Previsão de Preço Dolomite - Projeção DOLO
Previsão de Preço Dolomite até $0.05098 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.017078 | $0.05098 |
| 2027 | $0.016441 | $0.043191 |
| 2028 | $0.029671 | $0.072675 |
| 2029 | $0.06518 | $0.214414 |
| 2030 | $0.055433 | $0.160274 |
| 2031 | $0.065539 | $0.146312 |
| 2032 | $0.10004 | $0.2714015 |
| 2033 | $0.232473 | $0.722914 |
| 2034 | $0.186897 | $0.418673 |
| 2035 | $0.22097 | $0.4933016 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Dolomite hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.57, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Dolomite para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Dolomite'
'name_with_ticker' => 'Dolomite <small>DOLO</small>'
'name_lang' => 'Dolomite'
'name_lang_with_ticker' => 'Dolomite <small>DOLO</small>'
'name_with_lang' => 'Dolomite'
'name_with_lang_with_ticker' => 'Dolomite <small>DOLO</small>'
'image' => '/uploads/coins/dolomite.png?1745418184'
'price_for_sd' => 0.04943
'ticker' => 'DOLO'
'marketcap' => '$22.56M'
'low24h' => '$0.04731'
'high24h' => '$0.04995'
'volume24h' => '$5.87M'
'current_supply' => '455.51M'
'max_supply' => '998.46M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04943'
'change_24h_pct' => '4.2555%'
'ath_price' => '$0.3664'
'ath_days' => 128
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '31 de ago. de 2025'
'ath_pct' => '-86.47%'
'fdv' => '$49.45M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.43'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.049855'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.043689'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.017078'
'current_year_max_price_prediction' => '$0.05098'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.055433'
'grand_prediction_max_price' => '$0.160274'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.050369128168052
107 => 0.050557188208638
108 => 0.050980897082662
109 => 0.047360351145171
110 => 0.048985869977461
111 => 0.049940710000913
112 => 0.045626708037576
113 => 0.049855436052672
114 => 0.047297325495387
115 => 0.046429064350713
116 => 0.047598063597309
117 => 0.047142503454021
118 => 0.046750839594212
119 => 0.046532284430799
120 => 0.04739066845976
121 => 0.047350623818819
122 => 0.045946140942277
123 => 0.044114050283875
124 => 0.044728960045161
125 => 0.044505557564076
126 => 0.043695918153131
127 => 0.044241517359873
128 => 0.041838974574823
129 => 0.037705524586451
130 => 0.040436208259766
131 => 0.040331079908756
201 => 0.040278069426986
202 => 0.042330102736929
203 => 0.042132847082641
204 => 0.041774826138576
205 => 0.04368934281773
206 => 0.042990518475956
207 => 0.045144130433582
208 => 0.046562638555763
209 => 0.046202859012047
210 => 0.047536972757203
211 => 0.044743126324118
212 => 0.045671130039525
213 => 0.045862390319113
214 => 0.043665717979092
215 => 0.042165120547185
216 => 0.042065047806539
217 => 0.039463218654676
218 => 0.04085309478637
219 => 0.042076128265279
220 => 0.041490390140114
221 => 0.041304962948115
222 => 0.042252270257785
223 => 0.042325884148885
224 => 0.040647479630559
225 => 0.040996473078078
226 => 0.042451833769563
227 => 0.040959801722723
228 => 0.038061027177765
301 => 0.037342091011922
302 => 0.037246171674776
303 => 0.035296359773463
304 => 0.037390133764251
305 => 0.036476145307617
306 => 0.039363423890859
307 => 0.037714225848897
308 => 0.037643132217518
309 => 0.037535663766521
310 => 0.035857380117346
311 => 0.036224817576025
312 => 0.03744623565098
313 => 0.037882051380384
314 => 0.037836592229274
315 => 0.037440250036071
316 => 0.037621693462519
317 => 0.037037200966849
318 => 0.036830804501469
319 => 0.036179360482908
320 => 0.035221917741628
321 => 0.035355056027141
322 => 0.033458111428143
323 => 0.032424555332139
324 => 0.032138480626816
325 => 0.031755929574972
326 => 0.032181690786051
327 => 0.033452737622432
328 => 0.031919585470127
329 => 0.029291103643119
330 => 0.029449079879637
331 => 0.029804005579528
401 => 0.02914260388585
402 => 0.02851664269002
403 => 0.029060865163957
404 => 0.02794714276319
405 => 0.029938593610789
406 => 0.029884730446338
407 => 0.030627020171829
408 => 0.031091189170497
409 => 0.030021429905065
410 => 0.029752388342746
411 => 0.0299056466439
412 => 0.027372628312902
413 => 0.030420018533867
414 => 0.030446372491043
415 => 0.030220713909746
416 => 0.031843355124792
417 => 0.035267634203026
418 => 0.033979282672488
419 => 0.033480394019232
420 => 0.032532006324708
421 => 0.033795676617972
422 => 0.033698646455777
423 => 0.033259839264734
424 => 0.032994447306429
425 => 0.033483440126967
426 => 0.032933855684521
427 => 0.032835135217087
428 => 0.032236996593365
429 => 0.03202348831827
430 => 0.031865415291398
501 => 0.031691392420748
502 => 0.032075243509605
503 => 0.031205386442438
504 => 0.030156424092575
505 => 0.030069214223114
506 => 0.030310008340266
507 => 0.03020347486844
508 => 0.030068704181837
509 => 0.029811390238499
510 => 0.029735050688154
511 => 0.029983117192093
512 => 0.029703064572321
513 => 0.03011629746805
514 => 0.03000392098563
515 => 0.029376195089878
516 => 0.028593816209878
517 => 0.028586851396751
518 => 0.028418289150413
519 => 0.028203599786199
520 => 0.028143878116502
521 => 0.029015032265162
522 => 0.030818295281438
523 => 0.030464271602916
524 => 0.030720089992454
525 => 0.031978463276215
526 => 0.032378462302517
527 => 0.032094552468144
528 => 0.031705919176058
529 => 0.031723017068562
530 => 0.033051094674919
531 => 0.033133925246174
601 => 0.033343211377582
602 => 0.033612203200693
603 => 0.032140362938774
604 => 0.031653693524586
605 => 0.031423082556753
606 => 0.030712890033503
607 => 0.031478771782523
608 => 0.031032525285696
609 => 0.031092739184069
610 => 0.03105352480376
611 => 0.031074938507074
612 => 0.029938036959692
613 => 0.030352264129771
614 => 0.029663531118833
615 => 0.028741394931095
616 => 0.028738303607251
617 => 0.02896399513281
618 => 0.028829744982097
619 => 0.028468481278415
620 => 0.028519797082407
621 => 0.028070216642416
622 => 0.028574384287738
623 => 0.028588842011808
624 => 0.028394710006161
625 => 0.029171449825509
626 => 0.029489680763255
627 => 0.029361898918428
628 => 0.029480715248382
629 => 0.03047898288508
630 => 0.030641744067332
701 => 0.030714031833089
702 => 0.030617175803269
703 => 0.029498961748235
704 => 0.029548559296589
705 => 0.029184645395257
706 => 0.028877176496934
707 => 0.028889473640405
708 => 0.029047552622302
709 => 0.029737892807456
710 => 0.031190673029337
711 => 0.031245804976789
712 => 0.031312626505413
713 => 0.03104082976669
714 => 0.030958853269546
715 => 0.031067001429208
716 => 0.031612589296991
717 => 0.033015989418591
718 => 0.032519934085675
719 => 0.032116633378453
720 => 0.032470436827776
721 => 0.032415971559956
722 => 0.031956229887645
723 => 0.03194332647012
724 => 0.031060935212651
725 => 0.030734735255842
726 => 0.030462138156288
727 => 0.030164469239903
728 => 0.029988001128318
729 => 0.030259136351035
730 => 0.030321148184448
731 => 0.029728306281344
801 => 0.029647504120576
802 => 0.030131631616033
803 => 0.029918585155375
804 => 0.03013770872346
805 => 0.030188547270863
806 => 0.03018036109382
807 => 0.029957916120662
808 => 0.030099695913148
809 => 0.029764344437329
810 => 0.029399700075538
811 => 0.029167079690862
812 => 0.028964087552616
813 => 0.029076719388887
814 => 0.02867520745834
815 => 0.02854675571092
816 => 0.030051664109601
817 => 0.031163356124198
818 => 0.031147191682027
819 => 0.031048794797471
820 => 0.030902596986099
821 => 0.031601894016479
822 => 0.03135827291398
823 => 0.031535527621272
824 => 0.031580646383635
825 => 0.031717207288404
826 => 0.031766016074053
827 => 0.031618482023941
828 => 0.031123339732
829 => 0.029889492217198
830 => 0.02931513286835
831 => 0.029125584716519
901 => 0.029132474431835
902 => 0.028942425326379
903 => 0.028998403305339
904 => 0.028922958469743
905 => 0.028780084203189
906 => 0.029067897305536
907 => 0.029101065084417
908 => 0.029033886067219
909 => 0.029049709157685
910 => 0.028493495587816
911 => 0.028535783297501
912 => 0.028300319956313
913 => 0.028256173418394
914 => 0.027660942596011
915 => 0.026606404914072
916 => 0.027190721156316
917 => 0.026484949302983
918 => 0.026217662807937
919 => 0.027482955503906
920 => 0.027355955210987
921 => 0.02713858591521
922 => 0.026817051423026
923 => 0.026697791152188
924 => 0.025973203499792
925 => 0.025930390995764
926 => 0.026289516201804
927 => 0.02612379227596
928 => 0.025891053119517
929 => 0.02504809548727
930 => 0.024100332014944
1001 => 0.024128939036744
1002 => 0.024430404963525
1003 => 0.025306957803859
1004 => 0.024964473444623
1005 => 0.024715997112441
1006 => 0.024669464964595
1007 => 0.025251912216543
1008 => 0.026076197104522
1009 => 0.026462933131627
1010 => 0.026079689474114
1011 => 0.025639439795667
1012 => 0.025666235753673
1013 => 0.02584449725749
1014 => 0.025863230021059
1015 => 0.025576672738788
1016 => 0.025657336935228
1017 => 0.025534800644747
1018 => 0.024782795656245
1019 => 0.024769194270637
1020 => 0.02458464011874
1021 => 0.024579051892367
1022 => 0.0242650792408
1023 => 0.024221152296455
1024 => 0.023597740539991
1025 => 0.02400807204596
1026 => 0.023732843215127
1027 => 0.023318008447143
1028 => 0.023246490776782
1029 => 0.023244340869251
1030 => 0.023670283420613
1031 => 0.024003094659252
1101 => 0.023737630938475
1102 => 0.023677189995052
1103 => 0.024322541144406
1104 => 0.024240414328144
1105 => 0.024169293034923
1106 => 0.026002391433639
1107 => 0.024551351012603
1108 => 0.02391861456654
1109 => 0.023135483061144
1110 => 0.023390474628193
1111 => 0.023444205097976
1112 => 0.021560914997563
1113 => 0.020796864438375
1114 => 0.020534671079099
1115 => 0.020383775093966
1116 => 0.020452540289224
1117 => 0.019764805171762
1118 => 0.020226974544785
1119 => 0.019631454065866
1120 => 0.019531613119584
1121 => 0.020596477506723
1122 => 0.020744647165346
1123 => 0.020112509368956
1124 => 0.020518444168051
1125 => 0.020371246566983
1126 => 0.019641662555229
1127 => 0.019613797812437
1128 => 0.019247718201457
1129 => 0.018674874497254
1130 => 0.018413069552985
1201 => 0.018276719264915
1202 => 0.018332980051186
1203 => 0.018304532876039
1204 => 0.01811889581579
1205 => 0.018315173375033
1206 => 0.017813765318655
1207 => 0.017614100590485
1208 => 0.017523916664958
1209 => 0.017078888154951
1210 => 0.017787126419449
1211 => 0.017926658279705
1212 => 0.01806646506083
1213 => 0.019283387640379
1214 => 0.019222593627293
1215 => 0.019772141897712
1216 => 0.019750787462478
1217 => 0.019594047393663
1218 => 0.018932786825821
1219 => 0.019196353502326
1220 => 0.018385136239398
1221 => 0.018992955370196
1222 => 0.018715572102033
1223 => 0.018899171808208
1224 => 0.018569042981988
1225 => 0.018751749905103
1226 => 0.017959746460063
1227 => 0.017220184786873
1228 => 0.017517805993316
1229 => 0.017841354281832
1230 => 0.018542889409907
1231 => 0.018125060875165
]
'min_raw' => 0.017078888154951
'max_raw' => 0.050980897082662
'avg_raw' => 0.034029892618806
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.017078'
'max' => '$0.05098'
'avg' => '$0.034029'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.032353521845049
'max_diff' => 0.0015484870826623
'year' => 2026
]
1 => [
'items' => [
101 => 0.018275327816104
102 => 0.01777195871834
103 => 0.016733364489377
104 => 0.016739242819922
105 => 0.016579477724801
106 => 0.016441417356531
107 => 0.018173053508609
108 => 0.017957697179981
109 => 0.017614555055453
110 => 0.01807386442506
111 => 0.018195313112604
112 => 0.018198770586002
113 => 0.018533870845576
114 => 0.018712713914182
115 => 0.018744235780173
116 => 0.019271523278934
117 => 0.019448263093429
118 => 0.020176229376177
119 => 0.018697540329317
120 => 0.018667087701476
121 => 0.018080327849816
122 => 0.017708195475588
123 => 0.018105808071853
124 => 0.018458038552612
125 => 0.018091272632692
126 => 0.018139164518983
127 => 0.017646811237367
128 => 0.01782280436817
129 => 0.017974393361252
130 => 0.017890694829261
131 => 0.017765394075816
201 => 0.018429159669973
202 => 0.018391707413832
203 => 0.019009821195016
204 => 0.01949168508919
205 => 0.020355271331023
206 => 0.019454074067901
207 => 0.019421230857699
208 => 0.019742278505648
209 => 0.019448213942707
210 => 0.019634052595722
211 => 0.020325329850968
212 => 0.020339935450071
213 => 0.020095272846846
214 => 0.020080385105204
215 => 0.02012737523447
216 => 0.020402597889285
217 => 0.020306426636954
218 => 0.020417718444909
219 => 0.020556890554918
220 => 0.021132565409664
221 => 0.021271358668206
222 => 0.020934163006004
223 => 0.020964607998881
224 => 0.02083848756499
225 => 0.020716656806135
226 => 0.020990514560087
227 => 0.021490994988121
228 => 0.021487881525353
301 => 0.021603983256708
302 => 0.021676313673503
303 => 0.021365818575517
304 => 0.021163697683949
305 => 0.021241203695063
306 => 0.021365137494695
307 => 0.02120101363418
308 => 0.020187965137516
309 => 0.020495259337615
310 => 0.0204441105568
311 => 0.020371268473015
312 => 0.020680255167451
313 => 0.020650452646994
314 => 0.019757751454096
315 => 0.019814899288104
316 => 0.019761226803162
317 => 0.019934653582366
318 => 0.019438848327492
319 => 0.019591354684592
320 => 0.019687005242107
321 => 0.019743344155305
322 => 0.019946878941732
323 => 0.019922996483735
324 => 0.019945394374611
325 => 0.020247182731691
326 => 0.021773524680546
327 => 0.021856600105138
328 => 0.021447506331036
329 => 0.021610931224772
330 => 0.021297191165894
331 => 0.021507806969294
401 => 0.021651904952919
402 => 0.021000753873366
403 => 0.020962196932371
404 => 0.020647161956667
405 => 0.020816443908117
406 => 0.020547104151557
407 => 0.020613190706712
408 => 0.020428406937175
409 => 0.020760980932259
410 => 0.021132850335537
411 => 0.021226799232373
412 => 0.020979660132341
413 => 0.020800715136658
414 => 0.020486546672384
415 => 0.021009015830172
416 => 0.021161801733869
417 => 0.021008213310863
418 => 0.020972623517279
419 => 0.020905180922748
420 => 0.020986931782531
421 => 0.021160969629025
422 => 0.021078896594593
423 => 0.021133107279776
424 => 0.020926512049674
425 => 0.021365921362314
426 => 0.022063809100397
427 => 0.022066052923591
428 => 0.021983979446755
429 => 0.021950396748331
430 => 0.0220346091162
501 => 0.022080290871197
502 => 0.022352618226978
503 => 0.022644836329731
504 => 0.024008490710535
505 => 0.023625582017157
506 => 0.024835497307968
507 => 0.025792383215163
508 => 0.026079311459181
509 => 0.025815350975701
510 => 0.024912356420583
511 => 0.024868051199746
512 => 0.02621750629956
513 => 0.025836223424903
514 => 0.025790871040195
515 => 0.025308398290961
516 => 0.025593599441171
517 => 0.025531221765972
518 => 0.025432755554049
519 => 0.025976899481365
520 => 0.026995488337236
521 => 0.026836731711783
522 => 0.02671822725539
523 => 0.026198975223604
524 => 0.026511680925879
525 => 0.026400332414782
526 => 0.026878756281966
527 => 0.026595348581432
528 => 0.025833334832126
529 => 0.025954688033333
530 => 0.025936345741099
531 => 0.02631382881552
601 => 0.026200517766285
602 => 0.025914219940159
603 => 0.026992006911262
604 => 0.026922021420324
605 => 0.027021244845563
606 => 0.027064926065939
607 => 0.027720956002513
608 => 0.02798971047691
609 => 0.028050722447808
610 => 0.028306018412269
611 => 0.028044370451643
612 => 0.02909114884598
613 => 0.029787195397002
614 => 0.030595689284242
615 => 0.03177711615617
616 => 0.032221343588824
617 => 0.032141097879241
618 => 0.033036842250098
619 => 0.034646474973249
620 => 0.032466450673751
621 => 0.034762021554635
622 => 0.034035270317388
623 => 0.032312156207569
624 => 0.032201207973078
625 => 0.033368120854013
626 => 0.035956221312724
627 => 0.03530793150181
628 => 0.035957281682611
629 => 0.03519978020444
630 => 0.035162163871325
701 => 0.035920491526592
702 => 0.03769236542741
703 => 0.036850614554831
704 => 0.035643758273208
705 => 0.036534882170795
706 => 0.035762908181081
707 => 0.034023434720342
708 => 0.035307435766809
709 => 0.034448860833281
710 => 0.034699438643238
711 => 0.036504035450131
712 => 0.036286901587955
713 => 0.036567892911665
714 => 0.03607195058014
715 => 0.035608662239568
716 => 0.034743900147646
717 => 0.034487886724484
718 => 0.034558639624248
719 => 0.03448785166286
720 => 0.034004025220004
721 => 0.033899542945735
722 => 0.033725401244479
723 => 0.033779375039377
724 => 0.033451937694065
725 => 0.034069879616676
726 => 0.034184575082799
727 => 0.034634261681996
728 => 0.034680949636502
729 => 0.035933320414378
730 => 0.03524353563516
731 => 0.035706302818212
801 => 0.035664908565626
802 => 0.032349501315268
803 => 0.032806335182282
804 => 0.03351702531699
805 => 0.033196860374622
806 => 0.032744222053171
807 => 0.032378692339669
808 => 0.031824877446381
809 => 0.032604361273611
810 => 0.033629299617555
811 => 0.034706943764311
812 => 0.036001662596596
813 => 0.035712696425418
814 => 0.034682739896329
815 => 0.03472894299384
816 => 0.035014552362406
817 => 0.034644662279766
818 => 0.034535574473283
819 => 0.034999565372952
820 => 0.035002760623273
821 => 0.034577157380486
822 => 0.034104177260699
823 => 0.034102195456728
824 => 0.034018033212857
825 => 0.035214752480657
826 => 0.035872827075982
827 => 0.035948274267796
828 => 0.035867748878842
829 => 0.035898739905112
830 => 0.035515820797776
831 => 0.036391060326011
901 => 0.037194266669337
902 => 0.036978990211325
903 => 0.036656260197413
904 => 0.036399190196549
905 => 0.036918432688924
906 => 0.036895311638102
907 => 0.03718725136263
908 => 0.0371740072904
909 => 0.03707583894145
910 => 0.036978993717226
911 => 0.037362974084385
912 => 0.037252393905179
913 => 0.037141641964412
914 => 0.03691951199193
915 => 0.036949703144379
916 => 0.036627028854354
917 => 0.036477744963217
918 => 0.034232873422664
919 => 0.033632970393735
920 => 0.033821712098788
921 => 0.033883850768768
922 => 0.033622772201781
923 => 0.033997091801259
924 => 0.033938754488183
925 => 0.034165710847176
926 => 0.034023918367377
927 => 0.034029737580207
928 => 0.034446719029951
929 => 0.034567770518778
930 => 0.034506202754555
1001 => 0.034549322706197
1002 => 0.035543003791993
1003 => 0.035401734117725
1004 => 0.035326687418879
1005 => 0.035347475867338
1006 => 0.035601382689521
1007 => 0.035672462736934
1008 => 0.03537129158134
1009 => 0.035513325639368
1010 => 0.036118088631646
1011 => 0.036329721452322
1012 => 0.037005151826404
1013 => 0.036718216998677
1014 => 0.037244898293219
1015 => 0.038863737033758
1016 => 0.040156977434821
1017 => 0.038967660116584
1018 => 0.041342531419964
1019 => 0.043191709384701
1020 => 0.043120734854447
1021 => 0.042798287904039
1022 => 0.040693047954126
1023 => 0.038755774764856
1024 => 0.040376386048645
1025 => 0.040380517320089
1026 => 0.040241305373562
1027 => 0.039376671929798
1028 => 0.040211218003921
1029 => 0.040277461240659
1030 => 0.040240382643584
1031 => 0.03957747020949
1101 => 0.038565325449326
1102 => 0.03876309611273
1103 => 0.039087048493798
1104 => 0.03847373905289
1105 => 0.03827774952479
1106 => 0.038642131346061
1107 => 0.039816245496161
1108 => 0.039594286017265
1109 => 0.039588489758262
1110 => 0.040538126534448
1111 => 0.039858391547142
1112 => 0.038765590634145
1113 => 0.03848964399134
1114 => 0.037510219309314
1115 => 0.03818671142578
1116 => 0.038211057172716
1117 => 0.037840549354109
1118 => 0.038795655301639
1119 => 0.03878685383219
1120 => 0.03969358478061
1121 => 0.041426913801397
1122 => 0.040914283118009
1123 => 0.040318149407289
1124 => 0.040382965670639
1125 => 0.04109384009942
1126 => 0.040664029192094
1127 => 0.040818592191117
1128 => 0.041093606149809
1129 => 0.041259528899301
1130 => 0.040359091940393
1201 => 0.040149157012393
1202 => 0.039719703826853
1203 => 0.039607667506868
1204 => 0.039957448165657
1205 => 0.039865293319999
1206 => 0.038209011006957
1207 => 0.038035920289777
1208 => 0.038041228734956
1209 => 0.037605983896591
1210 => 0.036942131047353
1211 => 0.038686696698556
1212 => 0.038546583661584
1213 => 0.038391909712654
1214 => 0.038410856388841
1215 => 0.039168113209212
1216 => 0.03872886601101
1217 => 0.039896676678629
1218 => 0.039656609912969
1219 => 0.039410386340624
1220 => 0.039376350742772
1221 => 0.039281575674228
1222 => 0.038956556699938
1223 => 0.038564076757871
1224 => 0.038304927504088
1225 => 0.035334270831714
1226 => 0.035885607430592
1227 => 0.036519869931688
1228 => 0.03673881480542
1229 => 0.036364294448378
1230 => 0.038971345046363
1231 => 0.039447678312779
]
'min_raw' => 0.016441417356531
'max_raw' => 0.043191709384701
'avg_raw' => 0.029816563370616
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.016441'
'max' => '$0.043191'
'avg' => '$0.029816'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00063747079841974
'max_diff' => -0.0077891876979613
'year' => 2027
]
2 => [
'items' => [
101 => 0.038004833778354
102 => 0.037734936476917
103 => 0.038989039468512
104 => 0.038232662056724
105 => 0.038573258758939
106 => 0.037837074985187
107 => 0.039332943577565
108 => 0.039321547565157
109 => 0.038739620896997
110 => 0.039231461332064
111 => 0.039145991952872
112 => 0.038488998177742
113 => 0.039353771452096
114 => 0.039354200368851
115 => 0.038794108602924
116 => 0.038140044040175
117 => 0.03802311274467
118 => 0.037935020721017
119 => 0.038551593521259
120 => 0.039104410765983
121 => 0.040133066603396
122 => 0.040391695121182
123 => 0.041401139443975
124 => 0.040800064498704
125 => 0.041066513236719
126 => 0.041355781033309
127 => 0.041494466652466
128 => 0.041268485878331
129 => 0.042836568415487
130 => 0.042968962626431
131 => 0.043013353260155
201 => 0.042484604651343
202 => 0.042954257171121
203 => 0.042734522310373
204 => 0.043306211373936
205 => 0.043395859518795
206 => 0.043319930729424
207 => 0.043348386465602
208 => 0.042010304648855
209 => 0.041940918047712
210 => 0.040994826817689
211 => 0.041380365987077
212 => 0.040659618989279
213 => 0.040888175286797
214 => 0.040988920724979
215 => 0.040936297025326
216 => 0.041402163793255
217 => 0.041006081870223
218 => 0.039960756553442
219 => 0.038915146438479
220 => 0.038902019655221
221 => 0.038626728968502
222 => 0.038427744224009
223 => 0.038466075745162
224 => 0.038601161025362
225 => 0.038419892821952
226 => 0.038458575583681
227 => 0.039100967170269
228 => 0.039229794221631
229 => 0.038791989565122
301 => 0.037034140694325
302 => 0.036602760172202
303 => 0.036912827936857
304 => 0.036764635516273
305 => 0.029671930223788
306 => 0.031338256124672
307 => 0.030348181857447
308 => 0.030804453630911
309 => 0.029793844182563
310 => 0.030276159981894
311 => 0.030187093865111
312 => 0.032866496603566
313 => 0.032824661415203
314 => 0.032844685706003
315 => 0.031888874133085
316 => 0.033411507921856
317 => 0.034161612078345
318 => 0.034022787762354
319 => 0.034057726851837
320 => 0.033457357535789
321 => 0.032850498593325
322 => 0.03217739863121
323 => 0.033427935163149
324 => 0.033288896848168
325 => 0.033607800718328
326 => 0.034418863049488
327 => 0.034538295058678
328 => 0.034698812890189
329 => 0.034641278674029
330 => 0.036011977120898
331 => 0.035845976494823
401 => 0.036245990242025
402 => 0.035423131614914
403 => 0.03449198897188
404 => 0.034668968746975
405 => 0.034651924171452
406 => 0.03443492716219
407 => 0.034239031964821
408 => 0.03391292165433
409 => 0.034944782931967
410 => 0.034902891248495
411 => 0.035581068910153
412 => 0.035461194420989
413 => 0.034660643244085
414 => 0.034689235085983
415 => 0.034881528963512
416 => 0.035547060269213
417 => 0.035744635273572
418 => 0.03565311065955
419 => 0.035869742632188
420 => 0.036040959710564
421 => 0.035891244861128
422 => 0.038010891408471
423 => 0.037130666380773
424 => 0.037559681934707
425 => 0.037661999616414
426 => 0.03739991502623
427 => 0.037456751789296
428 => 0.037542843998248
429 => 0.038065579032427
430 => 0.039437387016712
501 => 0.04004495143474
502 => 0.041872838963075
503 => 0.039994501667527
504 => 0.039883048905742
505 => 0.04021230664651
506 => 0.041285470127188
507 => 0.042155168331158
508 => 0.042443697399508
509 => 0.042481831278986
510 => 0.04302313099226
511 => 0.043333393893266
512 => 0.042957402969472
513 => 0.042638790029448
514 => 0.041497558025973
515 => 0.041629658737847
516 => 0.042539701644684
517 => 0.043825190851852
518 => 0.044928274323958
519 => 0.044542012938366
520 => 0.047488914652385
521 => 0.047781087920316
522 => 0.047740719021781
523 => 0.048406333207339
524 => 0.047085224598977
525 => 0.046520425073628
526 => 0.042707677763492
527 => 0.043778904237698
528 => 0.045335994828883
529 => 0.045129908050349
530 => 0.04399910724188
531 => 0.044927416510143
601 => 0.04462048843514
602 => 0.044378401527929
603 => 0.045487448580722
604 => 0.044268005789034
605 => 0.04532382995421
606 => 0.043969724541269
607 => 0.044543777347839
608 => 0.04421791721102
609 => 0.044428788655458
610 => 0.043196038500082
611 => 0.043861200560605
612 => 0.043168365571515
613 => 0.04316803707752
614 => 0.043152742706736
615 => 0.043967859998899
616 => 0.043994440944533
617 => 0.04339206803405
618 => 0.043305256686816
619 => 0.043626243737209
620 => 0.043250451967841
621 => 0.043426282571523
622 => 0.043255777697705
623 => 0.043217393459226
624 => 0.042911541316489
625 => 0.042779771803818
626 => 0.042831442025018
627 => 0.042655064922237
628 => 0.042548791337972
629 => 0.043131602215958
630 => 0.042820229874374
701 => 0.043083879938902
702 => 0.042783417415082
703 => 0.041741883402229
704 => 0.041142886177415
705 => 0.03917552497739
706 => 0.039733466173213
707 => 0.040103381763275
708 => 0.039981124662966
709 => 0.040243780221647
710 => 0.04025990513975
711 => 0.040174513140167
712 => 0.040075640144041
713 => 0.040027514237547
714 => 0.040386205315739
715 => 0.040594437559616
716 => 0.04014050774157
717 => 0.040034158336355
718 => 0.040493106444551
719 => 0.040773064525425
720 => 0.042840117699742
721 => 0.042686983724095
722 => 0.043071319951944
723 => 0.043028049590809
724 => 0.043430895187157
725 => 0.044089377481936
726 => 0.042750498862106
727 => 0.042982881895569
728 => 0.042925906942272
729 => 0.043547944542736
730 => 0.043549886476227
731 => 0.043176943861666
801 => 0.043379122103322
802 => 0.0432662717553
803 => 0.043470207586816
804 => 0.042684938526489
805 => 0.04364131147741
806 => 0.044183513313271
807 => 0.044191041786288
808 => 0.044448041153306
809 => 0.044709167394597
810 => 0.04521037647545
811 => 0.044695188945363
812 => 0.043768416731232
813 => 0.043835326691636
814 => 0.043291960481584
815 => 0.043301094565742
816 => 0.043252336108655
817 => 0.043398663908738
818 => 0.042717049249881
819 => 0.042877022847923
820 => 0.04265305887386
821 => 0.042982395041629
822 => 0.042628083766329
823 => 0.042925879467224
824 => 0.043054398219647
825 => 0.043528635182897
826 => 0.042558038581266
827 => 0.040578926406927
828 => 0.040994959780389
829 => 0.040379613742323
830 => 0.040436566360933
831 => 0.040551619714469
901 => 0.040178694152546
902 => 0.040249836597526
903 => 0.040247294888769
904 => 0.040225391815849
905 => 0.040128379474124
906 => 0.039987692385316
907 => 0.040548146445924
908 => 0.040643378511986
909 => 0.040855067598083
910 => 0.041484910728231
911 => 0.041421974546805
912 => 0.041524626069907
913 => 0.041300538371339
914 => 0.040446961146571
915 => 0.04049331449656
916 => 0.039915287479437
917 => 0.040840286147674
918 => 0.040621234253649
919 => 0.040480010072555
920 => 0.040441475746311
921 => 0.041072880135752
922 => 0.041261806225124
923 => 0.041144080164586
924 => 0.040902620579804
925 => 0.041366294363704
926 => 0.041490353907449
927 => 0.041518126264154
928 => 0.042339667308595
929 => 0.041564041282355
930 => 0.041750742175931
1001 => 0.043207329251487
1002 => 0.041886405769234
1003 => 0.042586128397892
1004 => 0.0425518806164
1005 => 0.042909835035899
1006 => 0.042522517906095
1007 => 0.042527319166114
1008 => 0.042845158440696
1009 => 0.042398810502161
1010 => 0.042288288475574
1011 => 0.042135603087419
1012 => 0.042468986046573
1013 => 0.042668834052972
1014 => 0.04427946221236
1015 => 0.045320001456892
1016 => 0.04527482890406
1017 => 0.04568762147747
1018 => 0.045501654642402
1019 => 0.044901118676395
1020 => 0.04592616034281
1021 => 0.045601794269991
1022 => 0.04562853461493
1023 => 0.045627539337955
1024 => 0.045843214419805
1025 => 0.045690388857984
1026 => 0.045389153988411
1027 => 0.045589127752876
1028 => 0.046182978341409
1029 => 0.048026308789774
1030 => 0.04905786092956
1031 => 0.047964208055704
1101 => 0.048718595163495
1102 => 0.048266231714431
1103 => 0.048184023819089
1104 => 0.048657834671551
1105 => 0.049132474867188
1106 => 0.049102242338652
1107 => 0.048757677929663
1108 => 0.048563042238024
1109 => 0.050036888902858
1110 => 0.051122794019184
1111 => 0.051048742570251
1112 => 0.051375581583021
1113 => 0.052335191033264
1114 => 0.052422925695177
1115 => 0.052411873144334
1116 => 0.052194413630617
1117 => 0.053139273755415
1118 => 0.053927492694753
1119 => 0.052144078036201
1120 => 0.052823178991565
1121 => 0.053128049289695
1122 => 0.05357568933829
1123 => 0.054330933133453
1124 => 0.055151328213524
1125 => 0.05526734107302
1126 => 0.055185024397481
1127 => 0.054643951788771
1128 => 0.055541637874733
1129 => 0.056067481330561
1130 => 0.056380609074793
1201 => 0.057174648934676
1202 => 0.053129932064866
1203 => 0.050266880428942
1204 => 0.049819773573026
1205 => 0.05072898294614
1206 => 0.050968734207022
1207 => 0.050872090774383
1208 => 0.047649465860884
1209 => 0.049802807119794
1210 => 0.052119621256305
1211 => 0.052208619522811
1212 => 0.053368465121847
1213 => 0.053746158392571
1214 => 0.054679986124233
1215 => 0.054621574945364
1216 => 0.054848947137579
1217 => 0.054796678208126
1218 => 0.056526397440402
1219 => 0.058434534619394
1220 => 0.05836846189639
1221 => 0.058094144600856
1222 => 0.058501552562774
1223 => 0.060470954619901
1224 => 0.060289643637506
1225 => 0.06046577181287
1226 => 0.062787807828859
1227 => 0.065806784955416
1228 => 0.064404166979782
1229 => 0.067447444394457
1230 => 0.069363026209791
1231 => 0.072675826884554
]
'min_raw' => 0.029671930223788
'max_raw' => 0.072675826884554
'avg_raw' => 0.051173878554171
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.029671'
'max' => '$0.072675'
'avg' => '$0.051173'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.013230512867257
'max_diff' => 0.029484117499853
'year' => 2028
]
3 => [
'items' => [
101 => 0.072261047924186
102 => 0.073550696916417
103 => 0.071518507018147
104 => 0.066852188238378
105 => 0.066113725429529
106 => 0.067592146673701
107 => 0.071226701040265
108 => 0.067477681622417
109 => 0.068236103367915
110 => 0.06801767785419
111 => 0.068006038886812
112 => 0.068450250932519
113 => 0.067805898191679
114 => 0.065180689208653
115 => 0.06638380701512
116 => 0.065919225451581
117 => 0.066434713333178
118 => 0.069216588826782
119 => 0.06798665535943
120 => 0.066691020363257
121 => 0.068316034172881
122 => 0.070385235167859
123 => 0.070255748288305
124 => 0.070004489620654
125 => 0.07142082157473
126 => 0.07376018701654
127 => 0.074392508095129
128 => 0.074859274588108
129 => 0.074923633801406
130 => 0.075586573697396
131 => 0.07202177879429
201 => 0.077679199855946
202 => 0.078656080190191
203 => 0.078472467174895
204 => 0.079558228553
205 => 0.079238770012454
206 => 0.078775924708712
207 => 0.080497087441076
208 => 0.078523913259091
209 => 0.075723240923484
210 => 0.074186736689152
211 => 0.076210129411181
212 => 0.07744574473985
213 => 0.078262407872205
214 => 0.078509529642614
215 => 0.072298503674948
216 => 0.068951105157668
217 => 0.071096749229243
218 => 0.073714583081007
219 => 0.072007236595065
220 => 0.07207416134488
221 => 0.069639933938691
222 => 0.073929958192881
223 => 0.073304937743828
224 => 0.076547544939153
225 => 0.07577367070844
226 => 0.078417890998941
227 => 0.07772157917898
228 => 0.080611930613368
301 => 0.081764970053687
302 => 0.083701102730241
303 => 0.085125329808591
304 => 0.085961663190122
305 => 0.085911452870902
306 => 0.089225422388162
307 => 0.08727129034511
308 => 0.084816439945477
309 => 0.084772039446701
310 => 0.08604344125417
311 => 0.088707950650574
312 => 0.089398819170027
313 => 0.089784920422384
314 => 0.089193592914118
315 => 0.08707252263529
316 => 0.086156655242963
317 => 0.086937000796458
318 => 0.085982705240391
319 => 0.087630087098205
320 => 0.089892294250762
321 => 0.089425157419496
322 => 0.090986725809351
323 => 0.092602784811066
324 => 0.09491382176527
325 => 0.095518012402549
326 => 0.09651671655066
327 => 0.097544711176289
328 => 0.097874875344808
329 => 0.098505261186438
330 => 0.098501938741885
331 => 0.1004016489055
401 => 0.10249708804509
402 => 0.10328806781075
403 => 0.10510688216703
404 => 0.10199222632076
405 => 0.10435472855874
406 => 0.10648576471466
407 => 0.10394505555727
408 => 0.10744683122143
409 => 0.10758279723527
410 => 0.10963572261805
411 => 0.10755468944969
412 => 0.10631897859721
413 => 0.10988642952683
414 => 0.11161260665803
415 => 0.11109266805802
416 => 0.1071359096394
417 => 0.10483290652641
418 => 0.098805503163606
419 => 0.1059452228113
420 => 0.10942277198322
421 => 0.10712690362716
422 => 0.10828480608327
423 => 0.11460194643266
424 => 0.11700710447316
425 => 0.11650684841406
426 => 0.11659138345313
427 => 0.11788916307508
428 => 0.12364423261909
429 => 0.12019566154685
430 => 0.12283196491609
501 => 0.12423025071723
502 => 0.12552905649664
503 => 0.12233959999418
504 => 0.1181901639469
505 => 0.11687586336925
506 => 0.10689862476577
507 => 0.10637926616751
508 => 0.10608773444813
509 => 0.10424966819541
510 => 0.1028054516095
511 => 0.10165695696005
512 => 0.098642964030379
513 => 0.099660098167454
514 => 0.094856422506767
515 => 0.097929643962662
516 => 0.0902628616194
517 => 0.096647985774536
518 => 0.093172852992867
519 => 0.095506311192361
520 => 0.095498169976528
521 => 0.091201533607663
522 => 0.088723323418614
523 => 0.090302535404459
524 => 0.091995576011289
525 => 0.092270266153674
526 => 0.09446533749331
527 => 0.095077934721301
528 => 0.093221736521057
529 => 0.090103984596388
530 => 0.090828167260138
531 => 0.088708647880048
601 => 0.084994271692575
602 => 0.087662001517204
603 => 0.088572881771133
604 => 0.088975178382972
605 => 0.085322516001579
606 => 0.084174770178187
607 => 0.083563719932334
608 => 0.08963247175112
609 => 0.089964931675186
610 => 0.088264019698569
611 => 0.095952303119967
612 => 0.094212207795839
613 => 0.096156320606595
614 => 0.090762455273926
615 => 0.090968508193437
616 => 0.088414965904425
617 => 0.089844778958514
618 => 0.08883423317691
619 => 0.089729264193432
620 => 0.090265742094384
621 => 0.092818865372233
622 => 0.096677138341231
623 => 0.092437513893681
624 => 0.090590248809343
625 => 0.091736281678253
626 => 0.094788318230606
627 => 0.099412309838297
628 => 0.09667481374004
629 => 0.097889668022748
630 => 0.098155059638415
701 => 0.096136531363174
702 => 0.099486735855004
703 => 0.10128213765919
704 => 0.10312384840423
705 => 0.10472295424058
706 => 0.10238822863257
707 => 0.10488671970291
708 => 0.10287337694326
709 => 0.10106720035231
710 => 0.10106993957664
711 => 0.099936898617106
712 => 0.09774148898566
713 => 0.097336621765995
714 => 0.099442792171787
715 => 0.10113174138215
716 => 0.10127085132864
717 => 0.10220594039284
718 => 0.10275931646885
719 => 0.10818315429206
720 => 0.1103646667329
721 => 0.11303217885163
722 => 0.11407132515462
723 => 0.11719878297206
724 => 0.11467310678478
725 => 0.11412666085441
726 => 0.10654047117296
727 => 0.10778270930831
728 => 0.10977165242116
729 => 0.10657326811231
730 => 0.10860190678969
731 => 0.10900240303704
801 => 0.10646458823737
802 => 0.10782014477438
803 => 0.10422018850659
804 => 0.096755607550323
805 => 0.099495046067472
806 => 0.10151219490113
807 => 0.098633474802843
808 => 0.10379346915716
809 => 0.10077910697927
810 => 0.099823698883785
811 => 0.096096311275702
812 => 0.097855494746411
813 => 0.10023481557963
814 => 0.098764671930435
815 => 0.10181544074568
816 => 0.1061361429984
817 => 0.10921533272596
818 => 0.10945171467879
819 => 0.10747200197366
820 => 0.11064450421799
821 => 0.11066761243334
822 => 0.10708901694169
823 => 0.10489714712875
824 => 0.10439914969552
825 => 0.10564324492188
826 => 0.10715380619933
827 => 0.10953554031671
828 => 0.1109747723619
829 => 0.11472752622605
830 => 0.11574291382181
831 => 0.11685851694326
901 => 0.11834930675278
902 => 0.12013938214976
903 => 0.1162227990902
904 => 0.11637841223658
905 => 0.1127313443203
906 => 0.10883392920931
907 => 0.1117915814589
908 => 0.11565831833525
909 => 0.11477128462345
910 => 0.11467147521042
911 => 0.11483932695832
912 => 0.11417053250743
913 => 0.11114559999276
914 => 0.10962649782098
915 => 0.11158652718688
916 => 0.11262819556398
917 => 0.11424373237385
918 => 0.11404458336219
919 => 0.1182060326884
920 => 0.11982304606088
921 => 0.1194093448443
922 => 0.11948547582442
923 => 0.12241300129666
924 => 0.12566901171332
925 => 0.12871869513694
926 => 0.13182096410239
927 => 0.12808105778092
928 => 0.12618216399623
929 => 0.12814133767462
930 => 0.1271017725435
1001 => 0.13307542214198
1002 => 0.13348902467934
1003 => 0.13946224231496
1004 => 0.14513153712869
1005 => 0.14157075463215
1006 => 0.14492841214522
1007 => 0.14855999249943
1008 => 0.1555659002054
1009 => 0.15320655696083
1010 => 0.15139933701112
1011 => 0.14969152289106
1012 => 0.15324521296704
1013 => 0.15781697847821
1014 => 0.15880169298148
1015 => 0.16039730666669
1016 => 0.15871971397906
1017 => 0.16074018959054
1018 => 0.16787335634103
1019 => 0.16594591171885
1020 => 0.16320863050315
1021 => 0.16883958057605
1022 => 0.17087739951767
1023 => 0.18517988006402
1024 => 0.20323735255978
1025 => 0.19576144037478
1026 => 0.19112090043537
1027 => 0.19221153739621
1028 => 0.19880551506764
1029 => 0.20092329141332
1030 => 0.19516644526449
1031 => 0.1971998606474
1101 => 0.20840417932819
1102 => 0.21441493682285
1103 => 0.20625152079267
1104 => 0.18372897973115
1105 => 0.16296216827892
1106 => 0.16847046181776
1107 => 0.16784599227271
1108 => 0.179883634928
1109 => 0.16589994280205
1110 => 0.16613539231428
1111 => 0.1784219606716
1112 => 0.17514411487897
1113 => 0.16983442448969
1114 => 0.16300093489482
1115 => 0.15036859735742
1116 => 0.13917978372175
1117 => 0.16112362389119
1118 => 0.1601773656008
1119 => 0.15880704336869
1120 => 0.16185654721189
1121 => 0.17666407225771
1122 => 0.17632271087812
1123 => 0.17415114394529
1124 => 0.17579825832453
1125 => 0.16954567737533
1126 => 0.17115710985456
1127 => 0.16295887870989
1128 => 0.16666482157565
1129 => 0.16982303227882
1130 => 0.17045708983559
1201 => 0.17188565388677
1202 => 0.15967873048007
1203 => 0.16515928071323
1204 => 0.16837859051711
1205 => 0.15383363170371
1206 => 0.16809108344697
1207 => 0.15946623510151
1208 => 0.15653883203219
1209 => 0.16048019460901
1210 => 0.15894424177972
1211 => 0.15762371973127
1212 => 0.15688684573879
1213 => 0.15978094742289
1214 => 0.15964593412013
1215 => 0.15491062204401
1216 => 0.14873360047672
1217 => 0.15080681166853
1218 => 0.15005359460608
1219 => 0.14732383880487
1220 => 0.14916336462292
1221 => 0.14106302388294
1222 => 0.12712680865888
1223 => 0.13633349931371
1224 => 0.13597905173845
1225 => 0.13580032319809
1226 => 0.14271889677095
1227 => 0.14205383556057
1228 => 0.14084674295143
1229 => 0.14730166960249
1230 => 0.14494553454384
1231 => 0.15220658761936
]
'min_raw' => 0.065180689208653
'max_raw' => 0.21441493682285
'avg_raw' => 0.13979781301575
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.06518'
'max' => '$0.214414'
'avg' => '$0.139797'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.035508758984866
'max_diff' => 0.1417391099383
'year' => 2029
]
4 => [
'items' => [
101 => 0.15698918679037
102 => 0.15577616493972
103 => 0.16027422257636
104 => 0.15085457426709
105 => 0.15398340358473
106 => 0.15462825097073
107 => 0.14722201680958
108 => 0.14216264779954
109 => 0.1418252455676
110 => 0.13305299692818
111 => 0.13773906134424
112 => 0.14186260410785
113 => 0.13988774712393
114 => 0.13926256639999
115 => 0.14245647913343
116 => 0.14270467350683
117 => 0.13704581549083
118 => 0.13822247126509
119 => 0.14312932144647
120 => 0.1380988312302
121 => 0.12832541046589
122 => 0.12590146698823
123 => 0.12557806824617
124 => 0.11900414128937
125 => 0.12606344648195
126 => 0.12298187058777
127 => 0.13271653191452
128 => 0.12715614557272
129 => 0.12691644843093
130 => 0.12655411104518
131 => 0.12089566054796
201 => 0.12213450159357
202 => 0.12625259790997
203 => 0.12772198106933
204 => 0.12756871236751
205 => 0.1262324169914
206 => 0.12684416617164
207 => 0.12487350891453
208 => 0.12417762882136
209 => 0.12198123983041
210 => 0.11875315478167
211 => 0.11920203980669
212 => 0.11280635865073
213 => 0.10932165211247
214 => 0.10835713127037
215 => 0.10706733369022
216 => 0.10850281733907
217 => 0.11278824048959
218 => 0.10761911096683
219 => 0.098757000972326
220 => 0.099289628883296
221 => 0.1004862856606
222 => 0.098256323672771
223 => 0.096145851797815
224 => 0.097980735865094
225 => 0.094225743033293
226 => 0.10094005860463
227 => 0.10075845518508
228 => 0.10326113681959
301 => 0.10482611500584
302 => 0.10121934695423
303 => 0.10031225454299
304 => 0.10082897560548
305 => 0.09228872745283
306 => 0.1025632163448
307 => 0.1026520705514
308 => 0.10189124688958
309 => 0.1073620950353
310 => 0.11890729102309
311 => 0.11456352388805
312 => 0.11288148596231
313 => 0.1096839306359
314 => 0.11394448325629
315 => 0.11361733929002
316 => 0.11213787020887
317 => 0.11124308269237
318 => 0.11289175612721
319 => 0.11103879380874
320 => 0.11070595086034
321 => 0.10868928472976
322 => 0.1079694266736
323 => 0.1074364724272
324 => 0.10684974216891
325 => 0.10814392291462
326 => 0.10521113908119
327 => 0.10167448928241
328 => 0.10138045511872
329 => 0.10219230929641
330 => 0.10183312425822
331 => 0.10137873547895
401 => 0.1005111835539
402 => 0.10025379943005
403 => 0.10109017296753
404 => 0.10014595600732
405 => 0.10153919956627
406 => 0.10116031440992
407 => 0.09904389272597
408 => 0.096406047708101
409 => 0.096382565354374
410 => 0.095814245972207
411 => 0.095090405791626
412 => 0.094889050012609
413 => 0.097826207046856
414 => 0.10390603420603
415 => 0.10271241865675
416 => 0.10357492821775
417 => 0.10781762160077
418 => 0.10916624624499
419 => 0.10820902441644
420 => 0.10689872013867
421 => 0.10695636687698
422 => 0.11143407325023
423 => 0.11171334230426
424 => 0.11241896510819
425 => 0.11332588982023
426 => 0.10836347761656
427 => 0.10672263770845
428 => 0.10594511672966
429 => 0.10355065305346
430 => 0.10613287684244
501 => 0.10462832562245
502 => 0.10483134098481
503 => 0.10469912696374
504 => 0.10477132475952
505 => 0.10093818181659
506 => 0.10233477764093
507 => 0.10001266620875
508 => 0.096903619670299
509 => 0.09689319705613
510 => 0.097654131791833
511 => 0.097201498035658
512 => 0.095983472236068
513 => 0.09615648705198
514 => 0.094640695209846
515 => 0.096340531625913
516 => 0.096389276852018
517 => 0.095734747241117
518 => 0.098353579772291
519 => 0.099426517597076
520 => 0.098995692185798
521 => 0.099396289737729
522 => 0.10276201877168
523 => 0.10331077946126
524 => 0.10355450271048
525 => 0.10322794584367
526 => 0.099457809085913
527 => 0.099625030682979
528 => 0.098398069556982
529 => 0.097361416699492
530 => 0.097402877377263
531 => 0.097935851701451
601 => 0.10026338183371
602 => 0.10516153178166
603 => 0.10534741299168
604 => 0.10557270644077
605 => 0.10465632475992
606 => 0.10437993527639
607 => 0.10474456434735
608 => 0.10658405193531
609 => 0.11131571342755
610 => 0.10964322823915
611 => 0.10828347174719
612 => 0.10947634477835
613 => 0.10929271132525
614 => 0.10774266017892
615 => 0.10769915540585
616 => 0.1047241116747
617 => 0.10362430574576
618 => 0.10270522559249
619 => 0.10170161405832
620 => 0.1011066394995
621 => 0.10202079083295
622 => 0.10222986805883
623 => 0.10023106019161
624 => 0.099958630065161
625 => 0.1015908997168
626 => 0.10087259870026
627 => 0.10161138910877
628 => 0.10178279482078
629 => 0.10175519455334
630 => 0.10100520579572
701 => 0.10148322626484
702 => 0.10035256535062
703 => 0.099123141426187
704 => 0.098338845558215
705 => 0.097654443391659
706 => 0.098034189491352
707 => 0.096680463984846
708 => 0.096247379950203
709 => 0.1013212836857
710 => 0.10506943092878
711 => 0.10501493138343
712 => 0.1046831794173
713 => 0.10419026328905
714 => 0.10654799205034
715 => 0.10572660649418
716 => 0.10632423311535
717 => 0.10647635417274
718 => 0.10693677879755
719 => 0.10710134102609
720 => 0.10660391967564
721 => 0.10493451286863
722 => 0.10077450982799
723 => 0.09883801718286
724 => 0.098198942355131
725 => 0.098222171511343
726 => 0.097581407683494
727 => 0.097770141347816
728 => 0.097515773817212
729 => 0.097034063252363
730 => 0.098004445221397
731 => 0.098116272703595
801 => 0.097889773956821
802 => 0.097943122611061
803 => 0.096067809726655
804 => 0.096210385692291
805 => 0.095416504597953
806 => 0.095267661463144
807 => 0.093260799187791
808 => 0.089705351767665
809 => 0.091675414774047
810 => 0.089295855695117
811 => 0.088394680615722
812 => 0.092660703280097
813 => 0.092232512925644
814 => 0.091499637168693
815 => 0.090415561179472
816 => 0.090013466849857
817 => 0.087570468990709
818 => 0.087426123644304
819 => 0.088636939349788
820 => 0.088078189563332
821 => 0.087293493248055
822 => 0.084451402737511
823 => 0.081255952019831
824 => 0.081352402591111
825 => 0.082368816010931
826 => 0.085324175111082
827 => 0.084169465182421
828 => 0.083331709880408
829 => 0.083174823495173
830 => 0.085138585070286
831 => 0.087917719119839
901 => 0.08922162663627
902 => 0.087929493887747
903 => 0.086445161359612
904 => 0.086535505802865
905 => 0.087136526908803
906 => 0.087199685729056
907 => 0.086233537845089
908 => 0.086505502815182
909 => 0.086092363156613
910 => 0.083556925834569
911 => 0.083511067813372
912 => 0.082888830605092
913 => 0.082869989509718
914 => 0.081811408794089
915 => 0.08166330603435
916 => 0.079561429772211
917 => 0.080944891093018
918 => 0.080016937874
919 => 0.078618293490905
920 => 0.078377166672078
921 => 0.078369918108735
922 => 0.079806013159013
923 => 0.08092810948622
924 => 0.080033080017536
925 => 0.079829299156934
926 => 0.082005145613958
927 => 0.081728249319021
928 => 0.081488458913395
929 => 0.087668878147511
930 => 0.082776594059581
1001 => 0.080643278955431
1002 => 0.078002896408494
1003 => 0.078862618279741
1004 => 0.079043774309955
1005 => 0.072694130249299
1006 => 0.070118080444688
1007 => 0.069234077228135
1008 => 0.068725320879037
1009 => 0.068957167535881
1010 => 0.066638420571226
1011 => 0.068196656880009
1012 => 0.06618881800742
1013 => 0.065852197286358
1014 => 0.069442461914054
1015 => 0.069942026262977
1016 => 0.067810729547996
1017 => 0.06917936706461
1018 => 0.068683080075601
1019 => 0.066223236642044
1020 => 0.066129288716265
1021 => 0.064895025748984
1022 => 0.062963643205593
1023 => 0.062080949557351
1024 => 0.061621235041449
1025 => 0.061810922210368
1026 => 0.06171501057324
1027 => 0.061089122263846
1028 => 0.061750885758495
1029 => 0.060060353489222
1030 => 0.059387169918053
1031 => 0.059083108516696
1101 => 0.057582663824309
1102 => 0.05997053858068
1103 => 0.060440979989339
1104 => 0.0609123483129
1105 => 0.065015287752671
1106 => 0.064810316493047
1107 => 0.066663156855
1108 => 0.066591158885689
1109 => 0.066062698800436
1110 => 0.063833212628219
1111 => 0.064721846079695
1112 => 0.061986770440351
1113 => 0.064036075076413
1114 => 0.063100858021522
1115 => 0.063719877249411
1116 => 0.062606824862954
1117 => 0.063222834010426
1118 => 0.060552539099558
1119 => 0.058059055283852
1120 => 0.059062505960623
1121 => 0.060153371604776
1122 => 0.062518646268697
1123 => 0.061109908191958
1124 => 0.061616543674638
1125 => 0.059919399617416
1126 => 0.056417706662135
1127 => 0.056437525863979
1128 => 0.055898866691337
1129 => 0.055433386520647
1130 => 0.061271718706352
1201 => 0.060545629808686
1202 => 0.059388702178421
1203 => 0.060937295786008
1204 => 0.061346768515339
1205 => 0.061358425628292
1206 => 0.062488239549401
1207 => 0.063091221441627
1208 => 0.063197499613605
1209 => 0.064975286229716
1210 => 0.065571176853864
1211 => 0.068025566001131
1212 => 0.063040062640872
1213 => 0.062937389479969
1214 => 0.060959087673836
1215 => 0.059704417392671
1216 => 0.061044996021404
1217 => 0.062232565679229
1218 => 0.060995988773442
1219 => 0.061157459611774
1220 => 0.0594974561478
1221 => 0.060090829275748
1222 => 0.060601922149529
1223 => 0.060319726705278
1224 => 0.059897266466819
1225 => 0.062135198510154
1226 => 0.062008925613742
1227 => 0.064092939382331
1228 => 0.065717577144199
1229 => 0.068629218452206
1230 => 0.065590768960007
1231 => 0.065480035783768
]
'min_raw' => 0.055433386520647
'max_raw' => 0.16027422257636
'avg_raw' => 0.1078538045485
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.055433'
'max' => '$0.160274'
'avg' => '$0.107853'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0097473026880062
'max_diff' => -0.054140714246491
'year' => 2030
]
5 => [
'items' => [
101 => 0.066562470343661
102 => 0.065571011138772
103 => 0.066197579132254
104 => 0.068528268661753
105 => 0.068577512458859
106 => 0.067752615410287
107 => 0.067702420349915
108 => 0.067860850851478
109 => 0.06878878324762
110 => 0.068464535155925
111 => 0.068839763256592
112 => 0.069308991742171
113 => 0.071249919707284
114 => 0.071717870868692
115 => 0.07058099215133
116 => 0.070683639570417
117 => 0.070258415722105
118 => 0.069847654812675
119 => 0.070770985350261
120 => 0.072458390055805
121 => 0.072447892798709
122 => 0.072839337891934
123 => 0.073083204942108
124 => 0.072036349041172
125 => 0.071354884343621
126 => 0.071616201271387
127 => 0.072034052729628
128 => 0.071480697675141
129 => 0.06806513393985
130 => 0.069101197790081
131 => 0.068928746104469
201 => 0.068683153933315
202 => 0.069724924146367
203 => 0.069624442867903
204 => 0.066614638469642
205 => 0.066807316381932
206 => 0.066626355851657
207 => 0.067211076346016
208 => 0.065539434313188
209 => 0.066053620143805
210 => 0.066376112676575
211 => 0.066566063255881
212 => 0.067252294998666
213 => 0.067171773624107
214 => 0.067247289676966
215 => 0.068264790193053
216 => 0.073410958639408
217 => 0.073691053233562
218 => 0.072311765012161
219 => 0.072862763451353
220 => 0.071804966938216
221 => 0.072515072824106
222 => 0.073000909236498
223 => 0.070805507909868
224 => 0.070675510491342
225 => 0.069613348075716
226 => 0.070184093993919
227 => 0.069275996199974
228 => 0.069498811634696
301 => 0.068875800254513
302 => 0.069997096698513
303 => 0.071250880354757
304 => 0.071567635619741
305 => 0.070734388889284
306 => 0.070131063342797
307 => 0.069071822430956
308 => 0.070833363674071
309 => 0.071348492015554
310 => 0.07083065792419
311 => 0.070710664450322
312 => 0.070483277034167
313 => 0.070758905765589
314 => 0.071345686515977
315 => 0.071068971550233
316 => 0.071251746660197
317 => 0.070555196417889
318 => 0.072036695594035
319 => 0.074389672827946
320 => 0.074397238034504
321 => 0.074120521577164
322 => 0.074007295164759
323 => 0.074291223042549
324 => 0.074445242268919
325 => 0.075363412962224
326 => 0.076348646697674
327 => 0.080946302649863
328 => 0.079655299256306
329 => 0.083734613132865
330 => 0.086960820776611
331 => 0.087928219384008
401 => 0.087038258184825
402 => 0.083993748997177
403 => 0.083844370851833
404 => 0.088394152936803
405 => 0.087108631104578
406 => 0.086955722373131
407 => 0.085329031813918
408 => 0.086290607403958
409 => 0.086080296716953
410 => 0.085748311008766
411 => 0.087582930250626
412 => 0.091017173693799
413 => 0.09048191464705
414 => 0.090082368598604
415 => 0.08833167412042
416 => 0.089385983228055
417 => 0.089010563948787
418 => 0.090623603419483
419 => 0.089668074570242
420 => 0.087098892012353
421 => 0.087508042802833
422 => 0.087446200483949
423 => 0.088718911024387
424 => 0.088336874910765
425 => 0.087371601801304
426 => 0.091005435823061
427 => 0.090769474854135
428 => 0.091104013559884
429 => 0.091251287844109
430 => 0.093463138577814
501 => 0.094369263052084
502 => 0.094574969171685
503 => 0.095435717340059
504 => 0.094553552973132
505 => 0.098082839413375
506 => 0.10042960895656
507 => 0.10315550254463
508 => 0.10713876572793
509 => 0.10863650953209
510 => 0.10836595551965
511 => 0.11138602020487
512 => 0.11681300931195
513 => 0.10946290518175
514 => 0.11720258267829
515 => 0.11475229014176
516 => 0.10894269061653
517 => 0.10856862089778
518 => 0.11250294914711
519 => 0.12122891053906
520 => 0.11904315617941
521 => 0.12123248565016
522 => 0.11867851652944
523 => 0.11855169043606
524 => 0.12110844507054
525 => 0.12708244163543
526 => 0.12424441979936
527 => 0.12017541958585
528 => 0.12317990602285
529 => 0.12057714181903
530 => 0.11471238559999
531 => 0.11904148477424
601 => 0.11614673944207
602 => 0.11699158002312
603 => 0.12307590415048
604 => 0.12234382217435
605 => 0.12329120404043
606 => 0.12161909984411
607 => 0.12005709085811
608 => 0.11714148508943
609 => 0.11627831795896
610 => 0.11651686630032
611 => 0.11627819974624
612 => 0.11464694511447
613 => 0.11429467583205
614 => 0.11370754492808
615 => 0.11388952134591
616 => 0.11278554347525
617 => 0.11486897781066
618 => 0.11525568158247
619 => 0.11677183134778
620 => 0.11692924304605
621 => 0.12115169856139
622 => 0.11882604101902
623 => 0.12038629288606
624 => 0.12024672927341
625 => 0.10906860225448
626 => 0.11060884953224
627 => 0.11300499094021
628 => 0.11192553248381
629 => 0.11039943078085
630 => 0.1091670218313
701 => 0.10729979625246
702 => 0.10992788039779
703 => 0.11338353158331
704 => 0.11701688406281
705 => 0.12138211900024
706 => 0.12040784937914
707 => 0.11693527903204
708 => 0.1170910560011
709 => 0.11805400792783
710 => 0.11680689768931
711 => 0.11643910053348
712 => 0.11800347824653
713 => 0.11801425125607
714 => 0.11657930020835
715 => 0.11498461471207
716 => 0.11497793292161
717 => 0.11469417404038
718 => 0.11872899660404
719 => 0.12094774104748
720 => 0.12120211652224
721 => 0.12093061955127
722 => 0.12103510796007
723 => 0.11974406945513
724 => 0.12269500063184
725 => 0.12540306689644
726 => 0.12467724728813
727 => 0.12358914051394
728 => 0.12272241105797
729 => 0.12447307337337
730 => 0.12439511913626
731 => 0.12537941430009
801 => 0.12533476098589
802 => 0.12500377954351
803 => 0.12467725910852
804 => 0.12597187572505
805 => 0.1255990469304
806 => 0.12522563902965
807 => 0.12447671231881
808 => 0.12457850389716
809 => 0.12349058499995
810 => 0.12298726393831
811 => 0.11541852280741
812 => 0.11339590786148
813 => 0.1140322636976
814 => 0.11424176856182
815 => 0.1133615239453
816 => 0.1146235686091
817 => 0.11442688028508
818 => 0.11519207949501
819 => 0.11471401624973
820 => 0.11473363613207
821 => 0.1161395182026
822 => 0.11654765174873
823 => 0.11634007173312
824 => 0.11648545366062
825 => 0.11983571881798
826 => 0.11935941824806
827 => 0.1191063930633
828 => 0.11917648276869
829 => 0.12003254734689
830 => 0.12027219868939
831 => 0.1192567791112
901 => 0.11973565685435
902 => 0.12177465750601
903 => 0.12248819233666
904 => 0.12476545299992
905 => 0.12379803219508
906 => 0.12557377495135
907 => 0.13103180278879
908 => 0.13539205309213
909 => 0.13138218671821
910 => 0.13938923112578
911 => 0.14562386373937
912 => 0.14538456815534
913 => 0.14429741574951
914 => 0.13719945227521
915 => 0.1306678004615
916 => 0.13613180455226
917 => 0.13614573342237
918 => 0.13567637062519
919 => 0.13276119860276
920 => 0.13557492895781
921 => 0.13579827265542
922 => 0.13567325957664
923 => 0.13343820402203
924 => 0.13002568729744
925 => 0.13069248489701
926 => 0.13178471296742
927 => 0.1297168973675
928 => 0.12905610498996
929 => 0.1302846437407
930 => 0.13424325157179
1001 => 0.13349489969198
1002 => 0.13347535720007
1003 => 0.1366771238925
1004 => 0.13438534992522
1005 => 0.13070089535013
1006 => 0.12977052197793
1007 => 0.12646832328123
1008 => 0.12874916368307
1009 => 0.12883124706863
1010 => 0.12758205409017
1011 => 0.13080226047563
1012 => 0.13077258570688
1013 => 0.13382969240542
1014 => 0.13967373221617
1015 => 0.13794536207639
1016 => 0.13593545564997
1017 => 0.13615398820719
1018 => 0.13855075097549
1019 => 0.137101613493
1020 => 0.13762273343545
1021 => 0.13854996219804
1022 => 0.13910938233231
1023 => 0.13607349625885
1024 => 0.13536568599191
1025 => 0.1339177545934
1026 => 0.13354001631844
1027 => 0.13471932623045
1028 => 0.13440861973427
1029 => 0.12882434827792
1030 => 0.12824076084013
1031 => 0.12825865863368
1101 => 0.12679120027331
1102 => 0.12455297404337
1103 => 0.13043489893809
1104 => 0.12996249805156
1105 => 0.12944100403375
1106 => 0.12950488407533
1107 => 0.13205802831519
1108 => 0.1305770757192
1109 => 0.13451443091901
1110 => 0.13370502905766
1111 => 0.13287486909272
1112 => 0.13276011569827
1113 => 0.13244057493769
1114 => 0.13134475077377
1115 => 0.13002147724702
1116 => 0.12914773744467
1117 => 0.11913196106913
1118 => 0.12099083090534
1119 => 0.12312929121058
1120 => 0.12386747913861
1121 => 0.12260475760667
1122 => 0.13139461071623
1123 => 0.13300060158048
1124 => 0.12813595049648
1125 => 0.12722597290106
1126 => 0.13145426869589
1127 => 0.12890408944347
1128 => 0.13005243500469
1129 => 0.12757034001277
1130 => 0.13261376541019
1201 => 0.13257534295871
1202 => 0.13061333656818
1203 => 0.13227161093421
1204 => 0.13198344495499
1205 => 0.1297683445723
1206 => 0.13268398804332
1207 => 0.13268543416611
1208 => 0.13079704567293
1209 => 0.12859182133429
1210 => 0.12819757930761
1211 => 0.12790057089948
1212 => 0.12997938914323
1213 => 0.13184325108029
1214 => 0.13531143605458
1215 => 0.13618342015916
1216 => 0.13958683217061
1217 => 0.13756026602692
1218 => 0.13845861654999
1219 => 0.13943390312223
1220 => 0.13990149136994
1221 => 0.13913958141247
1222 => 0.14442648116652
1223 => 0.14487285749218
1224 => 0.14502252361304
1225 => 0.14323981076238
1226 => 0.1448232770229
1227 => 0.14408242559849
1228 => 0.14600991519035
1229 => 0.14631217016977
1230 => 0.14605617095523
1231 => 0.14615211145647
]
'min_raw' => 0.065539434313188
'max_raw' => 0.14631217016977
'avg_raw' => 0.10592580224148
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.065539'
'max' => '$0.146312'
'avg' => '$0.105925'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.010106047792541
'max_diff' => -0.013962052406588
'year' => 2031
]
6 => [
'items' => [
101 => 0.14164067518942
102 => 0.14140673341925
103 => 0.13821692078324
104 => 0.13951679301032
105 => 0.1370867441863
106 => 0.13785733770067
107 => 0.13819700797932
108 => 0.13801958350188
109 => 0.13959028583573
110 => 0.13825486797867
111 => 0.13473048069086
112 => 0.13120513318609
113 => 0.13116087531985
114 => 0.1302327135494
115 => 0.12956182259067
116 => 0.12969105999046
117 => 0.13014650944401
118 => 0.12953535104047
119 => 0.12966577267238
120 => 0.13183164075691
121 => 0.132265990155
122 => 0.13078990118903
123 => 0.12486319099205
124 => 0.12340876144369
125 => 0.12445417656046
126 => 0.123954535468
127 => 0.10004098437751
128 => 0.1056591184915
129 => 0.10232101397478
130 => 0.10385936611489
131 => 0.10045202580129
201 => 0.10207818719294
202 => 0.10177789456181
203 => 0.11081168796444
204 => 0.11067063770603
205 => 0.11073815100052
206 => 0.10751556554979
207 => 0.11264923167553
208 => 0.11517826020973
209 => 0.11471020433596
210 => 0.11482800391552
211 => 0.11280381685002
212 => 0.11075774955596
213 => 0.10848834603936
214 => 0.11270461726646
215 => 0.11223583988016
216 => 0.11331104654356
217 => 0.11604559981963
218 => 0.11644827317709
219 => 0.11698947025302
220 => 0.11679548962633
221 => 0.12141689513906
222 => 0.12085721243845
223 => 0.12220588671521
224 => 0.11943156140375
225 => 0.11629214897246
226 => 0.11688884864053
227 => 0.11683138166414
228 => 0.11609976109716
229 => 0.11543928676227
301 => 0.11433978308215
302 => 0.11781877542196
303 => 0.11767753468635
304 => 0.11996405802148
305 => 0.11955989281189
306 => 0.11686077862627
307 => 0.11695717801744
308 => 0.11760551025106
309 => 0.11984939551415
310 => 0.12051553343559
311 => 0.12020695180937
312 => 0.12093734162988
313 => 0.12151461196362
314 => 0.12100983789599
315 => 0.12815637421935
316 => 0.12518863408312
317 => 0.12663508997611
318 => 0.12698006118358
319 => 0.12609642468962
320 => 0.12628805380451
321 => 0.12657831969776
322 => 0.12834075736169
323 => 0.13296590375728
324 => 0.13501434961145
325 => 0.14117720003227
326 => 0.134844254699
327 => 0.13446848393126
328 => 0.1355785993923
329 => 0.13919684499329
330 => 0.14212909320836
331 => 0.14310188910676
401 => 0.14323046014384
402 => 0.14505548991949
403 => 0.14610156295209
404 => 0.14483388330167
405 => 0.14375965752954
406 => 0.13991191415155
407 => 0.14035730092461
408 => 0.14342557412218
409 => 0.14775969073413
410 => 0.15147881367517
411 => 0.15017650644574
412 => 0.16011219132066
413 => 0.16109727389237
414 => 0.16096116733249
415 => 0.1632053320308
416 => 0.15875112212085
417 => 0.1568468610881
418 => 0.14399191733445
419 => 0.14760363218289
420 => 0.15285347182366
421 => 0.15215863586131
422 => 0.14834606198557
423 => 0.151475921496
424 => 0.15044109206209
425 => 0.14962487915246
426 => 0.15336410872215
427 => 0.14925267221119
428 => 0.15281245709938
429 => 0.14824699615902
430 => 0.15018245527546
501 => 0.14908379507335
502 => 0.14979476287085
503 => 0.14563845965413
504 => 0.14788109998131
505 => 0.1455451584434
506 => 0.14554405090296
507 => 0.14549248486404
508 => 0.14824070972425
509 => 0.14833032923827
510 => 0.14629938691424
511 => 0.14600669639607
512 => 0.14708892664707
513 => 0.1458219184597
514 => 0.14641474361612
515 => 0.14583987452977
516 => 0.14571045938984
517 => 0.14467925753668
518 => 0.14423498742486
519 => 0.14440919718314
520 => 0.14381452946685
521 => 0.14345622065772
522 => 0.1454212082234
523 => 0.14437139463443
524 => 0.14526030923445
525 => 0.14424727885776
526 => 0.14073567421585
527 => 0.13871611325174
528 => 0.13208301760908
529 => 0.13396415530501
530 => 0.13521135154358
531 => 0.13479915319417
601 => 0.13568471474829
602 => 0.13573908103548
603 => 0.13545117594701
604 => 0.13511781873748
605 => 0.13495555888369
606 => 0.13616491089683
607 => 0.13686698044537
608 => 0.13533652437146
609 => 0.1349779599267
610 => 0.13652533551622
611 => 0.13746923373193
612 => 0.14443844782618
613 => 0.14392214593582
614 => 0.14521796236151
615 => 0.1450720733179
616 => 0.14643029537177
617 => 0.14865041440238
618 => 0.14413629165811
619 => 0.14491978727989
620 => 0.14472769224699
621 => 0.14682493544623
622 => 0.14683148281058
623 => 0.14557408074756
624 => 0.14625573880494
625 => 0.14587525597762
626 => 0.14656283987192
627 => 0.1439152504093
628 => 0.14713972858516
629 => 0.14896779993008
630 => 0.14899318270248
701 => 0.14985967401151
702 => 0.15074007936527
703 => 0.15242994077467
704 => 0.15069295004773
705 => 0.14756827282262
706 => 0.14779386442563
707 => 0.14596186731182
708 => 0.14599266351428
709 => 0.145828270972
710 => 0.14632162536626
711 => 0.14402351395511
712 => 0.14456287610991
713 => 0.14380776593469
714 => 0.14491814581784
715 => 0.14372356061594
716 => 0.14472759961294
717 => 0.14516090955963
718 => 0.1467598325914
719 => 0.14348739838411
720 => 0.13681468351112
721 => 0.13821736907627
722 => 0.13614268694684
723 => 0.13633470667679
724 => 0.13672261709101
725 => 0.13546527252215
726 => 0.13570513424241
727 => 0.13569656469388
728 => 0.13562271695431
729 => 0.135295633071
730 => 0.13482129672862
731 => 0.13671090672361
801 => 0.13703198828323
802 => 0.13774571281667
803 => 0.1398692729042
804 => 0.13965707917446
805 => 0.1400031759515
806 => 0.13924764863048
807 => 0.13636975342231
808 => 0.13652603697809
809 => 0.1345771785333
810 => 0.1376958761246
811 => 0.13695732737019
812 => 0.13648118018367
813 => 0.13635125901236
814 => 0.13848008299461
815 => 0.13911706049532
816 => 0.13872013886285
817 => 0.13790604101458
818 => 0.13946934954967
819 => 0.13988762496297
820 => 0.1399812614026
821 => 0.1427511443921
822 => 0.14013606709215
823 => 0.14076554218988
824 => 0.14567652721078
825 => 0.14122294146644
826 => 0.14358210516203
827 => 0.14346663637563
828 => 0.14467350469255
829 => 0.14336763794779
830 => 0.14338382573116
831 => 0.14445544303624
901 => 0.14295054979845
902 => 0.14257791706942
903 => 0.1420631276231
904 => 0.14318715154594
905 => 0.14386095305246
906 => 0.1492912983423
907 => 0.15279954905337
908 => 0.15264724663765
909 => 0.15403900561916
910 => 0.15341200545094
911 => 0.15138725651346
912 => 0.1548432560579
913 => 0.15374963319688
914 => 0.15383979013679
915 => 0.15383643449098
916 => 0.15456359808739
917 => 0.15404833603577
918 => 0.15303270164146
919 => 0.15370692715008
920 => 0.15570913587064
921 => 0.16192405317453
922 => 0.16540200323448
923 => 0.16171467621387
924 => 0.16425814501741
925 => 0.16273297006589
926 => 0.16245580040717
927 => 0.16405328677667
928 => 0.16565356933457
929 => 0.16555163825385
930 => 0.16438991529222
1001 => 0.16373368746883
1002 => 0.16870286440001
1003 => 0.17236406931518
1004 => 0.17211439968499
1005 => 0.17321636023572
1006 => 0.176451750495
1007 => 0.17674755403308
1008 => 0.17671028958625
1009 => 0.17597710965321
1010 => 0.179162771532
1011 => 0.18182030671766
1012 => 0.17580739968232
1013 => 0.17809703596665
1014 => 0.17912492746215
1015 => 0.18063417713922
1016 => 0.18318053432406
1017 => 0.18594655361467
1018 => 0.18633769907022
1019 => 0.18606016265147
1020 => 0.18423589857472
1021 => 0.18726250988799
1022 => 0.18903542781253
1023 => 0.19009115986408
1024 => 0.19276832068977
1025 => 0.17913127537009
1026 => 0.1694782968877
1027 => 0.16797084490697
1028 => 0.1710363077874
1029 => 0.17184464590236
1030 => 0.17151880582179
1031 => 0.16065350092944
1101 => 0.16791364132534
1102 => 0.17572494194138
1103 => 0.17602500581057
1104 => 0.17993550622555
1105 => 0.1812089254575
1106 => 0.18435739085257
1107 => 0.18416045348487
1108 => 0.18492705470555
1109 => 0.1847508263606
1110 => 0.19058269551736
1111 => 0.19701611323821
1112 => 0.19679334443955
1113 => 0.19586846452544
1114 => 0.19724206891336
1115 => 0.20388204544822
1116 => 0.20327074281235
1117 => 0.20386457125247
1118 => 0.21169347779975
1119 => 0.22187216996019
1120 => 0.21714314552768
1121 => 0.2274037678061
1122 => 0.23386228563815
1123 => 0.24503162440547
1124 => 0.24363316818165
1125 => 0.24798130979937
1126 => 0.24112963967439
1127 => 0.22539682011642
1128 => 0.22290704119856
1129 => 0.22789164164336
1130 => 0.24014579544671
1201 => 0.22750571473126
1202 => 0.23006278659752
1203 => 0.22932634972802
1204 => 0.2292871081369
1205 => 0.23078480006289
1206 => 0.22861231980988
1207 => 0.21976124443737
1208 => 0.22381764012088
1209 => 0.22225127094335
1210 => 0.22398927432637
1211 => 0.2333685617774
1212 => 0.22922175522102
1213 => 0.22485343137307
1214 => 0.23033227888706
1215 => 0.23730873450863
1216 => 0.23687216045373
1217 => 0.23602502431342
1218 => 0.24080028638173
1219 => 0.24868762029807
1220 => 0.25081953496178
1221 => 0.25239327078146
1222 => 0.2526102623625
1223 => 0.25484541050682
1224 => 0.24282645560497
1225 => 0.26190084570287
1226 => 0.26519446595338
1227 => 0.26457540185286
1228 => 0.26823612214458
1229 => 0.26715904537124
1230 => 0.26559853011485
1231 => 0.27140155043476
]
'min_raw' => 0.10004098437751
'max_raw' => 0.27140155043476
'avg_raw' => 0.18572126740614
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.10004'
'max' => '$0.2714015'
'avg' => '$0.185721'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.034501550064325
'max_diff' => 0.12508938026499
'year' => 2032
]
7 => [
'items' => [
101 => 0.26474885591757
102 => 0.25530619360138
103 => 0.25012576230003
104 => 0.25694777213112
105 => 0.26111373547963
106 => 0.26386717224796
107 => 0.26470036055039
108 => 0.24375945286042
109 => 0.23247346505151
110 => 0.23970765384291
111 => 0.24853386344545
112 => 0.24277742556498
113 => 0.24300306703151
114 => 0.23479589937922
115 => 0.24926001567215
116 => 0.24715271559063
117 => 0.25808539214127
118 => 0.25547622114225
119 => 0.26439139446524
120 => 0.2620437305493
121 => 0.27178875220824
122 => 0.27567630518391
123 => 0.28220411167938
124 => 0.2870059927104
125 => 0.28982574909716
126 => 0.28965646150034
127 => 0.30082974110174
128 => 0.29424124848545
129 => 0.28596454897091
130 => 0.28581484958934
131 => 0.29010146954966
201 => 0.29908504900974
202 => 0.30141436045798
203 => 0.30271612778703
204 => 0.30072242580774
205 => 0.29357108927428
206 => 0.29048317841723
207 => 0.29311416793282
208 => 0.28989669383875
209 => 0.2954509567889
210 => 0.30307814614601
211 => 0.30150316170494
212 => 0.30676809855656
213 => 0.31221675431048
214 => 0.32000857675303
215 => 0.32204564766986
216 => 0.32541284843251
217 => 0.32887880408511
218 => 0.3299919756306
219 => 0.33211736550779
220 => 0.33210616365401
221 => 0.33851116910415
222 => 0.34557608846217
223 => 0.34824293196656
224 => 0.3543751915543
225 => 0.3438739119103
226 => 0.35183925315028
227 => 0.35902419033416
228 => 0.35045801202335
301 => 0.36226449316124
302 => 0.36272291206976
303 => 0.36964449332846
304 => 0.36262814470825
305 => 0.35846185929455
306 => 0.37048976917523
307 => 0.37630969589089
308 => 0.3745566866
309 => 0.36121619933958
310 => 0.35345146355361
311 => 0.33312965229604
312 => 0.35720171556755
313 => 0.36892651539539
314 => 0.36118583494053
315 => 0.36508978391347
316 => 0.3863884636501
317 => 0.39449762190642
318 => 0.3928109736764
319 => 0.39309598946268
320 => 0.39747154406616
321 => 0.41687516283991
322 => 0.40524806469832
323 => 0.41413654556851
324 => 0.41885096377226
325 => 0.42322997813728
326 => 0.41247650285849
327 => 0.39848638952071
328 => 0.39405513336162
329 => 0.36041617682144
330 => 0.35866512304694
331 => 0.35768220350095
401 => 0.35148503480023
402 => 0.34661575774884
403 => 0.3427435278529
404 => 0.33258164026024
405 => 0.33601097901743
406 => 0.31981505114549
407 => 0.33017663184952
408 => 0.30432753990156
409 => 0.32585543178573
410 => 0.31413877898631
411 => 0.32200619622276
412 => 0.32197874754517
413 => 0.30749233804597
414 => 0.29913687937048
415 => 0.30446130283782
416 => 0.31016950744807
417 => 0.31109564444137
418 => 0.31849648071794
419 => 0.32056189504229
420 => 0.31430359321454
421 => 0.30379187492603
422 => 0.30623350733769
423 => 0.29908739976759
424 => 0.28656412112206
425 => 0.29555855848075
426 => 0.2986296548525
427 => 0.29998602596677
428 => 0.28767081972716
429 => 0.28380111455054
430 => 0.28174091598448
501 => 0.30220213644824
502 => 0.30332304829384
503 => 0.29758830481079
504 => 0.32350988914484
505 => 0.31764303626997
506 => 0.32419774834505
507 => 0.30601195478831
508 => 0.30670667659259
509 => 0.29809723048256
510 => 0.30291794502078
511 => 0.29951081936405
512 => 0.30252847892532
513 => 0.30433725162408
514 => 0.31294528500872
515 => 0.32595372169971
516 => 0.31165953187367
517 => 0.30543134866989
518 => 0.30929527850088
519 => 0.31958543282353
520 => 0.33517554336564
521 => 0.3259458841445
522 => 0.33004185017706
523 => 0.33093663653834
524 => 0.32413102752922
525 => 0.33542647587723
526 => 0.34147979841099
527 => 0.34768925477202
528 => 0.35308075174529
529 => 0.34520906135255
530 => 0.35363289843527
531 => 0.34684477275402
601 => 0.3407551222744
602 => 0.34076435776048
603 => 0.33694423105902
604 => 0.32954225420799
605 => 0.32817721610996
606 => 0.33527831668122
607 => 0.34097272686263
608 => 0.34144174575956
609 => 0.34459446382535
610 => 0.34646020990111
611 => 0.36474705780232
612 => 0.37210217930493
613 => 0.38109588265299
614 => 0.38459943696441
615 => 0.39514387934804
616 => 0.38662838574552
617 => 0.38478600513964
618 => 0.35920863697778
619 => 0.36339692958141
620 => 0.37010279014996
621 => 0.35931921414863
622 => 0.36615891108443
623 => 0.36750921214414
624 => 0.35895279236249
625 => 0.36352314586895
626 => 0.35138564197118
627 => 0.32621828611671
628 => 0.33545449433877
629 => 0.34225545246427
630 => 0.33254964666709
701 => 0.34994692789198
702 => 0.33978379535318
703 => 0.33656257025477
704 => 0.32399542269623
705 => 0.32992663258999
706 => 0.33794867889805
707 => 0.33299198694265
708 => 0.34327786700115
709 => 0.35784541630798
710 => 0.36822711945659
711 => 0.36902409771422
712 => 0.36234935810976
713 => 0.37304567092353
714 => 0.37312358188495
715 => 0.36105809733529
716 => 0.35366805522952
717 => 0.35198902211431
718 => 0.35618357602994
719 => 0.36127653884089
720 => 0.36930672170501
721 => 0.37415919302933
722 => 0.38681186469123
723 => 0.39023531486241
724 => 0.3939966486753
725 => 0.39902295060171
726 => 0.40505831478174
727 => 0.39185328154932
728 => 0.39237794213691
729 => 0.38008159802702
730 => 0.36694119087148
731 => 0.37691312192765
801 => 0.38995009527321
802 => 0.38695939918317
803 => 0.38662288477866
804 => 0.38718880866573
805 => 0.38493392148084
806 => 0.37473515031359
807 => 0.36961339128108
808 => 0.3762217671331
809 => 0.37973382479348
810 => 0.3851807199411
811 => 0.38450927514415
812 => 0.39853989209061
813 => 0.40399176557217
814 => 0.40259694303677
815 => 0.40285362395156
816 => 0.41272398047451
817 => 0.42370184692167
818 => 0.43398406750649
819 => 0.44444358391703
820 => 0.43183422864225
821 => 0.42543197567064
822 => 0.43203746651249
823 => 0.42853250009279
824 => 0.44867307678096
825 => 0.45006756661246
826 => 0.47020668690769
827 => 0.48932111018971
828 => 0.47731568339674
829 => 0.48863626012621
830 => 0.5008803868393
831 => 0.5245012938068
901 => 0.51654660333367
902 => 0.51045343509715
903 => 0.50469542055561
904 => 0.51667693475749
905 => 0.53209096136885
906 => 0.53541099506722
907 => 0.54079071800908
908 => 0.53513459713694
909 => 0.54194677172615
910 => 0.56599674144725
911 => 0.55949822733366
912 => 0.55026929260408
913 => 0.56925443391524
914 => 0.57612508275288
915 => 0.6243468944822
916 => 0.68522892373414
917 => 0.66002336385088
918 => 0.644377459453
919 => 0.64805461811232
920 => 0.67028667420838
921 => 0.67742690501624
922 => 0.65801729629531
923 => 0.6648730982273
924 => 0.70264924092014
925 => 0.72291492947109
926 => 0.6953914023738
927 => 0.61945508271131
928 => 0.54943832800764
929 => 0.56800992425061
930 => 0.56590448158038
1001 => 0.60649023423407
1002 => 0.55934323992125
1003 => 0.56013707439027
1004 => 0.60156209742778
1005 => 0.59051061148606
1006 => 0.57260861962785
1007 => 0.54956903235973
1008 => 0.50697822439074
1009 => 0.46925435804006
1010 => 0.54323954724132
1011 => 0.54004917134962
1012 => 0.53542903427123
1013 => 0.54571064938814
1014 => 0.5956352539085
1015 => 0.59448433018413
1016 => 0.58716274065614
1017 => 0.5927161017836
1018 => 0.5716350885721
1019 => 0.57706814568245
1020 => 0.54942723699597
1021 => 0.56192208210857
1022 => 0.57257020999351
1023 => 0.57470797931464
1024 => 0.57952448275236
1025 => 0.5383679882265
1026 => 0.55684604597741
1027 => 0.5677001737462
1028 => 0.51866082961026
1029 => 0.56673082358615
1030 => 0.53765154522174
1031 => 0.52778160138876
1101 => 0.54107018049365
1102 => 0.5358916082929
1103 => 0.53143937601067
1104 => 0.52895495389812
1105 => 0.5387126197858
1106 => 0.5382574130092
1107 => 0.52229197773563
1108 => 0.50146571825565
1109 => 0.50845569453579
1110 => 0.50591617062184
1111 => 0.49671260835256
1112 => 0.50291469807971
1113 => 0.47560383372714
1114 => 0.42861691110376
1115 => 0.45965791143713
1116 => 0.4584628666904
1117 => 0.45786027093814
1118 => 0.48118672477844
1119 => 0.47894442447455
1120 => 0.47487462746632
1121 => 0.49663786333893
1122 => 0.4886939894886
1123 => 0.51317513688326
1124 => 0.52930000389872
1125 => 0.5252102160388
1126 => 0.54037573140509
1127 => 0.50861672947152
1128 => 0.51916579596385
1129 => 0.52133994394755
1130 => 0.49636930838648
1201 => 0.47931129253526
1202 => 0.4781737173536
1203 => 0.44859746860695
1204 => 0.46439686195627
1205 => 0.47829967428035
1206 => 0.47164130607894
1207 => 0.46953346561946
1208 => 0.48030196539211
1209 => 0.48113877005041
1210 => 0.46205953516063
1211 => 0.466026712255
1212 => 0.48257050022687
1213 => 0.4656098512451
1214 => 0.43265808077981
1215 => 0.42448558611055
1216 => 0.42339522467271
1217 => 0.40123077096094
1218 => 0.42503171128265
1219 => 0.41464196300668
1220 => 0.44746305332217
1221 => 0.428715822557
1222 => 0.42790766690833
1223 => 0.42668602111471
1224 => 0.40760816020294
1225 => 0.4117849992813
1226 => 0.42566944852835
1227 => 0.43062357643921
1228 => 0.43010682031013
1229 => 0.4256014071524
1230 => 0.42766396222456
1231 => 0.42101975369531
]
'min_raw' => 0.23247346505151
'max_raw' => 0.72291492947109
'avg_raw' => 0.4776941972613
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.232473'
'max' => '$0.722914'
'avg' => '$0.477694'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.132432480674
'max_diff' => 0.45151337903633
'year' => 2033
]
8 => [
'items' => [
101 => 0.41867354537639
102 => 0.41126826654643
103 => 0.40038455242689
104 => 0.40189799962891
105 => 0.38033451407938
106 => 0.3685855826912
107 => 0.36533363333138
108 => 0.3609849907391
109 => 0.36582482408347
110 => 0.38027342743413
111 => 0.36284534635104
112 => 0.33296612377182
113 => 0.33476191596055
114 => 0.33879652783314
115 => 0.3312780553002
116 => 0.32416245202534
117 => 0.33034889176569
118 => 0.31768867126804
119 => 0.34032645499536
120 => 0.33971416638719
121 => 0.34815213224958
122 => 0.35342856546782
123 => 0.34126809516531
124 => 0.33820976976964
125 => 0.33995193090816
126 => 0.3111578880004
127 => 0.3457990446416
128 => 0.34609862280273
129 => 0.34353345270789
130 => 0.3619787991936
131 => 0.4009042335263
201 => 0.38625891935837
202 => 0.38058781105559
203 => 0.36980703002644
204 => 0.38417178064834
205 => 0.3830687919256
206 => 0.3780806586253
207 => 0.37506382004135
208 => 0.38062243763359
209 => 0.37437504580717
210 => 0.3732528425683
211 => 0.36645351190991
212 => 0.3640264602147
213 => 0.36222956776327
214 => 0.36025136573326
215 => 0.36461478647423
216 => 0.35472670101938
217 => 0.3428026393018
218 => 0.34181128259012
219 => 0.34454850563205
220 => 0.34333748819828
221 => 0.34180548470456
222 => 0.33888047281872
223 => 0.33801268427518
224 => 0.34083257605053
225 => 0.33764908264606
226 => 0.34234650057821
227 => 0.34106906282066
228 => 0.33393339934937
301 => 0.32503972070317
302 => 0.3249605483081
303 => 0.32304441983233
304 => 0.32060394212659
305 => 0.31992505705942
306 => 0.32982788706614
307 => 0.35032644881329
308 => 0.34630209065331
309 => 0.34921010185671
310 => 0.36351463881294
311 => 0.36806162095889
312 => 0.36483428073287
313 => 0.36041649837781
314 => 0.36061085838081
315 => 0.3757077580417
316 => 0.37664933315531
317 => 0.37902838970378
318 => 0.38208614968985
319 => 0.36535503048063
320 => 0.35982282417066
321 => 0.35720135790588
322 => 0.34912825644547
323 => 0.35783440423511
324 => 0.35276170475251
325 => 0.3534461852208
326 => 0.35300041641788
327 => 0.35324383632703
328 => 0.34032012727345
329 => 0.34502884760242
330 => 0.33719968678418
331 => 0.32671731931309
401 => 0.32668217874173
402 => 0.32924772332992
403 => 0.3277216370191
404 => 0.32361497799593
405 => 0.32419830952729
406 => 0.31908771150233
407 => 0.32481882865789
408 => 0.32498317659098
409 => 0.32277638431003
410 => 0.33160596102993
411 => 0.33522344581632
412 => 0.33377088786293
413 => 0.33512153047809
414 => 0.34646932090375
415 => 0.34831950588194
416 => 0.34914123583289
417 => 0.34804022655697
418 => 0.33532894725564
419 => 0.33589274654519
420 => 0.3317559614452
421 => 0.32826081395938
422 => 0.32840060152918
423 => 0.33019756167426
424 => 0.33804499201814
425 => 0.35455944654555
426 => 0.35518615802296
427 => 0.35594575061604
428 => 0.35285610579933
429 => 0.35192423935869
430 => 0.35315361172903
501 => 0.35935557256076
502 => 0.37530869963591
503 => 0.36966979905402
504 => 0.36508528510623
505 => 0.36910713981452
506 => 0.36848800680652
507 => 0.36326190114553
508 => 0.36311522176572
509 => 0.35308465411523
510 => 0.34937658163982
511 => 0.34627783873496
512 => 0.34289409237758
513 => 0.34088809411272
514 => 0.34397021915745
515 => 0.34467513762181
516 => 0.33793601734518
517 => 0.33701750015338
518 => 0.34252081124529
519 => 0.34009900921786
520 => 0.34258989266087
521 => 0.34316779898606
522 => 0.34307474275739
523 => 0.34054610329856
524 => 0.3421577826845
525 => 0.33834568047199
526 => 0.33420059187512
527 => 0.33155628359847
528 => 0.32924877391049
529 => 0.33052911439863
530 => 0.32596493433935
531 => 0.32450476127959
601 => 0.34161178197248
602 => 0.35424892208978
603 => 0.35406517306762
604 => 0.35294664815162
605 => 0.35128474701093
606 => 0.35923399414098
607 => 0.35646463539108
608 => 0.3584795752693
609 => 0.35899246203506
610 => 0.36054481580342
611 => 0.3610996488463
612 => 0.35942255803441
613 => 0.35379403643031
614 => 0.33976829573666
615 => 0.33323927558201
616 => 0.33108459018154
617 => 0.33116290890352
618 => 0.32900252892122
619 => 0.32963885764745
620 => 0.32878123975864
621 => 0.32715711895729
622 => 0.3304288295158
623 => 0.33080586367957
624 => 0.33004220734119
625 => 0.33022207605364
626 => 0.3238993277337
627 => 0.32438003255618
628 => 0.32170340701961
629 => 0.32120157199871
630 => 0.31443529572271
701 => 0.30244785651234
702 => 0.30909006148376
703 => 0.30106721191364
704 => 0.29802883721543
705 => 0.31241203047256
706 => 0.31096835679722
707 => 0.30849741501491
708 => 0.30484237712949
709 => 0.30348668802386
710 => 0.29524995017708
711 => 0.2947632797638
712 => 0.2988456294513
713 => 0.29696176553559
714 => 0.29431610712289
715 => 0.28473380053817
716 => 0.27396011534427
717 => 0.2742853051793
718 => 0.27771221398794
719 => 0.28767641353068
720 => 0.28378322838693
721 => 0.28095867789599
722 => 0.28042972449471
723 => 0.28705068375066
724 => 0.29642072823167
725 => 0.30081694345923
726 => 0.29646042768376
727 => 0.29145589693236
728 => 0.29176049953044
729 => 0.29378688415106
730 => 0.29399982852315
731 => 0.29074239347807
801 => 0.29165934236273
802 => 0.29026641315937
803 => 0.28171800920952
804 => 0.28156339568934
805 => 0.27946547949842
806 => 0.27940195542992
807 => 0.27583287663943
808 => 0.27533353784476
809 => 0.26824691527865
810 => 0.27291135171194
811 => 0.26978269264639
812 => 0.26506706545855
813 => 0.26425408955394
814 => 0.26422965051655
815 => 0.26907154524352
816 => 0.27285477135296
817 => 0.26983711701033
818 => 0.26915005561129
819 => 0.27648607385389
820 => 0.27555249866323
821 => 0.27474402856903
822 => 0.29558174351994
823 => 0.27908706614912
824 => 0.27189444533217
825 => 0.26299221122955
826 => 0.26589082354233
827 => 0.2665016037461
828 => 0.24509333547761
829 => 0.23640800370731
830 => 0.23342752514357
831 => 0.23171221759235
901 => 0.23249390478292
902 => 0.22467608750184
903 => 0.22992979000949
904 => 0.22316022106772
905 => 0.22202528080455
906 => 0.2341301086611
907 => 0.23581442474196
908 => 0.22862860906502
909 => 0.2332430660075
910 => 0.23156979977441
911 => 0.22327626589738
912 => 0.22295951390639
913 => 0.21879811013871
914 => 0.21228631904884
915 => 0.2093102557861
916 => 0.20776029619949
917 => 0.20839983973303
918 => 0.20807646695212
919 => 0.20596624081887
920 => 0.20819742264393
921 => 0.20249767506888
922 => 0.20022798965851
923 => 0.19920282541495
924 => 0.19414397137686
925 => 0.20219485783406
926 => 0.20378098388852
927 => 0.20537023510129
928 => 0.21920358188057
929 => 0.21851250696811
930 => 0.22475948760961
1001 => 0.22451674142935
1002 => 0.22273500135601
1003 => 0.21521813306863
1004 => 0.21821422279268
1005 => 0.20899272431775
1006 => 0.21590209797612
1007 => 0.21274894838078
1008 => 0.21483601492615
1009 => 0.21108328109437
1010 => 0.21316019894346
1011 => 0.20415711321743
1012 => 0.1957501584433
1013 => 0.19913336245872
1014 => 0.20281129213979
1015 => 0.21078598080741
1016 => 0.20603632202673
1017 => 0.20774447892874
1018 => 0.20202243924901
1019 => 0.19021623696988
1020 => 0.19028305879263
1021 => 0.18846693178408
1022 => 0.18689753288982
1023 => 0.20658187747326
1024 => 0.20413381806087
1025 => 0.20023315578132
1026 => 0.20545434724865
1027 => 0.20683491314407
1028 => 0.20687421591426
1029 => 0.21068346243037
1030 => 0.21271645797886
1031 => 0.21307478225579
1101 => 0.21906871395311
1102 => 0.22107780079617
1103 => 0.22935294516616
1104 => 0.21254397251032
1105 => 0.21219780277993
1106 => 0.20552782011993
1107 => 0.2012976116687
1108 => 0.20581746611168
1109 => 0.20982144012651
1110 => 0.2056522347536
1111 => 0.20619664495857
1112 => 0.20059982738204
1113 => 0.20260042631091
1114 => 0.20432361161823
1115 => 0.20337216997568
1116 => 0.20194781578648
1117 => 0.20949315991801
1118 => 0.20906742203167
1119 => 0.21609381995366
1120 => 0.22157139959638
1121 => 0.23138820155063
1122 => 0.22114385694991
1123 => 0.22077051231508
1124 => 0.22442001600693
1125 => 0.22107724207617
1126 => 0.22318975981178
1127 => 0.23104784228403
1128 => 0.23121387118407
1129 => 0.22843267319233
1130 => 0.22826343704178
1201 => 0.22879759653906
1202 => 0.23192618539883
1203 => 0.2308329603194
1204 => 0.23209806805839
1205 => 0.23368010465801
1206 => 0.24022407880365
1207 => 0.24180180881564
1208 => 0.23796874284572
1209 => 0.23831482578578
1210 => 0.23688115389302
1211 => 0.23549624480846
1212 => 0.23860931818081
1213 => 0.24429852095639
1214 => 0.24426312872119
1215 => 0.24558291318283
1216 => 0.24640512796874
1217 => 0.24287558020959
1218 => 0.24057797440345
1219 => 0.24145902266998
1220 => 0.2428678380349
1221 => 0.24100216283468
1222 => 0.2294863512341
1223 => 0.23297951284082
1224 => 0.23239807994259
1225 => 0.23157004879085
1226 => 0.23508244979823
1227 => 0.23474367015251
1228 => 0.22459590448593
1229 => 0.22524553151956
1230 => 0.22463541045748
1231 => 0.22660683642809
]
'min_raw' => 0.18689753288982
'max_raw' => 0.41867354537639
'avg_raw' => 0.3027855391331
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.186897'
'max' => '$0.418673'
'avg' => '$0.302785'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.045575932161694
'max_diff' => -0.3042413840947
'year' => 2034
]
9 => [
'items' => [
101 => 0.22097077860409
102 => 0.22270439203133
103 => 0.22379169812127
104 => 0.22443212976133
105 => 0.2267458079933
106 => 0.22647432455715
107 => 0.22672893220173
108 => 0.23015950623133
109 => 0.24751017244222
110 => 0.24845453092199
111 => 0.24380416438471
112 => 0.24566189409193
113 => 0.24209545929489
114 => 0.24448963086718
115 => 0.24612766225158
116 => 0.23872571340082
117 => 0.23828741802813
118 => 0.23470626328603
119 => 0.23663057299746
120 => 0.23356885788381
121 => 0.23432009567845
122 => 0.2322195693129
123 => 0.23600009856027
124 => 0.24022731769367
125 => 0.24129528018471
126 => 0.23848593065755
127 => 0.23645177645472
128 => 0.23288047176661
129 => 0.23881963105465
130 => 0.24055642222308
131 => 0.23881050843002
201 => 0.2384059420552
202 => 0.23763928950595
203 => 0.23856859101772
204 => 0.24054696328538
205 => 0.23961399945875
206 => 0.24023023850295
207 => 0.23788177072942
208 => 0.24287674863676
209 => 0.25080997566052
210 => 0.25083548228262
211 => 0.24990251342697
212 => 0.24952076267233
213 => 0.25047804533551
214 => 0.2509973319105
215 => 0.2540930085076
216 => 0.2574147928335
217 => 0.27291611087439
218 => 0.26856340279803
219 => 0.28231709434145
220 => 0.29319447865897
221 => 0.29645613060542
222 => 0.29345556428727
223 => 0.28319078900027
224 => 0.28268715015399
225 => 0.29802705810911
226 => 0.29369283149949
227 => 0.29317728903567
228 => 0.28769278824338
301 => 0.29093480748026
302 => 0.2902257303156
303 => 0.28910641732195
304 => 0.2952919641849
305 => 0.30687075572478
306 => 0.30506609247807
307 => 0.30371899508032
308 => 0.29781640641754
309 => 0.30137108318344
310 => 0.30010533087245
311 => 0.30554380606673
312 => 0.30232217383862
313 => 0.2936599954701
314 => 0.2950394759262
315 => 0.29483097023039
316 => 0.29912200267528
317 => 0.2978339412453
318 => 0.29457945556353
319 => 0.30683118067408
320 => 0.30603562179307
321 => 0.30716354239626
322 => 0.30766008792788
323 => 0.31511749710305
324 => 0.31817255903165
325 => 0.31886611157582
326 => 0.32176818412102
327 => 0.31879390536717
328 => 0.33069314100736
329 => 0.33860543836844
330 => 0.34779597891643
331 => 0.36122582884146
401 => 0.36627557664633
402 => 0.36536338490392
403 => 0.37554574384432
404 => 0.3938432165191
405 => 0.36906182727626
406 => 0.39515669032288
407 => 0.386895357962
408 => 0.36730788754938
409 => 0.36604668537591
410 => 0.37931154775455
411 => 0.40873173581467
412 => 0.40136231238662
413 => 0.40874378955138
414 => 0.40013290434845
415 => 0.39970530131988
416 => 0.40832557807693
417 => 0.42846732458659
418 => 0.41889873582192
419 => 0.40517981751356
420 => 0.41530965330245
421 => 0.40653425207007
422 => 0.38676081701337
423 => 0.40135667712741
424 => 0.39159684113532
425 => 0.39444528013923
426 => 0.41495900372858
427 => 0.41249073823373
428 => 0.41568490233929
429 => 0.4100472862988
430 => 0.40478086394652
501 => 0.39495069553634
502 => 0.39204046729153
503 => 0.39284474967935
504 => 0.39204006872912
505 => 0.38654017984754
506 => 0.38535247936721
507 => 0.3833729265323
508 => 0.3839864727302
509 => 0.38026433426198
510 => 0.38728877858456
511 => 0.38859257735002
512 => 0.39370438213796
513 => 0.3942351066688
514 => 0.40847141024121
515 => 0.40063029346489
516 => 0.4058907915679
517 => 0.40542024310384
518 => 0.36773240742763
519 => 0.37292545866122
520 => 0.38100421671144
521 => 0.37736474716031
522 => 0.37221938871974
523 => 0.36806423590231
524 => 0.36176875449771
525 => 0.37062952368067
526 => 0.38228049291851
527 => 0.3945305944757
528 => 0.40924828883822
529 => 0.40596347078935
530 => 0.39425545741701
531 => 0.39478067034418
601 => 0.3980273299963
602 => 0.39382261075667
603 => 0.39258255696703
604 => 0.39785696564793
605 => 0.39789328760175
606 => 0.39305524995926
607 => 0.38767865647117
608 => 0.38765612834814
609 => 0.38669941546866
610 => 0.40030310144436
611 => 0.4077837532432
612 => 0.40864139791627
613 => 0.40772602692335
614 => 0.40807831688875
615 => 0.40372549043191
616 => 0.41367476092165
617 => 0.4228051954039
618 => 0.42035804391937
619 => 0.41668941596099
620 => 0.41376717708707
621 => 0.41966965731076
622 => 0.41940682915777
623 => 0.42272544902391
624 => 0.42257489725751
625 => 0.42145897021613
626 => 0.42035808377264
627 => 0.42472297408251
628 => 0.42346595577126
629 => 0.42220698496338
630 => 0.41968192626938
701 => 0.42002512368268
702 => 0.41635712916463
703 => 0.41466014706458
704 => 0.38914160790912
705 => 0.38232222040446
706 => 0.38446773853486
707 => 0.38517409881174
708 => 0.38220629263043
709 => 0.38646136432757
710 => 0.38579821591081
711 => 0.38837813847159
712 => 0.38676631486283
713 => 0.38683246466596
714 => 0.39157249422229
715 => 0.39294854496802
716 => 0.39224867445265
717 => 0.39273883977146
718 => 0.40403449265754
719 => 0.40242861203178
720 => 0.40157551995574
721 => 0.40181183229094
722 => 0.40469811378486
723 => 0.40550611501803
724 => 0.40208255701585
725 => 0.40369712676103
726 => 0.41057175981661
727 => 0.41297749231553
728 => 0.42065543563498
729 => 0.41739370884832
730 => 0.42338074952946
731 => 0.44178287145072
801 => 0.45648375977141
802 => 0.4429642153318
803 => 0.4699605245859
804 => 0.49098102373078
805 => 0.49017422196212
806 => 0.48650881172331
807 => 0.46257753230575
808 => 0.44055561219044
809 => 0.45897788346702
810 => 0.45902484562508
811 => 0.45744235618451
812 => 0.44761365018008
813 => 0.45710033852052
814 => 0.45785335739039
815 => 0.45743186706714
816 => 0.44989622121816
817 => 0.43839068282691
818 => 0.44063883748819
819 => 0.44432136068449
820 => 0.43734957601909
821 => 0.43512166838316
822 => 0.43926377255512
823 => 0.45261049523883
824 => 0.45008737462777
825 => 0.45002148575189
826 => 0.46081646569564
827 => 0.45308958975839
828 => 0.44066719391806
829 => 0.43753037513711
830 => 0.42639678167904
831 => 0.43408679433703
901 => 0.43436354420232
902 => 0.43015180285957
903 => 0.44100895351579
904 => 0.44090890296113
905 => 0.4512161516356
906 => 0.47091973987538
907 => 0.46509241927818
908 => 0.45831587943433
909 => 0.45905267720842
910 => 0.46713353021839
911 => 0.46224766202063
912 => 0.46400465429003
913 => 0.46713087080016
914 => 0.46901699484031
915 => 0.45878129298485
916 => 0.45639486125212
917 => 0.45151305945069
918 => 0.45023948848384
919 => 0.45421561418897
920 => 0.45316804554426
921 => 0.43434028444777
922 => 0.43237267865651
923 => 0.43243302231704
924 => 0.42748538400037
925 => 0.41993904799819
926 => 0.4397703684436
927 => 0.43817763587269
928 => 0.4364193823821
929 => 0.43663475840224
930 => 0.44524286246179
1001 => 0.44024972738758
1002 => 0.45352479534111
1003 => 0.45079584045493
1004 => 0.44799689817321
1005 => 0.44760999909201
1006 => 0.44653264510809
1007 => 0.44283799743144
1008 => 0.43837648834798
1009 => 0.43543061360178
1010 => 0.4016617242725
1011 => 0.40792903370742
1012 => 0.41513900192907
1013 => 0.41762785406705
1014 => 0.41337050026171
1015 => 0.44300610370855
1016 => 0.44842081403407
1017 => 0.43201930326526
1018 => 0.42895125026969
1019 => 0.44320724475217
1020 => 0.43460913735478
1021 => 0.43848086458935
1022 => 0.43011230802978
1023 => 0.44711656887788
1024 => 0.44698702490014
1025 => 0.44037198337158
1026 => 0.44596297117367
1027 => 0.44499139945561
1028 => 0.43752303386199
1029 => 0.44735332938828
1030 => 0.44735820509221
1031 => 0.44099137144438
1101 => 0.43355630362282
1102 => 0.43222708910478
1103 => 0.43122570452029
1104 => 0.43823458536756
1105 => 0.44451872601902
1106 => 0.45621195380081
1107 => 0.45915190908939
1108 => 0.47062675030462
1109 => 0.46379404106083
1110 => 0.4668228925702
1111 => 0.47011113934083
1112 => 0.47168764576395
1113 => 0.46911881314748
1114 => 0.48694396478782
1115 => 0.4884489537348
1116 => 0.48895356351061
1117 => 0.48294302266958
1118 => 0.48828178972102
1119 => 0.48578395741903
1120 => 0.492282623151
1121 => 0.49330169691691
1122 => 0.49243857769179
1123 => 0.49276204779007
1124 => 0.47755142543727
1125 => 0.47676267442586
1126 => 0.46600799841796
1127 => 0.47039060838573
1128 => 0.46219752911494
1129 => 0.46479563894978
1130 => 0.46594086100927
1201 => 0.46534266199617
1202 => 0.47063839457769
1203 => 0.46613594003671
1204 => 0.454253222231
1205 => 0.44236726698678
1206 => 0.44221804850078
1207 => 0.43908868628951
1208 => 0.43682673058204
1209 => 0.43726246349849
1210 => 0.43879804312959
1211 => 0.43673747990235
1212 => 0.43717720554009
1213 => 0.44447958100316
1214 => 0.44594402032411
1215 => 0.44096728331812
1216 => 0.42098496609931
1217 => 0.41608125533196
1218 => 0.41960594538672
1219 => 0.41792137055966
1220 => 0.33729516346727
1221 => 0.35623709487819
1222 => 0.34498244244103
1223 => 0.35016910408573
1224 => 0.33868101832551
1225 => 0.34416373499245
1226 => 0.34315127742083
1227 => 0.37360934259709
1228 => 0.37313378180306
1229 => 0.37336140758905
1230 => 0.36249623574819
1231 => 0.37980474951224
]
'min_raw' => 0.22097077860409
'max_raw' => 0.49330169691691
'avg_raw' => 0.3571362377605
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.22097'
'max' => '$0.4933016'
'avg' => '$0.357136'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.034073245714277
'max_diff' => 0.074628151540519
'year' => 2035
]
10 => [
'items' => [
101 => 0.38833154578644
102 => 0.38675346272942
103 => 0.3871506322364
104 => 0.38032594422084
105 => 0.37342748548707
106 => 0.36577603308613
107 => 0.37999148589897
108 => 0.37841097021206
109 => 0.38203610454625
110 => 0.39125584183693
111 => 0.39261348317536
112 => 0.39443816690205
113 => 0.39378414767586
114 => 0.40936553901826
115 => 0.40747852971736
116 => 0.41202567920289
117 => 0.4026718477181
118 => 0.39208709951922
119 => 0.39409891411034
120 => 0.39390516018722
121 => 0.39143845036556
122 => 0.38921161503261
123 => 0.38550456161021
124 => 0.39723422717936
125 => 0.39675802417813
126 => 0.40446719724249
127 => 0.40310452602046
128 => 0.39400427409748
129 => 0.39432929137521
130 => 0.39651518876597
131 => 0.40408060459353
201 => 0.40632653510393
202 => 0.40528613060666
203 => 0.40774869088069
204 => 0.40969499811462
205 => 0.4079931171034
206 => 0.43208816327286
207 => 0.42208222020254
208 => 0.42695904723411
209 => 0.42812214174521
210 => 0.42514289961228
211 => 0.42578899055225
212 => 0.42676764227706
213 => 0.43270982391046
214 => 0.44830382790061
215 => 0.45521030611588
216 => 0.47598878658613
217 => 0.45463681924292
218 => 0.453369881864
219 => 0.45711271364668
220 => 0.46931188130825
221 => 0.4791981608884
222 => 0.48247801017829
223 => 0.48291149640636
224 => 0.48906471171445
225 => 0.49259161997837
226 => 0.48831754953042
227 => 0.4846957223396
228 => 0.47172278689985
229 => 0.47322443950114
301 => 0.48356933680673
302 => 0.49818211356229
303 => 0.51072139621886
304 => 0.50633057647065
305 => 0.53982943171382
306 => 0.54315070638063
307 => 0.54269181361134
308 => 0.55025817157427
309 => 0.53524049187986
310 => 0.52882014285666
311 => 0.48547880248774
312 => 0.49765595126111
313 => 0.51535615214207
314 => 0.51301346418313
315 => 0.50015910517565
316 => 0.51071164503488
317 => 0.50722264534898
318 => 0.50447072653799
319 => 0.51707780009686
320 => 0.50321580484885
321 => 0.5152178681356
322 => 0.49982509782489
323 => 0.50635063336541
324 => 0.50264642378797
325 => 0.50504350135542
326 => 0.49103023487644
327 => 0.49859145331568
328 => 0.49071566333038
329 => 0.49071192918047
330 => 0.49053807068003
331 => 0.49980390267114
401 => 0.50010606111971
402 => 0.49325859727839
403 => 0.49227177076137
404 => 0.49592058561152
405 => 0.49164877904811
406 => 0.4936475304527
407 => 0.491709319192
408 => 0.49127298701224
409 => 0.48779621796812
410 => 0.48629833026816
411 => 0.48688569063112
412 => 0.4848807269073
413 => 0.48367266374099
414 => 0.49029775650974
415 => 0.48675823669888
416 => 0.48975527433487
417 => 0.48633977169235
418 => 0.47450015146972
419 => 0.46769106067798
420 => 0.44532711561081
421 => 0.45166950268947
422 => 0.4558745118843
423 => 0.45448475637049
424 => 0.45747048897814
425 => 0.45765378871113
426 => 0.45668309660445
427 => 0.45555915949826
428 => 0.45501208907259
429 => 0.45908950381914
430 => 0.46145658031898
501 => 0.45629654081277
502 => 0.45508761575309
503 => 0.46030470058746
504 => 0.46348711932261
505 => 0.48698431121637
506 => 0.48524356334595
507 => 0.48961249889619
508 => 0.48912062380001
509 => 0.49369996428268
510 => 0.50118525059814
511 => 0.48596557059983
512 => 0.4886071807906
513 => 0.48795951897551
514 => 0.4950305208466
515 => 0.49505259574262
516 => 0.49081317689816
517 => 0.49311143463046
518 => 0.49182861021369
519 => 0.4941468473189
520 => 0.48522031459686
521 => 0.49609186789265
522 => 0.50225533806394
523 => 0.50234091785325
524 => 0.50526235379811
525 => 0.50823070191626
526 => 0.51392818764041
527 => 0.50807180213173
528 => 0.49753673470926
529 => 0.4982973325491
530 => 0.49212062637394
531 => 0.49222445792066
601 => 0.49167019698685
602 => 0.49333357577201
603 => 0.4855853327003
604 => 0.48740382986226
605 => 0.48485792318641
606 => 0.48860164648669
607 => 0.48457401907522
608 => 0.48795920665337
609 => 0.48942014139136
610 => 0.4948110220262
611 => 0.48377778162226
612 => 0.46128025755392
613 => 0.4660095098692
614 => 0.45901457422015
615 => 0.45966198214607
616 => 0.46096984919063
617 => 0.45673062419174
618 => 0.45753933472819
619 => 0.45751044189702
620 => 0.45726145908716
621 => 0.45615867293832
622 => 0.4545594148429
623 => 0.46093036686937
624 => 0.46201291576482
625 => 0.46441928785996
626 => 0.47157901895731
627 => 0.4708635929826
628 => 0.47203048243009
629 => 0.46948316931802
630 => 0.45978014469547
701 => 0.46030706561513
702 => 0.45373635330358
703 => 0.46425125997318
704 => 0.46176119128383
705 => 0.46015582780095
706 => 0.45971778950106
707 => 0.46689526818696
708 => 0.46904288230297
709 => 0.4677046333069
710 => 0.46495984557298
711 => 0.47023064944575
712 => 0.47164089420474
713 => 0.47195659599845
714 => 0.4812954498846
715 => 0.47247853418896
716 => 0.47460085342951
717 => 0.49115858230149
718 => 0.476143007025
719 => 0.48409709213624
720 => 0.48370778106111
721 => 0.48777682185246
722 => 0.48337400094982
723 => 0.48342857919164
724 => 0.48704161175366
725 => 0.48196775913416
726 => 0.48071140187182
727 => 0.4789757533121
728 => 0.48276547844482
729 => 0.48503724726735
730 => 0.50334603554666
731 => 0.51517434775727
801 => 0.51466084952926
802 => 0.51935326210493
803 => 0.51723928726201
804 => 0.51041270485586
805 => 0.52206484861013
806 => 0.51837762277988
807 => 0.51868159319734
808 => 0.51867027940322
809 => 0.52112196223746
810 => 0.51938472025597
811 => 0.51596043798622
812 => 0.51823363636144
813 => 0.52498422285256
814 => 0.54593825045429
815 => 0.55766440190416
816 => 0.54523232141322
817 => 0.55380780406368
818 => 0.5486655702303
819 => 0.54773107337457
820 => 0.55311711020225
821 => 0.5585125745744
822 => 0.55816890681913
823 => 0.55425207674511
824 => 0.55203955882218
825 => 0.56879348578249
826 => 0.58113749377115
827 => 0.5802957151816
828 => 0.5840110521148
829 => 0.59491939626171
830 => 0.59591671854268
831 => 0.59579107885847
901 => 0.59331911152526
902 => 0.60405979296538
903 => 0.61301985838704
904 => 0.59274692250962
905 => 0.60046659109953
906 => 0.60393219904172
907 => 0.60902073970041
908 => 0.61760596073005
909 => 0.62693178788565
910 => 0.62825056209795
911 => 0.62731482868517
912 => 0.62116419498436
913 => 0.63136862633828
914 => 0.63734614290204
915 => 0.64090561722273
916 => 0.64993185185994
917 => 0.60395360145654
918 => 0.5714079105537
919 => 0.56632543095375
920 => 0.57666085307889
921 => 0.57938622146984
922 => 0.57828762888877
923 => 0.54165449485286
924 => 0.56613256508445
925 => 0.59246891047904
926 => 0.59348059676378
927 => 0.60666512193533
928 => 0.61095854378313
929 => 0.62157381468144
930 => 0.62090982659652
1001 => 0.62349447613441
1002 => 0.62290030996554
1003 => 0.64256286399565
1004 => 0.6642535810084
1005 => 0.6635025004505
1006 => 0.66038420324701
1007 => 0.66501540634288
1008 => 0.68740255081854
1009 => 0.6853415013019
1010 => 0.68734363534753
1011 => 0.7137393403685
1012 => 0.74805751164101
1013 => 0.73211327559687
1014 => 0.76670767998233
1015 => 0.7884830237724
1016 => 0.82614122924475
1017 => 0.82142623644904
1018 => 0.83608629949075
1019 => 0.81298541529603
1020 => 0.75994111572597
1021 => 0.75154665227358
1022 => 0.76835258068693
1023 => 0.80966831579262
1024 => 0.76705140115823
1025 => 0.77567274748438
1026 => 0.77318979916246
1027 => 0.77305749339823
1028 => 0.77810706629224
1029 => 0.77078239744148
1030 => 0.74094037886071
1031 => 0.75461680011616
1101 => 0.74933567707374
1102 => 0.75519547682311
1103 => 0.78681839930519
1104 => 0.77283715147955
1105 => 0.75810904263957
1106 => 0.77658135955389
1107 => 0.80010296676259
1108 => 0.79863102685587
1109 => 0.79577484821366
1110 => 0.81187497767512
1111 => 0.83846767465012
1112 => 0.84565557378436
1113 => 0.85096153397512
1114 => 0.85169313624049
1115 => 0.85922909426212
1116 => 0.81870634867388
1117 => 0.88301698662034
1118 => 0.89412165724817
1119 => 0.89203443941158
1120 => 0.90437681345844
1121 => 0.90074537391805
1122 => 0.89548398777942
1123 => 0.91504927594194
1124 => 0.89261925190095
1125 => 0.86078265663627
1126 => 0.8433164708176
1127 => 0.86631735326064
1128 => 0.88036318954842
1129 => 0.88964659385168
1130 => 0.89245574638465
1201 => 0.82185201406043
1202 => 0.78380051820019
1203 => 0.80819109078532
1204 => 0.83794927268657
1205 => 0.81854104047089
1206 => 0.8193018064291
1207 => 0.79163076768324
1208 => 0.8403975456172
1209 => 0.83329263626538
1210 => 0.87015291855097
1211 => 0.86135591636127
1212 => 0.89141404565725
1213 => 0.88349873285601
1214 => 0.91635475375478
1215 => 0.92946191003256
1216 => 0.95147086538893
1217 => 0.96766074254163
1218 => 0.97716774806871
1219 => 0.97659698311674
1220 => 1.0142684753863
1221 => 0.99205491253665
1222 => 0.96414944226265
1223 => 0.96364472034603
1224 => 0.9780973588245
1225 => 1.0083861241877
1226 => 1.0162395603627
1227 => 1.0206285597991
1228 => 1.0139066543801
1229 => 0.98979542396715
1230 => 0.97938431692155
1231 => 0.98825488176321
]
'min_raw' => 0.36577603308613
'max_raw' => 1.0206285597991
'avg_raw' => 0.69320229644261
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.365776'
'max' => '$1.02'
'avg' => '$0.6932022'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.14480525448203
'max_diff' => 0.52732686288219
'year' => 2036
]
11 => [
'items' => [
101 => 0.97740694321819
102 => 0.99613352854087
103 => 1.0218491299717
104 => 1.0165389599667
105 => 1.0342900621481
106 => 1.0526605854355
107 => 1.0789312588082
108 => 1.085799385628
109 => 1.0971521380898
110 => 1.1088378495578
111 => 1.1125909851426
112 => 1.1197568855035
113 => 1.1197191176714
114 => 1.1413140407298
115 => 1.1651339096022
116 => 1.1741253586703
117 => 1.1948007000111
118 => 1.1593949025154
119 => 1.1862506066284
120 => 1.2104751239801
121 => 1.1815936557337
122 => 1.2214000311924
123 => 1.2229456225482
124 => 1.2462822170113
125 => 1.2226261077724
126 => 1.2085791856194
127 => 1.249132123544
128 => 1.2687544128001
129 => 1.2628440195847
130 => 1.2178656353831
131 => 1.1916862865641
201 => 1.1231698810857
202 => 1.2043305230634
203 => 1.2438615042823
204 => 1.2177632596917
205 => 1.230925696219
206 => 1.3027356819774
207 => 1.3300762752019
208 => 1.3243896229364
209 => 1.325350573559
210 => 1.3401030613961
211 => 1.4055237168092
212 => 1.3663221436467
213 => 1.3962902774745
214 => 1.4121852675986
215 => 1.4269494202633
216 => 1.3906933275772
217 => 1.3435246837003
218 => 1.3285843941796
219 => 1.2151683036074
220 => 1.209264503552
221 => 1.2059505216774
222 => 1.1850563347305
223 => 1.1686392271896
224 => 1.155583733745
225 => 1.121322220246
226 => 1.1328844752947
227 => 1.0782787737109
228 => 1.1132135664769
301 => 1.0260615482484
302 => 1.0986443387653
303 => 1.0591408258215
304 => 1.0856663723197
305 => 1.0855738271868
306 => 1.0367318861515
307 => 1.0085608738676
308 => 1.0265125393271
309 => 1.0457581497046
310 => 1.0488806852384
311 => 1.0738331214547
312 => 1.0807968100519
313 => 1.059696508499
314 => 1.0242555163845
315 => 1.0324876505297
316 => 1.0083940499319
317 => 0.96617094163107
318 => 0.99649631515745
319 => 1.0068507309919
320 => 1.0114238309025
321 => 0.96990225324538
322 => 0.95685527206822
323 => 0.94990916876427
324 => 1.0188956021146
325 => 1.0226748346616
326 => 1.0033397466215
327 => 1.090736177991
328 => 1.0709556739128
329 => 1.0930553433093
330 => 1.0317406706412
331 => 1.0340829737083
401 => 1.005055625056
402 => 1.0213090006931
403 => 1.0098216386635
404 => 1.0199958885606
405 => 1.0260942919989
406 => 1.055116877549
407 => 1.0989757300727
408 => 1.0507818710857
409 => 1.0297831165763
410 => 1.0428106257725
411 => 1.0775045995069
412 => 1.1300677456664
413 => 1.0989493052081
414 => 1.1127591406581
415 => 1.1157759753471
416 => 1.0928303894204
417 => 1.1309137821488
418 => 1.1513229817008
419 => 1.1722585973524
420 => 1.1904364058201
421 => 1.1638964520771
422 => 1.1922980069351
423 => 1.1694113672689
424 => 1.1488796855111
425 => 1.1489108235972
426 => 1.1360309997105
427 => 1.1110747179677
428 => 1.1064723967163
429 => 1.1304142530753
430 => 1.1496133545729
501 => 1.1511946845298
502 => 1.1618242936043
503 => 1.168114786761
504 => 1.2297701712069
505 => 1.2545684768711
506 => 1.2848913756294
507 => 1.2967038536007
508 => 1.3322551772866
509 => 1.3035445960729
510 => 1.2973328812293
511 => 1.2110969987167
512 => 1.2252181196471
513 => 1.2478273967422
514 => 1.2114698173685
515 => 1.2345303331199
516 => 1.2390829674178
517 => 1.2102344007338
518 => 1.2256436666727
519 => 1.1847212248679
520 => 1.0998677274759
521 => 1.131008248348
522 => 1.1539381534959
523 => 1.121214351613
524 => 1.1798704999021
525 => 1.1456047889803
526 => 1.1347442036622
527 => 1.0923731882584
528 => 1.1123706765191
529 => 1.1394175657281
530 => 1.1227057327353
531 => 1.1573852954897
601 => 1.2065008050515
602 => 1.2415034420444
603 => 1.2441905098833
604 => 1.2216861592914
605 => 1.2577495247357
606 => 1.2580122069817
607 => 1.2173325834373
608 => 1.1924165405214
609 => 1.1867555631472
610 => 1.2008977945281
611 => 1.2180690742245
612 => 1.2451433964004
613 => 1.261503842259
614 => 1.3041632081484
615 => 1.3157056094182
616 => 1.3283872089764
617 => 1.3453337368465
618 => 1.3656823885551
619 => 1.321160697066
620 => 1.3229296268677
621 => 1.2814716441978
622 => 1.237167844039
623 => 1.2707889058129
624 => 1.3147439716599
625 => 1.3046606309886
626 => 1.3035260491791
627 => 1.3054341010759
628 => 1.2978315915008
629 => 1.263445722455
630 => 1.2461773542871
701 => 1.2684579548542
702 => 1.2802991024602
703 => 1.2986636897405
704 => 1.2963998667288
705 => 1.3437050713502
706 => 1.3620864434309
707 => 1.3573837018694
708 => 1.3582491194945
709 => 1.3915277156379
710 => 1.4285403588147
711 => 1.4632075833981
712 => 1.4984725732364
713 => 1.4559592515704
714 => 1.4343736086856
715 => 1.4566444822395
716 => 1.4448272432466
717 => 1.5127326037209
718 => 1.517434223548
719 => 1.5853346736918
720 => 1.6497802863135
721 => 1.6093031516889
722 => 1.6474712665098
723 => 1.6887531945806
724 => 1.7683927315806
725 => 1.7415729372717
726 => 1.7210293951508
727 => 1.7016158471122
728 => 1.7420123587665
729 => 1.7939818256597
730 => 1.8051755510711
731 => 1.8233136625698
801 => 1.8042436561517
802 => 1.82721137839
803 => 1.90829753042
804 => 1.8863873363742
805 => 1.8552713385898
806 => 1.9192810680206
807 => 1.9424459402701
808 => 2.1050291452549
809 => 2.3102971575254
810 => 2.2253148525829
811 => 2.1725635935433
812 => 2.1849613906942
813 => 2.2599183200147
814 => 2.2839921066984
815 => 2.2185512557602
816 => 2.2416660706307
817 => 2.3690309731657
818 => 2.4373581570204
819 => 2.3445606637806
820 => 2.088536060334
821 => 1.8524696834368
822 => 1.9150851167974
823 => 1.9079864698375
824 => 2.0448241685161
825 => 1.8858647854924
826 => 1.8885412538285
827 => 2.0282086112022
828 => 1.9909477547596
829 => 1.9305899393325
830 => 1.8529103622854
831 => 1.7093124796227
901 => 1.5821238304251
902 => 1.8315700612981
903 => 1.8208134862343
904 => 1.8052363715069
905 => 1.839901554713
906 => 2.008225844478
907 => 2.0043454247863
908 => 1.9796601745156
909 => 1.9983837192801
910 => 1.9273076114082
911 => 1.9456255427797
912 => 1.8524322893166
913 => 1.894559531976
914 => 1.9304604385686
915 => 1.9376680770891
916 => 1.9539072547069
917 => 1.8151452599583
918 => 1.8774453217623
919 => 1.9140407713457
920 => 1.7487011987737
921 => 1.9107725396033
922 => 1.8127297223473
923 => 1.7794525176169
924 => 1.824255889848
925 => 1.8067959721168
926 => 1.7917849601323
927 => 1.7834085575231
928 => 1.8163072093218
929 => 1.814772447893
930 => 1.7609438681971
1001 => 1.6907266803173
1002 => 1.7142938733704
1003 => 1.7057316911906
1004 => 1.6747012384275
1005 => 1.6956120169587
1006 => 1.6035315310104
1007 => 1.4451118408634
1008 => 1.5497687407008
1009 => 1.5457395639019
1010 => 1.5437078702512
1011 => 1.6223546379748
1012 => 1.6147945659478
1013 => 1.6010729611904
1014 => 1.6744492303956
1015 => 1.6476659050856
1016 => 1.7302058027458
1017 => 1.7845719176907
1018 => 1.7707829123811
1019 => 1.821914506261
1020 => 1.7148368138993
1021 => 1.7504037280905
1022 => 1.7577340198117
1023 => 1.6735437786235
1024 => 1.6160314872284
1025 => 1.6121960730805
1026 => 1.5124776854834
1027 => 1.5657464432391
1028 => 1.6126207456531
1029 => 1.5901715923896
1030 => 1.5830648611157
1031 => 1.6193716099319
1101 => 1.6221929552612
1102 => 1.5578659827606
1103 => 1.5712415973138
1104 => 1.6270201335113
1105 => 1.5698361213146
1106 => 1.4587369265717
1107 => 1.4311827902089
1108 => 1.4275065604946
1109 => 1.3527775573327
1110 => 1.4330240893559
1111 => 1.3979943276544
1112 => 1.5086529251485
1113 => 1.4454453277338
1114 => 1.4427205745407
1115 => 1.4386017104549
1116 => 1.3742793704172
1117 => 1.3883618749875
1118 => 1.4351742650052
1119 => 1.4518774531428
1120 => 1.4501351737749
1121 => 1.4349448587557
1122 => 1.4418989071845
1123 => 1.4194974942443
1124 => 1.41158708909
1125 => 1.3866196744947
1126 => 1.349924472464
1127 => 1.3550271653711
1128 => 1.2823243683264
1129 => 1.242712025867
1130 => 1.2317478515565
1201 => 1.2170860994441
1202 => 1.233403935471
1203 => 1.282118410437
1204 => 1.2233584182756
1205 => 1.1226185332491
1206 => 1.1286731719916
1207 => 1.1422761476076
1208 => 1.1169270925398
1209 => 1.0929363393031
1210 => 1.1137943528111
1211 => 1.0711095354949
1212 => 1.1474344038512
1213 => 1.1453700300601
1214 => 1.1738192210851
1215 => 1.1916090840692
1216 => 1.1506092094274
1217 => 1.1402978518304
1218 => 1.1461716697427
1219 => 1.0490905437434
1220 => 1.1658856219275
1221 => 1.1668956706136
1222 => 1.1582470205444
1223 => 1.220436794034
1224 => 1.3516766135737
1225 => 1.3022989143533
1226 => 1.2831783767663
1227 => 1.2468302208365
1228 => 1.2952619804731
1229 => 1.2915431769861
1230 => 1.2747253373038
1231 => 1.2645538553891
]
'min_raw' => 0.94990916876427
'max_raw' => 2.4373581570204
'avg_raw' => 1.6936336628923
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.9499091'
'max' => '$2.43'
'avg' => '$1.69'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.58413313567814
'max_diff' => 1.4167295972213
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.029816563370616
]
1 => [
'year' => 2028
'avg' => 0.051173878554171
]
2 => [
'year' => 2029
'avg' => 0.13979781301575
]
3 => [
'year' => 2030
'avg' => 0.1078538045485
]
4 => [
'year' => 2031
'avg' => 0.10592580224148
]
5 => [
'year' => 2032
'avg' => 0.18572126740614
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.029816563370616
'min' => '$0.029816'
'max_raw' => 0.18572126740614
'max' => '$0.185721'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.18572126740614
]
1 => [
'year' => 2033
'avg' => 0.4776941972613
]
2 => [
'year' => 2034
'avg' => 0.3027855391331
]
3 => [
'year' => 2035
'avg' => 0.3571362377605
]
4 => [
'year' => 2036
'avg' => 0.69320229644261
]
5 => [
'year' => 2037
'avg' => 1.6936336628923
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.18572126740614
'min' => '$0.185721'
'max_raw' => 1.6936336628923
'max' => '$1.69'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.6936336628923
]
]
]
]
'prediction_2025_max_price' => '$0.05098'
'last_price' => 0.04943241
'sma_50day_nextmonth' => '$0.043721'
'sma_200day_nextmonth' => '$0.103313'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.047919'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0470079'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.04532'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.040927'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.043329'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.063125'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.103163'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.04817'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.047222'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.04535'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.04343'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.048558'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.064998'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.07725'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.089039'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.046885'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.046193'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.052713'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0649075'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.068632'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.034316'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.017158'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '60.30'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 96.74
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.045321'
'vwma_10_action' => 'BUY'
'hma_9' => '0.049019'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 113.72
'cci_20_action' => 'SELL'
'adx_14' => 19.85
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0062069'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.52
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.018047'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 10
'buy_signals' => 22
'sell_pct' => 31.25
'buy_pct' => 68.75
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767711504
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Dolomite para 2026
A previsão de preço para Dolomite em 2026 sugere que o preço médio poderia variar entre $0.017078 na extremidade inferior e $0.05098 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Dolomite poderia potencialmente ganhar 3.13% até 2026 se DOLO atingir a meta de preço prevista.
Previsão de preço de Dolomite 2027-2032
A previsão de preço de DOLO para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.029816 na extremidade inferior e $0.185721 na extremidade superior. Considerando a volatilidade de preços no mercado, se Dolomite atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Dolomite | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.016441 | $0.029816 | $0.043191 |
| 2028 | $0.029671 | $0.051173 | $0.072675 |
| 2029 | $0.06518 | $0.139797 | $0.214414 |
| 2030 | $0.055433 | $0.107853 | $0.160274 |
| 2031 | $0.065539 | $0.105925 | $0.146312 |
| 2032 | $0.10004 | $0.185721 | $0.2714015 |
Previsão de preço de Dolomite 2032-2037
A previsão de preço de Dolomite para 2032-2037 é atualmente estimada entre $0.185721 na extremidade inferior e $1.69 na extremidade superior. Comparado ao preço atual, Dolomite poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Dolomite | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.10004 | $0.185721 | $0.2714015 |
| 2033 | $0.232473 | $0.477694 | $0.722914 |
| 2034 | $0.186897 | $0.302785 | $0.418673 |
| 2035 | $0.22097 | $0.357136 | $0.4933016 |
| 2036 | $0.365776 | $0.6932022 | $1.02 |
| 2037 | $0.9499091 | $1.69 | $2.43 |
Dolomite Histograma de preços potenciais
Previsão de preço de Dolomite baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Dolomite é Altista, com 22 indicadores técnicos mostrando sinais de alta e 10 indicando sinais de baixa. A previsão de preço de DOLO foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Dolomite
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Dolomite está projetado para aumentar no próximo mês, alcançando $0.103313 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Dolomite é esperado para alcançar $0.043721 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 60.30, sugerindo que o mercado de DOLO está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DOLO para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.047919 | BUY |
| SMA 5 | $0.0470079 | BUY |
| SMA 10 | $0.04532 | BUY |
| SMA 21 | $0.040927 | BUY |
| SMA 50 | $0.043329 | BUY |
| SMA 100 | $0.063125 | SELL |
| SMA 200 | $0.103163 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.04817 | BUY |
| EMA 5 | $0.047222 | BUY |
| EMA 10 | $0.04535 | BUY |
| EMA 21 | $0.04343 | BUY |
| EMA 50 | $0.048558 | BUY |
| EMA 100 | $0.064998 | SELL |
| EMA 200 | $0.07725 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.089039 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0649075 | SELL |
| EMA 50 | $0.068632 | SELL |
| EMA 100 | $0.034316 | BUY |
| EMA 200 | $0.017158 | BUY |
Osciladores de Dolomite
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 60.30 | NEUTRAL |
| Stoch RSI (14) | 96.74 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 113.72 | SELL |
| Índice Direcional Médio (14) | 19.85 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.0062069 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 68.52 | NEUTRAL |
| VWMA (10) | 0.045321 | BUY |
| Média Móvel de Hull (9) | 0.049019 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.018047 | NEUTRAL |
Previsão do preço de Dolomite com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Dolomite
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Dolomite por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.06946 | $0.097604 | $0.137149 | $0.192718 | $0.2708017 | $0.380521 |
| Amazon.com stock | $0.103143 | $0.215215 | $0.449059 | $0.936989 | $1.95 | $4.07 |
| Apple stock | $0.070116 | $0.099454 | $0.141068 | $0.200094 | $0.283819 | $0.402575 |
| Netflix stock | $0.077996 | $0.123066 | $0.194179 | $0.306384 | $0.483427 | $0.762772 |
| Google stock | $0.064014 | $0.082898 | $0.107353 | $0.139022 | $0.180033 | $0.233142 |
| Tesla stock | $0.112059 | $0.25403 | $0.575867 | $1.30 | $2.95 | $6.70 |
| Kodak stock | $0.037069 | $0.027797 | $0.020845 | $0.015631 | $0.011722 | $0.00879 |
| Nokia stock | $0.032746 | $0.021693 | $0.014371 | $0.00952 | $0.0063067 | $0.004177 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Dolomite
Você pode fazer perguntas como: 'Devo investir em Dolomite agora?', 'Devo comprar DOLO hoje?', 'Dolomite será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Dolomite regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Dolomite, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Dolomite para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Dolomite é de $0.04943 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Dolomite
com base no histórico de preços de 4 horas
Previsão de longo prazo para Dolomite
com base no histórico de preços de 1 mês
Previsão do preço de Dolomite com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Dolomite tiver 1% da média anterior do crescimento anual do Bitcoin | $0.050717 | $0.052035 | $0.053388 | $0.054775 |
| Se Dolomite tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0520022 | $0.0547056 | $0.057549 | $0.060541 |
| Se Dolomite tiver 5% da média anterior do crescimento anual do Bitcoin | $0.055856 | $0.063116 | $0.071319 | $0.080588 |
| Se Dolomite tiver 10% da média anterior do crescimento anual do Bitcoin | $0.062281 | $0.07847 | $0.098867 | $0.124566 |
| Se Dolomite tiver 20% da média anterior do crescimento anual do Bitcoin | $0.07513 | $0.114188 | $0.17355 | $0.263773 |
| Se Dolomite tiver 50% da média anterior do crescimento anual do Bitcoin | $0.113677 | $0.26142 | $0.601177 | $1.38 |
| Se Dolomite tiver 100% da média anterior do crescimento anual do Bitcoin | $0.177923 | $0.6404024 | $2.30 | $8.29 |
Perguntas Frequentes sobre Dolomite
DOLO é um bom investimento?
A decisão de adquirir Dolomite depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Dolomite experimentou uma escalada de 4.2555% nas últimas 24 horas, e Dolomite registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Dolomite dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Dolomite pode subir?
Parece que o valor médio de Dolomite pode potencialmente subir para $0.05098 até o final deste ano. Observando as perspectivas de Dolomite em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.160274. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Dolomite na próxima semana?
Com base na nossa nova previsão experimental de Dolomite, o preço de Dolomite aumentará 0.86% na próxima semana e atingirá $0.049855 até 13 de janeiro de 2026.
Qual será o preço de Dolomite no próximo mês?
Com base na nossa nova previsão experimental de Dolomite, o preço de Dolomite diminuirá -11.62% no próximo mês e atingirá $0.043689 até 5 de fevereiro de 2026.
Até onde o preço de Dolomite pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Dolomite em 2026, espera-se que DOLO fluctue dentro do intervalo de $0.017078 e $0.05098. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Dolomite não considera flutuações repentinas e extremas de preço.
Onde estará Dolomite em 5 anos?
O futuro de Dolomite parece seguir uma tendência de alta, com um preço máximo de $0.160274 projetada após um período de cinco anos. Com base na previsão de Dolomite para 2030, o valor de Dolomite pode potencialmente atingir seu pico mais alto de aproximadamente $0.160274, enquanto seu pico mais baixo está previsto para cerca de $0.055433.
Quanto será Dolomite em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Dolomite, espera-se que o valor de DOLO em 2026 aumente 3.13% para $0.05098 se o melhor cenário ocorrer. O preço ficará entre $0.05098 e $0.017078 durante 2026.
Quanto será Dolomite em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Dolomite, o valor de DOLO pode diminuir -12.62% para $0.043191 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.043191 e $0.016441 ao longo do ano.
Quanto será Dolomite em 2028?
Nosso novo modelo experimental de previsão de preços de Dolomite sugere que o valor de DOLO em 2028 pode aumentar 47.02%, alcançando $0.072675 no melhor cenário. O preço é esperado para variar entre $0.072675 e $0.029671 durante o ano.
Quanto será Dolomite em 2029?
Com base no nosso modelo de previsão experimental, o valor de Dolomite pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.214414 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.214414 e $0.06518.
Quanto será Dolomite em 2030?
Usando nossa nova simulação experimental para previsões de preços de Dolomite, espera-se que o valor de DOLO em 2030 aumente 224.23%, alcançando $0.160274 no melhor cenário. O preço está previsto para variar entre $0.160274 e $0.055433 ao longo de 2030.
Quanto será Dolomite em 2031?
Nossa simulação experimental indica que o preço de Dolomite poderia aumentar 195.98% em 2031, potencialmente atingindo $0.146312 sob condições ideais. O preço provavelmente oscilará entre $0.146312 e $0.065539 durante o ano.
Quanto será Dolomite em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Dolomite, DOLO poderia ver um 449.04% aumento em valor, atingindo $0.2714015 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.2714015 e $0.10004 ao longo do ano.
Quanto será Dolomite em 2033?
De acordo com nossa previsão experimental de preços de Dolomite, espera-se que o valor de DOLO seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.722914. Ao longo do ano, o preço de DOLO poderia variar entre $0.722914 e $0.232473.
Quanto será Dolomite em 2034?
Os resultados da nossa nova simulação de previsão de preços de Dolomite sugerem que DOLO pode aumentar 746.96% em 2034, atingindo potencialmente $0.418673 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.418673 e $0.186897.
Quanto será Dolomite em 2035?
Com base em nossa previsão experimental para o preço de Dolomite, DOLO poderia aumentar 897.93%, com o valor potencialmente atingindo $0.4933016 em 2035. A faixa de preço esperada para o ano está entre $0.4933016 e $0.22097.
Quanto será Dolomite em 2036?
Nossa recente simulação de previsão de preços de Dolomite sugere que o valor de DOLO pode aumentar 1964.7% em 2036, possivelmente atingindo $1.02 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $1.02 e $0.365776.
Quanto será Dolomite em 2037?
De acordo com a simulação experimental, o valor de Dolomite poderia aumentar 4830.69% em 2037, com um pico de $2.43 sob condições favoráveis. O preço é esperado para cair entre $2.43 e $0.9499091 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Dolomite?
Traders de Dolomite utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Dolomite
Médias móveis são ferramentas populares para a previsão de preço de Dolomite. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DOLO em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DOLO acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DOLO.
Como ler gráficos de Dolomite e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Dolomite em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DOLO dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Dolomite?
A ação de preço de Dolomite é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DOLO. A capitalização de mercado de Dolomite pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DOLO, grandes detentores de Dolomite, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Dolomite.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


