.007448658582963
1107 => 0.007295349028716
1108 => 0.0074591558193044
1109 => 0.0076042662739089
1110 => 0.0074531675692814
1111 => 0.007472897870238
1112 => 0.0072700602044934
1113 => 0.0073425651255979
1114 => 0.0074050161311206
1115 => 0.0073705343565714
1116 => 0.0073189134711344
1117 => 0.0075923688714492
1118 => 0.007576939446083
1119 => 0.0078315874015686
1120 => 0.0080301036929196
1121 => 0.0083858803760524
1122 => 0.0080146088601454
1123 => 0.0080010782504351
1124 => 0.0081333421307311
1125 => 0.008012194630039
1126 => 0.0080887556686068
1127 => 0.0083735452091101
1128 => 0.0083795623633354
1129 => 0.0082787672773954
1130 => 0.0082726338872557
1201 => 0.0082919926860879
1202 => 0.0084053777755091
1203 => 0.0083657575412935
1204 => 0.0084116070793894
1205 => 0.0084689426288515
1206 => 0.0087061067711957
1207 => 0.0087632862429995
1208 => 0.0086243697706734
1209 => 0.0086369123727426
1210 => 0.0085849537987502
1211 => 0.0085347624673126
1212 => 0.0086475852505291
1213 => 0.0088537711043945
1214 => 0.0088524884328987
1215 => 0.0089003195433152
1216 => 0.0089301179288504
1217 => 0.008802201444382
1218 => 0.0087189325166127
1219 => 0.008750863122059
1220 => 0.0088019208555258
1221 => 0.0087343057872346
1222 => 0.0083169542633953
1223 => 0.0084435520552096
1224 => 0.008422479992336
1225 => 0.0083924708123535
1226 => 0.0085197658709745
1227 => 0.0085074879520322
1228 => 0.0081397166119474
1229 => 0.0081632601399084
1230 => 0.0081411483718613
1231 => 0.0082125960180637
]
'min_raw' => 0.0067734670259337
'max_raw' => 0.015173402293703
'avg_raw' => 0.010973434659818
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.006773'
'max' => '$0.015173'
'avg' => '$0.010973'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0016517450439296
'max_diff' => -0.011026196821468
'year' => 2034
]
9 => [
'items' => [
101 => 0.0080083362226729
102 => 0.0080711651600244
103 => 0.0081105708805465
104 => 0.0081337811526631
105 => 0.0082176325709807
106 => 0.0082077935748505
107 => 0.0082170209651666
108 => 0.0083413504825779
109 => 0.0089701665169059
110 => 0.00900439158625
111 => 0.0088358548275686
112 => 0.0089031819384212
113 => 0.0087739286084048
114 => 0.0088606972347669
115 => 0.0089200621252397
116 => 0.0086518036004051
117 => 0.0086359190715478
118 => 0.0085061322670604
119 => 0.0085758723442916
120 => 0.0084649108669277
121 => 0.0084921369322051
122 => 0.0084160104801639
123 => 0.0085530229372127
124 => 0.0087062241537766
125 => 0.0087449288311801
126 => 0.008643113488343
127 => 0.0085693924701708
128 => 0.0084399626474737
129 => 0.0086552073271508
130 => 0.0087181514309511
131 => 0.0086548767085697
201 => 0.0086402145728139
202 => 0.0086124298520506
203 => 0.0086461092326707
204 => 0.0087178086238439
205 => 0.0086839965150465
206 => 0.0087063300085999
207 => 0.0086212177613728
208 => 0.008802243790061
209 => 0.0090897566899041
210 => 0.0090906810908902
211 => 0.0090568687998329
212 => 0.0090430335388282
213 => 0.0090777270013544
214 => 0.0090965467815745
215 => 0.0092087390776912
216 => 0.0093291258813628
217 => 0.0098909185652202
218 => 0.0097331694276428
219 => 0.010231625317957
220 => 0.0106258392108
221 => 0.010744046720379
222 => 0.010635301373659
223 => 0.010263289416839
224 => 0.010245036735461
225 => 0.010800979658347
226 => 0.010643900318832
227 => 0.01062521623122
228 => 0.010426449106283
301 => 0.010543945094908
302 => 0.010518246998633
303 => 0.01047768129647
304 => 0.010701855457925
305 => 0.011121489476004
306 => 0.011056085578983
307 => 0.011007264603857
308 => 0.010793345302426
309 => 0.010922172502493
310 => 0.010876299604072
311 => 0.011073398687351
312 => 0.010956641556696
313 => 0.010642710288344
314 => 0.01069270487756
315 => 0.010685148295975
316 => 0.010840662209526
317 => 0.010793980792771
318 => 0.010676033000144
319 => 0.01112005521255
320 => 0.011091222879858
321 => 0.011132100535627
322 => 0.01115009614388
323 => 0.011420364640022
324 => 0.011531084995265
325 => 0.011556220454338
326 => 0.011661396228398
327 => 0.011553603585266
328 => 0.011984851012647
329 => 0.012271605387871
330 => 0.012604685350938
331 => 0.013091404700434
401 => 0.01327441567825
402 => 0.013241356383175
403 => 0.013610381439111
404 => 0.014273511261663
405 => 0.01337539387992
406 => 0.014321113663694
407 => 0.014021709699011
408 => 0.013311828284795
409 => 0.013266120290672
410 => 0.013746860226272
411 => 0.014813095133928
412 => 0.014546015382696
413 => 0.014813531980722
414 => 0.014501459659144
415 => 0.014485962638026
416 => 0.014798375324622
417 => 0.015528344595582
418 => 0.015181563557438
419 => 0.014684367905059
420 => 0.015051489437555
421 => 0.014733454790613
422 => 0.014016833718761
423 => 0.014545811151844
424 => 0.014192099006751
425 => 0.014295331015061
426 => 0.015038781333335
427 => 0.014949327424115
428 => 0.015065089065855
429 => 0.014860772798194
430 => 0.01466990918648
501 => 0.014313648081498
502 => 0.014208176731773
503 => 0.014237325218375
504 => 0.01420816228723
505 => 0.014008837473201
506 => 0.01396579329859
507 => 0.013894051121762
508 => 0.013916287022237
509 => 0.013781390740886
510 => 0.014035967894789
511 => 0.014083219657879
512 => 0.014268479680517
513 => 0.014287713990643
514 => 0.014803660516678
515 => 0.014519485840267
516 => 0.014710134747665
517 => 0.01469308131493
518 => 0.01332721356759
519 => 0.01351541809202
520 => 0.0138082052702
521 => 0.013676305043294
522 => 0.013489828982348
523 => 0.01333923956492
524 => 0.013111081198958
525 => 0.013432209717656
526 => 0.013854459571533
527 => 0.014298422943756
528 => 0.01483181584585
529 => 0.014712768759481
530 => 0.014288451534472
531 => 0.014307486095222
601 => 0.014425150259954
602 => 0.014272764475709
603 => 0.014227822933011
604 => 0.014418975982112
605 => 0.014420292348105
606 => 0.014244954086894
607 => 0.01405009769612
608 => 0.014049281240728
609 => 0.014014608428079
610 => 0.014507627875488
611 => 0.014778738721675
612 => 0.014809821143274
613 => 0.01477664662705
614 => 0.014789414181695
615 => 0.014631660753819
616 => 0.014992238309618
617 => 0.015323139932244
618 => 0.015234451228698
619 => 0.015101494254241
620 => 0.01499558762001
621 => 0.015209502991434
622 => 0.015199977676679
623 => 0.015320249795242
624 => 0.015314793557219
625 => 0.015274350567409
626 => 0.015234452673044
627 => 0.015392643314347
628 => 0.015347086950116
629 => 0.015301459824268
630 => 0.015209947638217
701 => 0.015222385664157
702 => 0.015089451646596
703 => 0.015027950287426
704 => 0.014103117407896
705 => 0.0138559718427
706 => 0.013933728868622
707 => 0.013959328500516
708 => 0.013851770433817
709 => 0.014005981072064
710 => 0.013981947507442
711 => 0.014075448048218
712 => 0.014017032969663
713 => 0.014019430344863
714 => 0.014191216635486
715 => 0.014241086926485
716 => 0.014215722493981
717 => 0.014233486873065
718 => 0.01464285949119
719 => 0.014584659795892
720 => 0.014553742367728
721 => 0.014562306706623
722 => 0.014666910187602
723 => 0.014696193451138
724 => 0.014572118205838
725 => 0.014630632808792
726 => 0.01487978056156
727 => 0.014966968174487
728 => 0.015245229182523
729 => 0.015127018960614
730 => 0.015343998938946
731 => 0.016010921418411
801 => 0.016543705242534
802 => 0.016053735219648
803 => 0.017032124863038
804 => 0.017793941542076
805 => 0.017764701749062
806 => 0.017631861389935
807 => 0.016764553354794
808 => 0.015966443570024
809 => 0.016634096294516
810 => 0.016635798278615
811 => 0.016578446317469
812 => 0.016222238212422
813 => 0.016566051047539
814 => 0.016593341661846
815 => 0.016578066174994
816 => 0.016304962256029
817 => 0.01588798304981
818 => 0.015969459788598
819 => 0.016102920348813
820 => 0.015850251665536
821 => 0.015769508711494
822 => 0.015919625225034
823 => 0.016403331909678
824 => 0.016311889962868
825 => 0.016309502044091
826 => 0.016700729469965
827 => 0.016420695065202
828 => 0.015970487471198
829 => 0.015856804116204
830 => 0.015453304792257
831 => 0.015732003212522
901 => 0.015742033072511
902 => 0.01558939279596
903 => 0.015982873388392
904 => 0.015979247395462
905 => 0.016352798656118
906 => 0.017066888367048
907 => 0.016855696901305
908 => 0.016610104204213
909 => 0.016636806939934
910 => 0.016929670042823
911 => 0.016752598325402
912 => 0.016816274549574
913 => 0.016929573661231
914 => 0.016997929828353
915 => 0.016626971539427
916 => 0.016540483417292
917 => 0.01636355907261
918 => 0.016317402813532
919 => 0.016461504000628
920 => 0.016423538428998
921 => 0.015741190101616
922 => 0.015669880904854
923 => 0.015672067856113
924 => 0.015492757490288
925 => 0.015219266142987
926 => 0.015937985074375
927 => 0.01588026188572
928 => 0.015816539952864
929 => 0.015824345526047
930 => 0.016136317054518
1001 => 0.015955357813065
1002 => 0.016436467615104
1003 => 0.016337565903289
1004 => 0.016236127735757
1005 => 0.016222105891121
1006 => 0.016183060850919
1007 => 0.016049160880046
1008 => 0.015887468619076
1009 => 0.01578070538284
1010 => 0.014556866550739
1011 => 0.014784003919234
1012 => 0.015045304757465
1013 => 0.015135504759725
1014 => 0.014981211414209
1015 => 0.016055253321756
1016 => 0.01625149112799
1017 => 0.015657074012631
1018 => 0.015545882840239
1019 => 0.016062542996507
1020 => 0.015750933763142
1021 => 0.015891251381846
1022 => 0.015587961439841
1023 => 0.016204223186982
1024 => 0.01619952830499
1025 => 0.015959788566449
1026 => 0.016162414951797
1027 => 0.016127203630952
1028 => 0.015856538056593
1029 => 0.016212803768467
1030 => 0.016212980471815
1031 => 0.015982236185861
1101 => 0.015712777376286
1102 => 0.015664604505467
1103 => 0.01562831271842
1104 => 0.015882325826959
1105 => 0.016110073185797
1106 => 0.016533854557236
1107 => 0.016640403262813
1108 => 0.017056269954029
1109 => 0.016808641587592
1110 => 0.016918412035109
1111 => 0.017037583383867
1112 => 0.017094718510843
1113 => 0.017001619887476
1114 => 0.017647632036492
1115 => 0.01770217525517
1116 => 0.017720463124596
1117 => 0.017502631462694
1118 => 0.017696116962598
1119 => 0.017605591504759
1120 => 0.01784111359736
1121 => 0.017878046468776
1122 => 0.017846765640611
1123 => 0.017858488716945
1124 => 0.017307231312111
1125 => 0.017278645707556
1126 => 0.016888878961106
1127 => 0.017047711791295
1128 => 0.016750781428312
1129 => 0.016844941105136
1130 => 0.016886445793493
1201 => 0.016864766099665
1202 => 0.017056691961203
1203 => 0.016893515771033
1204 => 0.016462866976525
1205 => 0.016032100852042
1206 => 0.016026692934243
1207 => 0.01591327981732
1208 => 0.015831302906434
1209 => 0.015847094567758
1210 => 0.015902746442002
1211 => 0.015828068318333
1212 => 0.015844004682295
1213 => 0.016108654507497
1214 => 0.016161728142546
1215 => 0.015981363193444
1216 => 0.015257171896263
1217 => 0.015079453535439
1218 => 0.015207193968891
1219 => 0.015146142269239
1220 => 0.012224118919212
1221 => 0.012910604962316
1222 => 0.012502718266367
1223 => 0.012690691221825
1224 => 0.012274344527009
1225 => 0.012473046992375
1226 => 0.012436353902474
1227 => 0.013540203145186
1228 => 0.013522968057556
1229 => 0.013531217581944
1230 => 0.013137446288887
1231 => 0.013764734650782
]
'min_raw' => 0.0080083362226729
'max_raw' => 0.017878046468776
'avg_raw' => 0.012943191345725
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0080083'
'max' => '$0.017878'
'avg' => '$0.012943'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0012348691967392
'max_diff' => 0.0027046441750736
'year' => 2035
]
10 => [
'items' => [
101 => 0.014073759454412
102 => 0.014016567187689
103 => 0.014030961249064
104 => 0.013783623584832
105 => 0.013533612351187
106 => 0.013256311416622
107 => 0.013771502277612
108 => 0.013714221848471
109 => 0.013845602544073
110 => 0.014179740644028
111 => 0.014228943748514
112 => 0.014295073219912
113 => 0.014271370511832
114 => 0.014836065180852
115 => 0.014767676930458
116 => 0.014932472937265
117 => 0.014593475048161
118 => 0.014209866758665
119 => 0.014282778153398
120 => 0.014275756199769
121 => 0.014186358670645
122 => 0.014105654578586
123 => 0.013971305003545
124 => 0.014396406938971
125 => 0.01437914857672
126 => 0.014658541400913
127 => 0.01460915600536
128 => 0.0142793482472
129 => 0.014291127395804
130 => 0.014370347831031
131 => 0.014644530661874
201 => 0.014725926793859
202 => 0.014688220862449
203 => 0.014777468005296
204 => 0.014848005308103
205 => 0.014786326404517
206 => 0.015659569609998
207 => 0.015296938148778
208 => 0.015473682199803
209 => 0.015515834614536
210 => 0.015407862090568
211 => 0.01543127746481
212 => 0.01546674537648
213 => 0.015682099590811
214 => 0.016247251362461
215 => 0.016497553235006
216 => 0.017250598768235
217 => 0.016476769148862
218 => 0.016430853301673
219 => 0.016566499542004
220 => 0.017008616987975
221 => 0.017366911651954
222 => 0.017485778662511
223 => 0.017501488900237
224 => 0.017724491314171
225 => 0.017852312139089
226 => 0.017697412955574
227 => 0.017566152116165
228 => 0.017095992082097
229 => 0.017150414386243
301 => 0.017525330093811
302 => 0.018054920613176
303 => 0.018509364373294
304 => 0.018350234007465
305 => 0.01956428637021
306 => 0.019684654703017
307 => 0.019668023691397
308 => 0.019942240666741
309 => 0.019397975813999
310 => 0.019165292044817
311 => 0.017594532199519
312 => 0.018035851645586
313 => 0.018677335378227
314 => 0.018592432600772
315 => 0.018126569967218
316 => 0.018509010974711
317 => 0.018382564017598
318 => 0.018282830056234
319 => 0.018739730667623
320 => 0.018237349676958
321 => 0.018672323743544
322 => 0.018114465003917
323 => 0.018350960901572
324 => 0.018216714392043
325 => 0.018303588336342
326 => 0.0177957250331
327 => 0.018069755743845
328 => 0.017784324454604
329 => 0.017784189123009
330 => 0.017777888211479
331 => 0.018113696857474
401 => 0.018124647565364
402 => 0.017876484468595
403 => 0.017840720289314
404 => 0.01797295920488
405 => 0.017818142068179
406 => 0.017890580032034
407 => 0.017820336140311
408 => 0.017804522760721
409 => 0.017678519061726
410 => 0.017624233203655
411 => 0.017645520087379
412 => 0.017572856979089
413 => 0.017529074828005
414 => 0.017769178839647
415 => 0.017640900951995
416 => 0.017749518413601
417 => 0.017625735107484
418 => 0.017196648238666
419 => 0.016949875842897
420 => 0.016139370524074
421 => 0.016369228827063
422 => 0.016521625119751
423 => 0.016471258145927
424 => 0.016579465895133
425 => 0.016586108972107
426 => 0.016550929529793
427 => 0.016510196242359
428 => 0.016490369530728
429 => 0.016638141595504
430 => 0.016723928252886
501 => 0.016536920126522
502 => 0.016493106739036
503 => 0.016682182279792
504 => 0.016797518250428
505 => 0.017649094255919
506 => 0.017586006754878
507 => 0.017744344002194
508 => 0.01772651765803
509 => 0.017892480318319
510 => 0.018163759126838
511 => 0.017612173458371
512 => 0.017707909658019
513 => 0.017684437352737
514 => 0.017940701827038
515 => 0.017941501856755
516 => 0.017787858503051
517 => 0.017871151057673
518 => 0.017824659438695
519 => 0.017908676077907
520 => 0.017585164182839
521 => 0.017979166750081
522 => 0.018202540816742
523 => 0.018205642365874
524 => 0.018311519900665
525 => 0.018419097608027
526 => 0.018625583649263
527 => 0.018413338824407
528 => 0.018031531046109
529 => 0.01805909633447
530 => 0.017835242573752
531 => 0.017839005595912
601 => 0.017818918288708
602 => 0.01787920180973
603 => 0.017598393025667
604 => 0.017664298286014
605 => 0.017572030535587
606 => 0.017707709085949
607 => 0.017561741394228
608 => 0.017684426033681
609 => 0.017737372657008
610 => 0.017932746836947
611 => 0.017532884468997
612 => 0.016717538032445
613 => 0.016888933738528
614 => 0.016635426026389
615 => 0.01665888913032
616 => 0.016706288334384
617 => 0.016552652005956
618 => 0.016581960975783
619 => 0.016580913853137
620 => 0.016571890315873
621 => 0.016531923573132
622 => 0.016473963888979
623 => 0.016704857431595
624 => 0.016744090743741
625 => 0.016831301536664
626 => 0.017090781700755
627 => 0.017064853513398
628 => 0.017107143462727
629 => 0.017014824740791
630 => 0.016663171531054
701 => 0.016682267992197
702 => 0.016444134815739
703 => 0.016825211935945
704 => 0.016734967843908
705 => 0.016676786890699
706 => 0.016660911678574
707 => 0.016921035043802
708 => 0.016998868031613
709 => 0.016950367736787
710 => 0.016850892217119
711 => 0.017041914622179
712 => 0.017093024159185
713 => 0.017104465699673
714 => 0.017442920776526
715 => 0.017123381578702
716 => 0.017200297839565
717 => 0.0178003765501
718 => 0.017256187964846
719 => 0.017544456795309
720 => 0.017530347536136
721 => 0.017677816115316
722 => 0.017518250808358
723 => 0.017520228811575
724 => 0.0176511709195
725 => 0.017467286344454
726 => 0.017421753937698
727 => 0.017358851243873
728 => 0.01749619697459
729 => 0.017578529528541
730 => 0.01824206944679
731 => 0.018670746495075
801 => 0.018652136493854
802 => 0.018822197068555
803 => 0.018745583222076
804 => 0.018498176902083
805 => 0.018920469322324
806 => 0.018786838331094
807 => 0.01879785470765
808 => 0.018797444677564
809 => 0.018886297604507
810 => 0.018823337162517
811 => 0.018699235668597
812 => 0.018781620031835
813 => 0.019026272137705
814 => 0.019785679781167
815 => 0.020210654359262
816 => 0.019760095777952
817 => 0.02007088505412
818 => 0.019884522233961
819 => 0.019850654565725
820 => 0.020045853198305
821 => 0.020241393500252
822 => 0.020228938428362
823 => 0.020086986210254
824 => 0.020006801004149
825 => 0.02061399024879
826 => 0.021061356941042
827 => 0.021030849531815
828 => 0.021165499314603
829 => 0.02156083524143
830 => 0.021596979804068
831 => 0.021592426419949
901 => 0.021502838350155
902 => 0.021892097910974
903 => 0.022216825084979
904 => 0.021482101300447
905 => 0.021761874499356
906 => 0.021887473702076
907 => 0.022071890595273
908 => 0.022383032805956
909 => 0.022721015773154
910 => 0.02276881027051
911 => 0.022734897787459
912 => 0.022511988935122
913 => 0.022881813930805
914 => 0.023098448739813
915 => 0.023227449810978
916 => 0.02355457506372
917 => 0.021888249359993
918 => 0.020708741205133
919 => 0.020524543974448
920 => 0.020899116286245
921 => 0.020997888017708
922 => 0.020958073256605
923 => 0.019630429592121
924 => 0.020517554205317
925 => 0.021472025697559
926 => 0.021508690834784
927 => 0.021986519220858
928 => 0.022142119730212
929 => 0.0225268342114
930 => 0.022502770215855
1001 => 0.02259644206988
1002 => 0.02257490853281
1003 => 0.023287511098019
1004 => 0.024073617549951
1005 => 0.024046397183186
1006 => 0.023933385079931
1007 => 0.024101227324691
1008 => 0.024912573427371
1009 => 0.024837877679793
1010 => 0.024910438235996
1011 => 0.025867061016519
1012 => 0.027110806709201
1013 => 0.026532961964924
1014 => 0.027786718789659
1015 => 0.028575892252036
1016 => 0.029940686153159
1017 => 0.029769807234986
1018 => 0.030301111485373
1019 => 0.029463898307952
1020 => 0.027541487623893
1021 => 0.027237258774448
1022 => 0.027846332635338
1023 => 0.029343681289778
1024 => 0.027799175797599
1025 => 0.028111627247098
1026 => 0.028021641208623
1027 => 0.028016846235048
1028 => 0.028199850873813
1029 => 0.027934393100405
1030 => 0.026852870376596
1031 => 0.027348525867464
1101 => 0.027157129479108
1102 => 0.027369498041535
1103 => 0.028515563585495
1104 => 0.02800886068972
1105 => 0.027475090350222
1106 => 0.028144556809073
1107 => 0.028997017664824
1108 => 0.028943672196491
1109 => 0.028840159691248
1110 => 0.029423654263564
1111 => 0.030387416349161
1112 => 0.030647917368188
1113 => 0.030840213894725
1114 => 0.030866728336858
1115 => 0.031139843569462
1116 => 0.02967123412985
1117 => 0.03200195502708
1118 => 0.032404406141166
1119 => 0.032328762011608
1120 => 0.032776069487183
1121 => 0.032644460280773
1122 => 0.032453779189538
1123 => 0.033162856683353
1124 => 0.032349956556297
1125 => 0.031196147167221
1126 => 0.030563144516612
1127 => 0.031396733469802
1128 => 0.031905777155269
1129 => 0.032242222650104
1130 => 0.032344030853555
1201 => 0.029785238100052
1202 => 0.028406190723066
1203 => 0.029290144280904
1204 => 0.030368628628681
1205 => 0.029665243094844
1206 => 0.029692814476085
1207 => 0.0286899715513
1208 => 0.030457357975236
1209 => 0.030199864639328
1210 => 0.031535740521517
1211 => 0.031216923021159
1212 => 0.032306277944681
1213 => 0.032019414285058
1214 => 0.033210169297819
1215 => 0.033685193710815
1216 => 0.03448283363188
1217 => 0.035069580804795
1218 => 0.035414129967415
1219 => 0.035393444528063
1220 => 0.036758719964076
1221 => 0.03595366473855
1222 => 0.03494232563834
1223 => 0.034924033704752
1224 => 0.035447820555536
1225 => 0.036545534100875
1226 => 0.036830155252098
1227 => 0.036989219646901
1228 => 0.036745606989189
1229 => 0.035871777240709
1230 => 0.035494461985732
1231 => 0.035815945514847
]
'min_raw' => 0.013256311416622
'max_raw' => 0.036989219646901
'avg_raw' => 0.025122765531761
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.013256'
'max' => '$0.036989'
'avg' => '$0.025122'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0052479751939488
'max_diff' => 0.019111173178125
'year' => 2036
]
11 => [
'items' => [
101 => 0.035422798784134
102 => 0.036101480338835
103 => 0.037033455071998
104 => 0.036841005975028
105 => 0.037484334452619
106 => 0.038150111746797
107 => 0.039102203179401
108 => 0.039351115135727
109 => 0.03976255713426
110 => 0.040186066102407
111 => 0.040322085769089
112 => 0.040581789517208
113 => 0.040580420750263
114 => 0.0413630554753
115 => 0.042226325813195
116 => 0.042552190380997
117 => 0.043301497986379
118 => 0.042018334971032
119 => 0.042991628858087
120 => 0.043869564307337
121 => 0.042822853471711
122 => 0.044265500506275
123 => 0.044321515221519
124 => 0.045167270917965
125 => 0.044309935492431
126 => 0.04380085245346
127 => 0.045270556111875
128 => 0.045981699416951
129 => 0.045767497265986
130 => 0.044137408320678
131 => 0.043188626636705
201 => 0.040705481963428
202 => 0.043646874092791
203 => 0.045079540397419
204 => 0.044133698061056
205 => 0.044610725919155
206 => 0.047213235236139
207 => 0.048204102284047
208 => 0.047998008864766
209 => 0.048032835260038
210 => 0.04856748913358
211 => 0.050938438848132
212 => 0.049517710820989
213 => 0.050603804164076
214 => 0.051179864157049
215 => 0.051714940782695
216 => 0.050400961702814
217 => 0.048691494226075
218 => 0.048150034117629
219 => 0.044039652681219
220 => 0.043825689476972
221 => 0.04370558544668
222 => 0.042948346524739
223 => 0.04235336415729
224 => 0.041880212088416
225 => 0.040638519764522
226 => 0.041057554473575
227 => 0.039078556070617
228 => 0.040344649117433
301 => 0.037186119881724
302 => 0.039816636885425
303 => 0.038384966075242
304 => 0.039346294519617
305 => 0.039342940535237
306 => 0.037572830079683
307 => 0.036551867310181
308 => 0.037202464523373
309 => 0.037899956380385
310 => 0.038013122087541
311 => 0.038917438486558
312 => 0.039169813755308
313 => 0.038405104908722
314 => 0.037120666383816
315 => 0.037419012158228
316 => 0.036545821342585
317 => 0.035015588024971
318 => 0.036114628308992
319 => 0.036489888983347
320 => 0.036655625475271
321 => 0.035150816755882
322 => 0.034677973185263
323 => 0.034426235235807
324 => 0.036926414474721
325 => 0.037063379937265
326 => 0.036362645265929
327 => 0.039530032426755
328 => 0.0388131551622
329 => 0.039614082705902
330 => 0.037391940406312
331 => 0.037476829234668
401 => 0.036424831458632
402 => 0.037013879918696
403 => 0.036597559453041
404 => 0.036966290624213
405 => 0.037187306567878
406 => 0.03823913172143
407 => 0.039828647039109
408 => 0.038082024118767
409 => 0.037320995500273
410 => 0.037793133375
411 => 0.039050498752997
412 => 0.040955471664012
413 => 0.039827689359538
414 => 0.040328179995278
415 => 0.040437514933909
416 => 0.03960593001536
417 => 0.040986133386119
418 => 0.041725795585261
419 => 0.042484535950055
420 => 0.043143328949383
421 => 0.042181478363298
422 => 0.043210796366275
423 => 0.042381347754963
424 => 0.041637246603795
425 => 0.041638375098089
426 => 0.041171589576378
427 => 0.040267133809303
428 => 0.040100338289013
429 => 0.040968029649513
430 => 0.041663835949956
501 => 0.041721145889548
502 => 0.042106380009292
503 => 0.042334357593129
504 => 0.044568847835232
505 => 0.045467578295279
506 => 0.046566528889727
507 => 0.046994632079726
508 => 0.048283069198136
509 => 0.047242551583274
510 => 0.047017429052135
511 => 0.043892102047442
512 => 0.044403874169377
513 => 0.045223270715259
514 => 0.043905613594681
515 => 0.044741363754826
516 => 0.044906358540048
517 => 0.043860840109932
518 => 0.044419296677641
519 => 0.042936201604638
520 => 0.039860974458869
521 => 0.040989556993033
522 => 0.041820573614951
523 => 0.040634610431863
524 => 0.042760403534434
525 => 0.041518559089189
526 => 0.041124954019093
527 => 0.039589360310306
528 => 0.040314101430431
529 => 0.041294324172693
530 => 0.0406886604811
531 => 0.041945503582016
601 => 0.043725528600726
602 => 0.04499408043138
603 => 0.045091464089267
604 => 0.044275870248528
605 => 0.045582864583363
606 => 0.045592384610214
607 => 0.044118089661292
608 => 0.043215092213986
609 => 0.043009929294035
610 => 0.043522466492632
611 => 0.044144781271315
612 => 0.045125998228393
613 => 0.045718927085398
614 => 0.047264971079298
615 => 0.047683286255492
616 => 0.048142887808893
617 => 0.048757057220107
618 => 0.049494525068073
619 => 0.04788098740079
620 => 0.047945096260322
621 => 0.046442592325498
622 => 0.044836951390278
623 => 0.046055432714142
624 => 0.047648434957316
625 => 0.047282998482621
626 => 0.047241879414028
627 => 0.047311030281923
628 => 0.047035503114042
629 => 0.045789303945231
630 => 0.045163470524274
701 => 0.045970955304442
702 => 0.046400097528089
703 => 0.04706565969183
704 => 0.046983615106836
705 => 0.048698031764475
706 => 0.049364202236365
707 => 0.049193767322614
708 => 0.04922513144849
709 => 0.050431201267397
710 => 0.051772598953198
711 => 0.053028994898966
712 => 0.054307054818462
713 => 0.052766303701982
714 => 0.051984005305351
715 => 0.052791137562925
716 => 0.052362861825847
717 => 0.054823861245931
718 => 0.054994255506223
719 => 0.057455076968038
720 => 0.059790689564469
721 => 0.058323733139497
722 => 0.059707006975077
723 => 0.061203130408228
724 => 0.064089395248055
725 => 0.063117402790022
726 => 0.062372871800233
727 => 0.06166929361243
728 => 0.063133328131357
729 => 0.065016785151433
730 => 0.06542246375403
731 => 0.066079818071391
801 => 0.065388690384147
802 => 0.066221077558215
803 => 0.069159770052132
804 => 0.068365709399719
805 => 0.067238015621674
806 => 0.069557831110594
807 => 0.070397363317979
808 => 0.076289640015843
809 => 0.083728882744706
810 => 0.080648987406255
811 => 0.078737196982077
812 => 0.079186513080034
813 => 0.081903072690356
814 => 0.0827755454179
815 => 0.080403863785053
816 => 0.081241581832558
817 => 0.085857490636932
818 => 0.088333777614394
819 => 0.084970647289289
820 => 0.075691904106008
821 => 0.067136479135326
822 => 0.069405763093358
823 => 0.069148496716597
824 => 0.074107714880547
825 => 0.068346771315773
826 => 0.06844377083064
827 => 0.073505540374317
828 => 0.072155147040763
829 => 0.069967682785716
830 => 0.06715245004518
831 => 0.06194823194679
901 => 0.057338710846687
902 => 0.066379043233299
903 => 0.06598920766201
904 => 0.06542466798439
905 => 0.066680989947361
906 => 0.072781332786337
907 => 0.072640700139016
908 => 0.071746066988166
909 => 0.072424638348151
910 => 0.069848725945466
911 => 0.070512597224073
912 => 0.067135123912299
913 => 0.068661882904966
914 => 0.069962989469865
915 => 0.07022420587598
916 => 0.070812739776998
917 => 0.065783782030207
918 => 0.068041636416074
919 => 0.069367914335425
920 => 0.063375742445394
921 => 0.06924946836346
922 => 0.065696239064256
923 => 0.064490219672393
924 => 0.066113965902564
925 => 0.065481190417521
926 => 0.064937167213305
927 => 0.064633592917847
928 => 0.065825892942953
929 => 0.065770270721675
930 => 0.06381943646514
1001 => 0.061274652703666
1002 => 0.062128765663696
1003 => 0.061818458417966
1004 => 0.060693864929007
1005 => 0.06145170515663
1006 => 0.058114560328342
1007 => 0.052373176100967
1008 => 0.056166110384926
1009 => 0.056020086540912
1010 => 0.055946454697106
1011 => 0.058796739982497
1012 => 0.058522750819577
1013 => 0.058025457805966
1014 => 0.06068473175283
1015 => 0.059714060989943
1016 => 0.062705439562367
1017 => 0.064675754960401
1018 => 0.064176019242433
1019 => 0.066029110397645
1020 => 0.06214844270123
1021 => 0.063437444844615
1022 => 0.063703106399886
1023 => 0.060651916725114
1024 => 0.058567578835112
1025 => 0.05842857726104
1026 => 0.05481462259923
1027 => 0.056745168008746
1028 => 0.058443968077723
1029 => 0.057630374676894
1030 => 0.057372815311603
1031 => 0.058688630251064
1101 => 0.058790880341053
1102 => 0.056459567453326
1103 => 0.056944321225762
1104 => 0.05896582504043
1105 => 0.056893384516277
1106 => 0.052866971109085
1107 => 0.051868364914581
1108 => 0.05173513244027
1109 => 0.049026833240318
1110 => 0.051935096555519
1111 => 0.050665561681823
1112 => 0.054676007136466
1113 => 0.052385262201224
1114 => 0.052286512765519
1115 => 0.05213723851006
1116 => 0.04980609351023
1117 => 0.0503164661132
1118 => 0.052013022377412
1119 => 0.052618372765557
1120 => 0.052555229760584
1121 => 0.052004708326164
1122 => 0.052256734219715
1123 => 0.051444871004944
1124 => 0.051158185206337
1125 => 0.05025332596679
1126 => 0.048923432858402
1127 => 0.049108362651832
1128 => 0.046473496418654
1129 => 0.045037881451884
1130 => 0.044640522150183
1201 => 0.04410915668516
1202 => 0.044700541293367
1203 => 0.046466032173669
1204 => 0.04433647560224
1205 => 0.04068550023155
1206 => 0.040904930072288
1207 => 0.041397923775121
1208 => 0.040479233271371
1209 => 0.039609769809421
1210 => 0.040365697747786
1211 => 0.038818731353266
1212 => 0.041584867273179
1213 => 0.041510051048552
1214 => 0.042541095462798
1215 => 0.043185828694187
1216 => 0.041699927330697
1217 => 0.041326227156084
1218 => 0.04153910375927
1219 => 0.038020727697105
1220 => 0.042253569076225
1221 => 0.042290174864244
1222 => 0.041976733883205
1223 => 0.04423059124327
1224 => 0.048986933268747
1225 => 0.047197406075348
1226 => 0.046504447057318
1227 => 0.045187131457493
1228 => 0.046942376279799
1229 => 0.046807600863531
1230 => 0.046198095319106
1231 => 0.045829464464065
]
'min_raw' => 0.034426235235807
'max_raw' => 0.088333777614394
'avg_raw' => 0.061380006425101
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.034426'
'max' => '$0.088333'
'avg' => '$0.06138'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.021169923819185
'max_diff' => 0.051344557967493
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0010806001860741
]
1 => [
'year' => 2028
'avg' => 0.0018546236197786
]
2 => [
'year' => 2029
'avg' => 0.0050664974658499
]
3 => [
'year' => 2030
'avg' => 0.0039087952496488
]
4 => [
'year' => 2031
'avg' => 0.0038389213468175
]
5 => [
'year' => 2032
'avg' => 0.0067308372739821
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0010806001860741
'min' => '$0.00108'
'max_raw' => 0.0067308372739821
'max' => '$0.00673'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0067308372739821
]
1 => [
'year' => 2033
'avg' => 0.017312405592517
]
2 => [
'year' => 2034
'avg' => 0.010973434659818
]
3 => [
'year' => 2035
'avg' => 0.012943191345725
]
4 => [
'year' => 2036
'avg' => 0.025122765531761
]
5 => [
'year' => 2037
'avg' => 0.061380006425101
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0067308372739821
'min' => '$0.00673'
'max_raw' => 0.061380006425101
'max' => '$0.06138'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.061380006425101
]
]
]
]
'prediction_2025_max_price' => '$0.001847'
'last_price' => 0.00179151
'sma_50day_nextmonth' => '$0.001684'
'sma_200day_nextmonth' => '$0.010384'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001867'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.001849'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.0018085'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.001781'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00283'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.007388'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.01034'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001846'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.00184'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.001826'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.002023'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0035052'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.006128'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.007481'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.009959'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.001821'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.002087'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.003626'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.005572'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0062029'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0031014'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.00155'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '40.51'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 95.15
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0018060'
'vwma_10_action' => 'SELL'
'hma_9' => '0.001912'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 50.22
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 25.75
'cci_20_action' => 'NEUTRAL'
'adx_14' => 30.89
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000479'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -49.78
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 50.78
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.004823'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 28
'buy_signals' => 2
'sell_pct' => 93.33
'buy_pct' => 6.67
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767709227
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Donkey para 2026
A previsão de preço para Donkey em 2026 sugere que o preço médio poderia variar entre $0.000618 na extremidade inferior e $0.001847 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Donkey poderia potencialmente ganhar 3.13% até 2026 se DONKEY atingir a meta de preço prevista.
Previsão de preço de Donkey 2027-2032
A previsão de preço de DONKEY para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.00108 na extremidade inferior e $0.00673 na extremidade superior. Considerando a volatilidade de preços no mercado, se Donkey atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Donkey | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000595 | $0.00108 | $0.001565 |
| 2028 | $0.001075 | $0.001854 | $0.002633 |
| 2029 | $0.002362 | $0.005066 | $0.00777 |
| 2030 | $0.0020089 | $0.0039087 | $0.0058085 |
| 2031 | $0.002375 | $0.003838 | $0.0053025 |
| 2032 | $0.003625 | $0.00673 | $0.009836 |
Previsão de preço de Donkey 2032-2037
A previsão de preço de Donkey para 2032-2037 é atualmente estimada entre $0.00673 na extremidade inferior e $0.06138 na extremidade superior. Comparado ao preço atual, Donkey poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Donkey | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.003625 | $0.00673 | $0.009836 |
| 2033 | $0.008425 | $0.017312 | $0.026199 |
| 2034 | $0.006773 | $0.010973 | $0.015173 |
| 2035 | $0.0080083 | $0.012943 | $0.017878 |
| 2036 | $0.013256 | $0.025122 | $0.036989 |
| 2037 | $0.034426 | $0.06138 | $0.088333 |
Donkey Histograma de preços potenciais
Previsão de preço de Donkey baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Donkey é Baixista, com 2 indicadores técnicos mostrando sinais de alta e 28 indicando sinais de baixa. A previsão de preço de DONKEY foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Donkey
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Donkey está projetado para aumentar no próximo mês, alcançando $0.010384 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Donkey é esperado para alcançar $0.001684 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 40.51, sugerindo que o mercado de DONKEY está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DONKEY para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001867 | SELL |
| SMA 5 | $0.001849 | SELL |
| SMA 10 | $0.0018085 | SELL |
| SMA 21 | $0.001781 | BUY |
| SMA 50 | $0.00283 | SELL |
| SMA 100 | $0.007388 | SELL |
| SMA 200 | $0.01034 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.001846 | SELL |
| EMA 5 | $0.00184 | SELL |
| EMA 10 | $0.001826 | SELL |
| EMA 21 | $0.002023 | SELL |
| EMA 50 | $0.0035052 | SELL |
| EMA 100 | $0.006128 | SELL |
| EMA 200 | $0.007481 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.009959 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.005572 | SELL |
| EMA 50 | $0.0062029 | SELL |
| EMA 100 | $0.0031014 | SELL |
| EMA 200 | $0.00155 | BUY |
Osciladores de Donkey
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 40.51 | NEUTRAL |
| Stoch RSI (14) | 95.15 | SELL |
| Estocástico Rápido (14) | 50.22 | NEUTRAL |
| Índice de Canal de Commodities (20) | 25.75 | NEUTRAL |
| Índice Direcional Médio (14) | 30.89 | SELL |
| Oscilador Impressionante (5, 34) | -0.000479 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -49.78 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 50.78 | NEUTRAL |
| VWMA (10) | 0.0018060 | SELL |
| Média Móvel de Hull (9) | 0.001912 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004823 | SELL |
Previsão do preço de Donkey com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Donkey
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Donkey por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.002517 | $0.003537 | $0.00497 | $0.006984 | $0.009814 | $0.01379 |
| Amazon.com stock | $0.003738 | $0.007799 | $0.016274 | $0.033958 | $0.070855 | $0.147844 |
| Apple stock | $0.002541 | $0.0036043 | $0.005112 | $0.007251 | $0.010286 | $0.014589 |
| Netflix stock | $0.002826 | $0.00446 | $0.007037 | $0.0111038 | $0.01752 | $0.027644 |
| Google stock | $0.002319 | $0.0030043 | $0.00389 | $0.005038 | $0.006524 | $0.008449 |
| Tesla stock | $0.004061 | $0.0092064 | $0.02087 | $0.047311 | $0.107251 | $0.243131 |
| Kodak stock | $0.001343 | $0.0010074 | $0.000755 | $0.000566 | $0.000424 | $0.000318 |
| Nokia stock | $0.001186 | $0.000786 | $0.00052 | $0.000345 | $0.000228 | $0.000151 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Donkey
Você pode fazer perguntas como: 'Devo investir em Donkey agora?', 'Devo comprar DONKEY hoje?', 'Donkey será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Donkey regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Donkey, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Donkey para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Donkey é de $0.001791 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Donkey
com base no histórico de preços de 4 horas
Previsão de longo prazo para Donkey
com base no histórico de preços de 1 mês
Previsão do preço de Donkey com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Donkey tiver 1% da média anterior do crescimento anual do Bitcoin | $0.001838 | $0.001885 | $0.001934 | $0.001985 |
| Se Donkey tiver 2% da média anterior do crescimento anual do Bitcoin | $0.001884 | $0.001982 | $0.002085 | $0.002194 |
| Se Donkey tiver 5% da média anterior do crescimento anual do Bitcoin | $0.002024 | $0.002287 | $0.002584 | $0.00292 |
| Se Donkey tiver 10% da média anterior do crescimento anual do Bitcoin | $0.002257 | $0.002843 | $0.003583 | $0.004514 |
| Se Donkey tiver 20% da média anterior do crescimento anual do Bitcoin | $0.002722 | $0.004138 | $0.006289 | $0.009559 |
| Se Donkey tiver 50% da média anterior do crescimento anual do Bitcoin | $0.004119 | $0.009474 | $0.021787 | $0.0501042 |
| Se Donkey tiver 100% da média anterior do crescimento anual do Bitcoin | $0.006448 | $0.0232092 | $0.083537 | $0.300678 |
Perguntas Frequentes sobre Donkey
DONKEY é um bom investimento?
A decisão de adquirir Donkey depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Donkey experimentou uma queda de -7.497% nas últimas 24 horas, e Donkey registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Donkey dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Donkey pode subir?
Parece que o valor médio de Donkey pode potencialmente subir para $0.001847 até o final deste ano. Observando as perspectivas de Donkey em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.0058085. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Donkey na próxima semana?
Com base na nossa nova previsão experimental de Donkey, o preço de Donkey aumentará 0.86% na próxima semana e atingirá $0.001806 até 13 de janeiro de 2026.
Qual será o preço de Donkey no próximo mês?
Com base na nossa nova previsão experimental de Donkey, o preço de Donkey diminuirá -11.62% no próximo mês e atingirá $0.001583 até 5 de fevereiro de 2026.
Até onde o preço de Donkey pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Donkey em 2026, espera-se que DONKEY fluctue dentro do intervalo de $0.000618 e $0.001847. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Donkey não considera flutuações repentinas e extremas de preço.
Onde estará Donkey em 5 anos?
O futuro de Donkey parece seguir uma tendência de alta, com um preço máximo de $0.0058085 projetada após um período de cinco anos. Com base na previsão de Donkey para 2030, o valor de Donkey pode potencialmente atingir seu pico mais alto de aproximadamente $0.0058085, enquanto seu pico mais baixo está previsto para cerca de $0.0020089.
Quanto será Donkey em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Donkey, espera-se que o valor de DONKEY em 2026 aumente 3.13% para $0.001847 se o melhor cenário ocorrer. O preço ficará entre $0.001847 e $0.000618 durante 2026.
Quanto será Donkey em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Donkey, o valor de DONKEY pode diminuir -12.62% para $0.001565 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.001565 e $0.000595 ao longo do ano.
Quanto será Donkey em 2028?
Nosso novo modelo experimental de previsão de preços de Donkey sugere que o valor de DONKEY em 2028 pode aumentar 47.02%, alcançando $0.002633 no melhor cenário. O preço é esperado para variar entre $0.002633 e $0.001075 durante o ano.
Quanto será Donkey em 2029?
Com base no nosso modelo de previsão experimental, o valor de Donkey pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.00777 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.00777 e $0.002362.
Quanto será Donkey em 2030?
Usando nossa nova simulação experimental para previsões de preços de Donkey, espera-se que o valor de DONKEY em 2030 aumente 224.23%, alcançando $0.0058085 no melhor cenário. O preço está previsto para variar entre $0.0058085 e $0.0020089 ao longo de 2030.
Quanto será Donkey em 2031?
Nossa simulação experimental indica que o preço de Donkey poderia aumentar 195.98% em 2031, potencialmente atingindo $0.0053025 sob condições ideais. O preço provavelmente oscilará entre $0.0053025 e $0.002375 durante o ano.
Quanto será Donkey em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Donkey, DONKEY poderia ver um 449.04% aumento em valor, atingindo $0.009836 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.009836 e $0.003625 ao longo do ano.
Quanto será Donkey em 2033?
De acordo com nossa previsão experimental de preços de Donkey, espera-se que o valor de DONKEY seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.026199. Ao longo do ano, o preço de DONKEY poderia variar entre $0.026199 e $0.008425.
Quanto será Donkey em 2034?
Os resultados da nossa nova simulação de previsão de preços de Donkey sugerem que DONKEY pode aumentar 746.96% em 2034, atingindo potencialmente $0.015173 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.015173 e $0.006773.
Quanto será Donkey em 2035?
Com base em nossa previsão experimental para o preço de Donkey, DONKEY poderia aumentar 897.93%, com o valor potencialmente atingindo $0.017878 em 2035. A faixa de preço esperada para o ano está entre $0.017878 e $0.0080083.
Quanto será Donkey em 2036?
Nossa recente simulação de previsão de preços de Donkey sugere que o valor de DONKEY pode aumentar 1964.7% em 2036, possivelmente atingindo $0.036989 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.036989 e $0.013256.
Quanto será Donkey em 2037?
De acordo com a simulação experimental, o valor de Donkey poderia aumentar 4830.69% em 2037, com um pico de $0.088333 sob condições favoráveis. O preço é esperado para cair entre $0.088333 e $0.034426 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Donkey?
Traders de Donkey utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Donkey
Médias móveis são ferramentas populares para a previsão de preço de Donkey. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DONKEY em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DONKEY acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DONKEY.
Como ler gráficos de Donkey e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Donkey em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DONKEY dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Donkey?
A ação de preço de Donkey é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DONKEY. A capitalização de mercado de Donkey pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DONKEY, grandes detentores de Donkey, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Donkey.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


