Previsão de Preço Dolomite - Projeção DOLO
Previsão de Preço Dolomite até $0.050596 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.01695 | $0.050596 |
| 2027 | $0.016317 | $0.042865 |
| 2028 | $0.029448 | $0.072127 |
| 2029 | $0.064689 | $0.212797 |
| 2030 | $0.055015 | $0.159065 |
| 2031 | $0.065045 | $0.1452084 |
| 2032 | $0.099286 | $0.269354 |
| 2033 | $0.230719 | $0.717461 |
| 2034 | $0.185487 | $0.415515 |
| 2035 | $0.2193039 | $0.48958 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Dolomite hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.49, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Dolomite para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Dolomite'
'name_with_ticker' => 'Dolomite <small>DOLO</small>'
'name_lang' => 'Dolomite'
'name_lang_with_ticker' => 'Dolomite <small>DOLO</small>'
'name_with_lang' => 'Dolomite'
'name_with_lang_with_ticker' => 'Dolomite <small>DOLO</small>'
'image' => '/uploads/coins/dolomite.png?1745418184'
'price_for_sd' => 0.04905
'ticker' => 'DOLO'
'marketcap' => '$22.33M'
'low24h' => '$0.0477'
'high24h' => '$0.04995'
'volume24h' => '$5.77M'
'current_supply' => '455.51M'
'max_supply' => '998.46M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04905'
'change_24h_pct' => '2.4961%'
'ath_price' => '$0.3664'
'ath_days' => 128
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '31 de ago. de 2025'
'ath_pct' => '-86.62%'
'fdv' => '$48.94M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.41'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.049479'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.043359'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.01695'
'current_year_max_price_prediction' => '$0.050596'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.055015'
'grand_prediction_max_price' => '$0.159065'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.049989172098692
107 => 0.05017581352124
108 => 0.050596326176385
109 => 0.04700309157926
110 => 0.048616348421544
111 => 0.049563985674662
112 => 0.045282526089738
113 => 0.04947935498461
114 => 0.04694054135915
115 => 0.046078829882967
116 => 0.047239010863793
117 => 0.046786887207252
118 => 0.04639817783695
119 => 0.046181271329447
120 => 0.047033180197263
121 => 0.046993437630328
122 => 0.045599549374196
123 => 0.043781278966225
124 => 0.044391550197831
125 => 0.044169832938065
126 => 0.043366300986578
127 => 0.043907784503063
128 => 0.041523365135
129 => 0.037421095543581
130 => 0.040131180491588
131 => 0.040026845169095
201 => 0.039974234568264
202 => 0.042010788505444
203 => 0.041815020835678
204 => 0.041459700598089
205 => 0.043359775251769
206 => 0.042666222443565
207 => 0.044803588776856
208 => 0.046211396480148
209 => 0.045854330908785
210 => 0.047178380858256
211 => 0.044405609614433
212 => 0.045326612997357
213 => 0.045516430518123
214 => 0.043336328625483
215 => 0.041847050847551
216 => 0.041747732998773
217 => 0.039165530566959
218 => 0.040544922263224
219 => 0.041758729872831
220 => 0.041177410223105
221 => 0.040993381788432
222 => 0.041933543150277
223 => 0.04200660174003
224 => 0.040340858151262
225 => 0.040687218990606
226 => 0.042131601268369
227 => 0.040650824263109
228 => 0.03777391642544
301 => 0.037060403505336
302 => 0.036965207729142
303 => 0.035030104100395
304 => 0.037108083850452
305 => 0.036200990003157
306 => 0.039066488598109
307 => 0.03742973116865
308 => 0.037359173827211
309 => 0.037252516057116
310 => 0.035586892425729
311 => 0.035951558145098
312 => 0.037163762536441
313 => 0.037596290719732
314 => 0.037551174486616
315 => 0.037157822073607
316 => 0.037337896793992
317 => 0.036757813377441
318 => 0.036552973849665
319 => 0.035906443954451
320 => 0.03495622361693
321 => 0.035088357582902
322 => 0.033205722455596
323 => 0.03217996291923
324 => 0.031896046198858
325 => 0.031516380894679
326 => 0.031938930405215
327 => 0.03320038918682
328 => 0.031678802262795
329 => 0.029070148208466
330 => 0.029226932762062
331 => 0.029579181104239
401 => 0.028922768648948
402 => 0.028301529348536
403 => 0.028841646517506
404 => 0.027736325405409
405 => 0.029712753879902
406 => 0.029659297028543
407 => 0.030395987342318
408 => 0.030856654913928
409 => 0.029794965304264
410 => 0.029527953238547
411 => 0.029680055446201
412 => 0.027166144765537
413 => 0.030190547207037
414 => 0.030216702364942
415 => 0.029992746023701
416 => 0.03160314695585
417 => 0.035001595219332
418 => 0.033722962280345
419 => 0.033227836959485
420 => 0.032286603362594
421 => 0.03354074124553
422 => 0.033444443023719
423 => 0.033008945944675
424 => 0.032745555952435
425 => 0.033230860089115
426 => 0.032685421399277
427 => 0.03258744562293
428 => 0.031993819016959
429 => 0.031781921326917
430 => 0.0316250407131
501 => 0.031452330572058
502 => 0.031833286106511
503 => 0.030969990746568
504 => 0.029928941172364
505 => 0.029842389164581
506 => 0.030081366867799
507 => 0.029975637023923
508 => 0.029841882970766
509 => 0.02958651005754
510 => 0.029510746369365
511 => 0.029756941600618
512 => 0.029479001538608
513 => 0.029889117240283
514 => 0.029777588462164
515 => 0.029154597773723
516 => 0.028378120715232
517 => 0.028371208440696
518 => 0.028203917732121
519 => 0.027990847862425
520 => 0.027931576699054
521 => 0.028796159356045
522 => 0.030585819581235
523 => 0.03023446645609
524 => 0.030488355097124
525 => 0.031737235928184
526 => 0.032134217589221
527 => 0.031852449409243
528 => 0.031466747745784
529 => 0.031483716661507
530 => 0.03280177600538
531 => 0.032883981749892
601 => 0.033091689145698
602 => 0.033358651847411
603 => 0.031897914311724
604 => 0.031414916054939
605 => 0.03118604468515
606 => 0.03048120945057
607 => 0.031241313823059
608 => 0.030798433556124
609 => 0.030858193235078
610 => 0.030819274665762
611 => 0.030840526836271
612 => 0.029712201427863
613 => 0.030123303903649
614 => 0.029439766303019
615 => 0.02852458618647
616 => 0.028521518181816
617 => 0.028745507218807
618 => 0.028612269774913
619 => 0.028253731239242
620 => 0.02830465994598
621 => 0.027858470885254
622 => 0.028358835376466
623 => 0.028373184039684
624 => 0.028180516455529
625 => 0.028951396991236
626 => 0.029267227375694
627 => 0.029140409444464
628 => 0.029258329491568
629 => 0.030249066764704
630 => 0.030410600169123
701 => 0.030482342637068
702 => 0.030386217234078
703 => 0.029276438350199
704 => 0.029325661762843
705 => 0.028964493021107
706 => 0.028659343493365
707 => 0.028671547874176
708 => 0.028828434398098
709 => 0.029513567049336
710 => 0.030955388323091
711 => 0.031010104386472
712 => 0.03107642185147
713 => 0.030806675392834
714 => 0.030725317279784
715 => 0.030832649631208
716 => 0.031374121894269
717 => 0.032766935563148
718 => 0.032274622189669
719 => 0.031874363753717
720 => 0.032225498310947
721 => 0.032171443898145
722 => 0.031715170255658
723 => 0.03170236417418
724 => 0.030826629174741
725 => 0.03050288988497
726 => 0.030232349102971
727 => 0.029936925631674
728 => 0.029761788695205
729 => 0.030030878627935
730 => 0.030092422679329
731 => 0.029504052838526
801 => 0.029423860203326
802 => 0.029904335716171
803 => 0.029692896356901
804 => 0.029910366981354
805 => 0.029960822031656
806 => 0.029952697606479
807 => 0.029731930631745
808 => 0.029872640918074
809 => 0.02953981914315
810 => 0.029177925451133
811 => 0.028947059822401
812 => 0.028745598941449
813 => 0.028857381147176
814 => 0.028458897994384
815 => 0.028331415213925
816 => 0.029824971439148
817 => 0.030928277481155
818 => 0.030912234974347
819 => 0.030814580339951
820 => 0.030669485361759
821 => 0.031363507292874
822 => 0.03112172392948
823 => 0.031297641528025
824 => 0.031342419940093
825 => 0.031477950707028
826 => 0.031526391306945
827 => 0.031379970169838
828 => 0.030888562949871
829 => 0.029664022879311
830 => 0.029093996170882
831 => 0.028905877862555
901 => 0.028912715605775
902 => 0.028724100122733
903 => 0.028779655835642
904 => 0.028704780112997
905 => 0.028562983608689
906 => 0.028848625612607
907 => 0.028881543192619
908 => 0.028814870935737
909 => 0.028830574665804
910 => 0.028278556854913
911 => 0.028320525570155
912 => 0.028086838430559
913 => 0.028043024909025
914 => 0.027452284169593
915 => 0.02640570132045
916 => 0.026985609813131
917 => 0.026285161901446
918 => 0.026019891663773
919 => 0.02727563971093
920 => 0.027149597436025
921 => 0.026933867850647
922 => 0.026614758831887
923 => 0.026496398192736
924 => 0.025777276417681
925 => 0.025734786866845
926 => 0.026091203036484
927 => 0.025926729237727
928 => 0.025695745733174
929 => 0.024859146894105
930 => 0.023918532810635
1001 => 0.023946924037326
1002 => 0.02424611587653
1003 => 0.025116056500534
1004 => 0.02477615564861
1005 => 0.024529553680627
1006 => 0.024483372544851
1007 => 0.025061426145837
1008 => 0.025879493097206
1009 => 0.026263311807571
1010 => 0.025882959122346
1011 => 0.025446030437203
1012 => 0.025472624261735
1013 => 0.025649541062104
1014 => 0.025668132516354
1015 => 0.02538373685932
1016 => 0.025463792570918
1017 => 0.025342180624553
1018 => 0.024595848334189
1019 => 0.024582349549702
1020 => 0.024399187569413
1021 => 0.024393641497443
1022 => 0.024082037277074
1023 => 0.024038441692626
1024 => 0.023419732600059
1025 => 0.02382696879841
1026 => 0.023553816137416
1027 => 0.0231421106471
1028 => 0.023071132465388
1029 => 0.023068998775537
1030 => 0.023491728258429
1031 => 0.023822028958278
1101 => 0.023558567744901
1102 => 0.023498582733596
1103 => 0.024139065720745
1104 => 0.024057558422498
1105 => 0.023986973627882
1106 => 0.025806244174347
1107 => 0.024366149577369
1108 => 0.023738186135361
1109 => 0.022960962128852
1110 => 0.023214030184475
1111 => 0.023267355342138
1112 => 0.021398271711641
1113 => 0.020639984715528
1114 => 0.020379769193905
1115 => 0.020230011482304
1116 => 0.020298257952019
1117 => 0.019615710717324
1118 => 0.020074393747329
1119 => 0.019483365536364
1120 => 0.019384277733424
1121 => 0.020441109388974
1122 => 0.020588161339923
1123 => 0.019960792031715
1124 => 0.02036366468945
1125 => 0.020217577463406
1126 => 0.019493497018687
1127 => 0.019465842471674
1128 => 0.019102524357173
1129 => 0.018534001860228
1130 => 0.018274171823628
1201 => 0.01813885008462
1202 => 0.018194686471503
1203 => 0.018166453885673
1204 => 0.017982217165877
1205 => 0.018177014118792
1206 => 0.017679388399753
1207 => 0.017481229828789
1208 => 0.017391726199528
1209 => 0.016950054731614
1210 => 0.017652950449259
1211 => 0.017791429760482
1212 => 0.017930181918727
1213 => 0.019137924726125
1214 => 0.019077589308513
1215 => 0.019622992099184
1216 => 0.01960179874967
1217 => 0.019446241038831
1218 => 0.018789968644804
1219 => 0.019051547124133
1220 => 0.01824644922308
1221 => 0.018849683311884
1222 => 0.018574392465412
1223 => 0.018756607199774
1224 => 0.01842896867775
1225 => 0.018610297363701
1226 => 0.017824268342417
1227 => 0.017090285502069
1228 => 0.01738566162332
1229 => 0.017706769247476
1230 => 0.018403012393349
1231 => 0.017988335719549
]
'min_raw' => 0.016950054731614
'max_raw' => 0.050596326176385
'avg_raw' => 0.033773190453999
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.01695'
'max' => '$0.050596'
'avg' => '$0.033773'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.032109465268386
'max_diff' => 0.0015368061763853
'year' => 2026
]
1 => [
'items' => [
101 => 0.018137469132108
102 => 0.017637897164665
103 => 0.016607137500152
104 => 0.016612971487913
105 => 0.016454411569847
106 => 0.016317392650512
107 => 0.018035966323848
108 => 0.01782223452094
109 => 0.017481680865531
110 => 0.01793752546636
111 => 0.018058058014045
112 => 0.018061489406229
113 => 0.018394061859941
114 => 0.018571555838104
115 => 0.018602839921058
116 => 0.019126149862678
117 => 0.019301556452484
118 => 0.020024031371425
119 => 0.018556496714139
120 => 0.01852627380361
121 => 0.017943940134714
122 => 0.017574614915569
123 => 0.01796922814844
124 => 0.018318801602686
125 => 0.017954802356369
126 => 0.018002332973495
127 => 0.017513693725146
128 => 0.017688359263817
129 => 0.01783880475571
130 => 0.017755737597864
131 => 0.017631382042073
201 => 0.018290140565921
202 => 0.01825297082831
203 => 0.01886642191051
204 => 0.019344650897393
205 => 0.020201722735545
206 => 0.019307323592268
207 => 0.019274728132573
208 => 0.019593353979574
209 => 0.019301507672527
210 => 0.019485944464388
211 => 0.020172007116994
212 => 0.02018650253976
213 => 0.019943685532129
214 => 0.019928910095148
215 => 0.01997554575759
216 => 0.020248692289155
217 => 0.020153246498081
218 => 0.020263698783903
219 => 0.020401821058629
220 => 0.020973153349528
221 => 0.021110899630627
222 => 0.020776247580814
223 => 0.020806462913972
224 => 0.020681293860938
225 => 0.020560382124071
226 => 0.020832174050808
227 => 0.021328879139003
228 => 0.021325789162428
301 => 0.021441015088322
302 => 0.021512799885571
303 => 0.021204646986096
304 => 0.021004050779633
305 => 0.021080972129459
306 => 0.02120397104296
307 => 0.021041085239549
308 => 0.020035678604852
309 => 0.020340654752194
310 => 0.020289891808705
311 => 0.020217599204191
312 => 0.020524255078655
313 => 0.020494677371471
314 => 0.019608710208895
315 => 0.019665426952129
316 => 0.019612159341903
317 => 0.019784277888073
318 => 0.019292212706189
319 => 0.019443568642027
320 => 0.019538497666111
321 => 0.019594411590575
322 => 0.019796411026278
323 => 0.019772708723967
324 => 0.019794937657887
325 => 0.02009444949516
326 => 0.021609277588038
327 => 0.021691726338854
328 => 0.021285718535624
329 => 0.021447910644865
330 => 0.021136537262638
331 => 0.021345564300147
401 => 0.0214885752905
402 => 0.020842336124528
403 => 0.020804070035177
404 => 0.02049141150424
405 => 0.020659416488881
406 => 0.020392108478332
407 => 0.020457696514083
408 => 0.02027430664826
409 => 0.020604371894184
410 => 0.020973436126082
411 => 0.021066676325847
412 => 0.020821401502694
413 => 0.020643806366333
414 => 0.020332007810357
415 => 0.020850535757829
416 => 0.021002169131522
417 => 0.020849739292269
418 => 0.020814417967856
419 => 0.020747484121918
420 => 0.020828618299689
421 => 0.021001343303604
422 => 0.020919889381488
423 => 0.020973691132079
424 => 0.020768654338949
425 => 0.021204748997528
426 => 0.021897372267245
427 => 0.021899599164313
428 => 0.021818144803129
429 => 0.021784815433491
430 => 0.02186839255113
501 => 0.021913729708936
502 => 0.022184002781956
503 => 0.022474016557461
504 => 0.023827384304818
505 => 0.023447364056948
506 => 0.024648152434612
507 => 0.025597820138487
508 => 0.025882583958943
509 => 0.025620614643296
510 => 0.024724431765773
511 => 0.024680460758335
512 => 0.026019736336007
513 => 0.025641329642607
514 => 0.025596319370507
515 => 0.025117486121421
516 => 0.025400535876283
517 => 0.025338628742805
518 => 0.02524090530401
519 => 0.025780944518869
520 => 0.026791849719453
521 => 0.026634290663733
522 => 0.026516680137593
523 => 0.026001345047954
524 => 0.026311691876176
525 => 0.026201183314948
526 => 0.026675998224449
527 => 0.026394728390498
528 => 0.025638462839731
529 => 0.025758900621375
530 => 0.025740696692967
531 => 0.026115332249664
601 => 0.026002875954569
602 => 0.02571873779649
603 => 0.026788394555377
604 => 0.026718936995199
605 => 0.026817411935323
606 => 0.026860763649404
607 => 0.027511844869072
608 => 0.027778572012495
609 => 0.027839123743768
610 => 0.028092493900602
611 => 0.027832819663451
612 => 0.028871701756648
613 => 0.029562497728174
614 => 0.030364892797136
615 => 0.031537407656352
616 => 0.031978284089786
617 => 0.031898643708218
618 => 0.032787631092749
619 => 0.034385121661672
620 => 0.032221542226201
621 => 0.034499796625333
622 => 0.03377852758628
623 => 0.03206841166976
624 => 0.031958300365679
625 => 0.0331164107192
626 => 0.035684988019318
627 => 0.035041588538201
628 => 0.035686040390378
629 => 0.034934253072738
630 => 0.034896920495856
701 => 0.035649527758381
702 => 0.037408035649755
703 => 0.036572634467246
704 => 0.035374882023345
705 => 0.036259283788829
706 => 0.035493133132047
707 => 0.03376678127025
708 => 0.035041096542743
709 => 0.034188998210437
710 => 0.034437685803843
711 => 0.03622866975829
712 => 0.036013173830535
713 => 0.036292045515436
714 => 0.035799844290929
715 => 0.035340050734231
716 => 0.034481811915936
717 => 0.034227729712501
718 => 0.034297948892611
719 => 0.034227694915363
720 => 0.033747518184149
721 => 0.033643824064761
722 => 0.033470995989505
723 => 0.033524562636776
724 => 0.033199595292658
725 => 0.033812875812689
726 => 0.033926706081416
727 => 0.034373000500544
728 => 0.034419336267663
729 => 0.03566225987233
730 => 0.034977678437362
731 => 0.035436954767856
801 => 0.03539587276998
802 => 0.032105475067196
803 => 0.032558862839215
804 => 0.033264191931556
805 => 0.032946442131507
806 => 0.032497218256241
807 => 0.032134445891103
808 => 0.031584808662541
809 => 0.032358412506895
810 => 0.033375619298623
811 => 0.034445134310548
812 => 0.035730086519976
813 => 0.035443300145324
814 => 0.034421113022787
815 => 0.034466967590396
816 => 0.034750422484246
817 => 0.034383322642117
818 => 0.034275057732033
819 => 0.034735548548122
820 => 0.034738719695291
821 => 0.034316326961423
822 => 0.033846914734783
823 => 0.033844947880413
824 => 0.033761420508667
825 => 0.034949112406615
826 => 0.035602222861291
827 => 0.035677100922379
828 => 0.035597182971182
829 => 0.035627940218768
830 => 0.035247909635499
831 => 0.036116546854283
901 => 0.036913694265558
902 => 0.036700041730766
903 => 0.036379746208615
904 => 0.0361246153977
905 => 0.036639941019888
906 => 0.036616994381129
907 => 0.036906731878336
908 => 0.036893587711858
909 => 0.036796159889126
910 => 0.03670004521022
911 => 0.037081129047771
912 => 0.036971383022576
913 => 0.03686146653149
914 => 0.036641012181246
915 => 0.036670975588803
916 => 0.03635073537019
917 => 0.036202577591864
918 => 0.033974640086062
919 => 0.033379262384554
920 => 0.033566580329479
921 => 0.033628250260657
922 => 0.033369141121963
923 => 0.033740637067173
924 => 0.033682739817624
925 => 0.033907984146863
926 => 0.033767261268926
927 => 0.033773036584923
928 => 0.034186872563653
929 => 0.034307010908863
930 => 0.034245907576854
1001 => 0.034288702256093
1002 => 0.03527488757666
1003 => 0.035134683560506
1004 => 0.035060202971295
1005 => 0.035080834603516
1006 => 0.035332826096972
1007 => 0.035403369956914
1008 => 0.03510447066531
1009 => 0.035245433299147
1010 => 0.035845634303203
1011 => 0.036055670686188
1012 => 0.036726005997493
1013 => 0.03644123564299
1014 => 0.036963943953252
1015 => 0.0385705710946
1016 => 0.039854056025251
1017 => 0.038673710240766
1018 => 0.041030666865086
1019 => 0.042865895682467
1020 => 0.042795456543722
1021 => 0.042475441949804
1022 => 0.040386082733299
1023 => 0.038463423231681
1024 => 0.040071809545219
1025 => 0.0400759096527
1026 => 0.03993774784196
1027 => 0.039079636701374
1028 => 0.039907887434331
1029 => 0.039973630969749
1030 => 0.039936832072532
1031 => 0.039278920272993
1101 => 0.038274410557521
1102 => 0.038470689351468
1103 => 0.038792198019931
1104 => 0.038183515036795
1105 => 0.037989003942281
1106 => 0.038350637074233
1107 => 0.039515894374638
1108 => 0.039295609231873
1109 => 0.039289856696553
1110 => 0.040232329952743
1111 => 0.039557722499769
1112 => 0.038473165055631
1113 => 0.038199299997431
1114 => 0.037227263538429
1115 => 0.037898652582937
1116 => 0.037922814679398
1117 => 0.037555101761151
1118 => 0.038503002932365
1119 => 0.038494267856198
1120 => 0.039394158941796
1121 => 0.041114412713802
1122 => 0.040605649024873
1123 => 0.04001401220798
1124 => 0.040078339534286
1125 => 0.04078385153049
1126 => 0.040357282872313
1127 => 0.040510679935935
1128 => 0.040783619345662
1129 => 0.040948290468254
1130 => 0.040054645893889
1201 => 0.039846294595644
1202 => 0.039420080960802
1203 => 0.039308889779126
1204 => 0.039656031891465
1205 => 0.039564572209576
1206 => 0.03792078394875
1207 => 0.037748998929543
1208 => 0.037754267330829
1209 => 0.037322305732099
1210 => 0.036663460611372
1211 => 0.038394866251043
1212 => 0.038255810147171
1213 => 0.038102302970584
1214 => 0.038121106723816
1215 => 0.038872651229216
1216 => 0.038436717462177
1217 => 0.039595718829989
1218 => 0.039357462991537
1219 => 0.03911309678985
1220 => 0.039079317937201
1221 => 0.038985257797896
1222 => 0.038662690581983
1223 => 0.038273171285485
1224 => 0.038015976906353
1225 => 0.035067729179174
1226 => 0.03561490680817
1227 => 0.03624438479352
1228 => 0.036461678071588
1229 => 0.036089982883216
1230 => 0.038677367373529
1231 => 0.039150107452567
]
'min_raw' => 0.016317392650512
'max_raw' => 0.042865895682467
'avg_raw' => 0.029591644166489
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.016317'
'max' => '$0.042865'
'avg' => '$0.029591'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00063266208110205
'max_diff' => -0.0077304304939187
'year' => 2027
]
2 => [
'items' => [
101 => 0.03771814691709
102 => 0.037450285567465
103 => 0.038694928319017
104 => 0.037944256588443
105 => 0.038282284022756
106 => 0.037551653600892
107 => 0.039036238210972
108 => 0.039024928163603
109 => 0.038447391219417
110 => 0.03893552148984
111 => 0.038850696843058
112 => 0.038198659055484
113 => 0.039056908971857
114 => 0.039057334653108
115 => 0.038501467901065
116 => 0.037852337229559
117 => 0.037736287997276
118 => 0.037648860489771
119 => 0.038260782215313
120 => 0.038809429321005
121 => 0.039830325563545
122 => 0.040087003134816
123 => 0.041088832783481
124 => 0.040492292005901
125 => 0.040756730806106
126 => 0.04104381653088
127 => 0.041181455984565
128 => 0.040957179880926
129 => 0.042513433694836
130 => 0.042644829199115
131 => 0.042688884975133
201 => 0.042164124945246
202 => 0.0426302346734
203 => 0.042412157367529
204 => 0.042979533933786
205 => 0.043068505824003
206 => 0.042993149798256
207 => 0.043021390880537
208 => 0.04169340279235
209 => 0.041624539604282
210 => 0.040685585148669
211 => 0.041068216029732
212 => 0.04035290593756
213 => 0.040579738136298
214 => 0.040679723608166
215 => 0.040627496871788
216 => 0.041089849405653
217 => 0.040696755299485
218 => 0.039659315322654
219 => 0.038621592695996
220 => 0.038608564933729
221 => 0.038335350883455
222 => 0.038137867166757
223 => 0.038175909536704
224 => 0.038309975810343
225 => 0.038130074991214
226 => 0.038168465952178
227 => 0.038806011701819
228 => 0.038933866955142
229 => 0.03849936484808
301 => 0.036754776189873
302 => 0.03632664975718
303 => 0.036634378546884
304 => 0.036487304005678
305 => 0.0294481020499
306 => 0.031101858135452
307 => 0.030119252425667
308 => 0.030572082344251
309 => 0.029569096359076
310 => 0.030047773842201
311 => 0.02995937958957
312 => 0.032618570436937
313 => 0.032577050829453
314 => 0.032596924068387
315 => 0.03164832259462
316 => 0.033159470499667
317 => 0.033903916296814
318 => 0.033766139192545
319 => 0.033800814721399
320 => 0.033204974250177
321 => 0.032602693106591
322 => 0.031934670627951
323 => 0.033175773823191
324 => 0.033037784334218
325 => 0.03335428257487
326 => 0.034159226712872
327 => 0.034277757794878
328 => 0.034437064771118
329 => 0.034379964560379
330 => 0.035740323237371
331 => 0.035575574825652
401 => 0.035972571096542
402 => 0.035155919647141
403 => 0.034231801014876
404 => 0.034407445755155
405 => 0.03439052975422
406 => 0.034175169647039
407 => 0.033980752171678
408 => 0.033657101851984
409 => 0.034681179354729
410 => 0.034639603678303
411 => 0.035312665553208
412 => 0.035193695329044
413 => 0.034399183055126
414 => 0.034427559216422
415 => 0.034618402538253
416 => 0.035278913454122
417 => 0.035474998064964
418 => 0.035384163860601
419 => 0.035599161684787
420 => 0.035769087198856
421 => 0.035620501713135
422 => 0.037724158851889
423 => 0.036850573741414
424 => 0.037276353045894
425 => 0.037377898901175
426 => 0.037117791328152
427 => 0.037174199346987
428 => 0.037259642125256
429 => 0.037778433943498
430 => 0.039139893788187
501 => 0.03974287508563
502 => 0.041556974069558
503 => 0.039692805882782
504 => 0.039582193857274
505 => 0.03990896786482
506 => 0.040974036010265
507 => 0.041837173705385
508 => 0.042123526274464
509 => 0.042161372493634
510 => 0.042698588949585
511 => 0.043006511403643
512 => 0.042633356741637
513 => 0.042317147236509
514 => 0.041184524038508
515 => 0.041315628257707
516 => 0.042218806318191
517 => 0.043494598525547
518 => 0.044589360963013
519 => 0.044206013313735
520 => 0.047130685276461
521 => 0.047420654555351
522 => 0.047380590176838
523 => 0.048041183347365
524 => 0.046730040431328
525 => 0.046169501432525
526 => 0.042385515320648
527 => 0.043448661071298
528 => 0.044994005856228
529 => 0.044789473679197
530 => 0.043667202989196
531 => 0.044588509620059
601 => 0.044283896835973
602 => 0.044043636094769
603 => 0.045144317127061
604 => 0.043934073118572
605 => 0.044981932746455
606 => 0.043638041934975
607 => 0.044207764413507
608 => 0.043884362380316
609 => 0.044093643130453
610 => 0.042870192141463
611 => 0.043530336597528
612 => 0.042842727961737
613 => 0.042842401945714
614 => 0.042827222946968
615 => 0.043636191457653
616 => 0.043662571891744
617 => 0.043064742940064
618 => 0.042978586448283
619 => 0.043297152154841
620 => 0.042924195144953
621 => 0.043098699382516
622 => 0.042929480700538
623 => 0.042891386010934
624 => 0.042587841042893
625 => 0.042457065524518
626 => 0.042508345974943
627 => 0.042333299360759
628 => 0.042227827444
629 => 0.042806241928035
630 => 0.042497218402389
701 => 0.042758879640709
702 => 0.042460683635363
703 => 0.041427006363018
704 => 0.040832527632753
705 => 0.038880007087228
706 => 0.039433739491844
707 => 0.039800864648983
708 => 0.039679529786739
709 => 0.039940204021198
710 => 0.039956207302085
711 => 0.039871459451203
712 => 0.039773332296754
713 => 0.03972556942474
714 => 0.040081554741345
715 => 0.040288216199548
716 => 0.039837710570003
717 => 0.039732163404244
718 => 0.040187649468812
719 => 0.040465495705073
720 => 0.042516956205308
721 => 0.042364977385321
722 => 0.042746414399152
723 => 0.042703470445023
724 => 0.0431032772032
725 => 0.043756792281877
726 => 0.042428013401237
727 => 0.0426586434692
728 => 0.042602098302561
729 => 0.04321944360498
730 => 0.043221370889628
731 => 0.042851241542144
801 => 0.043051894666078
802 => 0.042939895596928
803 => 0.043142293052464
804 => 0.042362947615523
805 => 0.043312106232576
806 => 0.043850218006015
807 => 0.043857689688511
808 => 0.044112750398402
809 => 0.044371906851771
810 => 0.044869335096243
811 => 0.044358033848012
812 => 0.043438252676618
813 => 0.043504657906318
814 => 0.042965390542064
815 => 0.042974455723884
816 => 0.042926065072879
817 => 0.043071289059223
818 => 0.042394816113872
819 => 0.042553582962031
820 => 0.042331308444871
821 => 0.042658160287809
822 => 0.042306521735353
823 => 0.04260207103477
824 => 0.042729620314784
825 => 0.043200279903975
826 => 0.042237004931348
827 => 0.040272822054178
828 => 0.040685717108375
829 => 0.040075012891011
830 => 0.040131535891443
831 => 0.040245721347884
901 => 0.039875608924402
902 => 0.039946214711219
903 => 0.039943692175669
904 => 0.03992195432708
905 => 0.039825673791312
906 => 0.039686047965925
907 => 0.040242274279703
908 => 0.040336787969195
909 => 0.040546880193167
910 => 0.04117197214479
911 => 0.04110951071814
912 => 0.041211387896506
913 => 0.040988990588148
914 => 0.040141852264727
915 => 0.040187855951394
916 => 0.039614189241495
917 => 0.040532210245616
918 => 0.040314810754555
919 => 0.040174651888401
920 => 0.040136408243208
921 => 0.040763049676873
922 => 0.040950550615226
923 => 0.040833712613164
924 => 0.040594074462226
925 => 0.041054250554687
926 => 0.041177374263759
927 => 0.041204937121592
928 => 0.042020280927419
929 => 0.041250505782998
930 => 0.041435798311167
1001 => 0.042881397721857
1002 => 0.041570438535444
1003 => 0.042264882854365
1004 => 0.042230893418668
1005 => 0.042586147633514
1006 => 0.042201752203957
1007 => 0.042206517246
1008 => 0.042521958921778
1009 => 0.042078977978354
1010 => 0.041969289667107
1011 => 0.041817756050722
1012 => 0.042148624158352
1013 => 0.042346964624999
1014 => 0.043945443121153
1015 => 0.044978133129143
1016 => 0.04493330133237
1017 => 0.045342980033269
1018 => 0.045158416026287
1019 => 0.044562410162219
1020 => 0.045579719497012
1021 => 0.045257800257453
1022 => 0.04528433888843
1023 => 0.04528335111926
1024 => 0.045497399270898
1025 => 0.045345726538237
1026 => 0.045046764013276
1027 => 0.045245229289342
1028 => 0.045834600206623
1029 => 0.047664025617972
1030 => 0.048687796314826
1031 => 0.047602393336537
1101 => 0.048351089776836
1102 => 0.047902138700475
1103 => 0.047820550934763
1104 => 0.048290787627503
1105 => 0.048761847407324
1106 => 0.048731842935797
1107 => 0.048389877724834
1108 => 0.048196710254207
1109 => 0.049659439057645
1110 => 0.050737152723083
1111 => 0.050663659876184
1112 => 0.050988033401241
1113 => 0.051940404103304
1114 => 0.052027476944802
1115 => 0.05201650776812
1116 => 0.051800688645355
1117 => 0.052738421282499
1118 => 0.053520694346241
1119 => 0.051750732754049
1120 => 0.052424710957857
1121 => 0.052727281487768
1122 => 0.053171544794308
1123 => 0.053921091459618
1124 => 0.054735297945577
1125 => 0.054850435670012
1126 => 0.054768739944678
1127 => 0.054231748880143
1128 => 0.055122663332583
1129 => 0.055644540124308
1130 => 0.055955305810843
1201 => 0.056743355885414
1202 => 0.052729150060353
1203 => 0.049887695658401
1204 => 0.049443961522437
1205 => 0.050346312336902
1206 => 0.050584255050564
1207 => 0.050488340641042
1208 => 0.047290025377912
1209 => 0.049427123054483
1210 => 0.051726460462197
1211 => 0.051814787376373
1212 => 0.052965883759553
1213 => 0.053340727926951
1214 => 0.054267511393062
1215 => 0.054209540834921
1216 => 0.054435197860573
1217 => 0.054383323218211
1218 => 0.056099994431899
1219 => 0.057993737708739
1220 => 0.057928163400797
1221 => 0.057655915398998
1222 => 0.058060250106852
1223 => 0.060014796114414
1224 => 0.059834852838999
1225 => 0.060009652403533
1226 => 0.062314172299834
1227 => 0.065310375979158
1228 => 0.063918338556181
1229 => 0.066938659216064
1230 => 0.068839790971141
1231 => 0.072127601760855
]
'min_raw' => 0.0294481020499
'max_raw' => 0.072127601760855
'avg_raw' => 0.050787851905377
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.029448'
'max' => '$0.072127'
'avg' => '$0.050787'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.013130709399389
'max_diff' => 0.029261706078388
'year' => 2028
]
3 => [
'items' => [
101 => 0.071715951657173
102 => 0.072995872270539
103 => 0.070979012057614
104 => 0.066347893334038
105 => 0.065615001068822
106 => 0.067082269943573
107 => 0.070689407298144
108 => 0.066968668351565
109 => 0.067721368994558
110 => 0.067504591158739
111 => 0.067493039989115
112 => 0.067933901151671
113 => 0.067294409041611
114 => 0.06468900314279
115 => 0.065883045312466
116 => 0.06542196828814
117 => 0.065933567622199
118 => 0.068694458228503
119 => 0.067473802680045
120 => 0.066187941217748
121 => 0.06780069684697
122 => 0.069854288965929
123 => 0.069725778861784
124 => 0.069476415546687
125 => 0.070882063497651
126 => 0.073203782096435
127 => 0.073831333304266
128 => 0.074294578776167
129 => 0.074358452500146
130 => 0.075016391554425
131 => 0.071478487437574
201 => 0.077093232130838
202 => 0.078062743435173
203 => 0.077880515492085
204 => 0.07895808650358
205 => 0.07864103777666
206 => 0.078181683914774
207 => 0.079889863173922
208 => 0.077931573496267
209 => 0.075152027840651
210 => 0.0736271141208
211 => 0.07563524351838
212 => 0.076861538067424
213 => 0.077672040757361
214 => 0.077917298381616
215 => 0.071753124863044
216 => 0.068430977217269
217 => 0.070560435769711
218 => 0.073158522171067
219 => 0.071464054936434
220 => 0.071530474843981
221 => 0.069114609865549
222 => 0.073372272615532
223 => 0.07275196696544
224 => 0.075970113775421
225 => 0.075202077211977
226 => 0.077826351007777
227 => 0.077135291768351
228 => 0.080003840034607
301 => 0.081148181600861
302 => 0.083069709193144
303 => 0.084483192712052
304 => 0.085313217269986
305 => 0.085263385708871
306 => 0.088552356523998
307 => 0.086612965342206
308 => 0.084176632938469
309 => 0.084132567371815
310 => 0.085394378446808
311 => 0.08803878829903
312 => 0.088724445299112
313 => 0.08910763402311
314 => 0.088520767153412
315 => 0.086415697022995
316 => 0.085506738413628
317 => 0.086281197483874
318 => 0.08533410059099
319 => 0.086969055536563
320 => 0.089214197884366
321 => 0.0887505848678
322 => 0.090300373673433
323 => 0.091904242044727
324 => 0.094197845849912
325 => 0.094797478816491
326 => 0.095788649308246
327 => 0.096808889326807
328 => 0.097136562924529
329 => 0.097762193493727
330 => 0.097758896111808
331 => 0.09964427594188
401 => 0.1017239082798
402 => 0.10250892134377
403 => 0.10431401559849
404 => 0.10122285494533
405 => 0.10356753580944
406 => 0.10568249664004
407 => 0.1031609531482
408 => 0.10663631340742
409 => 0.10677125377095
410 => 0.10880869305168
411 => 0.10674335801453
412 => 0.10551696866225
413 => 0.10905750877006
414 => 0.11077066460226
415 => 0.11025464812348
416 => 0.10632773724106
417 => 0.10404210667436
418 => 0.098060170616099
419 => 0.10514603227752
420 => 0.10859734879538
421 => 0.10631879916506
422 => 0.10746796706327
423 => 0.113737454497
424 => 0.11612446939251
425 => 0.11562798698074
426 => 0.11571188433553
427 => 0.11699987424577
428 => 0.12271153081674
429 => 0.11928897380425
430 => 0.12190539039954
501 => 0.12329312832748
502 => 0.12458213665444
503 => 0.12141673959871
504 => 0.11729860453812
505 => 0.11599421829688
506 => 0.10609224230963
507 => 0.10557680145739
508 => 0.10528746888757
509 => 0.10346326796177
510 => 0.10202994572478
511 => 0.10089011466608
512 => 0.097898857585694
513 => 0.098908319041053
514 => 0.094140879578785
515 => 0.097190918399064
516 => 0.089581969903433
517 => 0.09591892831172
518 => 0.092470009956233
519 => 0.094785865873581
520 => 0.094777786070452
521 => 0.090513561083827
522 => 0.088054045103647
523 => 0.089621344412012
524 => 0.091301613682953
525 => 0.091574231719058
526 => 0.093752744688348
527 => 0.094360720831098
528 => 0.092518524734875
529 => 0.089424291358365
530 => 0.090143011199779
531 => 0.088039480269
601 => 0.084353123223959
602 => 0.087000729211327
603 => 0.087904738302432
604 => 0.088304000217326
605 => 0.084678891444495
606 => 0.083539803563131
607 => 0.082933362732966
608 => 0.088956335337959
609 => 0.089286287373353
610 => 0.087598206109764
611 => 0.09522849349162
612 => 0.093501524457418
613 => 0.095430971986307
614 => 0.090077794907436
615 => 0.090282293480858
616 => 0.087748013663251
617 => 0.089167041020472
618 => 0.088164118221775
619 => 0.08905239763311
620 => 0.089584828649751
621 => 0.092118692616977
622 => 0.095947860968024
623 => 0.09174021783719
624 => 0.089906887470526
625 => 0.091044275318963
626 => 0.094073289042568
627 => 0.09866239988619
628 => 0.095945553902303
629 => 0.097151244014916
630 => 0.097414633667102
701 => 0.095411332021689
702 => 0.098736264475336
703 => 0.10051812278895
704 => 0.10234594071509
705 => 0.10393298380606
706 => 0.10161587004081
707 => 0.10409551391484
708 => 0.10209735866844
709 => 0.10030480684693
710 => 0.10030752540811
711 => 0.099183031465467
712 => 0.097004182756247
713 => 0.096602369624731
714 => 0.098692652278285
715 => 0.10036886101593
716 => 0.10050692159606
717 => 0.10143495687994
718 => 0.10198415860141
719 => 0.10736708207539
720 => 0.10953213842651
721 => 0.11217952835023
722 => 0.11321083592424
723 => 0.11631470197778
724 => 0.11380807805587
725 => 0.11326575420296
726 => 0.10573679042391
727 => 0.10696965782095
728 => 0.10894359747762
729 => 0.10576933996181
730 => 0.10778267574223
731 => 0.10818015087356
801 => 0.10566147990606
802 => 0.10700681089515
803 => 0.10343401065097
804 => 0.096025738250011
805 => 0.098744512000285
806 => 0.10074644460984
807 => 0.097889439939496
808 => 0.10301051022973
809 => 0.10001888668652
810 => 0.099070685646583
811 => 0.095371415331693
812 => 0.097117328522349
813 => 0.099478701111779
814 => 0.09801964739054
815 => 0.10104740294013
816 => 0.10533551227126
817 => 0.10839147434195
818 => 0.10862607316371
819 => 0.10666129428581
820 => 0.10980986497669
821 => 0.1098327988768
822 => 0.1062811982752
823 => 0.10410586268211
824 => 0.10361162185842
825 => 0.10484633233763
826 => 0.10634549879952
827 => 0.10870926646867
828 => 0.11013764176548
829 => 0.11386208698782
830 => 0.11486981507677
831 => 0.11597700272247
901 => 0.11745654686114
902 => 0.11923311894694
903 => 0.11534608036351
904 => 0.11550051965277
905 => 0.11188096314359
906 => 0.10801294791661
907 => 0.11094828931898
908 => 0.11478585773048
909 => 0.11390551529674
910 => 0.11380645878918
911 => 0.11397304435891
912 => 0.11330929491318
913 => 0.1103071807698
914 => 0.10879953784123
915 => 0.11074478185982
916 => 0.11177859248285
917 => 0.11338194260141
918 => 0.11318429585668
919 => 0.11731435357486
920 => 0.11891916911768
921 => 0.1185085886279
922 => 0.11858414531919
923 => 0.12148958720349
924 => 0.12472103612852
925 => 0.12774771447406
926 => 0.130826581686
927 => 0.12711488709177
928 => 0.12523031748232
929 => 0.12717471226822
930 => 0.12614298902548
1001 => 0.13207157680726
1002 => 0.13248205936219
1003 => 0.13841021843959
1004 => 0.14403674731609
1005 => 0.1405028253385
1006 => 0.14383515459203
1007 => 0.14743934036851
1008 => 0.15439239948942
1009 => 0.15205085378907
1010 => 0.1502572664793
1011 => 0.14856233513811
1012 => 0.15208921819634
1013 => 0.15662649690742
1014 => 0.15760378328427
1015 => 0.15918736056689
1016 => 0.15752242268483
1017 => 0.15952765697688
1018 => 0.16660701517244
1019 => 0.16469411009677
1020 => 0.1619774773745
1021 => 0.1675659507611
1022 => 0.16958839755507
1023 => 0.18378298831876
1024 => 0.20170424550722
1025 => 0.19428472735388
1026 => 0.18967919300975
1027 => 0.19076160282536
1028 => 0.19730583927774
1029 => 0.19940764032256
1030 => 0.19369422054847
1031 => 0.19571229700167
1101 => 0.20683209667169
1102 => 0.21279751242878
1103 => 0.20469567656843
1104 => 0.18234303275321
1105 => 0.16173287432118
1106 => 0.16719961642488
1107 => 0.16657985752308
1108 => 0.17852669504527
1109 => 0.16464848794336
1110 => 0.16488216135831
1111 => 0.17707604682853
1112 => 0.1738229272412
1113 => 0.16855329013779
1114 => 0.16177134850377
1115 => 0.14923430213959
1116 => 0.13812989055344
1117 => 0.15990819886714
1118 => 0.15896907861137
1119 => 0.15760909331119
1120 => 0.16063559343096
1121 => 0.17533141892553
1122 => 0.17499263258213
1123 => 0.17283744671577
1124 => 0.17447213620047
1125 => 0.16826672116752
1126 => 0.16986599791618
1127 => 0.16172960956678
1128 => 0.16540759690631
1129 => 0.16854198386328
1130 => 0.16917125845029
1201 => 0.17058904622637
1202 => 0.15847420491053
1203 => 0.16391341298829
1204 => 0.1671084381491
1205 => 0.15267319823656
1206 => 0.16682309986886
1207 => 0.15826331247631
1208 => 0.15535799207159
1209 => 0.15926962324969
1210 => 0.1577452567754
1211 => 0.15643469599461
1212 => 0.15570338056063
1213 => 0.15857565078685
1214 => 0.15844165594769
1215 => 0.15374206437397
1216 => 0.14761163874591
1217 => 0.14966921081105
1218 => 0.14892167558994
1219 => 0.14621251151469
1220 => 0.14803816099569
1221 => 0.13999892462143
1222 => 0.12616783628264
1223 => 0.13530507689694
1224 => 0.13495330307269
1225 => 0.13477592275883
1226 => 0.14164230654569
1227 => 0.14098226217901
1228 => 0.13978427519032
1229 => 0.14619050954417
1230 => 0.143852147829
1231 => 0.15105842764785
]
'min_raw' => 0.06468900314279
'max_raw' => 0.21279751242878
'avg_raw' => 0.13874325778578
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.064689'
'max' => '$0.212797'
'avg' => '$0.138743'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.03524090109289
'max_diff' => 0.14066991066792
'year' => 2029
]
4 => [
'items' => [
101 => 0.15580494960949
102 => 0.15460107810612
103 => 0.15906520495298
104 => 0.14971661311572
105 => 0.15282184032365
106 => 0.15346182334755
107 => 0.14611145760666
108 => 0.14109025360031
109 => 0.140755396539
110 => 0.13204932075652
111 => 0.13670003616654
112 => 0.14079247326767
113 => 0.13883251348217
114 => 0.13821204876622
115 => 0.14138186843765
116 => 0.14162819057379
117 => 0.13601201976575
118 => 0.13717979951774
119 => 0.14204963521077
120 => 0.13705709215299
121 => 0.127357396519
122 => 0.12495173789298
123 => 0.12463077868719
124 => 0.11810644169825
125 => 0.12511249550548
126 => 0.12205416526805
127 => 0.13171539384366
128 => 0.12619695189548
129 => 0.12595906289266
130 => 0.12559945877418
131 => 0.11998369241083
201 => 0.12121318834383
202 => 0.12530022008265
203 => 0.12675851905077
204 => 0.1266064065209
205 => 0.12528019139746
206 => 0.12588732588965
207 => 0.12393153415062
208 => 0.12324090338128
209 => 0.12106108270029
210 => 0.11785734849007
211 => 0.11830284738165
212 => 0.11195541160855
213 => 0.10849699171545
214 => 0.10753974667028
215 => 0.10625967858986
216 => 0.1076843337661
217 => 0.11193743012052
218 => 0.10680729357236
219 => 0.098012034297778
220 => 0.098540644366573
221 => 0.099728274245417
222 => 0.097515133823149
223 => 0.095420582148269
224 => 0.097241624893229
225 => 0.093514957592735
226 => 0.10017862418432
227 => 0.099998390677726
228 => 0.10248219350469
301 => 0.10403536638516
302 => 0.10045580574137
303 => 0.099555555919623
304 => 0.10006837913217
305 => 0.091592553756668
306 => 0.10178953774522
307 => 0.10187772168619
308 => 0.10112263724557
309 => 0.10655221642291
310 => 0.11801032201532
311 => 0.11369932179022
312 => 0.1120299722024
313 => 0.10885653741565
314 => 0.11308495084908
315 => 0.11276027467091
316 => 0.11129196586348
317 => 0.11040392811534
318 => 0.11204016489501
319 => 0.11020118027091
320 => 0.1098708481005
321 => 0.10786939455279
322 => 0.10715496669659
323 => 0.10662603275405
324 => 0.10604372845529
325 => 0.10732814663716
326 => 0.10441748605776
327 => 0.10090751473457
328 => 0.10061569859746
329 => 0.10142142860875
330 => 0.1010649530583
331 => 0.10061399192967
401 => 0.099752984323165
402 => 0.099497541758831
403 => 0.1003276061698
404 => 0.099390511845578
405 => 0.10077324556714
406 => 0.10039721850502
407 => 0.098296761903123
408 => 0.095678815288522
409 => 0.095655510072323
410 => 0.095091477768501
411 => 0.094373097826758
412 => 0.094173260961272
413 => 0.09708826175255
414 => 0.10312222615186
415 => 0.10193761455975
416 => 0.10279361783893
417 => 0.10700430675493
418 => 0.10834275814149
419 => 0.10739275705026
420 => 0.10609233696308
421 => 0.10614954884717
422 => 0.110593477949
423 => 0.11087064035605
424 => 0.11157094034268
425 => 0.11247102373024
426 => 0.10754604514324
427 => 0.10591758279862
428 => 0.10514592699609
429 => 0.10276952579268
430 => 0.10533227075332
501 => 0.10383906901244
502 => 0.10404055294232
503 => 0.10390933626866
504 => 0.10398098944531
505 => 0.1001767615537
506 => 0.10156282225307
507 => 0.099258227509473
508 => 0.096172633850695
509 => 0.096162289858802
510 => 0.096917484535431
511 => 0.096468265191001
512 => 0.095259427485628
513 => 0.095431137176123
514 => 0.093926779605958
515 => 0.095613793422414
516 => 0.095662170942245
517 => 0.095012578730645
518 => 0.097611656277941
519 => 0.098676500469714
520 => 0.098248924960426
521 => 0.098646500632154
522 => 0.1019868405196
523 => 0.1025314616705
524 => 0.10277334641008
525 => 0.10244925290263
526 => 0.098707555913348
527 => 0.098873516085747
528 => 0.097655810456988
529 => 0.096626977519345
530 => 0.096668125441333
531 => 0.097197079310201
601 => 0.099507051878285
602 => 0.1043682529675
603 => 0.10455273199534
604 => 0.10477632595872
605 => 0.10386685694033
606 => 0.10359255238194
607 => 0.10395443089847
608 => 0.10578004243777
609 => 0.11047601096554
610 => 0.10881614205463
611 => 0.10746664279267
612 => 0.1086505174678
613 => 0.10846826924108
614 => 0.10692991079943
615 => 0.10688673420163
616 => 0.10393413250916
617 => 0.10284262289094
618 => 0.10193047575588
619 => 0.10093443489659
620 => 0.10034394848761
621 => 0.10125120398307
622 => 0.10145870404922
623 => 0.09947497405228
624 => 0.099204598983831
625 => 0.10082455572112
626 => 0.10011167315911
627 => 0.10084489055277
628 => 0.10101500327752
629 => 0.10098761121081
630 => 0.10024327994203
701 => 0.10071769449647
702 => 0.099595562645441
703 => 0.098375412796197
704 => 0.097597033210401
705 => 0.096917793784725
706 => 0.097294675295717
707 => 0.095951161524874
708 => 0.095521344429992
709 => 0.1005569735201
710 => 0.10427684687109
711 => 0.10422275843934
712 => 0.10389350902144
713 => 0.10340431117226
714 => 0.10574425456808
715 => 0.10492906507762
716 => 0.10552218354329
717 => 0.1056731570859
718 => 0.10613010852908
719 => 0.10629342939372
720 => 0.10579976030716
721 => 0.10414294655609
722 => 0.10001432421354
723 => 0.098092439368075
724 => 0.097458185357549
725 => 0.097481239286212
726 => 0.096845309016423
727 => 0.097032618981272
728 => 0.096780170254717
729 => 0.096302093440529
730 => 0.097265155399626
731 => 0.097376139318869
801 => 0.097151349149883
802 => 0.097204295372202
803 => 0.095343128782129
804 => 0.095484629235731
805 => 0.094696736729068
806 => 0.094549016382254
807 => 0.092557292735058
808 => 0.08902866558909
809 => 0.090983867560081
810 => 0.088622258522125
811 => 0.087727881395235
812 => 0.091961723609753
813 => 0.091536763279919
814 => 0.090809415921057
815 => 0.08973351758483
816 => 0.089334456426257
817 => 0.086909887154178
818 => 0.086766630667009
819 => 0.087968312667129
820 => 0.087413777771427
821 => 0.086635000759073
822 => 0.083814349363686
823 => 0.080643003309689
824 => 0.080738726312689
825 => 0.081747472487475
826 => 0.084680538038619
827 => 0.083534538585238
828 => 0.082703102832981
829 => 0.08254739990945
830 => 0.084496347983587
831 => 0.087254517825737
901 => 0.088548589405101
902 => 0.087266203771489
903 => 0.085793068204142
904 => 0.085882731140273
905 => 0.086479218484653
906 => 0.08654190087067
907 => 0.08558304105711
908 => 0.085852954478074
909 => 0.085442931310229
910 => 0.082926619886013
911 => 0.082881107791658
912 => 0.082263564387153
913 => 0.082244865418291
914 => 0.081194270033805
915 => 0.081047284477093
916 => 0.078961263574614
917 => 0.080334288849679
918 => 0.079413335582228
919 => 0.078025241777265
920 => 0.077785933882085
921 => 0.077778739997783
922 => 0.079204001963385
923 => 0.080317633833782
924 => 0.079429355958609
925 => 0.079227112304975
926 => 0.08138654541324
927 => 0.081111737866543
928 => 0.080873756303423
929 => 0.087007553968244
930 => 0.082152174490337
1001 => 0.080034951902598
1002 => 0.077414486900607
1003 => 0.078267723518787
1004 => 0.078447513010891
1005 => 0.072145767055421
1006 => 0.069589149506119
1007 => 0.068711814707298
1008 => 0.068206896126884
1009 => 0.068436993864347
1010 => 0.066135738208647
1011 => 0.067682220068533
1012 => 0.065689527190994
1013 => 0.065355445745291
1014 => 0.068918627457609
1015 => 0.069414423377072
1016 => 0.067299203952923
1017 => 0.068657517246146
1018 => 0.068164973964056
1019 => 0.065723686191004
1020 => 0.065630446954971
1021 => 0.064405494565868
1022 => 0.062488681274444
1023 => 0.061612646165297
1024 => 0.061156399474367
1025 => 0.061344655751115
1026 => 0.061249467616854
1027 => 0.060628300653065
1028 => 0.061285072180106
1029 => 0.059607292325249
1030 => 0.058939186868253
1031 => 0.058637419133257
1101 => 0.057148292942666
1102 => 0.05951815492932
1103 => 0.059985047595425
1104 => 0.060452860184313
1105 => 0.064524849381366
1106 => 0.064321424308403
1107 => 0.066160287895957
1108 => 0.066088833038398
1109 => 0.065564359355613
1110 => 0.063351691159673
1111 => 0.064233621265556
1112 => 0.061519177482017
1113 => 0.06355302332888
1114 => 0.062624861019805
1115 => 0.063239210718535
1116 => 0.06213455456654
1117 => 0.062745916891188
1118 => 0.060095765167135
1119 => 0.057621090775855
1120 => 0.058616971991155
1121 => 0.059699608765017
1122 => 0.062047041141471
1123 => 0.060648929783952
1124 => 0.061151743496559
1125 => 0.059467401729323
1126 => 0.055992123555075
1127 => 0.056011793252127
1128 => 0.05547719741807
1129 => 0.055015228565174
1130 => 0.060809519691811
1201 => 0.060088907996026
1202 => 0.05894070757012
1203 => 0.060477619467866
1204 => 0.060884003367702
1205 => 0.060895572546022
1206 => 0.06201686379318
1207 => 0.062615297132791
1208 => 0.062720773602656
1209 => 0.06448514960716
1210 => 0.065076545171187
1211 => 0.067512419801984
1212 => 0.062564524244946
1213 => 0.062462625592002
1214 => 0.060499246970081
1215 => 0.05925404120827
1216 => 0.060584507273912
1217 => 0.061763118581341
1218 => 0.060535869708769
1219 => 0.060696122502889
1220 => 0.059048641161377
1221 => 0.059637538219766
1222 => 0.06014477569945
1223 => 0.059864708977209
1224 => 0.059445435538632
1225 => 0.061666485894838
1226 => 0.061541165529374
1227 => 0.0636094586828
1228 => 0.065221841100958
1229 => 0.068111518642129
1230 => 0.06509598948562
1231 => 0.064986091617514
]
'min_raw' => 0.055015228565174
'max_raw' => 0.15906520495298
'avg_raw' => 0.10704021675907
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.055015'
'max' => '$0.159065'
'avg' => '$0.10704'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0096737745776159
'max_diff' => -0.053732307475804
'year' => 2030
]
5 => [
'items' => [
101 => 0.066060360906422
102 => 0.065076380706156
103 => 0.065698222226883
104 => 0.068011330359508
105 => 0.068060202689402
106 => 0.067241528195232
107 => 0.067191711777861
108 => 0.067348947169784
109 => 0.068269879771435
110 => 0.067948077623017
111 => 0.0683204752162
112 => 0.068786164108828
113 => 0.070712450816739
114 => 0.071176872020604
115 => 0.07004856927
116 => 0.070150442375309
117 => 0.06972842617398
118 => 0.069320763811344
119 => 0.070237129268243
120 => 0.071911805151935
121 => 0.071901387080179
122 => 0.072289879334148
123 => 0.072531906789927
124 => 0.071492947774797
125 => 0.070816623659529
126 => 0.071075969360944
127 => 0.071490668785322
128 => 0.070941487926798
129 => 0.067551689262667
130 => 0.068579937636187
131 => 0.068408786828057
201 => 0.06816504726463
202 => 0.069198958955414
203 => 0.069099235650594
204 => 0.066112135505717
205 => 0.066303359965369
206 => 0.066123764498463
207 => 0.066704074193811
208 => 0.065045042078194
209 => 0.065555349183206
210 => 0.065875409015637
211 => 0.066063926715755
212 => 0.066744981916377
213 => 0.066665067949294
214 => 0.066740014351979
215 => 0.067749839422595
216 => 0.072857188099653
217 => 0.073135169819416
218 => 0.071766286164267
219 => 0.072313128184463
220 => 0.071263311086891
221 => 0.071968060337654
222 => 0.072450231876337
223 => 0.070271391409287
224 => 0.070142374617385
225 => 0.069088224551211
226 => 0.069654665086662
227 => 0.068753417466244
228 => 0.068974552107991
301 => 0.068356240371495
302 => 0.069469078392549
303 => 0.070713404217634
304 => 0.071027770060966
305 => 0.070200808870164
306 => 0.069602034468625
307 => 0.068550783868073
308 => 0.070299037045439
309 => 0.070810279551551
310 => 0.070296351706197
311 => 0.070177263394883
312 => 0.069951591260132
313 => 0.070225140805092
314 => 0.070807495215068
315 => 0.070532867629721
316 => 0.070714263988158
317 => 0.070022968124908
318 => 0.071493291713462
319 => 0.073828519424727
320 => 0.073836027563667
321 => 0.073561398497975
322 => 0.073449026201259
323 => 0.073730812288545
324 => 0.073883669681427
325 => 0.074794914216978
326 => 0.075772715909207
327 => 0.080335689758541
328 => 0.079054424960683
329 => 0.083102966812341
330 => 0.086304837779638
331 => 0.087264938881882
401 => 0.086381691044065
402 => 0.083360147903005
403 => 0.083211896581472
404 => 0.087727357696825
405 => 0.086451533110517
406 => 0.086299777835616
407 => 0.08468535810525
408 => 0.08563968011567
409 => 0.085430955892932
410 => 0.085101474496201
411 => 0.086922254413434
412 => 0.09033059187635
413 => 0.089799370519569
414 => 0.08940283841938
415 => 0.087665350185116
416 => 0.08871170618419
417 => 0.088339118854548
418 => 0.089939990472449
419 => 0.088991669589653
420 => 0.086441867484467
421 => 0.086847931873976
422 => 0.08678655605839
423 => 0.088049665994013
424 => 0.087670511743655
425 => 0.086712520105799
426 => 0.090318942549436
427 => 0.090084761535922
428 => 0.090416776671852
429 => 0.090562940002597
430 => 0.092758105791747
501 => 0.093657394978091
502 => 0.093861549367665
503 => 0.09471580454117
504 => 0.093840294720739
505 => 0.097342958230385
506 => 0.099672025078217
507 => 0.10237735607466
508 => 0.10633057178488
509 => 0.10781701746121
510 => 0.10754850435444
511 => 0.1105457873885
512 => 0.11593183837486
513 => 0.10863717925188
514 => 0.11631847302119
515 => 0.11388666409863
516 => 0.1081208888896
517 => 0.10774964094016
518 => 0.11165429085374
519 => 0.12031442855343
520 => 0.11814516228213
521 => 0.12031797669593
522 => 0.1177832732664
523 => 0.11765740387696
524 => 0.12019487180793
525 => 0.1261238039388
526 => 0.12330719052612
527 => 0.1192688845371
528 => 0.12225070683639
529 => 0.11966757640612
530 => 0.11384706057403
531 => 0.11814350348509
601 => 0.11527059446612
602 => 0.1161090620501
603 => 0.12214748949502
604 => 0.12142092992915
605 => 0.12236116528499
606 => 0.12070167449218
607 => 0.11915144841401
608 => 0.11625783631781
609 => 0.11540118042947
610 => 0.11563792929776
611 => 0.11540106310849
612 => 0.11378211373434
613 => 0.11343250177113
614 => 0.11284979984893
615 => 0.11303040354011
616 => 0.11193475345092
617 => 0.11400247154208
618 => 0.11438625824047
619 => 0.11589097103384
620 => 0.11604719530774
621 => 0.12023779901903
622 => 0.11792968491509
623 => 0.119478167129
624 => 0.11933965630491
625 => 0.10824585072174
626 => 0.10977447924963
627 => 0.11215254552896
628 => 0.11108122989351
629 => 0.10956664023424
630 => 0.10834352787722
701 => 0.10649038758668
702 => 0.10909864695921
703 => 0.11252823067663
704 => 0.11613417521049
705 => 0.12046648129708
706 => 0.11949956101215
707 => 0.11605318576169
708 => 0.11620778763785
709 => 0.11716347560266
710 => 0.11592577285482
711 => 0.11556075015166
712 => 0.11711332708855
713 => 0.11712401883263
714 => 0.11569989223987
715 => 0.11411723614444
716 => 0.11411060475762
717 => 0.11382898639208
718 => 0.11783337254801
719 => 0.12003538004466
720 => 0.12028783665544
721 => 0.12001838770329
722 => 0.12012208791093
723 => 0.11884078826655
724 => 0.12176945929599
725 => 0.12445709744816
726 => 0.12373675301037
727 => 0.12265685429512
728 => 0.12179666295345
729 => 0.12353411926754
730 => 0.12345675307289
731 => 0.12443362327354
801 => 0.12438930679857
802 => 0.12406082209203
803 => 0.12373676474159
804 => 0.12502161550632
805 => 0.12465159912015
806 => 0.12428100799633
807 => 0.12353773076285
808 => 0.1236387544834
809 => 0.12255904222789
810 => 0.12205951793422
811 => 0.11454787108378
812 => 0.1125405135952
813 => 0.11317206912464
814 => 0.11337999360326
815 => 0.11250638905173
816 => 0.11375891356803
817 => 0.11356370894892
818 => 0.114323135931
819 => 0.11384867892308
820 => 0.11386815080418
821 => 0.11526342769958
822 => 0.11566848251824
823 => 0.11546246836828
824 => 0.11560675361716
825 => 0.11893174627871
826 => 0.11845903864952
827 => 0.11820792214292
828 => 0.11827748313141
829 => 0.11912709004508
830 => 0.11936493359409
831 => 0.11835717376397
901 => 0.11883243912564
902 => 0.12085605871552
903 => 0.12156421104502
904 => 0.1238242933484
905 => 0.12286417021617
906 => 0.12462651777854
907 => 0.13004337335672
908 => 0.13437073241047
909 => 0.13039111418897
910 => 0.13833775800532
911 => 0.1445253600947
912 => 0.14428786962052
913 => 0.14320891807442
914 => 0.13616449760157
915 => 0.12968211685606
916 => 0.13510490360611
917 => 0.13511872740474
918 => 0.13465290521368
919 => 0.13175972359179
920 => 0.13455222876457
921 => 0.1347738876843
922 => 0.13464981763312
923 => 0.13243162206703
924 => 0.12904484742869
925 => 0.12970661508623
926 => 0.13079060400897
927 => 0.12873838683444
928 => 0.12808257909896
929 => 0.12930185045175
930 => 0.13323059679574
1001 => 0.13248789005708
1002 => 0.13246849498262
1003 => 0.13564610936725
1004 => 0.13337162323996
1005 => 0.12971496209567
1006 => 0.1287916069313
1007 => 0.12551431814435
1008 => 0.1277779531828
1009 => 0.12785941737796
1010 => 0.12661964760119
1011 => 0.12981556258029
1012 => 0.12978611166113
1013 => 0.13282015728461
1014 => 0.13862011298121
1015 => 0.13690478068324
1016 => 0.13491003584832
1017 => 0.13512691992015
1018 => 0.13750560287263
1019 => 0.13606739685951
1020 => 0.13658458576936
1021 => 0.13750482004527
1022 => 0.13806002023206
1023 => 0.13504703515732
1024 => 0.13434456420866
1025 => 0.13290755518151
1026 => 0.13253266634937
1027 => 0.13370308021781
1028 => 0.1333947175148
1029 => 0.1278525706278
1030 => 0.12727338544189
1031 => 0.12729114822466
1101 => 0.12583475953594
1102 => 0.12361341721232
1103 => 0.12945097220935
1104 => 0.12898213484656
1105 => 0.12846457468317
1106 => 0.12852797285002
1107 => 0.13106185762114
1108 => 0.12959207648965
1109 => 0.13349973052012
1110 => 0.13269643432628
1111 => 0.13187253661619
1112 => 0.13175864885612
1113 => 0.13144151852939
1114 => 0.13035396064001
1115 => 0.1290406691365
1116 => 0.12817352033052
1117 => 0.11823329727825
1118 => 0.12007814485713
1119 => 0.12220047383349
1120 => 0.12293309329143
1121 => 0.1216798970129
1122 => 0.13040344446741
1123 => 0.13199732064954
1124 => 0.12716936572789
1125 => 0.12626625248615
1126 => 0.13046265242119
1127 => 0.12793171027133
1128 => 0.12907139336644
1129 => 0.12660802188814
1130 => 0.13161340255141
1201 => 0.13157526993706
1202 => 0.1296280638074
1203 => 0.1312738290943
1204 => 0.13098783687541
1205 => 0.12878944595077
1206 => 0.13168309546492
1207 => 0.13168453067898
1208 => 0.12981038711509
1209 => 0.12762179773525
1210 => 0.12723052964631
1211 => 0.12693576170076
1212 => 0.12899889852144
1213 => 0.1308487005436
1214 => 0.13429072350202
1215 => 0.13515612985422
1216 => 0.1385338684602
1217 => 0.13652258957944
1218 => 0.13741416345686
1219 => 0.13838209302162
1220 => 0.1388461540494
1221 => 0.13808999150752
1222 => 0.1433370098953
1223 => 0.14378001901171
1224 => 0.14392855613643
1225 => 0.14215929105809
1226 => 0.14373081254931
1227 => 0.14299554968689
1228 => 0.14490849939299
1229 => 0.14520847433268
1230 => 0.14495440623068
1231 => 0.14504962301132
]
'min_raw' => 0.065045042078194
'max_raw' => 0.14520847433268
'avg_raw' => 0.10512675820544
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.065045'
'max' => '$0.1452084'
'avg' => '$0.105126'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.010029813513019
'max_diff' => -0.013856730620296
'year' => 2031
]
6 => [
'items' => [
101 => 0.14057221845483
102 => 0.14034004140839
103 => 0.13717429090558
104 => 0.13846435763552
105 => 0.13605263971841
106 => 0.13681742031337
107 => 0.13715452831253
108 => 0.13697844222448
109 => 0.13853729607283
110 => 0.13721195184893
111 => 0.1337141505353
112 => 0.13021539624804
113 => 0.13017147223799
114 => 0.1292503119923
115 => 0.12858448185358
116 => 0.12871274435989
117 => 0.12916475816167
118 => 0.1285582099897
119 => 0.12868764779496
120 => 0.1308371778019
121 => 0.13126825071505
122 => 0.12980329652512
123 => 0.12392129406068
124 => 0.12247783590203
125 => 0.12351536500145
126 => 0.12301949291736
127 => 0.099286332062068
128 => 0.10486208616607
129 => 0.10154916241219
130 => 0.10307591009827
131 => 0.099694272823006
201 => 0.10130816737756
202 => 0.10101013998332
203 => 0.109975787584
204 => 0.10983580132856
205 => 0.10990280534113
206 => 0.10670452924308
207 => 0.11179946990993
208 => 0.11430942089055
209 => 0.11384489576422
210 => 0.11396180673072
211 => 0.11195288898174
212 => 0.10992225605621
213 => 0.10766997162964
214 => 0.11185443770345
215 => 0.11138919650726
216 => 0.11245629242282
217 => 0.1151702177835
218 => 0.11556985360206
219 => 0.11610696819491
220 => 0.11591445084779
221 => 0.12050099510448
222 => 0.119945534332
223 => 0.1212840349767
224 => 0.11853063759826
225 => 0.11541490710968
226 => 0.11600710561465
227 => 0.11595007213647
228 => 0.11522397049914
229 => 0.11456847840717
301 => 0.11347726875778
302 => 0.11693001755709
303 => 0.11678984226129
304 => 0.11905911736422
305 => 0.11865800094721
306 => 0.11597924734462
307 => 0.11607491955359
308 => 0.1167183611374
309 => 0.11894531980565
310 => 0.1196064327613
311 => 0.11930017889945
312 => 0.12002505907436
313 => 0.12059797480886
314 => 0.12009700846985
315 => 0.12718963538581
316 => 0.12424428219408
317 => 0.12567982684609
318 => 0.12602219578688
319 => 0.1251452249443
320 => 0.12533540851808
321 => 0.12562348481044
322 => 0.12737262764653
323 => 0.13196288456699
324 => 0.13399587811013
325 => 0.14011223949079
326 => 0.13382706629701
327 => 0.13345413013032
328 => 0.1345558715114
329 => 0.13814682312445
330 => 0.14105695212589
331 => 0.14202240980504
401 => 0.14215001097531
402 => 0.14396127376381
403 => 0.14499945581612
404 => 0.14374133882034
405 => 0.14267521639676
406 => 0.13885649820748
407 => 0.13929852523591
408 => 0.14234365312471
409 => 0.14664507562478
410 => 0.15033614361657
411 => 0.14904366025255
412 => 0.15890439596895
413 => 0.15988204763774
414 => 0.15974696778838
415 => 0.16197420378395
416 => 0.15755359390146
417 => 0.15566369753141
418 => 0.14290572416574
419 => 0.14649019429053
420 => 0.15170043212544
421 => 0.1510108376106
422 => 0.14722702362483
423 => 0.15033327325436
424 => 0.14930624998543
425 => 0.14849619412199
426 => 0.15220721706946
427 => 0.1481267948983
428 => 0.15165972679293
429 => 0.14712870509456
430 => 0.14904956420769
501 => 0.14795919167358
502 => 0.14866479633418
503 => 0.14453984590617
504 => 0.14676556902961
505 => 0.14444724850674
506 => 0.14444614932096
507 => 0.14439497226692
508 => 0.14712246608108
509 => 0.14721140955643
510 => 0.14519578750676
511 => 0.14490530487947
512 => 0.14597937140068
513 => 0.14472192080281
514 => 0.14531027402325
515 => 0.14473974142249
516 => 0.14461130251681
517 => 0.14358787946422
518 => 0.14314696067357
519 => 0.14331985629246
520 => 0.14272967441138
521 => 0.14237406848021
522 => 0.14432423329674
523 => 0.14328233890469
524 => 0.14416454803829
525 => 0.14315915938689
526 => 0.13967404429413
527 => 0.13766971774987
528 => 0.13108665841
529 => 0.13295360587253
530 => 0.13419139397168
531 => 0.13378230501229
601 => 0.13466118639346
602 => 0.13471514257229
603 => 0.13442940927614
604 => 0.13409856672389
605 => 0.1339375308662
606 => 0.13513776021523
607 => 0.13583453375021
608 => 0.1343156225669
609 => 0.13395976292847
610 => 0.13549546599618
611 => 0.13643224398034
612 => 0.14334888628529
613 => 0.14283647908287
614 => 0.14412252060609
615 => 0.14397773206649
616 => 0.1453257084653
617 => 0.14752908018003
618 => 0.14304900941157
619 => 0.14382659478778
620 => 0.14363594881061
621 => 0.14571737159938
622 => 0.14572386957413
623 => 0.14447595263748
624 => 0.14515246865398
625 => 0.14477485597282
626 => 0.14545725312509
627 => 0.14282963557229
628 => 0.14602979011782
629 => 0.14784407153173
630 => 0.14786926283093
701 => 0.14872921782209
702 => 0.14960298189835
703 => 0.15128009595392
704 => 0.1495562080976
705 => 0.14645510166117
706 => 0.14667899152937
707 => 0.14486081396034
708 => 0.14489137785376
709 => 0.14472822539537
710 => 0.14521785820454
711 => 0.14293708243946
712 => 0.14347237595277
713 => 0.14272296189946
714 => 0.14382496570799
715 => 0.14263939177776
716 => 0.14363585687534
717 => 0.14406589817812
718 => 0.14565275984348
719 => 0.14240501101955
720 => 0.13578263131431
721 => 0.13717473581694
722 => 0.1351157039101
723 => 0.13530627515236
724 => 0.13569125939093
725 => 0.13444339951473
726 => 0.13468145185453
727 => 0.1346729469498
728 => 0.13459965627559
729 => 0.13427503972716
730 => 0.1338042815085
731 => 0.13567963735989
801 => 0.13599829686274
802 => 0.13670663746404
803 => 0.13881417862146
804 => 0.13860358556059
805 => 0.13894707158029
806 => 0.13819724352788
807 => 0.13534105752515
808 => 0.13549616216663
809 => 0.13356200480207
810 => 0.13665717671165
811 => 0.13592419914919
812 => 0.13545164374637
813 => 0.13532270262651
814 => 0.13743546797082
815 => 0.13806764047538
816 => 0.13767371299406
817 => 0.13686575623717
818 => 0.13841727206137
819 => 0.13883239224273
820 => 0.13892532234229
821 => 0.14167431090912
822 => 0.13907896026572
823 => 0.13970368696115
824 => 0.14457762630282
825 => 0.14015763587758
826 => 0.14249900338338
827 => 0.14238440562786
828 => 0.14358217001627
829 => 0.14228615398789
830 => 0.14230221965982
831 => 0.14336575329314
901 => 0.14187221211445
902 => 0.14150239031488
903 => 0.1409914841475
904 => 0.14210702907285
905 => 0.14277574780384
906 => 0.14816512965583
907 => 0.15164691611788
908 => 0.151495762585
909 => 0.15287702292794
910 => 0.15225475249255
911 => 0.15024527711004
912 => 0.15367520655857
913 => 0.15258983336671
914 => 0.15267931021392
915 => 0.1526759798812
916 => 0.15339765816881
917 => 0.15288628296119
918 => 0.15187830993539
919 => 0.15254744947005
920 => 0.15453455466623
921 => 0.16070259016699
922 => 0.16415430454882
923 => 0.16049479262711
924 => 0.16301907494789
925 => 0.16150540504918
926 => 0.1612303262008
927 => 0.16281576204125
928 => 0.16440397297726
929 => 0.16430281080666
930 => 0.16314985122265
1001 => 0.16249857360891
1002 => 0.16743026589417
1003 => 0.17106385276076
1004 => 0.17081606649633
1005 => 0.1719097144831
1006 => 0.1751206987975
1007 => 0.17541427096184
1008 => 0.17537728761682
1009 => 0.1746496383764
1010 => 0.17781126943294
1011 => 0.1804487576839
1012 => 0.17448120860105
1013 => 0.17675357317085
1014 => 0.17777371083724
1015 => 0.17927157559272
1016 => 0.18179872450649
1017 => 0.18454387851998
1018 => 0.18493207339657
1019 => 0.1846566305548
1020 => 0.18284612768919
1021 => 0.18584990796726
1022 => 0.18760945200683
1023 => 0.18865722021595
1024 => 0.19131418606227
1025 => 0.17778001086018
1026 => 0.16819984895998
1027 => 0.16670376834005
1028 => 0.16974610711114
1029 => 0.17054834758288
1030 => 0.17022496545465
1031 => 0.15944162224577
1101 => 0.16664699626972
1102 => 0.17439937287444
1103 => 0.17469717323237
1104 => 0.17857817505525
1105 => 0.17984198833641
1106 => 0.18296670349836
1107 => 0.18277125171421
1108 => 0.18353207013107
1109 => 0.18335717115257
1110 => 0.18914504800368
1111 => 0.19552993567848
1112 => 0.195308847321
1113 => 0.19439094417519
1114 => 0.19575418687247
1115 => 0.202344075199
1116 => 0.20173738388271
1117 => 0.20232673281865
1118 => 0.21009658254547
1119 => 0.22019849243857
1120 => 0.21550514107805
1121 => 0.2256883630549
1122 => 0.23209816149993
1123 => 0.24318324512506
1124 => 0.24179533806001
1125 => 0.24611067976917
1126 => 0.23931069474861
1127 => 0.2236965546377
1128 => 0.22122555719662
1129 => 0.22617255664928
1130 => 0.23833427208251
1201 => 0.22578954095042
1202 => 0.22832732372015
1203 => 0.22759644211174
1204 => 0.22755749653687
1205 => 0.22904389072638
1206 => 0.22688779842939
1207 => 0.21810349053789
1208 => 0.22212928707831
1209 => 0.22057473369943
1210 => 0.22229962657293
1211 => 0.23160816201131
1212 => 0.22749263660624
1213 => 0.22315726491012
1214 => 0.22859478311305
1215 => 0.23551861231934
1216 => 0.23508533153093
1217 => 0.23424458570409
1218 => 0.23898382590997
1219 => 0.24681166226299
1220 => 0.24892749497441
1221 => 0.25048935942569
1222 => 0.25070471414561
1223 => 0.25292300160295
1224 => 0.24099471086441
1225 => 0.2599252146067
1226 => 0.26319398965839
1227 => 0.26257959542552
1228 => 0.26621270132438
1229 => 0.26514374940593
1230 => 0.26359500578952
1231 => 0.26935425142301
]
'min_raw' => 0.099286332062068
'max_raw' => 0.26935425142301
'avg_raw' => 0.18432029174254
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.099286'
'max' => '$0.269354'
'avg' => '$0.18432'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.034241289983874
'max_diff' => 0.12414577709033
'year' => 2032
]
7 => [
'items' => [
101 => 0.26275174105137
102 => 0.25338030881178
103 => 0.24823895573923
104 => 0.25500950420629
105 => 0.25914404189554
106 => 0.26187670830215
107 => 0.26270361150567
108 => 0.24192067011895
109 => 0.23071981738628
110 => 0.23789943556989
111 => 0.24665906526466
112 => 0.24094605067917
113 => 0.24116999003475
114 => 0.23302473258967
115 => 0.24737973981175
116 => 0.24528833600411
117 => 0.2561385426578
118 => 0.25354905376154
119 => 0.26239697608503
120 => 0.26006702161109
121 => 0.26973853236642
122 => 0.27359675985242
123 => 0.28007532428657
124 => 0.28484098265684
125 => 0.28763946840438
126 => 0.28747145781695
127 => 0.29856045254876
128 => 0.29202165977538
129 => 0.28380739497688
130 => 0.28365882484235
131 => 0.28791310897852
201 => 0.29682892142209
202 => 0.29914066186891
203 => 0.30043260940525
204 => 0.29845394678033
205 => 0.29135655586432
206 => 0.28829193845138
207 => 0.29090308127772
208 => 0.28770987797917
209 => 0.29322224272708
210 => 0.30079189690353
211 => 0.29922879324975
212 => 0.30445401441074
213 => 0.30986156860307
214 => 0.31759461396656
215 => 0.31961631837841
216 => 0.32295811889268
217 => 0.32639792934614
218 => 0.3275027037583
219 => 0.32961206090248
220 => 0.32960094354913
221 => 0.33595763327923
222 => 0.34296925890183
223 => 0.34561598525486
224 => 0.3517019865623
225 => 0.34127992260223
226 => 0.34918517783598
227 => 0.3563159159382
228 => 0.34781435600691
301 => 0.35953177576278
302 => 0.35998673661966
303 => 0.36685610540408
304 => 0.35989268412924
305 => 0.35575782680428
306 => 0.36769500497038
307 => 0.37347102946737
308 => 0.37173124388203
309 => 0.35849138967379
310 => 0.35078522664053
311 => 0.33061671157466
312 => 0.35450718888519
313 => 0.36614354348838
314 => 0.3584612543265
315 => 0.36233575412768
316 => 0.38347376873212
317 => 0.3915217561084
318 => 0.38984783099381
319 => 0.39013069678303
320 => 0.39447324468996
321 => 0.41373049359414
322 => 0.40219110367122
323 => 0.4110125348946
324 => 0.41569139020744
325 => 0.42003737177745
326 => 0.40936501460309
327 => 0.39548043472731
328 => 0.39108260544564
329 => 0.35769740207072
330 => 0.35595955725047
331 => 0.35498405229077
401 => 0.3488336315078
402 => 0.34400108551443
403 => 0.34015806551957
404 => 0.33007283343013
405 => 0.33347630320522
406 => 0.31740254820619
407 => 0.32768596703567
408 => 0.30203186594284
409 => 0.32339736364868
410 => 0.31176909461737
411 => 0.3195771645306
412 => 0.31954992291024
413 => 0.30517279064915
414 => 0.29688036080405
415 => 0.30216461984755
416 => 0.30782976500718
417 => 0.30874891574949
418 => 0.31609392432437
419 => 0.31814375833719
420 => 0.31193266558075
421 => 0.30150024171937
422 => 0.30392345584412
423 => 0.29683125444716
424 => 0.28440244429657
425 => 0.29332903273293
426 => 0.29637696249949
427 => 0.29772310192113
428 => 0.28550079459652
429 => 0.28166028027593
430 => 0.27961562267668
501 => 0.29992249532493
502 => 0.30103495164877
503 => 0.29534346781051
504 => 0.32106951444809
505 => 0.31524691777616
506 => 0.32175218482953
507 => 0.30370357456123
508 => 0.30439305577915
509 => 0.29584855443633
510 => 0.30063290424452
511 => 0.29725148000688
512 => 0.30024637605989
513 => 0.30204150440564
514 => 0.31058460367987
515 => 0.32349491211942
516 => 0.30930854953556
517 => 0.30312734820531
518 => 0.3069621307462
519 => 0.31717466199432
520 => 0.33264716960508
521 => 0.32348713368627
522 => 0.32755220207954
523 => 0.32844023868116
524 => 0.3216859673176
525 => 0.33289620922444
526 => 0.33890386893416
527 => 0.34506648468632
528 => 0.35041731127135
529 => 0.34260500043608
530 => 0.35096529288059
531 => 0.3442283729606
601 => 0.33818465934239
602 => 0.33819382516121
603 => 0.33440251532394
604 => 0.32705637477845
605 => 0.32570163375185
606 => 0.33274916765718
607 => 0.33840062244531
608 => 0.3388661033303
609 => 0.34199503908325
610 => 0.34384671103123
611 => 0.36199561334748
612 => 0.36929525199466
613 => 0.37822111195736
614 => 0.38169823744673
615 => 0.39216313855126
616 => 0.38371188099164
617 => 0.38188339825771
618 => 0.35649897122119
619 => 0.36065566972636
620 => 0.36731094509488
621 => 0.35660871426072
622 => 0.36339681641103
623 => 0.36473693156716
624 => 0.35624505655224
625 => 0.36078093390997
626 => 0.34873498844175
627 => 0.32375748081286
628 => 0.33292401633063
629 => 0.33967367189421
630 => 0.33004108117846
701 => 0.34730712720369
702 => 0.33722065955929
703 => 0.33402373355184
704 => 0.32155138541038
705 => 0.32743785362845
706 => 0.33539938617948
707 => 0.33048008469045
708 => 0.34068837391703
709 => 0.35514603391317
710 => 0.36544942339496
711 => 0.36624038970167
712 => 0.35961600053837
713 => 0.37023162644885
714 => 0.37030894969427
715 => 0.35833448030114
716 => 0.35100018447197
717 => 0.34933381702809
718 => 0.35349672961348
719 => 0.35855127400819
720 => 0.36652088173774
721 => 0.37133674877689
722 => 0.38389397587648
723 => 0.38729160148572
724 => 0.39102456193455
725 => 0.39601294829655
726 => 0.40200278512014
727 => 0.38889736315172
728 => 0.38941806599809
729 => 0.37721447851801
730 => 0.36417319512407
731 => 0.37406990360114
801 => 0.38700853343096
802 => 0.38404039745209
803 => 0.38370642152095
804 => 0.38426807639992
805 => 0.38203019880211
806 => 0.37190836136681
807 => 0.36682523797286
808 => 0.37338376399414
809 => 0.37686932868804
810 => 0.38227513555509
811 => 0.38160875575599
812 => 0.39553353370425
813 => 0.40094428135151
814 => 0.39955998056439
815 => 0.39981472522428
816 => 0.40961062538866
817 => 0.42050568105197
818 => 0.43071033840988
819 => 0.44109095417458
820 => 0.42857671670791
821 => 0.4222227586932
822 => 0.42877842146718
823 => 0.42529989452167
824 => 0.4452885421487
825 => 0.44667251274164
826 => 0.46665971496194
827 => 0.48562994990077
828 => 0.47371508522275
829 => 0.48495026595683
830 => 0.49710202993846
831 => 0.52054475421167
901 => 0.51265006940144
902 => 0.50660286456228
903 => 0.50088828520916
904 => 0.51277941767908
905 => 0.52807716963616
906 => 0.53137215888767
907 => 0.53671130025788
908 => 0.53109784594624
909 => 0.5378586333629
910 => 0.56172718378421
911 => 0.55527769076685
912 => 0.54611837387446
913 => 0.56496030207213
914 => 0.57177912264073
915 => 0.6196371764352
916 => 0.68005994626832
917 => 0.65504452280011
918 => 0.63951664221072
919 => 0.64316606247548
920 => 0.6652304125787
921 => 0.67231678154438
922 => 0.65305358787778
923 => 0.65985767353734
924 => 0.69734885448446
925 => 0.7174616702015
926 => 0.69014576494623
927 => 0.61478226571145
928 => 0.54529367760255
929 => 0.56372518028094
930 => 0.56163561987333
1001 => 0.60191521668094
1002 => 0.55512387249137
1003 => 0.55591171872443
1004 => 0.59702425493719
1005 => 0.58605613512294
1006 => 0.56828918571449
1007 => 0.54542339599532
1008 => 0.50315386886988
1009 => 0.46571456992191
1010 => 0.53914165691449
1011 => 0.53597534740487
1012 => 0.53139006201417
1013 => 0.54159411847148
1014 => 0.59114212015617
1015 => 0.58999987834611
1016 => 0.58273351872738
1017 => 0.58824498845543
1018 => 0.5673229984236
1019 => 0.57271507163966
1020 => 0.54528267025517
1021 => 0.55768326135924
1022 => 0.5682510658206
1023 => 0.57037270902524
1024 => 0.57515287949907
1025 => 0.53430684617152
1026 => 0.55264551595906
1027 => 0.56341776635825
1028 => 0.51474834715687
1029 => 0.56245572842475
1030 => 0.53359580760551
1031 => 0.523800317018
1101 => 0.53698865463633
1102 => 0.53184914664039
1103 => 0.52743049946751
1104 => 0.52496481842305
1105 => 0.53464887802625
1106 => 0.53419710507081
1107 => 0.518352103965
1108 => 0.49768294594735
1109 => 0.50462019382006
1110 => 0.50209982663086
1111 => 0.49296569080335
1112 => 0.49912099549132
1113 => 0.47201614877392
1114 => 0.42538366878396
1115 => 0.45619051345682
1116 => 0.45500448344831
1117 => 0.45440643333584
1118 => 0.47755692566885
1119 => 0.47533154000376
1120 => 0.47129244323059
1121 => 0.49289150962362
1122 => 0.48500755984172
1123 => 0.50930403537733
1124 => 0.5253072655626
1125 => 0.52124832873735
1126 => 0.53629944407692
1127 => 0.50478001399977
1128 => 0.51524950433136
1129 => 0.51740725177861
1130 => 0.49262498049706
1201 => 0.47569564062038
1202 => 0.47456664665921
1203 => 0.44521350431978
1204 => 0.46089371602722
1205 => 0.47469165343851
1206 => 0.4680835121817
1207 => 0.4659915720724
1208 => 0.47667884040437
1209 => 0.47750933268403
1210 => 0.45857402069621
1211 => 0.46251127166182
1212 => 0.47893026270194
1213 => 0.4620975552144
1214 => 0.42939435417328
1215 => 0.42128350815795
1216 => 0.42020137178695
1217 => 0.39820411411407
1218 => 0.42182551367221
1219 => 0.41151413975093
1220 => 0.44408764641902
1221 => 0.42548183410543
1222 => 0.42467977472356
1223 => 0.42346734433133
1224 => 0.40453339595701
1225 => 0.40867872733579
1226 => 0.42245844019066
1227 => 0.42737519697686
1228 => 0.42686233896226
1229 => 0.42239091208018
1230 => 0.42443790840938
1231 => 0.41784382001221
]
'min_raw' => 0.23071981738628
'max_raw' => 0.7174616702015
'avg_raw' => 0.47409074379389
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.230719'
'max' => '$0.717461'
'avg' => '$0.47409'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.13143348532422
'max_diff' => 0.4481074187785
'year' => 2033
]
8 => [
'items' => [
101 => 0.41551531015509
102 => 0.40816589253892
103 => 0.39736427897159
104 => 0.39886630958827
105 => 0.37746548671545
106 => 0.3658051825867
107 => 0.3625777640842
108 => 0.35826192517955
109 => 0.36306524957248
110 => 0.37740486087312
111 => 0.36010824732631
112 => 0.33045441661667
113 => 0.33223666236999
114 => 0.33624083942418
115 => 0.32877908197398
116 => 0.32171715476519
117 => 0.32785692752096
118 => 0.31529220852975
119 => 0.33775922568562
120 => 0.33715155583464
121 => 0.34552587047932
122 => 0.35076250128488
123 => 0.33869376265743
124 => 0.33565850752996
125 => 0.33738752679522
126 => 0.3088106897785
127 => 0.34319053322659
128 => 0.34348785154038
129 => 0.3409420316305
130 => 0.35924823690802
131 => 0.39788003989221
201 => 0.38334520164889
202 => 0.37771687296326
203 => 0.3670174160176
204 => 0.3812738071268
205 => 0.38017913872396
206 => 0.37522863306565
207 => 0.37223455179699
208 => 0.37775123833804
209 => 0.37155097328408
210 => 0.3704372353085
211 => 0.36368919493535
212 => 0.36128045153841
213 => 0.35949711382216
214 => 0.3575338342237
215 => 0.3618643397991
216 => 0.3520508444398
217 => 0.3402167310653
218 => 0.33923285258509
219 => 0.34194942757243
220 => 0.34074754536575
221 => 0.33922709843548
222 => 0.33632415117651
223 => 0.33546290873643
224 => 0.33826152885126
225 => 0.3351020499113
226 => 0.33976403319294
227 => 0.33849623169963
228 => 0.33141439561714
301 => 0.32258780582681
302 => 0.32250923066328
303 => 0.32060755637147
304 => 0.31818548824219
305 => 0.31751172429804
306 => 0.32733985298469
307 => 0.34768378523492
308 => 0.34368978454516
309 => 0.34657585936516
310 => 0.36077249102636
311 => 0.36528517332384
312 => 0.36208217831782
313 => 0.35769772120146
314 => 0.35789061506308
315 => 0.37287363229512
316 => 0.37380810470134
317 => 0.37616921499964
318 => 0.37920390898263
319 => 0.36259899982552
320 => 0.35710852533504
321 => 0.35450683392152
322 => 0.34649463134919
323 => 0.35513510490912
324 => 0.35010067098771
325 => 0.35077998812446
326 => 0.35033758194798
327 => 0.35057916563571
328 => 0.33775294569644
329 => 0.34242614611604
330 => 0.33465604403633
331 => 0.32425274958649
401 => 0.32421787409563
402 => 0.32676406567389
403 => 0.32524949129066
404 => 0.32117381056863
405 => 0.32175274177853
406 => 0.31668069519982
407 => 0.32236858006555
408 => 0.32253168825127
409 => 0.32034154275678
410 => 0.32910451416929
411 => 0.3326947107069
412 => 0.33125311002497
413 => 0.33259356416004
414 => 0.34385575330565
415 => 0.34569198154015
416 => 0.34650751282748
417 => 0.34541480893964
418 => 0.33279941630333
419 => 0.33335896261154
420 => 0.32925338306669
421 => 0.32578460098661
422 => 0.32592333407844
423 => 0.32770673897771
424 => 0.33549497276814
425 => 0.35188485163864
426 => 0.35250683556093
427 => 0.3532606982193
428 => 0.3501943599267
429 => 0.34926952295675
430 => 0.35048962164079
501 => 0.35664479840566
502 => 0.37247758415909
503 => 0.36688122023762
504 => 0.36233128925688
505 => 0.36632280537958
506 => 0.36570834275902
507 => 0.36052165986824
508 => 0.36037608695428
509 => 0.35042118420403
510 => 0.34674108331944
511 => 0.34366571556949
512 => 0.34030749427106
513 => 0.33831662811675
514 => 0.34137550336225
515 => 0.34207510432245
516 => 0.33538682013816
517 => 0.33447523171791
518 => 0.33993702895943
519 => 0.33753349562976
520 => 0.34000558926409
521 => 0.34057913619248
522 => 0.3404867819271
523 => 0.33797721708688
524 => 0.33957673887973
525 => 0.33579339299923
526 => 0.33167957259437
527 => 0.32905521147613
528 => 0.32676510832948
529 => 0.32803579065682
530 => 0.32350604017728
531 => 0.32205688183302
601 => 0.33903485688669
602 => 0.35157666960284
603 => 0.35139430667884
604 => 0.35028421927895
605 => 0.34863485457573
606 => 0.35652413710436
607 => 0.35377566882257
608 => 0.35577540913978
609 => 0.35628442697935
610 => 0.35782507067336
611 => 0.35837571837116
612 => 0.35671127857897
613 => 0.35112521534219
614 => 0.33720527686307
615 => 0.33072550792488
616 => 0.32858707624619
617 => 0.32866480417625
618 => 0.32652072087242
619 => 0.32715224949648
620 => 0.32630110098949
621 => 0.3246892316322
622 => 0.32793626226613
623 => 0.32831045229851
624 => 0.32755255654942
625 => 0.32773106843456
626 => 0.32145601533363
627 => 0.32193309399219
628 => 0.31927665939708
629 => 0.31877860993429
630 => 0.31206337460006
701 => 0.30016636181656
702 => 0.30675846176959
703 => 0.29879613201585
704 => 0.29578067708912
705 => 0.31005537171279
706 => 0.30862258829097
707 => 0.3061702858888
708 => 0.30254281953139
709 => 0.3011973569737
710 => 0.29302275239486
711 => 0.29253975314652
712 => 0.29659130790869
713 => 0.29472165479144
714 => 0.29209595372181
715 => 0.28258593061067
716 => 0.27189351597331
717 => 0.27221625276109
718 => 0.27561731091779
719 => 0.28550634620357
720 => 0.28164252903537
721 => 0.27883928534764
722 => 0.27831432207013
723 => 0.28488533657329
724 => 0.29418469876537
725 => 0.29854775144439
726 => 0.29422409874736
727 => 0.289257319331
728 => 0.28955962418024
729 => 0.29157072290723
730 => 0.29178206094803
731 => 0.28854919814116
801 => 0.28945923008469
802 => 0.2880768083474
803 => 0.2795928886974
804 => 0.27943944149373
805 => 0.27735735078994
806 => 0.2772943059109
807 => 0.27375215022188
808 => 0.27325657815522
809 => 0.26622341304118
810 => 0.27085266361763
811 => 0.26774760537751
812 => 0.26306755020047
813 => 0.26226070692393
814 => 0.26223645224074
815 => 0.26704182246638
816 => 0.27079651006872
817 => 0.26780161919499
818 => 0.26711974059656
819 => 0.27440042008788
820 => 0.27347388725775
821 => 0.27267151580234
822 => 0.29335204287736
823 => 0.27698179197583
824 => 0.26984342820151
825 => 0.26100834749227
826 => 0.26388509432154
827 => 0.26449126714668
828 => 0.24324449068395
829 => 0.23462467611915
830 => 0.23166668059136
831 => 0.22996431234521
901 => 0.23074010293197
902 => 0.22298125882024
903 => 0.22819533038276
904 => 0.22147682722077
905 => 0.22035044830176
906 => 0.23236396421824
907 => 0.23403557477608
908 => 0.22690396480765
909 => 0.23148361291016
910 => 0.22982296884632
911 => 0.22159199667421
912 => 0.22127763408016
913 => 0.21714762157686
914 => 0.21068495173719
915 => 0.20773133820388
916 => 0.20619307063129
917 => 0.20682778981198
918 => 0.20650685637149
919 => 0.20441254858459
920 => 0.20662689964233
921 => 0.20097014772283
922 => 0.19871758352893
923 => 0.19770015254165
924 => 0.1926794596226
925 => 0.20066961476908
926 => 0.20224377599026
927 => 0.20382103879533
928 => 0.2175500346704
929 => 0.21686417283422
930 => 0.22306402980501
1001 => 0.22282311476393
1002 => 0.22105481512484
1003 => 0.21359464981867
1004 => 0.21656813874505
1005 => 0.20741620201243
1006 => 0.21427345528371
1007 => 0.21114409125644
1008 => 0.21321541415824
1009 => 0.20949098881716
1010 => 0.21155223957866
1011 => 0.20261706801333
1012 => 0.19427353052688
1013 => 0.19763121357447
1014 => 0.20128139904484
1015 => 0.20919593119454
1016 => 0.20448210113965
1017 => 0.20617737267704
1018 => 0.20049849681182
1019 => 0.18878135381116
1020 => 0.18884767156807
1021 => 0.18704524438926
1022 => 0.18548768414808
1023 => 0.20502354122603
1024 => 0.20259394858219
1025 => 0.19872271068145
1026 => 0.20390451644846
1027 => 0.20527466813958
1028 => 0.20531367443202
1029 => 0.20909418615787
1030 => 0.21111184594365
1031 => 0.21146746722593
1101 => 0.21741618410991
1102 => 0.21941011554395
1103 => 0.22762283692902
1104 => 0.21094066160743
1105 => 0.21059710318469
1106 => 0.20397743508216
1107 => 0.19977913691873
1108 => 0.20426489614921
1109 => 0.20823866646023
1110 => 0.20410091120257
1111 => 0.20464121468644
1112 => 0.19908661632006
1113 => 0.20107212386789
1114 => 0.20278231044484
1115 => 0.20183804593717
1116 => 0.20042443626627
1117 => 0.207912862611
1118 => 0.20749033624925
1119 => 0.21446373101964
1120 => 0.21989999091541
1121 => 0.22964274049631
1122 => 0.21947567340762
1123 => 0.21910514507247
1124 => 0.22272711898312
1125 => 0.21940956103862
1126 => 0.22150614314133
1127 => 0.22930494870653
1128 => 0.22946972517893
1129 => 0.2267095069638
1130 => 0.22654154743457
1201 => 0.22707167753626
1202 => 0.23017666610019
1203 => 0.22909168768929
1204 => 0.23034725217467
1205 => 0.23191735478953
1206 => 0.2384119649143
1207 => 0.23997779342798
1208 => 0.23617364192873
1209 => 0.23651711421584
1210 => 0.23509425712883
1211 => 0.23371979501112
1212 => 0.23680938512765
1213 => 0.24245567179165
1214 => 0.24242054653536
1215 => 0.24373037529328
1216 => 0.24454638775826
1217 => 0.24104346490094
1218 => 0.23876319092688
1219 => 0.23963759306614
1220 => 0.24103578112881
1221 => 0.23918417952172
1222 => 0.22775523665742
1223 => 0.23122204783875
1224 => 0.23064500093977
1225 => 0.22982321598432
1226 => 0.23330912143521
1227 => 0.23297289735055
1228 => 0.22290168065942
1229 => 0.22354640727601
1230 => 0.22294088862038
1231 => 0.22489744327417
]
'min_raw' => 0.18548768414808
'max_raw' => 0.41551531015509
'avg_raw' => 0.30050149715159
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.185487'
'max' => '$0.415515'
'avg' => '$0.3005014'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.045232133238199
'max_diff' => -0.30194636004641
'year' => 2034
]
9 => [
'items' => [
101 => 0.21930390066645
102 => 0.2210244366995
103 => 0.22210354077041
104 => 0.22273914135824
105 => 0.22503536651689
106 => 0.22476593099746
107 => 0.2250186180267
108 => 0.22842331375602
109 => 0.24564309640441
110 => 0.24658033118066
111 => 0.24196504436492
112 => 0.2438087604153
113 => 0.24026922877495
114 => 0.24264534007792
115 => 0.24427101508473
116 => 0.23692490232828
117 => 0.23648991320672
118 => 0.23293577266021
119 => 0.2348455664731
120 => 0.23180694719776
121 => 0.23255251808154
122 => 0.23046783689279
123 => 0.23421984797665
124 => 0.23841517937198
125 => 0.23947508576109
126 => 0.23668692836972
127 => 0.23466811866983
128 => 0.2311237538741
129 => 0.23701811152073
130 => 0.2387418013239
131 => 0.23700905771199
201 => 0.23660754315591
202 => 0.23584667379767
203 => 0.23676896518713
204 => 0.23873241373905
205 => 0.23780648766116
206 => 0.23841807814832
207 => 0.23608732588064
208 => 0.24104462451417
209 => 0.24891800778309
210 => 0.24894332199773
211 => 0.24801739092876
212 => 0.2476385198848
213 => 0.24858858135176
214 => 0.24910395072402
215 => 0.25217627529669
216 => 0.25547300196998
217 => 0.27085738687967
218 => 0.26653751315864
219 => 0.28018745467167
220 => 0.2909827861854
221 => 0.29421983408374
222 => 0.29124190233214
223 => 0.28105455867465
224 => 0.28055471899353
225 => 0.29577891140337
226 => 0.2914773797354
227 => 0.29096572623086
228 => 0.28552259739474
301 => 0.28874016068151
302 => 0.28803643239189
303 => 0.28692556285915
304 => 0.2930644494729
305 => 0.30455589719164
306 => 0.30276484729856
307 => 0.30142791163779
308 => 0.29556984874841
309 => 0.29909771105353
310 => 0.29784150685843
311 => 0.30323895728747
312 => 0.30004162722147
313 => 0.29144479140234
314 => 0.29281386584208
315 => 0.29260693299471
316 => 0.29686559633018
317 => 0.2955872513034
318 => 0.29235731561152
319 => 0.30451662067262
320 => 0.30372706303556
321 => 0.30484647524691
322 => 0.30533927512131
323 => 0.31274042984101
324 => 0.31577244611914
325 => 0.31646076689719
326 => 0.31934094785685
327 => 0.31638910537113
328 => 0.32819857994205
329 => 0.33605119142978
330 => 0.34517240376446
331 => 0.35850094653617
401 => 0.36351260191425
402 => 0.36260729122779
403 => 0.37271284024075
404 => 0.39087228718331
405 => 0.36627783465334
406 => 0.39217585288739
407 => 0.38397683932149
408 => 0.36453712565069
409 => 0.36328543726946
410 => 0.37645023706704
411 => 0.40564849595305
412 => 0.39833466326602
413 => 0.40566045876322
414 => 0.3971145291832
415 => 0.3966901517488
416 => 0.40524540203839
417 => 0.42523521066244
418 => 0.41573880189192
419 => 0.40212337130443
420 => 0.41217679337067
421 => 0.4034675887766
422 => 0.38384331327329
423 => 0.398329070516
424 => 0.38864285717841
425 => 0.39146980917774
426 => 0.41182878889785
427 => 0.40937914259475
428 => 0.41254921174211
429 => 0.40695412267218
430 => 0.40172742721631
501 => 0.39197141200841
502 => 0.38908313687109
503 => 0.3898813522098
504 => 0.38908274131521
505 => 0.38362434046881
506 => 0.38244559932573
507 => 0.38048097911209
508 => 0.38108989706625
509 => 0.37739583629469
510 => 0.38436729220252
511 => 0.38566125585127
512 => 0.39073450008981
513 => 0.3912612211365
514 => 0.40539013412773
515 => 0.3976081662789
516 => 0.40282898217467
517 => 0.40236198326073
518 => 0.36495844319231
519 => 0.37011232099951
520 => 0.37813013749156
521 => 0.37451812202978
522 => 0.36941157724828
523 => 0.36528776854161
524 => 0.35903977666991
525 => 0.36783370524727
526 => 0.37939678619645
527 => 0.39155447995136
528 => 0.40616115239424
529 => 0.4029011131454
530 => 0.39128141837023
531 => 0.39180266938965
601 => 0.395024838087
602 => 0.39085183685904
603 => 0.38962113733025
604 => 0.39485575887042
605 => 0.39489180683207
606 => 0.39009026459525
607 => 0.38475422907199
608 => 0.38473187088831
609 => 0.38378237490693
610 => 0.39728344240896
611 => 0.4047076644232
612 => 0.4055588395124
613 => 0.40465037355788
614 => 0.40500000604805
615 => 0.40068001483954
616 => 0.4105542336886
617 => 0.41961579336353
618 => 0.41718710179866
619 => 0.41354614788408
620 => 0.41064595271901
621 => 0.4165039079873
622 => 0.41624306246048
623 => 0.4195366485449
624 => 0.41938723245544
625 => 0.41827972333328
626 => 0.4171871413513
627 => 0.42151910541
628 => 0.42027156933031
629 => 0.41902209548251
630 => 0.41651608439587
701 => 0.41685669292298
702 => 0.41321636767042
703 => 0.41153218663863
704 => 0.38620614483594
705 => 0.37943819891397
706 => 0.38156753247526
707 => 0.38226856437176
708 => 0.37932314563316
709 => 0.38354611948832
710 => 0.38288797348623
711 => 0.38544843457783
712 => 0.3838487696501
713 => 0.38391442045672
714 => 0.38861869392466
715 => 0.38998436452582
716 => 0.38928977343576
717 => 0.38977624122604
718 => 0.40098668612803
719 => 0.39939291935282
720 => 0.39854626251844
721 => 0.39878079224772
722 => 0.40164530127482
723 => 0.40244720740602
724 => 0.3990494747792
725 => 0.40065186512807
726 => 0.40747463985993
727 => 0.40986222488047
728 => 0.41748225016023
729 => 0.41424512798624
730 => 0.42018700583596
731 => 0.43845031261058
801 => 0.45304030578684
802 => 0.43962274510498
803 => 0.46641540954876
804 => 0.4872773419977
805 => 0.48647662628294
806 => 0.48283886581528
807 => 0.45908811036534
808 => 0.43723231109649
809 => 0.45551561523114
810 => 0.45556222313337
811 => 0.45399167109354
812 => 0.44423710725984
813 => 0.45365223341637
814 => 0.45439957193996
815 => 0.45398126110011
816 => 0.44650245987959
817 => 0.43508371272937
818 => 0.4373149085899
819 => 0.44096965292462
820 => 0.43405045943946
821 => 0.43183935787224
822 => 0.43595021636499
823 => 0.44919625896004
824 => 0.44669217133655
825 => 0.44662677948889
826 => 0.45734032824061
827 => 0.4496717394629
828 => 0.43734305111498
829 => 0.43422989471171
830 => 0.42318028675354
831 => 0.4308122903276
901 => 0.43108695254924
902 => 0.42690698218891
903 => 0.43768223267259
904 => 0.43758293684244
905 => 0.44781243349231
906 => 0.46736738906339
907 => 0.4615840264601
908 => 0.45485860498054
909 => 0.45558984477107
910 => 0.46360974041969
911 => 0.45876072843413
912 => 0.46050446695265
913 => 0.4636071010626
914 => 0.4654789972552
915 => 0.45532050771581
916 => 0.45295207786745
917 => 0.44810710160363
918 => 0.44684313773216
919 => 0.4507892698053
920 => 0.44974960342293
921 => 0.43106386825306
922 => 0.42911110496136
923 => 0.42917099342361
924 => 0.42426067727779
925 => 0.41677126654452
926 => 0.43645299078209
927 => 0.43487227288026
928 => 0.43312728265448
929 => 0.43334103400036
930 => 0.44188420341636
1001 => 0.43692873371469
1002 => 0.45010366210211
1003 => 0.44739529290025
1004 => 0.44461746424798
1005 => 0.44423348371351
1006 => 0.44316425667559
1007 => 0.4394974793207
1008 => 0.43506962532552
1009 => 0.43214597258376
1010 => 0.39863181655883
1011 => 0.40485184897418
1012 => 0.41200742929425
1013 => 0.41447750694654
1014 => 0.41025226819812
1015 => 0.43966431749962
1016 => 0.44503818232857
1017 => 0.42876039523317
1018 => 0.42571548588528
1019 => 0.43986394124955
1020 => 0.43133069308657
1021 => 0.43517321421186
1022 => 0.42686778528567
1023 => 0.44374377565641
1024 => 0.4436152088848
1025 => 0.43705006746905
1026 => 0.44259888003749
1027 => 0.44163463730416
1028 => 0.43422260881501
1029 => 0.44397875018011
1030 => 0.44398358910451
1031 => 0.43766478323033
1101 => 0.43028580133377
1102 => 0.42896661365444
1103 => 0.42797278294599
1104 => 0.43492879278052
1105 => 0.44116552944727
1106 => 0.45277055016597
1107 => 0.45568832810314
1108 => 0.46707660963939
1109 => 0.46029544246992
1110 => 0.46330144604533
1111 => 0.46656488815161
1112 => 0.46812950230647
1113 => 0.46558004750295
1114 => 0.48327073633244
1115 => 0.48476437249835
1116 => 0.48526517578488
1117 => 0.47929997504711
1118 => 0.48459846947487
1119 => 0.48211947939981
1120 => 0.48856912289182
1121 => 0.48958050934455
1122 => 0.48872390100021
1123 => 0.48904493102395
1124 => 0.47394904895934
1125 => 0.47316624783717
1126 => 0.46249269899132
1127 => 0.4668422490409
1128 => 0.45871097370258
1129 => 0.46128948487378
1130 => 0.46242606802908
1201 => 0.46183238148928
1202 => 0.46708816607469
1203 => 0.46261967549124
1204 => 0.45082659415364
1205 => 0.43903029979892
1206 => 0.43888220693235
1207 => 0.43577645085064
1208 => 0.43353155805117
1209 => 0.4339640040462
1210 => 0.4354880001375
1211 => 0.43344298062787
1212 => 0.43387938922537
1213 => 0.44112667971915
1214 => 0.44258007214237
1215 => 0.4376408768112
1216 => 0.41780929483406
1217 => 0.41294257487311
1218 => 0.41644067666979
1219 => 0.41476880931759
1220 => 0.3347508004976
1221 => 0.35354984474596
1222 => 0.3423800910088
1223 => 0.34752762742654
1224 => 0.33612620125462
1225 => 0.34156755942381
1226 => 0.34056273925654
1227 => 0.37079104610374
1228 => 0.37031907266999
1229 => 0.37054498137645
1230 => 0.35976177021539
1231 => 0.37693971839104
]
'min_raw' => 0.21930390066645
'max_raw' => 0.48958050934455
'avg_raw' => 0.3544422050055
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.2193039'
'max' => '$0.48958'
'avg' => '$0.354442'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.033816216518363
'max_diff' => 0.074065199189461
'year' => 2035
]
10 => [
'items' => [
101 => 0.38540219336141
102 => 0.38383601446587
103 => 0.38423018795188
104 => 0.37745698150304
105 => 0.37061056082037
106 => 0.36301682662669
107 => 0.37712504614463
108 => 0.37555645296957
109 => 0.37915424135114
110 => 0.38830443018489
111 => 0.38965183024884
112 => 0.39146274959878
113 => 0.39081366392184
114 => 0.40627751810557
115 => 0.40440474333012
116 => 0.40891759170487
117 => 0.39963432020739
118 => 0.38912941733177
119 => 0.39112605593728
120 => 0.39093376358361
121 => 0.38848566121858
122 => 0.38627562386548
123 => 0.38259653434674
124 => 0.39423771798684
125 => 0.39376510719035
126 => 0.40141612663558
127 => 0.4000637346306
128 => 0.39103212983487
129 => 0.39135469536703
130 => 0.3935241035905
131 => 0.40103245022179
201 => 0.40326143870918
202 => 0.40222888243199
203 => 0.40467286655122
204 => 0.4066044919498
205 => 0.40491544896145
206 => 0.42882873580002
207 => 0.4188982718761
208 => 0.4237383108969
209 => 0.42489263168419
210 => 0.42193586326029
211 => 0.42257708045749
212 => 0.42354834979003
213 => 0.42944570698316
214 => 0.444922078672
215 => 0.45177645834176
216 => 0.47239819776737
217 => 0.45120729752776
218 => 0.4499499172042
219 => 0.45366451519163
220 => 0.46577165926727
221 => 0.47558336237436
222 => 0.47883847034571
223 => 0.4792686866001
224 => 0.48537548554985
225 => 0.48887578882278
226 => 0.48463395953259
227 => 0.48103945334719
228 => 0.46816437835762
229 => 0.46965470334533
301 => 0.47992156462646
302 => 0.49442411090116
303 => 0.50686880433762
304 => 0.50251110643753
305 => 0.53575726535997
306 => 0.53905348621874
307 => 0.53859805507564
308 => 0.54610733673537
309 => 0.53120294187942
310 => 0.52483102431945
311 => 0.48181662638385
312 => 0.49390191766926
313 => 0.51146859829688
314 => 0.50914358224415
315 => 0.49638618921365
316 => 0.50685912671102
317 => 0.50339644605536
318 => 0.50066528615548
319 => 0.51317725911821
320 => 0.49941983088217
321 => 0.51133135742634
322 => 0.49605470142447
323 => 0.50253101203447
324 => 0.49885474490834
325 => 0.5012337402853
326 => 0.48732618192245
327 => 0.49483036282815
328 => 0.48701398332532
329 => 0.48701027734371
330 => 0.48683773033296
331 => 0.49603366615491
401 => 0.49633354529192
402 => 0.48953773482521
403 => 0.48855835236645
404 => 0.49217964263162
405 => 0.48794006014852
406 => 0.48992373410875
407 => 0.48800014361198
408 => 0.48756710287414
409 => 0.48411656059924
410 => 0.48262997211257
411 => 0.48321290176286
412 => 0.4812230623456
413 => 0.48002411212106
414 => 0.48659922895616
415 => 0.48308640927062
416 => 0.48606083895843
417 => 0.48267110092622
418 => 0.47092079206804
419 => 0.46416306518643
420 => 0.44196782100753
421 => 0.44826236472355
422 => 0.45243565371945
423 => 0.4510563817312
424 => 0.45401959166937
425 => 0.45420150869337
426 => 0.45323813893613
427 => 0.45212268017255
428 => 0.45157973653517
429 => 0.45562639358277
430 => 0.45797561420312
501 => 0.45285449910159
502 => 0.45165469348532
503 => 0.45683242359748
504 => 0.45999083597482
505 => 0.48331077841048
506 => 0.48158316175242
507 => 0.48591914053649
508 => 0.48543097586642
509 => 0.48997577240772
510 => 0.49740459397842
511 => 0.48229972259401
512 => 0.48492140597919
513 => 0.48427862975666
514 => 0.49129629200932
515 => 0.49131820038487
516 => 0.48711076130617
517 => 0.48939168228863
518 => 0.48811853477001
519 => 0.49041928441236
520 => 0.48156008837867
521 => 0.49234963285659
522 => 0.49846660931269
523 => 0.49855154353671
524 => 0.50145094182957
525 => 0.50439689841694
526 => 0.51005140554766
527 => 0.50423919728206
528 => 0.49378360041931
529 => 0.49453846074143
530 => 0.48840834812636
531 => 0.48851139642691
601 => 0.48796131652251
602 => 0.4896121477237
603 => 0.48192235299304
604 => 0.48372713244619
605 => 0.48120043064301
606 => 0.48491591342293
607 => 0.48091866814305
608 => 0.4842783197905
609 => 0.48572823406733
610 => 0.49107844896323
611 => 0.48012843705279
612 => 0.45780062151677
613 => 0.46249419904104
614 => 0.45555202921009
615 => 0.45619455345864
616 => 0.45749255469771
617 => 0.45328530800232
618 => 0.45408791808622
619 => 0.45405924320614
620 => 0.45381213858106
621 => 0.45271767122402
622 => 0.45113047702253
623 => 0.45745337020864
624 => 0.45852775297062
625 => 0.46091597276263
626 => 0.46802169491871
627 => 0.46731166571085
628 => 0.4684697528077
629 => 0.46594165517766
630 => 0.45631182465694
701 => 0.45683477078473
702 => 0.45031362419158
703 => 0.46074921238271
704 => 0.45827792735601
705 => 0.45668467382265
706 => 0.45624993983468
707 => 0.46337327570158
708 => 0.46550468943756
709 => 0.46417653543115
710 => 0.46145245281556
711 => 0.46668349674023
712 => 0.46808310341444
713 => 0.46839642373329
714 => 0.47766483061462
715 => 0.4689144247188
716 => 0.47102073438948
717 => 0.48745356116749
718 => 0.47255125485492
719 => 0.48044533886978
720 => 0.48005896453608
721 => 0.48409731079684
722 => 0.4797277022722
723 => 0.4797818688068
724 => 0.48336764670508
725 => 0.47833206834539
726 => 0.47708518832803
727 => 0.47536263251438
728 => 0.47912377011505
729 => 0.48137840200503
730 => 0.49954907919363
731 => 0.51128816534101
801 => 0.51077854065172
802 => 0.51543555633443
803 => 0.51333752811599
804 => 0.50656244156678
805 => 0.5181266881725
806 => 0.51446727667782
807 => 0.51476895411526
808 => 0.51475772566597
809 => 0.51719091439863
810 => 0.51546677718307
811 => 0.51206832575215
812 => 0.51432437641108
813 => 0.52102404031525
814 => 0.54182000264457
815 => 0.55345769867391
816 => 0.54111939873088
817 => 0.54963019281516
818 => 0.54452674907059
819 => 0.5435993015279
820 => 0.54894470915558
821 => 0.55429947321169
822 => 0.55395839789059
823 => 0.55007111415603
824 => 0.54787528621056
825 => 0.56450283107005
826 => 0.57675372287969
827 => 0.57591829418929
828 => 0.57960560473274
829 => 0.59043166253252
830 => 0.59142146158116
831 => 0.5912967696513
901 => 0.5888434494344
902 => 0.59950310927954
903 => 0.60839558506122
904 => 0.58827557668742
905 => 0.59593701248592
906 => 0.5993764778519
907 => 0.60442663345256
908 => 0.61294709245523
909 => 0.62220257087226
910 => 0.62351139700159
911 => 0.62258272222974
912 => 0.61647848541309
913 => 0.62660594033783
914 => 0.6325383659147
915 => 0.63607098958458
916 => 0.64502913543886
917 => 0.59939771881907
918 => 0.56709753410702
919 => 0.56205339384391
920 => 0.57231085141996
921 => 0.57501566118108
922 => 0.57392535575791
923 => 0.53756856126019
924 => 0.56186198284509
925 => 0.58799966182155
926 => 0.58900371652009
927 => 0.6020887851288
928 => 0.60634981984288
929 => 0.61688501517204
930 => 0.61622603583577
1001 => 0.61879118824685
1002 => 0.61820150412979
1003 => 0.63771573502995
1004 => 0.65924282960416
1005 => 0.65849741477103
1006 => 0.65540264022896
1007 => 0.6599989081614
1008 => 0.68221717674564
1009 => 0.6801716746149
1010 => 0.68215870569946
1011 => 0.70835529652702
1012 => 0.74241459102444
1013 => 0.72659062923313
1014 => 0.76092407309792
1015 => 0.78253515607316
1016 => 0.81990928945114
1017 => 0.81522986388073
1018 => 0.82977933974072
1019 => 0.80685271548411
1020 => 0.75420855195569
1021 => 0.74587741156356
1022 => 0.76255656560669
1023 => 0.80356063829367
1024 => 0.76126520143667
1025 => 0.76982151322715
1026 => 0.76735729485587
1027 => 0.76722598713112
1028 => 0.77223746891776
1029 => 0.76496805320493
1030 => 0.73535114584793
1031 => 0.74892439995611
1101 => 0.74368311470374
1102 => 0.74949871145494
1103 => 0.78088308858664
1104 => 0.76700730734661
1105 => 0.75239029898718
1106 => 0.77072327124373
1107 => 0.79406744481907
1108 => 0.79260660839024
1109 => 0.78977197513605
1110 => 0.80575065437335
1111 => 0.83214275115964
1112 => 0.83927642886893
1113 => 0.84454236391232
1114 => 0.8452684473861
1115 => 0.85274755842441
1116 => 0.81253049339276
1117 => 0.87635600844547
1118 => 0.8873769117508
1119 => 0.88530543869904
1120 => 0.89755470889241
1121 => 0.89395066286753
1122 => 0.88872896563498
1123 => 0.90814666438596
1124 => 0.88588583969545
1125 => 0.85428940160716
1126 => 0.83695497076524
1127 => 0.85978234762653
1128 => 0.87372223011005
1129 => 0.88293560568862
1130 => 0.88572356757182
1201 => 0.81565242966786
1202 => 0.7778879726611
1203 => 0.80209455663205
1204 => 0.8316282597258
1205 => 0.81236643218088
1206 => 0.81312145935317
1207 => 0.78565915519334
1208 => 0.83405806427722
1209 => 0.82700675032259
1210 => 0.86358897959273
1211 => 0.85485833698668
1212 => 0.88468972484252
1213 => 0.8768341206614
1214 => 0.90944229441631
1215 => 0.9224505777582
1216 => 0.94429351006688
1217 => 0.96036125998987
1218 => 0.96979655007173
1219 => 0.9692300906461
1220 => 1.0066174105933
1221 => 0.9845714142339
1222 => 0.95687644696411
1223 => 0.9563755323827
1224 => 0.97071914837245
1225 => 1.0007794325081
1226 => 1.0085736268251
1227 => 1.0129295181448
1228 => 1.006258318959
1229 => 0.9823289699617
1230 => 0.97199639838921
1231 => 0.98080004873239
]
'min_raw' => 0.36301682662669
'max_raw' => 1.0129295181448
'avg_raw' => 0.68797317238573
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.363016'
'max' => '$1.01'
'avg' => '$0.687973'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.14371292596024
'max_diff' => 0.52334900880021
'year' => 2036
]
11 => [
'items' => [
101 => 0.97003394086898
102 => 0.98861926347757
103 => 1.0141408810299
104 => 1.0088707679287
105 => 1.0264879658863
106 => 1.0447199123891
107 => 1.0707924147361
108 => 1.0776087323116
109 => 1.0888758460625
110 => 1.1004734071662
111 => 1.1041982312297
112 => 1.1113100761119
113 => 1.1112725931789
114 => 1.1327046164139
115 => 1.1563448017365
116 => 1.1652684244243
117 => 1.1857878027433
118 => 1.1506490864567
119 => 1.1773022064046
120 => 1.2013439877685
121 => 1.1726803849002
122 => 1.2121864836912
123 => 1.2137204159845
124 => 1.2368809724452
125 => 1.2134033114466
126 => 1.1994623512889
127 => 1.2397093809031
128 => 1.2591836507638
129 => 1.2533178421949
130 => 1.2086787493547
131 => 1.182696882661
201 => 1.1146973259956
202 => 1.195245738228
203 => 1.2344785201969
204 => 1.2085771459274
205 => 1.221640292516
206 => 1.2929085845639
207 => 1.3200429358956
208 => 1.314399180502
209 => 1.3153528822594
210 => 1.3299940857147
211 => 1.3949212448933
212 => 1.3560153861137
213 => 1.385757457376
214 => 1.4015325447305
215 => 1.4161853250205
216 => 1.3802027276869
217 => 1.3333898972453
218 => 1.3185623087756
219 => 1.2060017647165
220 => 1.2001424995726
221 => 1.1968535164934
222 => 1.176116943415
223 => 1.1598236772007
224 => 1.146866666977
225 => 1.112863602859
226 => 1.1243386388284
227 => 1.0701448516154
228 => 1.1048161161644
301 => 1.0183215232178
302 => 1.0903567904244
303 => 1.0511512695255
304 => 1.07747672238
305 => 1.077384875355
306 => 1.0289113701575
307 => 1.0009528639757
308 => 1.0187691122761
309 => 1.0378695447096
310 => 1.0409685256103
311 => 1.0657327348327
312 => 1.0726438933217
313 => 1.0517027604488
314 => 1.0165291150315
315 => 1.0246991506365
316 => 1.000787298465
317 => 0.95888269729046
318 => 0.98897931343814
319 => 0.99925562144576
320 => 1.0037942244903
321 => 0.96258586201111
322 => 0.94963729984308
323 => 0.94274359399378
324 => 1.0112096329079
325 => 1.014960357073
326 => 0.99577112194558
327 => 1.0825082843194
328 => 1.0628769931192
329 => 1.0848099551729
330 => 1.0239578055396
331 => 1.0262824396039
401 => 0.99747405676854
402 => 1.0136048261795
403 => 1.0022041182788
404 => 1.0123016194185
405 => 1.018354019968
406 => 1.0471576756313
407 => 1.0906856819042
408 => 1.0428553699924
409 => 1.0220150181498
410 => 1.0349442552224
411 => 1.0693765173416
412 => 1.1215431570072
413 => 1.0906594563737
414 => 1.1043651182756
415 => 1.1073591956787
416 => 1.0845866982083
417 => 1.1223828114713
418 => 1.1426380556241
419 => 1.1634157448926
420 => 1.1814564303068
421 => 1.1551166788875
422 => 1.1833039885611
423 => 1.1605899926942
424 => 1.1402131902718
425 => 1.1402440934699
426 => 1.1274614276527
427 => 1.1026934019124
428 => 1.0981257979562
429 => 1.1218870505612
430 => 1.1409413249513
501 => 1.1425107262539
502 => 1.1530601516003
503 => 1.1593031928525
504 => 1.2204934841277
505 => 1.2451047254711
506 => 1.275198885519
507 => 1.2869222568716
508 => 1.3222054015815
509 => 1.2937113966713
510 => 1.2875465394733
511 => 1.2019611714356
512 => 1.2159757706572
513 => 1.2384144962186
514 => 1.2023311777554
515 => 1.2252177380853
516 => 1.229736029898
517 => 1.2011050804015
518 => 1.2163981075979
519 => 1.1757843614307
520 => 1.091570950586
521 => 1.1224765650713
522 => 1.1452335000498
523 => 1.1127565479256
524 => 1.1709702275765
525 => 1.1369629976987
526 => 1.1261843384624
527 => 1.0841329459119
528 => 1.1039795844892
529 => 1.1308224473415
530 => 1.1142366789165
531 => 1.148654638764
601 => 1.1973996488425
602 => 1.2321382458401
603 => 1.2348050439666
604 => 1.2124704534025
605 => 1.248261777319
606 => 1.2485224780395
607 => 1.2081497184498
608 => 1.1834216279975
609 => 1.1778033538185
610 => 1.1918389042454
611 => 1.2088806535692
612 => 1.2357507424496
613 => 1.2519877744052
614 => 1.294325342289
615 => 1.3057806742452
616 => 1.3183666110254
617 => 1.3351853039229
618 => 1.3553804569707
619 => 1.3111946118128
620 => 1.3129501978137
621 => 1.2718049505973
622 => 1.2278353531213
623 => 1.2612027967179
624 => 1.3048262905354
625 => 1.294819012854
626 => 1.2936929896847
627 => 1.2955866483227
628 => 1.288041487758
629 => 1.2539150061608
630 => 1.2367769007458
701 => 1.2588894291282
702 => 1.270641253848
703 => 1.2888673091217
704 => 1.2866205631038
705 => 1.3335689241533
706 => 1.3518116376124
707 => 1.3471443708599
708 => 1.3480032602664
709 => 1.3810308215985
710 => 1.4177642624358
711 => 1.4521699771845
712 => 1.4871689479866
713 => 1.4449763226515
714 => 1.4235535095858
715 => 1.44565638433
716 => 1.4339282878702
717 => 1.5013214089076
718 => 1.5059875623874
719 => 1.573375810135
720 => 1.6373352816908
721 => 1.5971634835596
722 => 1.6350436798198
723 => 1.6760142004929
724 => 1.7550529820988
725 => 1.7284355010718
726 => 1.7080469277542
727 => 1.688779824486
728 => 1.7288716078207
729 => 1.7804490465989
730 => 1.7915583329092
731 => 1.8095596208058
801 => 1.7906334676753
802 => 1.8134279344736
803 => 1.893902418668
804 => 1.8721575026708
805 => 1.841276226285
806 => 1.9048031027049
807 => 1.9277932323267
808 => 2.0891500020374
809 => 2.2928695891128
810 => 2.2085283423687
811 => 2.1561750088396
812 => 2.1684792840566
813 => 2.2428707809133
814 => 2.2667629686356
815 => 2.2018157662754
816 => 2.2247562161227
817 => 2.3511603502366
818 => 2.4189721126586
819 => 2.3268746309548
820 => 2.0727813315733
821 => 1.8384957052258
822 => 1.9006388033524
823 => 1.8935937045497
824 => 2.0293991774182
825 => 1.8716388936158
826 => 1.8742951721962
827 => 2.0129089584231
828 => 1.9759291766997
829 => 1.9160266663203
830 => 1.8389330598437
831 => 1.6964183979761
901 => 1.5701891876447
902 => 1.8177537379556
903 => 1.8070783043793
904 => 1.7916186945502
905 => 1.8260223833204
906 => 1.9930769303314
907 => 1.98922578232
908 => 1.9647267435444
909 => 1.9833090485311
910 => 1.912769098412
911 => 1.9309488497225
912 => 1.8384585931856
913 => 1.8802680518746
914 => 1.9158981424366
915 => 1.9230514106295
916 => 1.9391680891228
917 => 1.80145283598
918 => 1.8632829415337
919 => 1.8996023358491
920 => 1.7355099910213
921 => 1.896358757789
922 => 1.7990555198116
923 => 1.7660293393965
924 => 1.810494740457
925 => 1.7931665304197
926 => 1.7782687529763
927 => 1.7699555371865
928 => 1.8026060202581
929 => 1.8010828361971
930 => 1.7476603087062
1001 => 1.6779727993752
1002 => 1.7013622149212
1003 => 1.6928646209764
1004 => 1.6620682443089
1005 => 1.6828212838141
1006 => 1.5914354007064
1007 => 1.4342107386445
1008 => 1.5380781663242
1009 => 1.5340793833446
1010 => 1.5320630156359
1011 => 1.6101165168523
1012 => 1.602613473711
1013 => 1.5889953769395
1014 => 1.6618181372823
1015 => 1.6352368501528
1016 => 1.7171541137469
1017 => 1.7711101216264
1018 => 1.7574251327341
1019 => 1.8081710189368
1020 => 1.7019010598154
1021 => 1.7371996774248
1022 => 1.7444746735923
1023 => 1.6609195157237
1024 => 1.6038410643607
1025 => 1.6000345823967
1026 => 1.5010684136284
1027 => 1.5539353421574
1028 => 1.6004560514808
1029 => 1.5781762418678
1030 => 1.5711231197347
1031 => 1.6071559910772
1101 => 1.6099560537812
1102 => 1.546114327393
1103 => 1.5593890439136
1104 => 1.6147468185427
1105 => 1.5579941700264
1106 => 1.4477330444517
1107 => 1.4203867608298
1108 => 1.4167382625026
1109 => 1.342572972459
1110 => 1.4222141702627
1111 => 1.38744865317
1112 => 1.4972725051111
1113 => 1.4345417098795
1114 => 1.4318375106755
1115 => 1.4277497169589
1116 => 1.3639125880888
1117 => 1.3778888622502
1118 => 1.4243481262092
1119 => 1.4409253149909
1120 => 1.439196178388
1121 => 1.4241204504701
1122 => 1.4310220415107
1123 => 1.4087896120951
1124 => 1.4009388785404
1125 => 1.3761598039276
1126 => 1.3397414096407
1127 => 1.3448056107333
1128 => 1.2726512422598
1129 => 1.2333377127933
1130 => 1.222456245981
1201 => 1.2079050937917
1202 => 1.2240998373399
1203 => 1.2724468379997
1204 => 1.2141300978156
1205 => 1.1141501372137
1206 => 1.1201591032034
1207 => 1.1336594657044
1208 => 1.1085016294977
1209 => 1.0846918488653
1210 => 1.1053925213766
1211 => 1.0630296940571
1212 => 1.1387788109951
1213 => 1.1367300096664
1214 => 1.1649645961669
1215 => 1.1826202625378
1216 => 1.1419296676429
1217 => 1.1316960930659
1218 => 1.137525602235
1219 => 1.0411768010621
1220 => 1.1570908435713
1221 => 1.1580932730244
1222 => 1.1495098634547
1223 => 1.2112305126463
1224 => 1.3414803335939
1225 => 1.2924751116665
1226 => 1.2734988085456
1227 => 1.237424842441
1228 => 1.2854912604152
1229 => 1.2818005094677
1230 => 1.2651095340074
1231 => 1.25501477997
]
'min_raw' => 0.94274359399378
'max_raw' => 2.4189721126586
'avg_raw' => 1.6808578533262
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.942743'
'max' => '$2.41'
'avg' => '$1.68'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.57972676736709
'max_diff' => 1.4060425945138
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.029591644166489
]
1 => [
'year' => 2028
'avg' => 0.050787851905377
]
2 => [
'year' => 2029
'avg' => 0.13874325778578
]
3 => [
'year' => 2030
'avg' => 0.10704021675907
]
4 => [
'year' => 2031
'avg' => 0.10512675820544
]
5 => [
'year' => 2032
'avg' => 0.18432029174254
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.029591644166489
'min' => '$0.029591'
'max_raw' => 0.18432029174254
'max' => '$0.18432'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.18432029174254
]
1 => [
'year' => 2033
'avg' => 0.47409074379389
]
2 => [
'year' => 2034
'avg' => 0.30050149715159
]
3 => [
'year' => 2035
'avg' => 0.3544422050055
]
4 => [
'year' => 2036
'avg' => 0.68797317238573
]
5 => [
'year' => 2037
'avg' => 1.6808578533262
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.18432029174254
'min' => '$0.18432'
'max_raw' => 1.6808578533262
'max' => '$1.68'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.6808578533262
]
]
]
]
'prediction_2025_max_price' => '$0.050596'
'last_price' => 0.04905952
'sma_50day_nextmonth' => '$0.043508'
'sma_200day_nextmonth' => '$0.10326'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.047794'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.046933'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.045283'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0409097'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.043321'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.063121'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.103161'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.047983'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.047097'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.045282'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.043396'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.048544'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.064991'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.077246'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.089021'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.046699'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.046069'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.052645'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.064873'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.068624'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.034312'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.017156'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '59.81'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 96.23
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.045293'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0489079'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 109.23
'cci_20_action' => 'SELL'
'adx_14' => 19.78
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.006143'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 67.87
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.018047'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 10
'buy_signals' => 22
'sell_pct' => 31.25
'buy_pct' => 68.75
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767714731
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Dolomite para 2026
A previsão de preço para Dolomite em 2026 sugere que o preço médio poderia variar entre $0.01695 na extremidade inferior e $0.050596 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Dolomite poderia potencialmente ganhar 3.13% até 2026 se DOLO atingir a meta de preço prevista.
Previsão de preço de Dolomite 2027-2032
A previsão de preço de DOLO para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.029591 na extremidade inferior e $0.18432 na extremidade superior. Considerando a volatilidade de preços no mercado, se Dolomite atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Dolomite | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.016317 | $0.029591 | $0.042865 |
| 2028 | $0.029448 | $0.050787 | $0.072127 |
| 2029 | $0.064689 | $0.138743 | $0.212797 |
| 2030 | $0.055015 | $0.10704 | $0.159065 |
| 2031 | $0.065045 | $0.105126 | $0.1452084 |
| 2032 | $0.099286 | $0.18432 | $0.269354 |
Previsão de preço de Dolomite 2032-2037
A previsão de preço de Dolomite para 2032-2037 é atualmente estimada entre $0.18432 na extremidade inferior e $1.68 na extremidade superior. Comparado ao preço atual, Dolomite poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Dolomite | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.099286 | $0.18432 | $0.269354 |
| 2033 | $0.230719 | $0.47409 | $0.717461 |
| 2034 | $0.185487 | $0.3005014 | $0.415515 |
| 2035 | $0.2193039 | $0.354442 | $0.48958 |
| 2036 | $0.363016 | $0.687973 | $1.01 |
| 2037 | $0.942743 | $1.68 | $2.41 |
Dolomite Histograma de preços potenciais
Previsão de preço de Dolomite baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Dolomite é Altista, com 22 indicadores técnicos mostrando sinais de alta e 10 indicando sinais de baixa. A previsão de preço de DOLO foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Dolomite
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Dolomite está projetado para aumentar no próximo mês, alcançando $0.10326 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Dolomite é esperado para alcançar $0.043508 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 59.81, sugerindo que o mercado de DOLO está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DOLO para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.047794 | BUY |
| SMA 5 | $0.046933 | BUY |
| SMA 10 | $0.045283 | BUY |
| SMA 21 | $0.0409097 | BUY |
| SMA 50 | $0.043321 | BUY |
| SMA 100 | $0.063121 | SELL |
| SMA 200 | $0.103161 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.047983 | BUY |
| EMA 5 | $0.047097 | BUY |
| EMA 10 | $0.045282 | BUY |
| EMA 21 | $0.043396 | BUY |
| EMA 50 | $0.048544 | BUY |
| EMA 100 | $0.064991 | SELL |
| EMA 200 | $0.077246 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.089021 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.064873 | SELL |
| EMA 50 | $0.068624 | SELL |
| EMA 100 | $0.034312 | BUY |
| EMA 200 | $0.017156 | BUY |
Osciladores de Dolomite
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 59.81 | NEUTRAL |
| Stoch RSI (14) | 96.23 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 109.23 | SELL |
| Índice Direcional Médio (14) | 19.78 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.006143 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 67.87 | NEUTRAL |
| VWMA (10) | 0.045293 | BUY |
| Média Móvel de Hull (9) | 0.0489079 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.018047 | NEUTRAL |
Previsão do preço de Dolomite com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Dolomite
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Dolomite por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.068936 | $0.096867 | $0.136115 | $0.191264 | $0.268758 | $0.377651 |
| Amazon.com stock | $0.102365 | $0.213591 | $0.445672 | $0.929921 | $1.94 | $4.04 |
| Apple stock | $0.069587 | $0.0987041 | $0.1400042 | $0.198585 | $0.281678 | $0.399538 |
| Netflix stock | $0.0774082 | $0.122138 | $0.192714 | $0.304073 | $0.47978 | $0.757018 |
| Google stock | $0.063531 | $0.082273 | $0.106543 | $0.137973 | $0.178675 | $0.231383 |
| Tesla stock | $0.111214 | $0.252114 | $0.571523 | $1.29 | $2.93 | $6.65 |
| Kodak stock | $0.036789 | $0.027588 | $0.020688 | $0.015513 | $0.011633 | $0.008724 |
| Nokia stock | $0.032499 | $0.021529 | $0.014262 | $0.009448 | $0.006259 | $0.004146 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Dolomite
Você pode fazer perguntas como: 'Devo investir em Dolomite agora?', 'Devo comprar DOLO hoje?', 'Dolomite será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Dolomite regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Dolomite, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Dolomite para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Dolomite é de $0.04905 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Dolomite
com base no histórico de preços de 4 horas
Previsão de longo prazo para Dolomite
com base no histórico de preços de 1 mês
Previsão do preço de Dolomite com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Dolomite tiver 1% da média anterior do crescimento anual do Bitcoin | $0.050334 | $0.051643 | $0.052985 | $0.054362 |
| Se Dolomite tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0516099 | $0.054292 | $0.057115 | $0.060084 |
| Se Dolomite tiver 5% da média anterior do crescimento anual do Bitcoin | $0.055435 | $0.06264 | $0.070781 | $0.07998 |
| Se Dolomite tiver 10% da média anterior do crescimento anual do Bitcoin | $0.061811 | $0.077878 | $0.098121 | $0.123626 |
| Se Dolomite tiver 20% da média anterior do crescimento anual do Bitcoin | $0.074563 | $0.113326 | $0.172241 | $0.261783 |
| Se Dolomite tiver 50% da média anterior do crescimento anual do Bitcoin | $0.11282 | $0.259448 | $0.596642 | $1.37 |
| Se Dolomite tiver 100% da média anterior do crescimento anual do Bitcoin | $0.17658 | $0.635571 | $2.28 | $8.23 |
Perguntas Frequentes sobre Dolomite
DOLO é um bom investimento?
A decisão de adquirir Dolomite depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Dolomite experimentou uma escalada de 2.4961% nas últimas 24 horas, e Dolomite registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Dolomite dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Dolomite pode subir?
Parece que o valor médio de Dolomite pode potencialmente subir para $0.050596 até o final deste ano. Observando as perspectivas de Dolomite em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.159065. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Dolomite na próxima semana?
Com base na nossa nova previsão experimental de Dolomite, o preço de Dolomite aumentará 0.86% na próxima semana e atingirá $0.049479 até 13 de janeiro de 2026.
Qual será o preço de Dolomite no próximo mês?
Com base na nossa nova previsão experimental de Dolomite, o preço de Dolomite diminuirá -11.62% no próximo mês e atingirá $0.043359 até 5 de fevereiro de 2026.
Até onde o preço de Dolomite pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Dolomite em 2026, espera-se que DOLO fluctue dentro do intervalo de $0.01695 e $0.050596. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Dolomite não considera flutuações repentinas e extremas de preço.
Onde estará Dolomite em 5 anos?
O futuro de Dolomite parece seguir uma tendência de alta, com um preço máximo de $0.159065 projetada após um período de cinco anos. Com base na previsão de Dolomite para 2030, o valor de Dolomite pode potencialmente atingir seu pico mais alto de aproximadamente $0.159065, enquanto seu pico mais baixo está previsto para cerca de $0.055015.
Quanto será Dolomite em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Dolomite, espera-se que o valor de DOLO em 2026 aumente 3.13% para $0.050596 se o melhor cenário ocorrer. O preço ficará entre $0.050596 e $0.01695 durante 2026.
Quanto será Dolomite em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Dolomite, o valor de DOLO pode diminuir -12.62% para $0.042865 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.042865 e $0.016317 ao longo do ano.
Quanto será Dolomite em 2028?
Nosso novo modelo experimental de previsão de preços de Dolomite sugere que o valor de DOLO em 2028 pode aumentar 47.02%, alcançando $0.072127 no melhor cenário. O preço é esperado para variar entre $0.072127 e $0.029448 durante o ano.
Quanto será Dolomite em 2029?
Com base no nosso modelo de previsão experimental, o valor de Dolomite pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.212797 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.212797 e $0.064689.
Quanto será Dolomite em 2030?
Usando nossa nova simulação experimental para previsões de preços de Dolomite, espera-se que o valor de DOLO em 2030 aumente 224.23%, alcançando $0.159065 no melhor cenário. O preço está previsto para variar entre $0.159065 e $0.055015 ao longo de 2030.
Quanto será Dolomite em 2031?
Nossa simulação experimental indica que o preço de Dolomite poderia aumentar 195.98% em 2031, potencialmente atingindo $0.1452084 sob condições ideais. O preço provavelmente oscilará entre $0.1452084 e $0.065045 durante o ano.
Quanto será Dolomite em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Dolomite, DOLO poderia ver um 449.04% aumento em valor, atingindo $0.269354 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.269354 e $0.099286 ao longo do ano.
Quanto será Dolomite em 2033?
De acordo com nossa previsão experimental de preços de Dolomite, espera-se que o valor de DOLO seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.717461. Ao longo do ano, o preço de DOLO poderia variar entre $0.717461 e $0.230719.
Quanto será Dolomite em 2034?
Os resultados da nossa nova simulação de previsão de preços de Dolomite sugerem que DOLO pode aumentar 746.96% em 2034, atingindo potencialmente $0.415515 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.415515 e $0.185487.
Quanto será Dolomite em 2035?
Com base em nossa previsão experimental para o preço de Dolomite, DOLO poderia aumentar 897.93%, com o valor potencialmente atingindo $0.48958 em 2035. A faixa de preço esperada para o ano está entre $0.48958 e $0.2193039.
Quanto será Dolomite em 2036?
Nossa recente simulação de previsão de preços de Dolomite sugere que o valor de DOLO pode aumentar 1964.7% em 2036, possivelmente atingindo $1.01 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $1.01 e $0.363016.
Quanto será Dolomite em 2037?
De acordo com a simulação experimental, o valor de Dolomite poderia aumentar 4830.69% em 2037, com um pico de $2.41 sob condições favoráveis. O preço é esperado para cair entre $2.41 e $0.942743 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Dolomite?
Traders de Dolomite utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Dolomite
Médias móveis são ferramentas populares para a previsão de preço de Dolomite. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DOLO em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DOLO acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DOLO.
Como ler gráficos de Dolomite e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Dolomite em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DOLO dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Dolomite?
A ação de preço de Dolomite é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DOLO. A capitalização de mercado de Dolomite pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DOLO, grandes detentores de Dolomite, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Dolomite.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


