Previsão de Preço DinoLFG - Projeção DINO
Previsão de Preço DinoLFG até $0.000679 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000227 | $0.000679 |
| 2027 | $0.000219 | $0.000575 |
| 2028 | $0.000395 | $0.000968 |
| 2029 | $0.000868 | $0.002856 |
| 2030 | $0.000738 | $0.002135 |
| 2031 | $0.000873 | $0.001949 |
| 2032 | $0.001332 | $0.003615 |
| 2033 | $0.003096 | $0.00963 |
| 2034 | $0.002489 | $0.005577 |
| 2035 | $0.002943 | $0.006571 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em DinoLFG hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,956.24, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de DinoLFG para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'DinoLFG'
'name_with_ticker' => 'DinoLFG <small>DINO</small>'
'name_lang' => 'DinoLFG'
'name_lang_with_ticker' => 'DinoLFG <small>DINO</small>'
'name_with_lang' => 'DinoLFG'
'name_with_lang_with_ticker' => 'DinoLFG <small>DINO</small>'
'image' => '/uploads/coins/dinolfg.png?1717235248'
'price_for_sd' => 0.0006585
'ticker' => 'DINO'
'marketcap' => '$206.09K'
'low24h' => '$0.0006268'
'high24h' => '$0.0007513'
'volume24h' => '$55.83K'
'current_supply' => '312.95M'
'max_supply' => '333.33M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0006585'
'change_24h_pct' => '-9.0604%'
'ath_price' => '$0.1624'
'ath_days' => 975
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 de mai. de 2023'
'ath_pct' => '-99.60%'
'fdv' => '$219.51K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.03247'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000664'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000582'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000227'
'current_year_max_price_prediction' => '$0.000679'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000738'
'grand_prediction_max_price' => '$0.002135'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00067100879711322
107 => 0.00067351410038545
108 => 0.00067915867658173
109 => 0.00063092639099792
110 => 0.00065258127119954
111 => 0.00066530148453012
112 => 0.00060783109793726
113 => 0.00066416547976856
114 => 0.00063008677421305
115 => 0.00061851994970254
116 => 0.0006340931550927
117 => 0.00062802426180671
118 => 0.00062280658373679
119 => 0.00061989502972269
120 => 0.00063133027300927
121 => 0.00063079680524188
122 => 0.00061208652773996
123 => 0.00058767973346718
124 => 0.00059587145475084
125 => 0.00059289532561069
126 => 0.00058210944967849
127 => 0.00058937782776517
128 => 0.00055737156911342
129 => 0.00050230646464365
130 => 0.00053868415934615
131 => 0.00053728365767142
201 => 0.00053657746121933
202 => 0.00056391429338262
203 => 0.00056128648773814
204 => 0.00055651699476187
205 => 0.0005820218541997
206 => 0.00057271223741612
207 => 0.00060140228272153
208 => 0.00062029940211547
209 => 0.00061550648137939
210 => 0.00063327931350709
211 => 0.00059606017546426
212 => 0.00060842288014945
213 => 0.0006109708164511
214 => 0.00058170712819326
215 => 0.0005617164292402
216 => 0.00056038327753068
217 => 0.00052572216043409
218 => 0.00054423784941233
219 => 0.0005605308894819
220 => 0.00055272778767956
221 => 0.00055025755875998
222 => 0.00056287742258286
223 => 0.00056385809408372
224 => 0.00054149867993715
225 => 0.00054614791016878
226 => 0.00056553597310489
227 => 0.00054565938072744
228 => 0.00050704240856097
301 => 0.00049746486554228
302 => 0.00049618704475445
303 => 0.00047021198848323
304 => 0.00049810488276359
305 => 0.00048592888692712
306 => 0.00052439271188371
307 => 0.00050242238135414
308 => 0.00050147528431655
309 => 0.00050004360823531
310 => 0.00047768580428661
311 => 0.00048258074243881
312 => 0.00049885226237685
313 => 0.00050465812400254
314 => 0.00050405252506896
315 => 0.00049877252305226
316 => 0.00050118968093752
317 => 0.00049340317319546
318 => 0.0004906535952496
319 => 0.00048197517092146
320 => 0.000469220284635
321 => 0.0004709939298034
322 => 0.00044572316257239
323 => 0.0004319543073638
324 => 0.00042814326971266
325 => 0.00042304699089133
326 => 0.00042871890796621
327 => 0.00044565157366393
328 => 0.00042522718636706
329 => 0.00039021100695077
330 => 0.00039231553899835
331 => 0.00039704379766811
401 => 0.00038823271891758
402 => 0.000379893772338
403 => 0.00038714380982883
404 => 0.00037230699300001
405 => 0.00039883675609814
406 => 0.00039811920035513
407 => 0.00040800785544857
408 => 0.00041419143441413
409 => 0.00039994028685598
410 => 0.00039635616178431
411 => 0.00039839784231454
412 => 0.00036465341104946
413 => 0.00040525021549844
414 => 0.00040560129834913
415 => 0.00040259511383291
416 => 0.00042421165891628
417 => 0.00046982931141166
418 => 0.00045266611557708
419 => 0.00044602000738959
420 => 0.00043338575086689
421 => 0.00045022014753546
422 => 0.00044892752852881
423 => 0.00044308181516955
424 => 0.00043954630949013
425 => 0.00044606058710898
426 => 0.00043873911840283
427 => 0.0004374239814427
428 => 0.00042945568234744
429 => 0.00042661136210494
430 => 0.00042450554063305
501 => 0.00042218723810624
502 => 0.00042730083579539
503 => 0.00041571275068197
504 => 0.00040173865602918
505 => 0.0004005768612606
506 => 0.00040378467876269
507 => 0.00040236545831194
508 => 0.00040057006657909
509 => 0.00039714217481525
510 => 0.00039612519255423
511 => 0.00039942989153288
512 => 0.00039569907906191
513 => 0.0004012040960907
514 => 0.00039970703606535
515 => 0.00039134458045921
516 => 0.00038092186459635
517 => 0.00038082908056278
518 => 0.00037858352352681
519 => 0.00037572346901973
520 => 0.00037492786728505
521 => 0.00038653323189335
522 => 0.00041055598931319
523 => 0.00040583974721581
524 => 0.0004092477154711
525 => 0.00042601154629697
526 => 0.00043134026401053
527 => 0.00042755806639504
528 => 0.00042238076102317
529 => 0.00042260853618426
530 => 0.00044030095591687
531 => 0.00044140441043362
601 => 0.00044419248400956
602 => 0.00044777594646412
603 => 0.00042816834554638
604 => 0.00042168501994432
605 => 0.00041861286059285
606 => 0.00040915179886562
607 => 0.00041935474280831
608 => 0.00041340992430653
609 => 0.00041421208342633
610 => 0.00041368967624723
611 => 0.00041397494589204
612 => 0.00039882934048867
613 => 0.00040434760306808
614 => 0.00039517242124519
615 => 0.00038288788274684
616 => 0.00038284670066628
617 => 0.00038585332406026
618 => 0.00038406486681634
619 => 0.00037925217435838
620 => 0.00037993579460676
621 => 0.00037394656189188
622 => 0.00038066299589691
623 => 0.00038085559919162
624 => 0.00037826940625305
625 => 0.00038861699952708
626 => 0.00039285641693428
627 => 0.00039115412934049
628 => 0.00039273697989875
629 => 0.00040603572836752
630 => 0.000408204004633
701 => 0.00040916700972184
702 => 0.00040787671047652
703 => 0.0003929800566079
704 => 0.00039364078655244
705 => 0.00038879278862064
706 => 0.0003846967412377
707 => 0.00038486056165208
708 => 0.00038696646245579
709 => 0.00039616305477508
710 => 0.00041551674114229
711 => 0.00041625119939256
712 => 0.00041714138421755
713 => 0.00041352055516326
714 => 0.00041242847847382
715 => 0.00041386920951611
716 => 0.00042113743654714
717 => 0.00043983328977536
718 => 0.00043322492659046
719 => 0.00042785222445583
720 => 0.00043256553269799
721 => 0.00043183995583824
722 => 0.00042571535694721
723 => 0.00042554345985495
724 => 0.00041378839643034
725 => 0.00040944281713211
726 => 0.00040581132580953
727 => 0.00040184583208776
728 => 0.00039949495448494
729 => 0.00040310697093763
730 => 0.00040393308183649
731 => 0.00039603534473543
801 => 0.0003949589123517
802 => 0.00040140837495292
803 => 0.00039857020692232
804 => 0.00040148933312497
805 => 0.00040216659544379
806 => 0.00040205754061178
807 => 0.00039909416722632
808 => 0.00040098293305315
809 => 0.0003965154388045
810 => 0.00039165770980505
811 => 0.0003885587813506
812 => 0.00038585455526089
813 => 0.000387355017066
814 => 0.00038200614470427
815 => 0.00038029493278422
816 => 0.00040034306168959
817 => 0.0004151528300657
818 => 0.0004149374901682
819 => 0.00041362666392309
820 => 0.00041167904201425
821 => 0.00042099495587352
822 => 0.00041774947776253
823 => 0.00042011083425705
824 => 0.00042071189859072
825 => 0.00042253113929976
826 => 0.00042318136148422
827 => 0.00042121593843444
828 => 0.00041461973862318
829 => 0.00039818263584137
830 => 0.00039053112012533
831 => 0.00038800599249296
901 => 0.0003880977760865
902 => 0.00038556597483676
903 => 0.00038631170377218
904 => 0.00038530664074601
905 => 0.00038340329452531
906 => 0.00038723749080037
907 => 0.00038767934620306
908 => 0.00038678439897722
909 => 0.00038699519144647
910 => 0.00037958541065354
911 => 0.00038014876019403
912 => 0.00037701195836559
913 => 0.00037642384583747
914 => 0.00036849428396777
915 => 0.00035444591570721
916 => 0.00036223007543166
917 => 0.00035282790510301
918 => 0.00034926716073342
919 => 0.00036612317076969
920 => 0.00036443129487499
921 => 0.00036153553878404
922 => 0.00035725211199707
923 => 0.00035566334733529
924 => 0.00034601051619207
925 => 0.00034544017543228
926 => 0.00035022437919522
927 => 0.00034801663377302
928 => 0.00034491612306168
929 => 0.00033368638755893
930 => 0.00032106044681619
1001 => 0.00032144154460337
1002 => 0.00032545762143966
1003 => 0.00033713490648292
1004 => 0.00033257238919744
1005 => 0.00032926223055797
1006 => 0.0003286423373478
1007 => 0.00033640159870741
1008 => 0.00034738257914677
1009 => 0.00035253460948334
1010 => 0.00034742910388929
1011 => 0.0003415641739628
1012 => 0.00034192114507195
1013 => 0.0003442959139353
1014 => 0.00034454546856542
1015 => 0.00034072800210781
1016 => 0.00034180259655469
1017 => 0.0003401701893269
1018 => 0.00033015210918317
1019 => 0.00032997091388104
1020 => 0.00032751231545041
1021 => 0.00032743787006704
1022 => 0.0003232551808104
1023 => 0.00032266999366983
1024 => 0.0003143650102797
1025 => 0.00031983137549689
1026 => 0.00031616482470625
1027 => 0.00031063846781286
1028 => 0.00030968572180143
1029 => 0.00030965708110585
1030 => 0.00031533141396457
1031 => 0.00031976506761368
1101 => 0.00031622860592704
1102 => 0.00031542342215242
1103 => 0.00032402067833281
1104 => 0.00032292659911812
1105 => 0.00032197913357426
1106 => 0.00034639935278888
1107 => 0.00032706884374704
1108 => 0.00031863963845792
1109 => 0.00030820689624996
1110 => 0.00031160384971932
1111 => 0.00031231963772695
1112 => 0.00028723077335993
1113 => 0.00027705222421086
1114 => 0.00027355932971343
1115 => 0.00027154911954787
1116 => 0.00027246519756295
1117 => 0.00026330330950404
1118 => 0.00026946024980327
1119 => 0.00026152682917937
1120 => 0.00026019676539419
1121 => 0.00027438270423194
1122 => 0.00027635659474816
1123 => 0.00026793536456625
1124 => 0.00027334315761637
1125 => 0.00027138221668245
1126 => 0.00026166282490567
1127 => 0.0002612916156308
1128 => 0.00025641476649036
1129 => 0.00024878344192963
1130 => 0.00024529572182961
1201 => 0.00024347928691974
1202 => 0.00024422878336516
1203 => 0.00024384981502739
1204 => 0.00024137679027934
1205 => 0.00024399156591112
1206 => 0.00023731189467181
1207 => 0.00023465199576254
1208 => 0.00023345058113441
1209 => 0.00022752198844199
1210 => 0.00023695701587277
1211 => 0.00023881583513598
1212 => 0.00024067831684736
1213 => 0.00025688994857461
1214 => 0.00025608006126711
1215 => 0.00026340104809578
1216 => 0.00026311656801005
1217 => 0.00026102850397439
1218 => 0.00025221930527781
1219 => 0.0002557304948694
1220 => 0.0002449235990665
1221 => 0.00025302086019951
1222 => 0.00024932560836811
1223 => 0.00025177149183823
1224 => 0.00024737357282254
1225 => 0.00024980756279145
1226 => 0.00023925663014094
1227 => 0.00022940431768752
1228 => 0.00023336917582571
1229 => 0.00023767943005844
1230 => 0.00024702515946736
1231 => 0.000241458920132
]
'min_raw' => 0.00022752198844199
'max_raw' => 0.00067915867658173
'avg_raw' => 0.00045334033251186
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000227'
'max' => '$0.000679'
'avg' => '$0.000453'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00043100801155801
'max_diff' => 2.0628676581732E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00024346075027981
102 => 0.00023675495438697
103 => 0.00022291898204416
104 => 0.00022299729214503
105 => 0.00022086892923313
106 => 0.00021902971293118
107 => 0.00024209826967822
108 => 0.00023922932998681
109 => 0.00023465805006609
110 => 0.00024077688989541
111 => 0.00024239480826533
112 => 0.0002424408681268
113 => 0.00024690501571616
114 => 0.00024928753208484
115 => 0.00024970746092124
116 => 0.00025673189360739
117 => 0.00025908639078928
118 => 0.00026878423146057
119 => 0.00024908539221667
120 => 0.00024867970758563
121 => 0.00024086299451998
122 => 0.00023590551151641
123 => 0.00024120243762255
124 => 0.00024589479105007
125 => 0.00024100879902086
126 => 0.00024164680643096
127 => 0.00023508776133196
128 => 0.00023743231132309
129 => 0.00023945175362045
130 => 0.00023833673628118
131 => 0.00023666750135685
201 => 0.00024551007157991
202 => 0.00024501113911361
203 => 0.00025324554379514
204 => 0.00025966485109232
205 => 0.0002711693973573
206 => 0.00025916380358423
207 => 0.00025872627202923
208 => 0.00026300321316166
209 => 0.00025908573601187
210 => 0.00026156144634382
211 => 0.00027077052214849
212 => 0.00027096509540877
213 => 0.00026770574260558
214 => 0.00026750741069129
215 => 0.00026813340505056
216 => 0.00027179987356536
217 => 0.00027051869680709
218 => 0.00027200130698718
219 => 0.00027385533371992
220 => 0.00028152437437759
221 => 0.00028337335411673
222 => 0.00027888129193669
223 => 0.00027928687485606
224 => 0.00027760672029086
225 => 0.00027598371203315
226 => 0.00027963199757516
227 => 0.00028629931111041
228 => 0.00028625783409894
301 => 0.00028780452124507
302 => 0.00028876809452365
303 => 0.00028463173263321
304 => 0.00028193911314077
305 => 0.00028297163479
306 => 0.00028462265939252
307 => 0.00028243622976336
308 => 0.00026894057323947
309 => 0.00027303429332294
310 => 0.00027235289812836
311 => 0.0002713825085108
312 => 0.00027549877571053
313 => 0.00027510175169742
314 => 0.00026320934109962
315 => 0.00026397065464126
316 => 0.00026325563909763
317 => 0.0002655660005975
318 => 0.00025896096890892
319 => 0.00026099263217076
320 => 0.00026226687232292
321 => 0.00026301740956172
322 => 0.00026572886471647
323 => 0.00026541070674956
324 => 0.00026570908757053
325 => 0.0002697294597674
326 => 0.00029006312271402
327 => 0.00029116983912451
328 => 0.00028571996275676
329 => 0.00028789708087162
330 => 0.00028371749017449
331 => 0.0002865232774103
401 => 0.00028844292577777
402 => 0.00027976840393232
403 => 0.00027925475504581
404 => 0.00027505791369111
405 => 0.00027731305851388
406 => 0.00027372496095021
407 => 0.00027460535458601
408 => 0.00027214369722897
409 => 0.00027657419036055
410 => 0.00028152817011069
411 => 0.00028277974103416
412 => 0.00027948739676966
413 => 0.00027710352254611
414 => 0.00027291822470653
415 => 0.00027987846828919
416 => 0.00028191385562234
417 => 0.00027986777726602
418 => 0.00027939365620317
419 => 0.00027849519764578
420 => 0.00027958426843341
421 => 0.00028190277046581
422 => 0.00028080940772334
423 => 0.00028153159307731
424 => 0.00027877936722227
425 => 0.00028463310194111
426 => 0.00029393024145261
427 => 0.00029396013327637
428 => 0.00029286676464027
429 => 0.00029241938175133
430 => 0.00029354124432313
501 => 0.00029414980874712
502 => 0.0002977777065899
503 => 0.00030167058551703
504 => 0.00031983695287381
505 => 0.00031473590961392
506 => 0.00033085419145488
507 => 0.00034360165969414
508 => 0.00034742406803986
509 => 0.00034390763222
510 => 0.00033187809523441
511 => 0.00033128786875996
512 => 0.00034926507575595
513 => 0.00034418569137134
514 => 0.00034358151476126
515 => 0.00033715409640248
516 => 0.00034095349670377
517 => 0.00034012251212403
518 => 0.00033881076231177
519 => 0.00034605975341811
520 => 0.00035962921764729
521 => 0.00035751428939354
522 => 0.00035593559356082
523 => 0.00034901820797327
524 => 0.00035318401915098
525 => 0.00035170065358146
526 => 0.00035807413343519
527 => 0.0003542986251597
528 => 0.00034414721003891
529 => 0.0003457638563564
530 => 0.00034551950351775
531 => 0.00035054826762209
601 => 0.00034903875745956
602 => 0.00034522474743175
603 => 0.00035958283869374
604 => 0.00035865050411109
605 => 0.00035997234138794
606 => 0.00036055425503638
607 => 0.00036929377216961
608 => 0.00037287407270574
609 => 0.00037368686360942
610 => 0.00037708787220836
611 => 0.00037360224341723
612 => 0.00038754724379296
613 => 0.00039681985532949
614 => 0.00040759047079339
615 => 0.00042332923485468
616 => 0.00042924715573343
617 => 0.00042817813629593
618 => 0.00044011108758317
619 => 0.00046155433579172
620 => 0.00043251242984481
621 => 0.00046309362732616
622 => 0.00045341197328047
623 => 0.00043045694570365
624 => 0.0004289789125497
625 => 0.00044452432373807
626 => 0.0004790025495635
627 => 0.00047036614504303
628 => 0.00047901667562739
629 => 0.00046892537220075
630 => 0.00046842425392944
701 => 0.00047852656354417
702 => 0.00050213116060722
703 => 0.00049091750134766
704 => 0.00047483997109701
705 => 0.00048671136924001
706 => 0.00047642726552251
707 => 0.0004532543015076
708 => 0.00047035954094726
709 => 0.00045892175446313
710 => 0.00046225990862537
711 => 0.00048630043457267
712 => 0.00048340781488735
713 => 0.00048715113260953
714 => 0.00048054427480957
715 => 0.00047437242781856
716 => 0.00046285221708246
717 => 0.00045944165062303
718 => 0.00046038420849309
719 => 0.00045944118353816
720 => 0.00045299573150751
721 => 0.00045160383675517
722 => 0.00044928395118763
723 => 0.00045000298073027
724 => 0.00044564091715683
725 => 0.00045387303236824
726 => 0.00045540098549262
727 => 0.00046139163244205
728 => 0.00046201360128155
729 => 0.00047869746776417
730 => 0.00046950827446653
731 => 0.00047567317868737
801 => 0.00047512173162753
802 => 0.00043095445075698
803 => 0.00043704031236972
804 => 0.00044650800319057
805 => 0.00044224282130893
806 => 0.00043621285202714
807 => 0.0004313433285256
808 => 0.00042396550248643
809 => 0.00043434965095797
810 => 0.00044800370196696
811 => 0.00046235989054775
812 => 0.00047960791047283
813 => 0.00047575835321464
814 => 0.00046203745081272
815 => 0.00046265296047135
816 => 0.00046645779898684
817 => 0.00046153018740324
818 => 0.00046007693854884
819 => 0.0004662581449104
820 => 0.00046630071148148
821 => 0.0004606308988328
822 => 0.00045432993963856
823 => 0.00045430353838946
824 => 0.00045318234356089
825 => 0.00046912483027001
826 => 0.00047789158599281
827 => 0.00047889668040809
828 => 0.00047782393513048
829 => 0.0004782367922121
830 => 0.00047313561021928
831 => 0.00048479539954633
901 => 0.00049549557526649
902 => 0.00049262769959757
903 => 0.00048832834627732
904 => 0.00048490370427283
905 => 0.000491820962778
906 => 0.00049151294814554
907 => 0.0004954021185662
908 => 0.00049522568333098
909 => 0.00049391790159761
910 => 0.00049262774630258
911 => 0.00049774306621485
912 => 0.00049626993622964
913 => 0.00049479451806667
914 => 0.00049183534106562
915 => 0.00049223754236679
916 => 0.00048793893139051
917 => 0.00048595019726183
918 => 0.00045604440760682
919 => 0.00044805260341113
920 => 0.00045056698769927
921 => 0.00045139478829288
922 => 0.00044791674486514
923 => 0.00045290336570447
924 => 0.0004521262061288
925 => 0.00045514967941459
926 => 0.00045326074456958
927 => 0.0004533382671145
928 => 0.00045889322173031
929 => 0.00046050584868775
930 => 0.0004596856536017
1001 => 0.00046026009012532
1002 => 0.00047349773735776
1003 => 0.00047161576723743
1004 => 0.00047061600812007
1005 => 0.00047089294822805
1006 => 0.0004742754509143
1007 => 0.00047522236698865
1008 => 0.00047121021704302
1009 => 0.00047310237015134
1010 => 0.00048115891793659
1011 => 0.00048397825370031
1012 => 0.00049297622010017
1013 => 0.00048915372404741
1014 => 0.00049617008098601
1015 => 0.00051773597016291
1016 => 0.00053496429468345
1017 => 0.00051912041546374
1018 => 0.0005507580394318
1019 => 0.00057539246783855
1020 => 0.00057444695744551
1021 => 0.0005701513750482
1022 => 0.00054210573324728
1023 => 0.00051629771552511
1024 => 0.00053788721821602
1025 => 0.0005379422542983
1026 => 0.00053608769687037
1027 => 0.00052456919996273
1028 => 0.00053568687814578
1029 => 0.00053656935906647
1030 => 0.0005360754044215
1031 => 0.00052724419984896
1101 => 0.00051376058274611
1102 => 0.00051639524925279
1103 => 0.00052071088673646
1104 => 0.00051254048464357
1105 => 0.00050992954611277
1106 => 0.00051478377759291
1107 => 0.00053042512284121
1108 => 0.00052746821712616
1109 => 0.00052739100036814
1110 => 0.00054004189694028
1111 => 0.00053098658522899
1112 => 0.00051642848083481
1113 => 0.00051275236747747
1114 => 0.0004997046415856
1115 => 0.00050871675233352
1116 => 0.00050904108215539
1117 => 0.00050410524120029
1118 => 0.00051682899712534
1119 => 0.00051671174547452
1120 => 0.0005287910580442
1121 => 0.00055188216689483
1122 => 0.00054505298976324
1123 => 0.00053711139977157
1124 => 0.00053797487080007
1125 => 0.00054744501675462
1126 => 0.00054171915032809
1127 => 0.00054377821181723
1128 => 0.00054744190011845
1129 => 0.00054965229423483
1130 => 0.00053765682910275
1201 => 0.00053486011237104
1202 => 0.00052913901145215
1203 => 0.00052764648301181
1204 => 0.00053230620033557
1205 => 0.000531078529451
1206 => 0.00050901382348973
1207 => 0.00050670793894991
1208 => 0.0005067786571367
1209 => 0.00050098040082249
1210 => 0.00049213666820236
1211 => 0.00051537746949623
1212 => 0.00051351090789752
1213 => 0.00051145036835295
1214 => 0.00051170277268988
1215 => 0.00052179081682771
1216 => 0.00051593924176933
1217 => 0.00053149661311633
1218 => 0.00052829848526477
1219 => 0.00052501833750147
1220 => 0.00052456492116484
1221 => 0.00052330234412502
1222 => 0.00051897249767127
1223 => 0.00051374394789493
1224 => 0.00051029160644337
1225 => 0.00047071703303175
1226 => 0.00047806184366224
1227 => 0.00048651137879207
1228 => 0.0004894281244595
1229 => 0.0004844388291627
1230 => 0.0005191695054597
1231 => 0.00052551513469228
]
'min_raw' => 0.00021902971293118
'max_raw' => 0.00057539246783855
'avg_raw' => 0.00039721109038487
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000219'
'max' => '$0.000575'
'avg' => '$0.000397'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.4922755108108E-6
'max_diff' => -0.00010376620874318
'year' => 2027
]
2 => [
'items' => [
101 => 0.00050629380983163
102 => 0.00050269828475172
103 => 0.00051940522748535
104 => 0.00050932889867629
105 => 0.00051386626892203
106 => 0.00050405895625957
107 => 0.00052398665843187
108 => 0.00052383484272935
109 => 0.00051608251649676
110 => 0.0005226347295429
111 => 0.00052149612128409
112 => 0.00051274376406064
113 => 0.00052426412376715
114 => 0.00052426983772184
115 => 0.00051680839227307
116 => 0.00050809505750936
117 => 0.00050653731905339
118 => 0.00050536377237953
119 => 0.00051357764837998
120 => 0.00052094218391785
121 => 0.00053464575873065
122 => 0.0005380911630275
123 => 0.00055153880537163
124 => 0.00054353138910952
125 => 0.00054708097302511
126 => 0.00055093454848479
127 => 0.00055278209427071
128 => 0.00054977161755733
129 => 0.00057066134138819
130 => 0.00057242507412411
131 => 0.00057301643845424
201 => 0.00056597254111318
202 => 0.00057222917059674
203 => 0.00056930190085917
204 => 0.00057691784349737
205 => 0.00057811212054828
206 => 0.0005771006103738
207 => 0.00057747969276014
208 => 0.00055965399867031
209 => 0.00055872964239372
210 => 0.00054612597897316
211 => 0.00055126206497861
212 => 0.00054166039837042
213 => 0.00054470518576
214 => 0.00054604729902953
215 => 0.00054534625522179
216 => 0.00055155245157524
217 => 0.00054627591683266
218 => 0.00053235027410435
219 => 0.00051842083734399
220 => 0.00051824596461213
221 => 0.00051457858978811
222 => 0.00051192774950355
223 => 0.00051243839538597
224 => 0.0005142379780802
225 => 0.0005118231544859
226 => 0.00051233847953441
227 => 0.00052089630893248
228 => 0.00052261252058661
229 => 0.00051678016281868
301 => 0.00049336240477521
302 => 0.00048761562821234
303 => 0.0004917462972422
304 => 0.00048977210349508
305 => 0.00039528431266594
306 => 0.00041748281756403
307 => 0.00040429321974358
308 => 0.00041037159324346
309 => 0.00039690842929858
310 => 0.00040333375679796
311 => 0.00040214723342421
312 => 0.00043784177239884
313 => 0.00043728445126898
314 => 0.00043755121140107
315 => 0.00042481805525687
316 => 0.00044510231873744
317 => 0.00045509507632649
318 => 0.00045324568284539
319 => 0.00045371113534097
320 => 0.00044571311934909
321 => 0.00043762864967866
322 => 0.0004286617286232
323 => 0.00044532115959931
324 => 0.00044346891526074
325 => 0.00044771729735695
326 => 0.00045852212918568
327 => 0.00046011318171603
328 => 0.00046225157245167
329 => 0.00046148511159396
330 => 0.00047974531877821
331 => 0.00047753388720347
401 => 0.00048286280102631
402 => 0.00047190082098707
403 => 0.00045949630005198
404 => 0.0004618539939474
405 => 0.00046162692906589
406 => 0.00045873613251139
407 => 0.00045612645063822
408 => 0.00045178206559272
409 => 0.00046552834272471
410 => 0.0004649702689768
411 => 0.00047400483426568
412 => 0.00047240788709378
413 => 0.00046174308304061
414 => 0.00046212397860376
415 => 0.00046468568431807
416 => 0.00047355177704435
417 => 0.00047618383701513
418 => 0.00047496456196721
419 => 0.00047785049556708
420 => 0.00048013141981542
421 => 0.00047813694453494
422 => 0.00050637450853035
423 => 0.00049464830324336
424 => 0.00050036357410983
425 => 0.00050172663253515
426 => 0.00049823518704072
427 => 0.00049899235654917
428 => 0.00050013926203813
429 => 0.00050710304758
430 => 0.00052537803582944
501 => 0.00053347190372306
502 => 0.00055782270462544
503 => 0.00053279982066658
504 => 0.00053131506628745
505 => 0.0005357013808537
506 => 0.00054999787877745
507 => 0.00056158384754288
508 => 0.00056542758179295
509 => 0.00056593559472723
510 => 0.00057314669570698
511 => 0.0005772799643095
512 => 0.00057227107837725
513 => 0.00056802657200189
514 => 0.00055282327701288
515 => 0.00055458309980506
516 => 0.00056670653371086
517 => 0.0005838315981695
518 => 0.00059852668503429
519 => 0.00059338097778972
520 => 0.00063263909176257
521 => 0.00063653137340797
522 => 0.00063599358593711
523 => 0.00064486078277448
524 => 0.00062726120282552
525 => 0.00061973704142154
526 => 0.00056894428245744
527 => 0.00058321497591664
528 => 0.00060395826694802
529 => 0.00060121281459667
530 => 0.00058614848217992
531 => 0.0005985152573873
601 => 0.00059442641475892
602 => 0.00059120137493169
603 => 0.00060597590758498
604 => 0.00058973070202833
605 => 0.00060379620859566
606 => 0.00058575705093403
607 => 0.00059340448294697
608 => 0.00058906343067176
609 => 0.00059187262351318
610 => 0.00057545013956348
611 => 0.00058431131326947
612 => 0.00057508148560448
613 => 0.0005750771094644
614 => 0.00057487336050714
615 => 0.00058573221182368
616 => 0.00058608631857527
617 => 0.00057806161104553
618 => 0.000576905125321
619 => 0.00058118125918328
620 => 0.00057617502635178
621 => 0.00057851741118479
622 => 0.00057624597480215
623 => 0.00057573462662865
624 => 0.00057166011738346
625 => 0.00056990470676967
626 => 0.0005705930485027
627 => 0.00056824338330339
628 => 0.00056682762502971
629 => 0.00057459173055238
630 => 0.00057044368217474
701 => 0.00057395598264712
702 => 0.00056995327297119
703 => 0.00055607813733681
704 => 0.00054809840010659
705 => 0.00052188955511901
706 => 0.00052932235104551
707 => 0.00053425030243457
708 => 0.00053262161452988
709 => 0.0005361206663677
710 => 0.00053633547973242
711 => 0.00053519790231134
712 => 0.00053388073339041
713 => 0.00053323960840372
714 => 0.0005380180287907
715 => 0.00054079206265957
716 => 0.00053474488828395
717 => 0.0005333281199367
718 => 0.00053944214710411
719 => 0.00054317170014427
720 => 0.00057070862433798
721 => 0.00056866860005062
722 => 0.00057378866067735
723 => 0.00057321222042452
724 => 0.00057857885965096
725 => 0.00058735104667523
726 => 0.00056951473771282
727 => 0.00057261050421553
728 => 0.00057185149376076
729 => 0.00058013817088278
730 => 0.00058016404098424
731 => 0.00057519576409936
801 => 0.00057788914759974
802 => 0.00057638577481894
803 => 0.00057910257262686
804 => 0.00056864135428252
805 => 0.00058138198900719
806 => 0.00058860510790772
807 => 0.00058870540092066
808 => 0.00059212910195329
809 => 0.00059560778048984
810 => 0.00060228480101169
811 => 0.00059542156201144
812 => 0.00058307526317285
813 => 0.00058396662607069
814 => 0.00057672799557896
815 => 0.00057684967826529
816 => 0.00057620012654921
817 => 0.00057814948014514
818 => 0.00056906912777516
819 => 0.00057120026832684
820 => 0.00056821665907455
821 => 0.00057260401843171
822 => 0.00056788394501988
823 => 0.00057185112774293
824 => 0.00057356323229201
825 => 0.00057988093493709
826 => 0.00056695081520244
827 => 0.00054058542577135
828 => 0.00054612775027921
829 => 0.00053793021699189
830 => 0.00053868892990784
831 => 0.00054022165074633
901 => 0.00053525360103373
902 => 0.00053620134835766
903 => 0.00053616748815405
904 => 0.00053587569921214
905 => 0.00053458331760671
906 => 0.00053270910858893
907 => 0.00054017538046465
908 => 0.00054144404554619
909 => 0.0005442641308681
910 => 0.00055265479190397
911 => 0.00055181636700107
912 => 0.00055318387280361
913 => 0.00055019861531489
914 => 0.00053882740744081
915 => 0.00053944491873691
916 => 0.00053174454297967
917 => 0.00054406721494719
918 => 0.00054114904357396
919 => 0.00053926767950581
920 => 0.0005387543318891
921 => 0.00054716579175073
922 => 0.00054968263237482
923 => 0.00054811430619678
924 => 0.00054489762345024
925 => 0.00055107460525048
926 => 0.00055272730499428
927 => 0.0005530972835177
928 => 0.00056404171094893
929 => 0.00055370895543368
930 => 0.00055619615238496
1001 => 0.00057560055299715
1002 => 0.00055800343926614
1003 => 0.00056732502287192
1004 => 0.00056686877986159
1005 => 0.00057163738660912
1006 => 0.0005664776149231
1007 => 0.00056654157647707
1008 => 0.00057077577621548
1009 => 0.00056482960632484
1010 => 0.00056335725103874
1011 => 0.00056132320275621
1012 => 0.00056576447276695
1013 => 0.00056842681327703
1014 => 0.00058988332251463
1015 => 0.00060374520601781
1016 => 0.00060314342509682
1017 => 0.00060864257622799
1018 => 0.00060616515827695
1019 => 0.00059816492220319
1020 => 0.00061182034965624
1021 => 0.00060749920104274
1022 => 0.00060785543128424
1023 => 0.00060784217237686
1024 => 0.00061071535844347
1025 => 0.00060867944279164
1026 => 0.00060466644405944
1027 => 0.00060733045989668
1028 => 0.00061524163453021
1029 => 0.00063979816333717
1030 => 0.00065354032218828
1031 => 0.00063897086811917
1101 => 0.00064902068244328
1102 => 0.0006429943749638
1103 => 0.00064189921562766
1104 => 0.00064821124169865
1105 => 0.00065453431613569
1106 => 0.00065413156362945
1107 => 0.00064954133628162
1108 => 0.00064694843332554
1109 => 0.00066658276319522
1110 => 0.00068104900298111
1111 => 0.00068006250241061
1112 => 0.00068441659510161
1113 => 0.00069720034590939
1114 => 0.00069836913187208
1115 => 0.00069822189170502
1116 => 0.0006953249337463
1117 => 0.00070791219659638
1118 => 0.00071841271271774
1119 => 0.00069465437168003
1120 => 0.00070370123692767
1121 => 0.00070776266620912
1122 => 0.00071372604936607
1123 => 0.00072378727633091
1124 => 0.00073471643742338
1125 => 0.00073626194063401
1126 => 0.00073516533214693
1127 => 0.00072795725661483
1128 => 0.00073991607509422
1129 => 0.00074692127049064
1130 => 0.00075109270403816
1201 => 0.00076167076545432
1202 => 0.00070778774821369
1203 => 0.00066964667045105
1204 => 0.00066369039039457
1205 => 0.00067580272010856
1206 => 0.00067899664486012
1207 => 0.00067770917779761
1208 => 0.00063477792714068
1209 => 0.00066346436624469
1210 => 0.0006943285626963
1211 => 0.00069551418218041
1212 => 0.000710965444264
1213 => 0.00071599700856705
1214 => 0.00072843729978755
1215 => 0.00072765915618458
1216 => 0.00073068816912851
1217 => 0.00072999185150789
1218 => 0.00075303487138151
1219 => 0.00077845474422367
1220 => 0.00077757453485739
1221 => 0.00077392012738205
1222 => 0.000779347545652
1223 => 0.00080558357858424
1224 => 0.0008031681850957
1225 => 0.00080551453412709
1226 => 0.00083644829555221
1227 => 0.00087666658568113
1228 => 0.00085798115206594
1229 => 0.00089852316642223
1230 => 0.00092404221541967
1231 => 0.00096817477194183
]
'min_raw' => 0.00039528431266594
'max_raw' => 0.00096817477194183
'avg_raw' => 0.00068172954230389
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000395'
'max' => '$0.000968'
'avg' => '$0.000681'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00017625459973476
'max_diff' => 0.00039278230410328
'year' => 2028
]
3 => [
'items' => [
101 => 0.00096264915850783
102 => 0.00097982963890225
103 => 0.00095275715723065
104 => 0.0008905932670614
105 => 0.00088075559348831
106 => 0.00090045086511122
107 => 0.00094886976855964
108 => 0.00089892598153338
109 => 0.00090902954460187
110 => 0.00090611971775844
111 => 0.00090596466545192
112 => 0.00091188238134842
113 => 0.00090329842579324
114 => 0.00086832584663734
115 => 0.00088435357356979
116 => 0.00087816449848651
117 => 0.00088503173871752
118 => 0.00092209140197899
119 => 0.00090570644145907
120 => 0.00088844621655743
121 => 0.00091009436893461
122 => 0.000937659906023
123 => 0.00093593490425204
124 => 0.00093258767982158
125 => 0.00095145580868113
126 => 0.00098262042971406
127 => 0.00099104410154968
128 => 0.00099726228388434
129 => 0.00099811966617123
130 => 0.0010069512365864
131 => 0.00095946165662171
201 => 0.0010348288396446
202 => 0.0010478426701762
203 => 0.0010453966094043
204 => 0.0010598609343345
205 => 0.0010556051630155
206 => 0.0010494392180844
207 => 0.0010723682497489
208 => 0.001046081965223
209 => 0.0010087718936896
210 => 0.00098830285053687
211 => 0.001015258137751
212 => 0.0010317187910428
213 => 0.0010425982357745
214 => 0.0010458903491768
215 => 0.00096314813752887
216 => 0.00091855467454408
217 => 0.00094713857305224
218 => 0.00098201290198749
219 => 0.00095926792796362
220 => 0.00096015948788343
221 => 0.00092773113219942
222 => 0.00098488209190605
223 => 0.00097655567779202
224 => 0.0010197531289448
225 => 0.001009443710546
226 => 0.0010446695550456
227 => 0.0010353934096422
228 => 0.0010738981705893
301 => 0.0010892587622059
302 => 0.0011150515862153
303 => 0.0011340248925523
304 => 0.0011451663809349
305 => 0.0011444974877631
306 => 0.0011886456154024
307 => 0.0011626130069516
308 => 0.0011299099153227
309 => 0.001129318419572
310 => 0.001146255814133
311 => 0.0011817519465857
312 => 0.001190955577283
313 => 0.0011960991512603
314 => 0.0011882215886649
315 => 0.0011599650579654
316 => 0.0011477640312732
317 => 0.0011581596595127
318 => 0.0011454466994823
319 => 0.0011673928351214
320 => 0.0011975295667954
321 => 0.0011913064508783
322 => 0.0012121093943676
323 => 0.0012336382523456
324 => 0.0012644254861756
325 => 0.0012724744091468
326 => 0.0012857789727449
327 => 0.0012994737390089
328 => 0.0013038721288486
329 => 0.0013122700197928
330 => 0.0013122257587622
331 => 0.0013375333683657
401 => 0.0013654484454699
402 => 0.0013759857408412
403 => 0.0014002156705176
404 => 0.0013587227650647
405 => 0.0013901956104869
406 => 0.0014185849048741
407 => 0.0013847380177524
408 => 0.0014313880663364
409 => 0.0014331993820116
410 => 0.0014605480982146
411 => 0.0014328249349628
412 => 0.0014163630091194
413 => 0.001463887972209
414 => 0.0014868838048258
415 => 0.0014799572728954
416 => 0.0014272460228994
417 => 0.00139656581451
418 => 0.0013162697913844
419 => 0.0014113838993067
420 => 0.001457711206759
421 => 0.001427126046365
422 => 0.0014425514222352
423 => 0.0015267072712882
424 => 0.0015587483699199
425 => 0.0015520840453887
426 => 0.0015532102065303
427 => 0.0015704990017649
428 => 0.0016471670409484
429 => 0.0016012257747184
430 => 0.0016363461513649
501 => 0.0016549738725022
502 => 0.0016722763380287
503 => 0.0016297869511959
504 => 0.0015745088832196
505 => 0.001556999998676
506 => 0.0014240849549314
507 => 0.0014171661496838
508 => 0.001413282414637
509 => 0.0013887960145323
510 => 0.0013695564114394
511 => 0.0013542563647393
512 => 0.0013141044732176
513 => 0.001327654557935
514 => 0.0012636608232004
515 => 0.0013046017468849
516 => 0.0012024662010657
517 => 0.0012875277185981
518 => 0.0012412326018778
519 => 0.0012723185276523
520 => 0.0012722100717858
521 => 0.0012149710266332
522 => 0.0011819567399376
523 => 0.0012029947283553
524 => 0.0012255491219367
525 => 0.0012292084964132
526 => 0.0012584508564213
527 => 0.0012666117705372
528 => 0.0012418838197695
529 => 0.0012003496688966
530 => 0.0012099971048512
531 => 0.0011817612349559
601 => 0.0011322789590415
602 => 0.0011678179934809
603 => 0.0011799525823795
604 => 0.0011853119081295
605 => 0.0011366517728454
606 => 0.0011213617018762
607 => 0.0011132213963883
608 => 0.0011940682564792
609 => 0.0011984972299764
610 => 0.0011758379753708
611 => 0.001278259954827
612 => 0.0012550787064558
613 => 0.0012809778404302
614 => 0.001209121701158
615 => 0.0012118667024453
616 => 0.0011778488545681
617 => 0.0011968965763059
618 => 0.0011834342605184
619 => 0.0011953577086228
620 => 0.0012025045742543
621 => 0.0012365168401374
622 => 0.0012879160840398
623 => 0.0012314365418236
624 => 0.001206827596478
625 => 0.0012220948477644
626 => 0.001262753549835
627 => 0.0013243535647526
628 => 0.0012878851161056
629 => 0.0013040691943407
630 => 0.0013076046954556
701 => 0.0012807142115586
702 => 0.0013253450552501
703 => 0.0013492630869647
704 => 0.0013737980383646
705 => 0.0013951010492114
706 => 0.0013639982392403
707 => 0.001397282704322
708 => 0.0013704613009652
709 => 0.0013463997294084
710 => 0.0013464362208803
711 => 0.0013313420455592
712 => 0.0013020951788862
713 => 0.0012967016079443
714 => 0.0013247596451172
715 => 0.0013472595338238
716 => 0.0013491127324249
717 => 0.001361569826899
718 => 0.0013689418070904
719 => 0.0014411972346878
720 => 0.0014702589653957
721 => 0.0015057950995949
722 => 0.0015196384265722
723 => 0.0015613018776667
724 => 0.0015276552571679
725 => 0.0015203755991758
726 => 0.0014193136948315
727 => 0.0014358625760063
728 => 0.0014623589314966
729 => 0.0014197506099743
730 => 0.0014467757828965
731 => 0.0014521111245028
801 => 0.0014183027955133
802 => 0.0014363612847982
803 => 0.0013884032912263
804 => 0.0012889614372456
805 => 0.0013254557624605
806 => 0.0013523278696758
807 => 0.0013139780593727
808 => 0.0013827186099983
809 => 0.0013425617994158
810 => 0.001329834018328
811 => 0.0012801784065229
812 => 0.0013036139438752
813 => 0.0013353108437086
814 => 0.0013157258447717
815 => 0.0013563676582682
816 => 0.0014139273049552
817 => 0.0014549477369205
818 => 0.001458096776334
819 => 0.0014317233867358
820 => 0.0014739869118797
821 => 0.0014742947555202
822 => 0.0014266213265064
823 => 0.0013974216166822
824 => 0.0013907873811734
825 => 0.0014073610021928
826 => 0.0014274844377696
827 => 0.0014592134869566
828 => 0.0014783866868616
829 => 0.0015283802235344
830 => 0.001541907041131
831 => 0.0015567689125949
901 => 0.001576628956102
902 => 0.0016004760303429
903 => 0.0015482999895184
904 => 0.0015503730408887
905 => 0.0015017874340994
906 => 0.0014498667453642
907 => 0.001489268076109
908 => 0.0015407800747184
909 => 0.0015289631653217
910 => 0.001527633521617
911 => 0.0015298696135159
912 => 0.001520960049735
913 => 0.0014806624229576
914 => 0.0014604252070665
915 => 0.0014865363786304
916 => 0.0015004133042421
917 => 0.0015219352056707
918 => 0.0015192821770474
919 => 0.001574720283844
920 => 0.0015962618557839
921 => 0.0015907505998658
922 => 0.0015917648035905
923 => 0.001630764790628
924 => 0.0016741407971728
925 => 0.0017147681512701
926 => 0.0017560960408434
927 => 0.0017062736569078
928 => 0.0016809769229628
929 => 0.001707076695206
930 => 0.0016932277886729
1001 => 0.0017728077134649
1002 => 0.0017783176547954
1003 => 0.001857891825053
1004 => 0.0019334171881434
1005 => 0.0018859810607638
1006 => 0.0019307111923127
1007 => 0.001979090476484
1008 => 0.0020724219649064
1009 => 0.0020409912030471
1010 => 0.0020169157320457
1011 => 0.0019941645282812
1012 => 0.0020415061716632
1013 => 0.002102410439573
1014 => 0.0021155286355469
1015 => 0.0021367851245613
1016 => 0.0021144365254825
1017 => 0.0021413529514555
1018 => 0.0022363797628168
1019 => 0.0022107026795621
1020 => 0.0021742370935433
1021 => 0.0022492516346411
1022 => 0.0022763991054527
1023 => 0.0024669342728497
1024 => 0.0027074927923036
1025 => 0.0026078999856573
1026 => 0.0025460795167321
1027 => 0.0025606087933307
1028 => 0.0026484526212154
1029 => 0.0026766652707083
1030 => 0.0025999735639032
1031 => 0.0026270623712688
1101 => 0.0027763243631656
1102 => 0.0028563986329203
1103 => 0.0027476470191843
1104 => 0.0024476056300382
1105 => 0.0021709537665009
1106 => 0.0022443342985068
1107 => 0.0022360152234403
1108 => 0.0023963786129208
1109 => 0.0022100902896184
1110 => 0.0022132269072198
1111 => 0.002376906441767
1112 => 0.0023332395481274
1113 => 0.0022625047728645
1114 => 0.0021714702086401
1115 => 0.0020031843969934
1116 => 0.0018541289606208
1117 => 0.0021464609967643
1118 => 0.0021338551077945
1119 => 0.0021155999124781
1120 => 0.0021562248742363
1121 => 0.0023534881569373
1122 => 0.0023489405997921
1123 => 0.0023200113614184
1124 => 0.0023419539337542
1125 => 0.0022586581338432
1126 => 0.0022801253580904
1127 => 0.0021709099434323
1128 => 0.0022202798720964
1129 => 0.0022623530078054
1130 => 0.0022707998127024
1201 => 0.0022898308954399
1202 => 0.0021272123771234
1203 => 0.0022002233176187
1204 => 0.0022431104049596
1205 => 0.0020493449841075
1206 => 0.0022392802855927
1207 => 0.0021243815505131
1208 => 0.002085383194106
1209 => 0.0021378893433654
1210 => 0.0021174276459351
1211 => 0.0020998358800357
1212 => 0.0020900193723989
1213 => 0.0021285740935228
1214 => 0.0021267754696995
1215 => 0.002063692462792
1216 => 0.0019814032518733
1217 => 0.0020090222121089
1218 => 0.0019989879849262
1219 => 0.001962622651175
1220 => 0.0019871284953561
1221 => 0.0018792171597062
1222 => 0.0016935613154635
1223 => 0.0018162112529625
1224 => 0.0018114893637863
1225 => 0.001809108373143
1226 => 0.0019012764113782
1227 => 0.0018924165811803
1228 => 0.0018763359026154
1229 => 0.0019623273169025
1230 => 0.00193093929394
1231 => 0.0020276697847622
]
'min_raw' => 0.00086832584663734
'max_raw' => 0.0028563986329203
'avg_raw' => 0.0018623622397788
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000868'
'max' => '$0.002856'
'avg' => '$0.001862'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00047304153397141
'max_diff' => 0.0018882238609784
'year' => 2029
]
4 => [
'items' => [
101 => 0.0020913827421536
102 => 0.0020752230752608
103 => 0.0021351454196389
104 => 0.0020096584971703
105 => 0.0020513402191529
106 => 0.0020599307642851
107 => 0.0019612661961983
108 => 0.001893866158972
109 => 0.0018893713449057
110 => 0.0017725089686526
111 => 0.0018349359067669
112 => 0.0018898690289052
113 => 0.0018635603263834
114 => 0.0018552317771152
115 => 0.0018977805290848
116 => 0.0019010869315182
117 => 0.0018257006056386
118 => 0.0018413758099635
119 => 0.0019067440177839
120 => 0.0018397286988439
121 => 0.0017095288810338
122 => 0.0016772375260636
123 => 0.0016729292640628
124 => 0.0015853525483239
125 => 0.0016793953888098
126 => 0.0016383431687463
127 => 0.0017680266400459
128 => 0.001693952136746
129 => 0.0016907589329595
130 => 0.0016859319370952
131 => 0.0016105510401101
201 => 0.001627054665844
202 => 0.0016819152313563
203 => 0.0017014900991796
204 => 0.0016994482800935
205 => 0.0016816463846562
206 => 0.0016897960012269
207 => 0.001663543246738
208 => 0.0016542728527241
209 => 0.0016250129391936
210 => 0.001582008949561
211 => 0.0015879889180782
212 => 0.0015027867620103
213 => 0.0014563641053637
214 => 0.0014435149258448
215 => 0.0014263324659878
216 => 0.0014454557304064
217 => 0.0015025453950072
218 => 0.0014336831472506
219 => 0.001315623653597
220 => 0.0013227192303292
221 => 0.0013386608845507
222 => 0.0013089537173735
223 => 0.0012808383767738
224 => 0.0013052823843555
225 => 0.0012552590205437
226 => 0.001344705969078
227 => 0.0013422866797923
228 => 0.0013756269708437
301 => 0.0013964753390497
302 => 0.0013484266000741
303 => 0.0013363424721593
304 => 0.0013432261406126
305 => 0.0012294544346414
306 => 0.0013663293952195
307 => 0.0013675130955624
308 => 0.0013573775345809
309 => 0.0014302592255484
310 => 0.0015840623258594
311 => 0.0015261954128071
312 => 0.0015037875950365
313 => 0.0014611903170746
314 => 0.0015179486607827
315 => 0.001513590505554
316 => 0.0014938812748286
317 => 0.0014819610705893
318 => 0.0015039244123936
319 => 0.0014792395694822
320 => 0.0014748054934012
321 => 0.0014479398166726
322 => 0.001438349992391
323 => 0.0014312500682747
324 => 0.0014234337494469
325 => 0.0014406746010758
326 => 0.0014016045630617
327 => 0.0013544899272996
328 => 0.0013505728551235
329 => 0.0013613882357944
330 => 0.0013566032349579
331 => 0.0013505499463804
401 => 0.0013389925699708
402 => 0.0013355637432744
403 => 0.0013467057666076
404 => 0.0013341270718847
405 => 0.0013526876211453
406 => 0.0013476401787484
407 => 0.0013194455758243
408 => 0.0012843046616019
409 => 0.0012839918337547
410 => 0.0012764207814282
411 => 0.0012667779079749
412 => 0.0012640954811793
413 => 0.0013032237782169
414 => 0.0013842181820733
415 => 0.0013683170425644
416 => 0.0013798072454739
417 => 0.0014363276715166
418 => 0.001454293815327
419 => 0.0014415418720018
420 => 0.0014240862254726
421 => 0.001424854185331
422 => 0.0014845054137048
423 => 0.0014882257876488
424 => 0.0014976259723671
425 => 0.001509707866222
426 => 0.0014435994707689
427 => 0.0014217404858502
428 => 0.0014113824861054
429 => 0.0013794838559418
430 => 0.0014138837937914
501 => 0.0013938404231586
502 => 0.001396544958636
503 => 0.0013947836263584
504 => 0.0013957454328828
505 => 0.0013446809668329
506 => 0.0013632861743921
507 => 0.0013323514082856
508 => 0.0012909332290593
509 => 0.0012907943807994
510 => 0.001300931421488
511 => 0.001294901513024
512 => 0.0012786751843905
513 => 0.0012809800577868
514 => 0.0012607869415337
515 => 0.0012834318677081
516 => 0.0012840812431633
517 => 0.0012753617131087
518 => 0.001310249346278
519 => 0.0013245428380531
520 => 0.0013188034565807
521 => 0.0013241401477489
522 => 0.0013689778067004
523 => 0.0013762883015137
524 => 0.0013795351404055
525 => 0.0013751848064141
526 => 0.0013249596978449
527 => 0.0013271873949836
528 => 0.0013108420314801
529 => 0.0012970319217517
530 => 0.0012975842537163
531 => 0.0013046844453054
601 => 0.0013356913983954
602 => 0.0014009437032137
603 => 0.0014034199804827
604 => 0.0014064213007709
605 => 0.0013942134228161
606 => 0.0013905314100113
607 => 0.001395388935309
608 => 0.0014198942701956
609 => 0.0014829286446573
610 => 0.0014606480867982
611 => 0.0014425336464412
612 => 0.0014584248942523
613 => 0.0014559785612115
614 => 0.0014353290484446
615 => 0.0014347494853965
616 => 0.0013951164683482
617 => 0.0013804650443455
618 => 0.0013682212178088
619 => 0.0013548512788639
620 => 0.001346925130893
621 => 0.0013591032965462
622 => 0.0013618885871189
623 => 0.0013352608150803
624 => 0.0013316315481444
625 => 0.0013533763615915
626 => 0.0013438072799218
627 => 0.0013536493177209
628 => 0.0013559327549138
629 => 0.0013555650689337
630 => 0.0013455738486685
701 => 0.0013519419545231
702 => 0.0013368794857533
703 => 0.0013205013132758
704 => 0.0013100530596314
705 => 0.0013009355725669
706 => 0.0013059944843017
707 => 0.0012879603876878
708 => 0.0012821909172263
709 => 0.0013497845835464
710 => 0.0013997167516115
711 => 0.0013989907181125
712 => 0.0013945711759082
713 => 0.0013880046326639
714 => 0.0014194138866568
715 => 0.0014084715306135
716 => 0.0014164330088994
717 => 0.0014184595392654
718 => 0.0014245932363312
719 => 0.0014267855058232
720 => 0.0014201589447894
721 => 0.0013979193965938
722 => 0.0013425005569631
723 => 0.0013167029375147
724 => 0.0013081892934033
725 => 0.0013084987481971
726 => 0.0012999626035189
727 => 0.0013024768806898
728 => 0.0012990882405258
729 => 0.0012926709758553
730 => 0.0013055982362917
731 => 0.0013070879826312
801 => 0.0013040706055761
802 => 0.0013047813071032
803 => 0.0012797987138255
804 => 0.0012816980861331
805 => 0.001271122139764
806 => 0.0012691392773147
807 => 0.0012424042058466
808 => 0.0011950391514304
809 => 0.0012212839894141
810 => 0.0011895839157125
811 => 0.0011775786174672
812 => 0.0012344098321535
813 => 0.0012287055544515
814 => 0.0012189423106156
815 => 0.0012045004381441
816 => 0.0011991438071629
817 => 0.0011665986130244
818 => 0.0011646756693328
819 => 0.001180805946342
820 => 0.0011733623785112
821 => 0.0011629087901772
822 => 0.0011250469528945
823 => 0.0010824777121653
824 => 0.0010837626099623
825 => 0.0010973030934093
826 => 0.0011366738752147
827 => 0.0011212910296419
828 => 0.001110130598681
829 => 0.0011080405854434
830 => 0.0011342014768516
831 => 0.0011712246190705
901 => 0.0011885950490535
902 => 0.0011713814804882
903 => 0.0011516074597647
904 => 0.0011528110127821
905 => 0.001160817711806
906 => 0.0011616591026647
907 => 0.0011487882479759
908 => 0.0011524113181793
909 => 0.0011469075432398
910 => 0.0011131308865952
911 => 0.0011125199739835
912 => 0.0011042306377207
913 => 0.0011039796399131
914 => 0.0010898774110583
915 => 0.0010879044117574
916 => 0.0010599035804221
917 => 0.0010783338124013
918 => 0.0010659717804203
919 => 0.0010473392823163
920 => 0.0010441270326202
921 => 0.0010440304685154
922 => 0.0010631618779178
923 => 0.0010781102507436
924 => 0.0010661868232592
925 => 0.001063472089947
926 => 0.0010924583394004
927 => 0.0010887695749419
928 => 0.0010855751287109
929 => 0.0011679096027582
930 => 0.0011027354419106
1001 => 0.00107431578777
1002 => 0.0010391410690251
1003 => 0.0010505941348147
1004 => 0.0010530074640572
1005 => 0.00096841860619522
1006 => 0.00093410091709549
1007 => 0.0009223243794313
1008 => 0.00091554681550975
1009 => 0.00091863543649609
1010 => 0.00088774549124288
1011 => 0.00090850404532558
1012 => 0.00088175596379837
1013 => 0.00087727156088455
1014 => 0.00092510044410665
1015 => 0.00093175555379473
1016 => 0.00090336278828489
1017 => 0.00092159554011341
1018 => 0.00091498409084618
1019 => 0.00088221448288451
1020 => 0.00088096292489729
1021 => 0.00086452028752954
1022 => 0.000838790743971
1023 => 0.00082703165214892
1024 => 0.00082090741503086
1025 => 0.00082343439462477
1026 => 0.00082215667641524
1027 => 0.00081381870081614
1028 => 0.0008226345994165
1029 => 0.00080011362147339
1030 => 0.00079114558659259
1031 => 0.00078709493329376
1101 => 0.00076710626911013
1102 => 0.0007989171228256
1103 => 0.00080518426175012
1104 => 0.00081146374887435
1105 => 0.00086612239710276
1106 => 0.00086339180550101
1107 => 0.00088807502372883
1108 => 0.00088711587925802
1109 => 0.00088007582557782
1110 => 0.00085037499713368
1111 => 0.00086221321798515
1112 => 0.00082577701427231
1113 => 0.00085307749551499
1114 => 0.00084061869597119
1115 => 0.00084886516285681
1116 => 0.00083403727184252
1117 => 0.00084224363895844
1118 => 0.00080667043288466
1119 => 0.00077345267358147
1120 => 0.00078682046961192
1121 => 0.00080135279268992
1122 => 0.00083286257189008
1123 => 0.0008140956073485
1124 => 0.00082084491745515
1125 => 0.00079823585841874
1126 => 0.00075158691166819
1127 => 0.00075185093964073
1128 => 0.00074467501548571
1129 => 0.00073847396931369
1130 => 0.00081625121898152
1201 => 0.00080657838850896
1202 => 0.00079116599909969
1203 => 0.00081179609478801
1204 => 0.00081725101953164
1205 => 0.00081740631357037
1206 => 0.00083245749884473
1207 => 0.00084049031912373
1208 => 0.00084190613851414
1209 => 0.00086558950374572
1210 => 0.0008735278553802
1211 => 0.00090622480228507
1212 => 0.00083980879044525
1213 => 0.00083844099638768
1214 => 0.00081208640254139
1215 => 0.00079537190247443
1216 => 0.00081323085866085
1217 => 0.00082905145585139
1218 => 0.00081257799259584
1219 => 0.00081472907912323
1220 => 0.00079261480063405
1221 => 0.00080051961462041
1222 => 0.00080732830531891
1223 => 0.00080356894651154
1224 => 0.00079794100442189
1225 => 0.00082775434729748
1226 => 0.00082607216165301
1227 => 0.00085383503194455
1228 => 0.00087547817467871
1229 => 0.00091426655563286
1230 => 0.00087378885802317
1231 => 0.000872313689838
]
'min_raw' => 0.00073847396931369
'max_raw' => 0.0021351454196389
'avg_raw' => 0.0014368096944763
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000738'
'max' => '$0.002135'
'avg' => '$0.001436'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00012985187732366
'max_diff' => -0.00072125321328136
'year' => 2030
]
5 => [
'items' => [
101 => 0.00088673369547249
102 => 0.00087352564775247
103 => 0.00088187267798521
104 => 0.00091292172001778
105 => 0.00091357773734949
106 => 0.00090258860181278
107 => 0.00090191991191668
108 => 0.00090403049560448
109 => 0.00091639225018677
110 => 0.00091207267329737
111 => 0.0009170713970321
112 => 0.00092332237760554
113 => 0.00094917908361817
114 => 0.00095541304790035
115 => 0.00094026774663456
116 => 0.00094163519776411
117 => 0.00093597043934289
118 => 0.0009304983536872
119 => 0.00094279880310725
120 => 0.00096527811618834
121 => 0.00096513827354834
122 => 0.00097035303724774
123 => 0.00097360179183104
124 => 0.00095965575892583
125 => 0.00095057740431439
126 => 0.00095405862314313
127 => 0.00095962516786137
128 => 0.00095225346771502
129 => 0.00090675191950807
130 => 0.0009205541825839
131 => 0.0009182568111119
201 => 0.00091498507476585
202 => 0.00092886335701835
203 => 0.0009275247628388
204 => 0.00088742867020671
205 => 0.00088999549196557
206 => 0.00088758476713945
207 => 0.00089537431224053
208 => 0.00087310498675391
209 => 0.00087995488128739
210 => 0.00088425107092503
211 => 0.00088678155962648
212 => 0.00089592341998846
213 => 0.00089485072818993
214 => 0.00089585673996013
215 => 0.00090941170551529
216 => 0.00097796806979083
217 => 0.00098169944143726
218 => 0.00096332480276519
219 => 0.00097066510849096
220 => 0.00095657332664589
221 => 0.00096603323420522
222 => 0.00097250546270171
223 => 0.00094325870666402
224 => 0.00094152690358134
225 => 0.00092737695993987
226 => 0.00093498033815902
227 => 0.00092288281671011
228 => 0.00092585112532033
301 => 0.00091755147567364
302 => 0.00093248919259393
303 => 0.00094919188119734
304 => 0.00095341163994772
305 => 0.00094231127139583
306 => 0.00093427387301433
307 => 0.00092016284914002
308 => 0.00094362979632767
309 => 0.00095049224682759
310 => 0.00094359375079662
311 => 0.00094199521853113
312 => 0.00093896600277652
313 => 0.0009426378809735
314 => 0.00095045487244838
315 => 0.000946768523626
316 => 0.00094920342196829
317 => 0.00093992410034373
318 => 0.00095966037564302
319 => 0.00099100633061159
320 => 0.00099110711298239
321 => 0.00098742074428921
322 => 0.00098591236164388
323 => 0.00098969479963065
324 => 0.00099174661707473
325 => 0.0010039783279434
326 => 0.0010171034410384
327 => 0.001078352616917
328 => 0.0010611540934228
329 => 0.0011154980059921
330 => 0.0011584769851606
331 => 0.0011713645017702
401 => 0.0011595085928939
402 => 0.0011189501690715
403 => 0.0011169601793046
404 => 0.0011775715878201
405 => 0.0011604460887361
406 => 0.0011584090651129
407 => 0.0011367385753683
408 => 0.0011495485187497
409 => 0.0011467467962217
410 => 0.0011423241401462
411 => 0.0011667646197696
412 => 0.001212515015808
413 => 0.0012053843875409
414 => 0.0012000617043199
415 => 0.001176739255855
416 => 0.0011907845790883
417 => 0.0011857833085054
418 => 0.0012072719408144
419 => 0.001194542551066
420 => 0.0011603163462371
421 => 0.0011657669821672
422 => 0.0011649431295115
423 => 0.0011818979587863
424 => 0.0011768085398828
425 => 0.0011639493387883
426 => 0.001212358645928
427 => 0.0012092152147891
428 => 0.0012136718814557
429 => 0.0012156338439494
430 => 0.0012450997361376
501 => 0.0012571709693638
502 => 0.0012599113506428
503 => 0.001271378088585
504 => 0.0012596260477569
505 => 0.0013066425901325
506 => 0.0013379058473209
507 => 0.0013742197293379
508 => 0.0014272840712159
509 => 0.0014472367546346
510 => 0.0014436324809646
511 => 0.0014838652593615
512 => 0.0015561626678164
513 => 0.0014582458542753
514 => 0.0015613524966947
515 => 0.0015287101241282
516 => 0.0014513156459841
517 => 0.0014463323540126
518 => 0.0014987447931801
519 => 0.0016149905387434
520 => 0.0015858722979281
521 => 0.001615038165754
522 => 0.0015810146316988
523 => 0.0015793250764601
524 => 0.0016133857186469
525 => 0.0016929702656654
526 => 0.001655162630559
527 => 0.0016009561148217
528 => 0.0016409813624953
529 => 0.0016063077887986
530 => 0.0015281785227376
531 => 0.0015858500317581
601 => 0.0015472867360661
602 => 0.0015585415558866
603 => 0.0016395958675739
604 => 0.0016298431983486
605 => 0.001642464055399
606 => 0.0016201885730503
607 => 0.0015993797600155
608 => 0.0015605385652034
609 => 0.0015490396022672
610 => 0.0015522175019334
611 => 0.001549038027458
612 => 0.0015273067359296
613 => 0.0015226138655931
614 => 0.0015147922094329
615 => 0.0015172164677369
616 => 0.0015025094658495
617 => 0.0015302646170327
618 => 0.0015354162176698
619 => 0.0015556141021134
620 => 0.0015577111134803
621 => 0.0016139619341568
622 => 0.0015829799273848
623 => 0.0016037653323852
624 => 0.0016019060901222
625 => 0.0014529930190061
626 => 0.0014735119263347
627 => 0.0015054329069503
628 => 0.0014910525484508
629 => 0.0014707220860183
630 => 0.0014543041475536
701 => 0.0014294292919591
702 => 0.001464440173529
703 => 0.0015104757598012
704 => 0.0015588786519184
705 => 0.0016170315553141
706 => 0.0016040525042506
707 => 0.0015577915238398
708 => 0.0015598667576273
709 => 0.0015726950363277
710 => 0.0015560812498387
711 => 0.0015511815198635
712 => 0.0015720218886695
713 => 0.0015721654048358
714 => 0.0015530492356371
715 => 0.0015318051117948
716 => 0.0015317160981402
717 => 0.0015279359114964
718 => 0.001581687118505
719 => 0.0016112448474998
720 => 0.0016146335934944
721 => 0.0016110167578942
722 => 0.0016124087343697
723 => 0.0015952097431277
724 => 0.0016345215369044
725 => 0.0016705979264073
726 => 0.0016609286833609
727 => 0.0016464331134704
728 => 0.0016348866938514
729 => 0.0016582087138491
730 => 0.0016571702210109
731 => 0.0016702828306173
801 => 0.0016696879669035
802 => 0.001665278689483
803 => 0.00166092884083
804 => 0.0016781754990545
805 => 0.0016732087384587
806 => 0.0016682342631119
807 => 0.0016582571912497
808 => 0.0016596132410174
809 => 0.0016451201739914
810 => 0.0016384150180276
811 => 0.0015375855602501
812 => 0.0015106406344344
813 => 0.0015191180566106
814 => 0.0015219090441072
815 => 0.0015101825778613
816 => 0.0015269953181758
817 => 0.0015243750704069
818 => 0.0015345689216821
819 => 0.0015282002459709
820 => 0.0015284616186436
821 => 0.0015471905359654
822 => 0.0015526276203424
823 => 0.0015498622753456
824 => 0.0015517990281908
825 => 0.001596430680058
826 => 0.0015900854864024
827 => 0.0015867147287372
828 => 0.0015876484516467
829 => 0.0015990527956121
830 => 0.0016022453892684
831 => 0.0015887181456073
901 => 0.0015950976719179
902 => 0.0016222608852661
903 => 0.0016317664726332
904 => 0.0016621037445683
905 => 0.0016492159322483
906 => 0.0016728720695331
907 => 0.0017455829705754
908 => 0.0018036694695396
909 => 0.001750250724566
910 => 0.0018569191826427
911 => 0.0019399758779369
912 => 0.0019367880236334
913 => 0.0019223051676728
914 => 0.0018277473282569
915 => 0.0017407337946483
916 => 0.0018135243103017
917 => 0.0018137098682956
918 => 0.0018074570984462
919 => 0.0017686216819263
920 => 0.001806105710132
921 => 0.0018090810561689
922 => 0.0018074156535966
923 => 0.0017776406308053
924 => 0.0017321796743469
925 => 0.0017410626364207
926 => 0.0017556131095052
927 => 0.0017280660284097
928 => 0.0017192630668632
929 => 0.0017356294472101
930 => 0.0017883653347586
1001 => 0.0017783959206957
1002 => 0.001778135579005
1003 => 0.0018207889600554
1004 => 0.001790258344399
1005 => 0.0017411746790197
1006 => 0.0017287804061774
1007 => 0.0016847890873698
1008 => 0.0017151740479619
1009 => 0.0017162675486003
1010 => 0.0016996260162108
1011 => 0.0017425250476564
1012 => 0.0017421297255294
1013 => 0.0017828559712087
1014 => 0.0018607092568684
1015 => 0.0018376842093713
1016 => 0.0018109085842502
1017 => 0.0018138198371085
1018 => 0.0018457490953787
1019 => 0.0018264439369544
1020 => 0.0018333862065242
1021 => 0.0018457385874223
1022 => 0.0018531910855104
1023 => 0.001812747537321
1024 => 0.0018033182115995
1025 => 0.0017840291204169
1026 => 0.0017789969565754
1027 => 0.0017947075188635
1028 => 0.0017905683407629
1029 => 0.0017161756441059
1030 => 0.0017084011933882
1031 => 0.0017086396246923
1101 => 0.0016890903987077
1102 => 0.0016592731367292
1103 => 0.0017376311209124
1104 => 0.0017313378781632
1105 => 0.0017243906252264
1106 => 0.0017252416240707
1107 => 0.0017592541692061
1108 => 0.0017395251753528
1109 => 0.0017919779390302
1110 => 0.0017811952276926
1111 => 0.001770135980496
1112 => 0.0017686072556605
1113 => 0.0017643503890204
1114 => 0.0017497520094014
1115 => 0.0017321235887848
1116 => 0.001720483778546
1117 => 0.0015870553412803
1118 => 0.0016118188831193
1119 => 0.0016403070807372
1120 => 0.0016501410923956
1121 => 0.001633319334961
1122 => 0.0017504162349147
1123 => 0.0017718109669101
1124 => 0.0017070049281523
1125 => 0.0016948823643139
1126 => 0.0017512109881818
1127 => 0.0017172379420952
1128 => 0.0017325360026678
1129 => 0.0016994699633016
1130 => 0.0017666576024833
1201 => 0.0017661457452428
1202 => 0.0017400082360995
1203 => 0.0017620994798455
1204 => 0.0017582605826058
1205 => 0.0017287513991568
1206 => 0.0017675930962332
1207 => 0.0017676123612303
1208 => 0.0017424555769584
1209 => 0.0017130779604569
1210 => 0.0017078259364948
1211 => 0.0017038692419494
1212 => 0.0017315628983595
1213 => 0.0017563929441009
1214 => 0.0018025955033352
1215 => 0.0018142119244725
1216 => 0.0018595515895202
1217 => 0.0018325540265325
1218 => 0.001844521696528
1219 => 0.0018575142952383
1220 => 0.0018637434248471
1221 => 0.0018535933924231
1222 => 0.0019240245547928
1223 => 0.0019299711028519
1224 => 0.0019319649289786
1225 => 0.001908215937304
1226 => 0.0019293106004318
1227 => 0.0019194411061361
1228 => 0.001945118788469
1229 => 0.0019491453769278
1230 => 0.0019457349997532
1231 => 0.0019470131024854
]
'min_raw' => 0.00087310498675391
'max_raw' => 0.0019491453769278
'avg_raw' => 0.0014111251818409
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000873'
'max' => '$0.001949'
'avg' => '$0.001411'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00013463101744022
'max_diff' => -0.00018600004271105
'year' => 2031
]
6 => [
'items' => [
101 => 0.0018869125303114
102 => 0.0018837959985884
103 => 0.0018413018674062
104 => 0.0018586185399637
105 => 0.0018262458506272
106 => 0.0018365115638915
107 => 0.001841036592483
108 => 0.0018386729743399
109 => 0.0018595975986484
110 => 0.0018418073933679
111 => 0.001794856116652
112 => 0.0017478920480923
113 => 0.0017473024524676
114 => 0.0017349376422005
115 => 0.0017260001491053
116 => 0.00172772182735
117 => 0.0017337892460465
118 => 0.0017256474997007
119 => 0.0017273849540806
120 => 0.0017562382733848
121 => 0.0017620246007988
122 => 0.001742360399382
123 => 0.0016634057931627
124 => 0.0016440301347539
125 => 0.0016579569737822
126 => 0.00165130084173
127 => 0.0013327286580226
128 => 0.0014075724671367
129 => 0.0013631028172167
130 => 0.00138359647785
131 => 0.0013382044806418
201 => 0.001359867920908
202 => 0.001355867474513
203 => 0.001476214104779
204 => 0.0014743350576788
205 => 0.0014752344580887
206 => 0.001432303733148
207 => 0.0015006935436748
208 => 0.0015343848235583
209 => 0.0015281494643163
210 => 0.001529718769902
211 => 0.0015027529005817
212 => 0.0014754955466482
213 => 0.0014452629462593
214 => 0.0015014313809196
215 => 0.0014951864098125
216 => 0.0015095101266625
217 => 0.0015459393715423
218 => 0.0015513037162321
219 => 0.001558513449895
220 => 0.0015559292736006
221 => 0.0016174948370093
222 => 0.0016100388410578
223 => 0.0016280056460644
224 => 0.0015910465650211
225 => 0.0015492238566324
226 => 0.0015571729862098
227 => 0.0015564074211086
228 => 0.0015466608986961
229 => 0.0015378621740586
301 => 0.0015232147765624
302 => 0.0015695613096473
303 => 0.0015676797250428
304 => 0.0015981403926874
305 => 0.0015927561738021
306 => 0.001556799042344
307 => 0.0015580832583284
308 => 0.0015667202279968
309 => 0.0015966128786343
310 => 0.0016054870525904
311 => 0.0016013761816392
312 => 0.0016111063082606
313 => 0.0016187966036129
314 => 0.001612072090955
315 => 0.0017072770094493
316 => 0.0016677412896267
317 => 0.0016870107243804
318 => 0.0016916063710271
319 => 0.0016798347187777
320 => 0.0016823875686393
321 => 0.0016862544405698
322 => 0.0017097333297201
323 => 0.0017713487285221
324 => 0.0017986377692212
325 => 0.0018807381945822
326 => 0.0017963717942729
327 => 0.0017913658412215
328 => 0.0018061546070243
329 => 0.0018543562479238
330 => 0.001893419150523
331 => 0.001906378568908
401 => 0.0019080913699843
402 => 0.0019324041004005
403 => 0.0019463397040695
404 => 0.0019294518954397
405 => 0.0019151412458532
406 => 0.0018638822753376
407 => 0.0018698156407483
408 => 0.0019106906445928
409 => 0.001968428995049
410 => 0.0020179745063918
411 => 0.0020006253951549
412 => 0.0021329868673284
413 => 0.0021461099666463
414 => 0.0021442967786411
415 => 0.0021741931518663
416 => 0.0021148549393049
417 => 0.0020894867038112
418 => 0.0019182353707266
419 => 0.0019663500100723
420 => 0.0020362874640349
421 => 0.0020270309797509
422 => 0.0019762405312498
423 => 0.0020179359772821
424 => 0.0020041501588867
425 => 0.0019932767119441
426 => 0.0020430900803096
427 => 0.0019883182355713
428 => 0.0020357410729854
429 => 0.0019749207934754
430 => 0.0020007046444337
501 => 0.0019860684836052
502 => 0.0019955398734016
503 => 0.001940170322184
504 => 0.0019700463880012
505 => 0.0019389273796226
506 => 0.0019389126251609
507 => 0.0019382256713261
508 => 0.0019748370466807
509 => 0.0019760309423166
510 => 0.0019489750806129
511 => 0.0019450759082494
512 => 0.0019594931921162
513 => 0.0019426143286008
514 => 0.0019505118426053
515 => 0.0019428535362546
516 => 0.0019411294901865
517 => 0.0019273919977932
518 => 0.0019214735083499
519 => 0.0019237943005613
520 => 0.0019158722402935
521 => 0.0019110989124287
522 => 0.0019372761362709
523 => 0.0019232907015582
524 => 0.0019351326678218
525 => 0.0019216372526891
526 => 0.0018748562641668
527 => 0.0018479520229676
528 => 0.0017595870722489
529 => 0.0017846472626563
530 => 0.0018012621948231
531 => 0.0017957709598411
601 => 0.0018075682574083
602 => 0.0018082925156653
603 => 0.001804457093967
604 => 0.0018000161669883
605 => 0.0017978545693337
606 => 0.0018139653472871
607 => 0.0018233181961528
608 => 0.0018029297255452
609 => 0.0017981529921468
610 => 0.0018187668616095
611 => 0.0018313413100735
612 => 0.0019241839725592
613 => 0.0019173058882444
614 => 0.0019345685301187
615 => 0.0019326250215605
616 => 0.0019507190203992
617 => 0.0019802950614061
618 => 0.001920158700448
619 => 0.0019305962933514
620 => 0.0019280372366107
621 => 0.001955976347085
622 => 0.0019560635699382
623 => 0.0019393126775468
624 => 0.0019483936080644
625 => 0.0019433248817718
626 => 0.001952484755262
627 => 0.001917214027235
628 => 0.001960169966732
629 => 0.0019845232164072
630 => 0.0019848613613025
701 => 0.0019964046083692
702 => 0.0020081332159288
703 => 0.0020306452567929
704 => 0.0020075053673275
705 => 0.0019658789588021
706 => 0.0019688842510452
707 => 0.0019444787029573
708 => 0.0019448889646298
709 => 0.0019426989556688
710 => 0.001949271337417
711 => 0.0019186562954317
712 => 0.0019258415845932
713 => 0.0019157821376901
714 => 0.0019305744260784
715 => 0.0019146603690255
716 => 0.0019280360025561
717 => 0.0019338084825786
718 => 0.0019551090581344
719 => 0.0019115142566969
720 => 0.0018226215054573
721 => 0.0018413078394883
722 => 0.0018136692836766
723 => 0.0018162273372443
724 => 0.0018213950125624
725 => 0.0018046448860983
726 => 0.0018078402823705
727 => 0.00180772612033
728 => 0.0018067423335403
729 => 0.0018023849787264
730 => 0.0017960659521698
731 => 0.0018212390090773
801 => 0.0018255164019751
802 => 0.00183502451653
803 => 0.0018633142160296
804 => 0.0018604874079326
805 => 0.001865098049222
806 => 0.0018550330451748
807 => 0.0018166942239149
808 => 0.001818776206363
809 => 0.0017928138518744
810 => 0.0018343606007544
811 => 0.0018245217822293
812 => 0.0018181786319209
813 => 0.0018164478445904
814 => 0.0018448076687832
815 => 0.0018532933726675
816 => 0.0018480056514613
817 => 0.0018371603809997
818 => 0.0018579865064023
819 => 0.0018635586989763
820 => 0.0018648061073991
821 => 0.001901706008599
822 => 0.0018668684019694
823 => 0.0018752541601412
824 => 0.0019406774515772
825 => 0.0018813475540418
826 => 0.0019127759239809
827 => 0.0019112376688177
828 => 0.0019273153594005
829 => 0.0019099188289173
830 => 0.0019101344797622
831 => 0.0019244103798026
901 => 0.001904362452868
902 => 0.0018993983042243
903 => 0.0018925403684271
904 => 0.0019075144203479
905 => 0.0019164906872563
906 => 0.0019888328061965
907 => 0.0020355691142333
908 => 0.0020335401678431
909 => 0.0020520809398203
910 => 0.0020437281522306
911 => 0.0020167547977493
912 => 0.0020627950247987
913 => 0.0020482259705554
914 => 0.0020494270256858
915 => 0.0020493823223538
916 => 0.0020590694697769
917 => 0.0020522052380136
918 => 0.0020386751326094
919 => 0.0020476570480003
920 => 0.0020743301256178
921 => 0.0021571241769726
922 => 0.002203456824986
923 => 0.0021543348933852
924 => 0.0021882185440345
925 => 0.0021679004276241
926 => 0.0021642080214607
927 => 0.0021854894580507
928 => 0.0022068081449781
929 => 0.0022054502367841
930 => 0.0021899739648014
1001 => 0.0021812318114543
1002 => 0.002247430325435
1003 => 0.0022962042628738
1004 => 0.0022928782073251
1005 => 0.0023075583348258
1006 => 0.0023506596432072
1007 => 0.0023546002866824
1008 => 0.0023541038561792
1009 => 0.0023443365601623
1010 => 0.0023867753956759
1011 => 0.0024221786189017
1012 => 0.0023420757133387
1013 => 0.002372577851153
1014 => 0.0023862712435354
1015 => 0.0024063772061992
1016 => 0.0024402993353636
1017 => 0.0024771477650365
1018 => 0.0024823585370147
1019 => 0.0024786612449378
1020 => 0.0024543587150295
1021 => 0.0024946787064708
1022 => 0.002518297211837
1023 => 0.0025323614912827
1024 => 0.0025680261638839
1025 => 0.002386355809265
1026 => 0.0022577605026632
1027 => 0.0022376784885986
1028 => 0.0022785160538852
1029 => 0.0022892845941778
1030 => 0.0022849438090884
1031 => 0.0021401981001344
1101 => 0.0022369164323968
1102 => 0.0023409772256028
1103 => 0.0023449746244708
1104 => 0.0023970696333583
1105 => 0.0024140339036986
1106 => 0.0024559772141019
1107 => 0.0024533536486163
1108 => 0.0024635661772356
1109 => 0.0024612184937624
1110 => 0.0025389096440785
1111 => 0.0026246145201247
1112 => 0.0026216468327921
1113 => 0.0026093257428464
1114 => 0.0026276246624738
1115 => 0.0027160812792461
1116 => 0.0027079376114621
1117 => 0.0027158484910383
1118 => 0.0028201438274094
1119 => 0.0029557426005304
1120 => 0.0028927433565214
1121 => 0.0030294335884767
1122 => 0.0031154728438547
1123 => 0.0032642688394059
1124 => 0.0032456388479271
1125 => 0.0033035640370798
1126 => 0.0032122872749836
1127 => 0.0030026973791338
1128 => 0.0029695289758377
1129 => 0.0030359329591943
1130 => 0.0031991806726705
1201 => 0.0030307917077476
1202 => 0.0030648565760413
1203 => 0.003055045891681
1204 => 0.0030545231220042
1205 => 0.003074475114311
1206 => 0.0030455337088441
1207 => 0.0029276212165124
1208 => 0.0029816598168853
1209 => 0.0029607929181346
1210 => 0.0029839462980289
1211 => 0.003108895540138
1212 => 0.0030536525017837
1213 => 0.0029954584484574
1214 => 0.0030684467056228
1215 => 0.0031613858384806
1216 => 0.0031555698745741
1217 => 0.003144284473711
1218 => 0.0032078996874917
1219 => 0.0033129733831486
1220 => 0.0033413743808643
1221 => 0.0033623394167453
1222 => 0.0033652301409861
1223 => 0.0033950063972414
1224 => 0.0032348919627738
1225 => 0.0034889976823042
1226 => 0.0035328747205382
1227 => 0.0035246276558671
1228 => 0.0035733951372362
1229 => 0.0035590465071058
1230 => 0.003538257593278
1231 => 0.0036155644243888
]
'min_raw' => 0.0013327286580226
'max_raw' => 0.0036155644243888
'avg_raw' => 0.0024741465412057
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001332'
'max' => '$0.003615'
'avg' => '$0.002474'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00045962367126871
'max_diff' => 0.001666419047461
'year' => 2032
]
7 => [
'items' => [
101 => 0.0035269383808599
102 => 0.0034011448697791
103 => 0.0033321320616866
104 => 0.0034230136944872
105 => 0.0034785119363066
106 => 0.0035151927437981
107 => 0.0035262923339819
108 => 0.0032473211905342
109 => 0.0030969712166648
110 => 0.0031933438261491
111 => 0.0033109250610022
112 => 0.0032342387930774
113 => 0.0032372447495937
114 => 0.0031279102843296
115 => 0.0033205987351331
116 => 0.0032925256486159
117 => 0.0034381688711271
118 => 0.0034034099472149
119 => 0.0035221763413355
120 => 0.0034909011694682
121 => 0.0036207226593179
122 => 0.0036725119663954
123 => 0.0037594742733406
124 => 0.0038234441003297
125 => 0.0038610084062856
126 => 0.0038587531862561
127 => 0.0040076016809161
128 => 0.0039198309239854
129 => 0.0038095701673014
130 => 0.0038075758980812
131 => 0.0038646815063749
201 => 0.0039843591951998
202 => 0.0040153898786726
203 => 0.0040327317974502
204 => 0.0040061720451658
205 => 0.0039109031791044
206 => 0.0038697665657632
207 => 0.0039048161521723
208 => 0.0038619535198392
209 => 0.0039359464483766
210 => 0.0040375545432952
211 => 0.0040165728734965
212 => 0.0040867114498859
213 => 0.0041592974976555
214 => 0.0042630988060095
215 => 0.0042902363117645
216 => 0.0043350935768307
217 => 0.0043812664374277
218 => 0.004396095915858
219 => 0.0044244099914984
220 => 0.0044242607623435
221 => 0.0045095871350428
222 => 0.0046037047664678
223 => 0.0046392319935026
224 => 0.0047209248930864
225 => 0.0045810286654098
226 => 0.0046871415611145
227 => 0.0047828580492183
228 => 0.0046687409061734
301 => 0.0048260248019765
302 => 0.0048321317792376
303 => 0.0049243398853423
304 => 0.0048308693048695
305 => 0.0047753667725534
306 => 0.0049356005036972
307 => 0.0050131325588825
308 => 0.0049897792728839
309 => 0.0048120596133407
310 => 0.0047086191487318
311 => 0.0044378955006747
312 => 0.0047585793561895
313 => 0.0049147751077345
314 => 0.0048116551040783
315 => 0.0048636628357901
316 => 0.005147400156446
317 => 0.0052554289575207
318 => 0.0052329597220755
319 => 0.0052367566529906
320 => 0.0052950470331891
321 => 0.005553538680088
322 => 0.0053986444934767
323 => 0.0055170552953666
324 => 0.005579859957727
325 => 0.0056381964282693
326 => 0.0054949404940484
327 => 0.0053085666284745
328 => 0.0052495342018047
329 => 0.0048014018519878
330 => 0.0047780746170397
331 => 0.0047649803331758
401 => 0.0046824227256368
402 => 0.0046175550605431
403 => 0.0045659698848786
404 => 0.0044305949792975
405 => 0.0044762800359591
406 => 0.0042605206914015
407 => 0.0043985558740078
408 => 0.0040541987504023
409 => 0.0043409895955681
410 => 0.004184902377324
411 => 0.0042897107464227
412 => 0.0042893450798964
413 => 0.0040963596428621
414 => 0.003985049670284
415 => 0.0040559807170597
416 => 0.0041320244297168
417 => 0.0041443622662536
418 => 0.0042429549246575
419 => 0.0042704700163759
420 => 0.0041870980039123
421 => 0.0040470627144224
422 => 0.004079589718306
423 => 0.0039843905115885
424 => 0.0038175575636008
425 => 0.0039373798994694
426 => 0.0039782925131512
427 => 0.0039963618540932
428 => 0.0038323008106408
429 => 0.0037807492688495
430 => 0.0037533036605591
501 => 0.004025884493903
502 => 0.0040408170872701
503 => 0.0039644198283485
504 => 0.0043097426829595
505 => 0.0042315854856128
506 => 0.0043189062240273
507 => 0.0040766382336355
508 => 0.0040858931971256
509 => 0.0039711996479573
510 => 0.0040354203716658
511 => 0.0039900312340792
512 => 0.0040302319718317
513 => 0.0040543281282867
514 => 0.0041690028573722
515 => 0.0043422989967697
516 => 0.004151874276912
517 => 0.0040689034995378
518 => 0.0041203781031754
519 => 0.0042574617559063
520 => 0.0044651505069767
521 => 0.0043421945862174
522 => 0.0043967603359234
523 => 0.0044086805247729
524 => 0.0043180173808806
525 => 0.0044684933864125
526 => 0.004549134700242
527 => 0.0046318560018623
528 => 0.004703680590261
529 => 0.0045988152949147
530 => 0.0047110361927849
531 => 0.0046206059587567
601 => 0.0045394806903277
602 => 0.0045396037238729
603 => 0.0044887126579363
604 => 0.0043901048049972
605 => 0.0043719200039993
606 => 0.0044665196352774
607 => 0.004542379580944
608 => 0.0045486277694137
609 => 0.0045906277331594
610 => 0.0046154828790702
611 => 0.0048590970979275
612 => 0.0049570807520344
613 => 0.0050768933095407
614 => 0.0051235670529552
615 => 0.0052640382871695
616 => 0.0051505963570256
617 => 0.0051260524818557
618 => 0.0047853152154422
619 => 0.0048411109237289
620 => 0.0049304452361811
621 => 0.0047867883053506
622 => 0.0048779055626952
623 => 0.0048958940394224
624 => 0.004781906897812
625 => 0.0048427923552398
626 => 0.0046810986315917
627 => 0.0043458234780873
628 => 0.0044688666435019
629 => 0.0045594678291286
630 => 0.0044301687661936
701 => 0.0046619323319399
702 => 0.004526540841402
703 => 0.0044836282388392
704 => 0.0043162108767942
705 => 0.0043952254271942
706 => 0.0045020937379896
707 => 0.0044360615466927
708 => 0.0045730882584172
709 => 0.0047671546259083
710 => 0.0049054578762345
711 => 0.0049160750824762
712 => 0.0048271553581146
713 => 0.0049696497838822
714 => 0.0049706877002092
715 => 0.0048099534058366
716 => 0.0047115045455057
717 => 0.0046891367573003
718 => 0.0047450158777005
719 => 0.004812863445721
720 => 0.0049198401503063
721 => 0.0049844839324161
722 => 0.0051530406317457
723 => 0.005198647241685
724 => 0.0052487550789481
725 => 0.0053157146022164
726 => 0.0053961166779693
727 => 0.0052202015135146
728 => 0.0052271909509453
729 => 0.0050633811855164
730 => 0.0048883269584589
731 => 0.0050211712959781
801 => 0.0051948475957427
802 => 0.0051550060606815
803 => 0.0051505230740984
804 => 0.0051580622140544
805 => 0.005128022997721
806 => 0.0049921567355508
807 => 0.0049239255492567
808 => 0.0050119611872082
809 => 0.0050587482107639
810 => 0.0051313108040416
811 => 0.0051223659328096
812 => 0.0053092793804395
813 => 0.0053819082942192
814 => 0.0053633267101079
815 => 0.0053667461687752
816 => 0.0054982373479642
817 => 0.0056444825824459
818 => 0.0057814605432964
819 => 0.0059208004084139
820 => 0.0057528207624873
821 => 0.00566753105783
822 => 0.005755528262176
823 => 0.0057088357068997
824 => 0.0059771449794288
825 => 0.0059957221313163
826 => 0.0062640120020312
827 => 0.006518651036703
828 => 0.0063587168213578
829 => 0.0065095275828331
830 => 0.0066726417171504
831 => 0.006987315346563
901 => 0.0068813443385286
902 => 0.0068001722071517
903 => 0.0067234649352213
904 => 0.0068830805911719
905 => 0.0070884235826298
906 => 0.0071326524962392
907 => 0.0072043202330317
908 => 0.0071289703709083
909 => 0.0072197209803209
910 => 0.0075401105093857
911 => 0.0074535384304758
912 => 0.0073305921612675
913 => 0.0075835089239267
914 => 0.0076750385171441
915 => 0.0083174411367636
916 => 0.0091285009803617
917 => 0.008792716879406
918 => 0.0085842848522576
919 => 0.0086332713227113
920 => 0.008929442921485
921 => 0.0090245638389944
922 => 0.0087659923950572
923 => 0.0088573242003702
924 => 0.00936057142719
925 => 0.0096305474182747
926 => 0.0092638837597686
927 => 0.0082522732680418
928 => 0.0073195221949096
929 => 0.0075669297818325
930 => 0.0075388814394267
1001 => 0.0080795578032745
1002 => 0.0074514737150251
1003 => 0.0074620490402597
1004 => 0.0080139060187257
1005 => 0.0078666800380947
1006 => 0.0076281928047515
1007 => 0.0073212634156388
1008 => 0.0067538760523316
1009 => 0.0062513252418833
1010 => 0.007236943111712
1011 => 0.0071944414769352
1012 => 0.007132892811389
1013 => 0.0072698627063009
1014 => 0.00793494963641
1015 => 0.0079196172299946
1016 => 0.0078220802830429
1017 => 0.0078960611976546
1018 => 0.0076152235927276
1019 => 0.0076876018380707
1020 => 0.007319374442374
1021 => 0.0074858286037634
1022 => 0.0076276811182588
1023 => 0.0076561601107062
1024 => 0.0077203247348634
1025 => 0.0071720450466971
1026 => 0.0074182065300378
1027 => 0.0075628033392887
1028 => 0.0069095096946162
1029 => 0.0075498898244328
1030 => 0.0071625007171383
1031 => 0.0070310150357334
1101 => 0.0072080431838238
1102 => 0.0071390551423474
1103 => 0.0070797432753998
1104 => 0.0070466462345358
1105 => 0.0071766361686096
1106 => 0.0071705719828135
1107 => 0.0069578832207097
1108 => 0.0066804394008484
1109 => 0.0067735586535768
1110 => 0.0067397275560629
1111 => 0.0066171192943742
1112 => 0.0066997424589744
1113 => 0.0063359118567016
1114 => 0.0057099602157604
1115 => 0.0061234830431835
1116 => 0.006107562864154
1117 => 0.0060995351879646
1118 => 0.0064102861638416
1119 => 0.0063804146277558
1120 => 0.0063261974972572
1121 => 0.006616123554255
1122 => 0.006510296643395
1123 => 0.0068364302467093
1124 => 0.007051242930851
1125 => 0.0069967594856903
1126 => 0.0071987918534053
1127 => 0.0067757039330852
1128 => 0.0069162367688744
1129 => 0.0069452003915605
1130 => 0.0066125459117157
1201 => 0.006385301980487
1202 => 0.0063701474010445
1203 => 0.0059761377404367
1204 => 0.0061866145207985
1205 => 0.006371825377396
1206 => 0.0062831237500289
1207 => 0.0062550434646902
1208 => 0.0063984995526147
1209 => 0.0064096473192647
1210 => 0.0061554770582565
1211 => 0.0062083271040455
1212 => 0.0064287205805746
1213 => 0.0062027737539084
1214 => 0.0057637959779005
1215 => 0.005654923420108
1216 => 0.0056403978139791
1217 => 0.0053451268024543
1218 => 0.0056621988050141
1219 => 0.0055237883788953
1220 => 0.0059610252565928
1221 => 0.0057112778970004
1222 => 0.0057005117874921
1223 => 0.0056842372339254
1224 => 0.0054300852768142
1225 => 0.005485728403222
1226 => 0.0056706946300893
1227 => 0.0057366926636292
1228 => 0.0057298085280251
1229 => 0.0056697881946697
1230 => 0.0056972651959259
1231 => 0.0056087522012577
]
'min_raw' => 0.0030969712166648
'max_raw' => 0.0096305474182747
'avg_raw' => 0.0063637593174697
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003096'
'max' => '$0.00963'
'avg' => '$0.006363'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0017642425586422
'max_diff' => 0.0060149829938859
'year' => 2033
]
8 => [
'items' => [
101 => 0.0055774964206016
102 => 0.0054788445792714
103 => 0.0053338536257827
104 => 0.0053540155071465
105 => 0.0050667504893388
106 => 0.0049102332613286
107 => 0.0048669113554794
108 => 0.0048089794924306
109 => 0.0048734549135615
110 => 0.0050659367036363
111 => 0.0048337628275164
112 => 0.0044357170020126
113 => 0.0044596402343625
114 => 0.0045133886345812
115 => 0.0044132288463549
116 => 0.0043184360125725
117 => 0.0044008506907606
118 => 0.0042321934271492
119 => 0.004533770059119
120 => 0.004525613256383
121 => 0.0046380223754075
122 => 0.0047083141044008
123 => 0.0045463144262886
124 => 0.0045055719453371
125 => 0.0045287807141296
126 => 0.004145191464161
127 => 0.0046066749500546
128 => 0.0046106658784042
129 => 0.0045764931269127
130 => 0.0048222188364469
131 => 0.0053407767273349
201 => 0.00514567438984
202 => 0.0050701248677626
203 => 0.0049265051710671
204 => 0.0051178698896201
205 => 0.0051031760649898
206 => 0.0050367250175445
207 => 0.0049965352167096
208 => 0.0050705861570344
209 => 0.0049873594857179
210 => 0.0049724096886335
211 => 0.0048818301838416
212 => 0.0048494974217357
213 => 0.0048255595318769
214 => 0.0047992062672308
215 => 0.0048573350022157
216 => 0.004725607641268
217 => 0.0045667573573576
218 => 0.0045535506750343
219 => 0.0045900154860722
220 => 0.0045738825216739
221 => 0.0045534734366076
222 => 0.0045145069351324
223 => 0.0045029464065323
224 => 0.0045405125161115
225 => 0.0044981025686369
226 => 0.0045606807563251
227 => 0.004543662951883
228 => 0.00444860287964
301 => 0.0043301228338788
302 => 0.0043290681129512
303 => 0.0043035417814382
304 => 0.0042710301603467
305 => 0.0042619861711242
306 => 0.0043939099564368
307 => 0.0046669882438873
308 => 0.0046133764418511
309 => 0.0046521164631807
310 => 0.0048426790257138
311 => 0.0049032531339269
312 => 0.0048602590666936
313 => 0.0048014061357062
314 => 0.0048039953659859
315 => 0.0050051136471639
316 => 0.0050176571476642
317 => 0.005049350526742
318 => 0.0050900854754048
319 => 0.0048671964045938
320 => 0.0047934973107948
321 => 0.0047585745914828
322 => 0.004651026132795
323 => 0.0047670079249818
324 => 0.0046994303015101
325 => 0.0047085488316968
326 => 0.0047026103769504
327 => 0.0047058531747984
328 => 0.0045336857623042
329 => 0.0045964145185643
330 => 0.0044921157948395
331 => 0.0043524715118532
401 => 0.004352003375251
402 => 0.004386181115678
403 => 0.0043658508582969
404 => 0.0043111426584232
405 => 0.0043189136999998
406 => 0.0042508311987141
407 => 0.0043271801483294
408 => 0.0043293695630147
409 => 0.0042999710586574
410 => 0.0044175971496644
411 => 0.0044657886551237
412 => 0.0044464379297788
413 => 0.0044644309566484
414 => 0.0046156042542685
415 => 0.004640252097934
416 => 0.004651199041945
417 => 0.0046365315871624
418 => 0.0044671941270162
419 => 0.0044747049634522
420 => 0.0044195954292033
421 => 0.0043730336800627
422 => 0.0043748959058441
423 => 0.0043988346975061
424 => 0.0045033768046855
425 => 0.0047233795061508
426 => 0.0047317284478515
427 => 0.0047418476087486
428 => 0.0047006878958973
429 => 0.004688273732656
430 => 0.0047046512183387
501 => 0.0047872726658166
502 => 0.0049997974602338
503 => 0.004924677003833
504 => 0.0048636029034595
505 => 0.0049171813549463
506 => 0.0049089333723017
507 => 0.0048393120983049
508 => 0.0048373580610247
509 => 0.0047037325769572
510 => 0.0046543342780025
511 => 0.0046130533619974
512 => 0.0045679756793854
513 => 0.0045412521181154
514 => 0.0045823116538675
515 => 0.0045917024554961
516 => 0.0045019250629763
517 => 0.0044896887361147
518 => 0.004563002892826
519 => 0.0045307400658846
520 => 0.0045639231834735
521 => 0.0045716219513936
522 => 0.0045703822724408
523 => 0.0045366961757519
524 => 0.0045581666892475
525 => 0.0045073825241622
526 => 0.0044521623721669
527 => 0.0044169353555309
528 => 0.0043861951113303
529 => 0.0044032515854463
530 => 0.004342448369612
531 => 0.0043229961971396
601 => 0.004550892962377
602 => 0.004719242753161
603 => 0.0047167948805292
604 => 0.0047018940854246
605 => 0.0046797545264152
606 => 0.0047856530191762
607 => 0.0047487601018055
608 => 0.0047756027816991
609 => 0.0047824353703157
610 => 0.0048031155582143
611 => 0.0048105069478659
612 => 0.0047881650346887
613 => 0.0047131828452315
614 => 0.0045263343581967
615 => 0.0044393558830941
616 => 0.0044106515375692
617 => 0.0044116948860117
618 => 0.0043829146782545
619 => 0.0043913917392774
620 => 0.0043799667023772
621 => 0.0043583304465015
622 => 0.0044019156076153
623 => 0.0044069383914098
624 => 0.004396765094002
625 => 0.0043991612738203
626 => 0.0043149307163555
627 => 0.0043213345827003
628 => 0.004285677041128
629 => 0.0042789916819412
630 => 0.0041888525219036
701 => 0.0040291579340168
702 => 0.0041176442376348
703 => 0.0040107652259214
704 => 0.0039702885247042
705 => 0.0041618989328478
706 => 0.0041426665623156
707 => 0.0041097491040751
708 => 0.0040610573227379
709 => 0.0040429970673967
710 => 0.0039332686731258
711 => 0.0039267853342141
712 => 0.0039811696893306
713 => 0.0039560731806957
714 => 0.0039208281777813
715 => 0.0037931743499538
716 => 0.0036496491827459
717 => 0.0036539813053769
718 => 0.003699633990685
719 => 0.003832375330322
720 => 0.0037805109924773
721 => 0.0037428828202963
722 => 0.0037358361947455
723 => 0.0038240394666236
724 => 0.0039488655754879
725 => 0.0040074311929402
726 => 0.0039493944447092
727 => 0.0038827249532618
728 => 0.0038867828162895
729 => 0.0039137779610583
730 => 0.0039166147690827
731 => 0.003873219783885
801 => 0.0038854352180306
802 => 0.0038668788565607
803 => 0.0037529985004725
804 => 0.0037509387659494
805 => 0.0037229906899965
806 => 0.003722144433364
807 => 0.0036745977841939
808 => 0.0036679456793005
809 => 0.0035735389214981
810 => 0.0036356777353736
811 => 0.00359399828146
812 => 0.003531177513223
813 => 0.0035203471891004
814 => 0.0035200216164792
815 => 0.0035845244989919
816 => 0.0036349239816361
817 => 0.0035947233134054
818 => 0.0035855704005065
819 => 0.003683299564294
820 => 0.003670862637381
821 => 0.0036600923388838
822 => 0.0039376887665438
823 => 0.0037179495329315
824 => 0.0036221306847996
825 => 0.0035035366647306
826 => 0.0035421514756681
827 => 0.0035502881837022
828 => 0.0032650909436151
829 => 0.0031493864588309
830 => 0.0031096810398844
831 => 0.0030868300099285
901 => 0.0030972435112246
902 => 0.0029930959041363
903 => 0.0030630848185421
904 => 0.0029729017941817
905 => 0.0029577823166667
906 => 0.003119040735756
907 => 0.0031414789027143
908 => 0.0030457507114783
909 => 0.0031072237072382
910 => 0.0030849327444371
911 => 0.0029744477232934
912 => 0.0029702280081585
913 => 0.0029147905082848
914 => 0.0028280415557978
915 => 0.0027883949567261
916 => 0.002767746663702
917 => 0.002776266551831
918 => 0.0027719586356801
919 => 0.0027438465688088
920 => 0.0027735699864463
921 => 0.0026976389369467
922 => 0.0026674025812179
923 => 0.0026537455208133
924 => 0.0025863523439542
925 => 0.0026936048582188
926 => 0.0027147349546605
927 => 0.0027359066839196
928 => 0.0029201921325667
929 => 0.0029109857523375
930 => 0.0029942069459199
1001 => 0.0029909731233712
1002 => 0.0029672370908676
1003 => 0.0028670986741225
1004 => 0.0029070120622415
1005 => 0.0027841648575291
1006 => 0.0028762103360976
1007 => 0.00283420462359
1008 => 0.0028620081624448
1009 => 0.0028120148926398
1010 => 0.0028396832323214
1011 => 0.0027197456844017
1012 => 0.0026077496897211
1013 => 0.0026528201473475
1014 => 0.0027018168892194
1015 => 0.0028080543097353
1016 => 0.0027447801785157
1017 => 0.0027675359487621
1018 => 0.0026913079277067
1019 => 0.0025340277468118
1020 => 0.0025349179355551
1021 => 0.0025107238062594
1022 => 0.0024898165461472
1023 => 0.0027520479736364
1024 => 0.0027194353503627
1025 => 0.0026674714034107
1026 => 0.0027370272113712
1027 => 0.002755418870995
1028 => 0.0027559424556889
1029 => 0.0028066885776816
1030 => 0.0028337717920858
1031 => 0.0028385453260099
1101 => 0.002918395445408
1102 => 0.0029451601521816
1103 => 0.0030554001914993
1104 => 0.0028314739705635
1105 => 0.0028268623574021
1106 => 0.0027380060042303
1107 => 0.0026816519002854
1108 => 0.0027418646179405
1109 => 0.0027952048659272
1110 => 0.0027396634344206
1111 => 0.0027469159728318
1112 => 0.0026723561389359
1113 => 0.0026990077711874
1114 => 0.002721963747245
1115 => 0.0027092888065559
1116 => 0.0026903138068703
1117 => 0.0027908315738765
1118 => 0.0027851599675297
1119 => 0.0028787644230593
1120 => 0.0029517357898635
1121 => 0.0030825135243687
1122 => 0.002946040140815
1123 => 0.0029410665082858
1124 => 0.0029896845640551
1125 => 0.0029451527090106
1126 => 0.0029732953042113
1127 => 0.003077979317199
1128 => 0.0030801911254346
1129 => 0.0030431404877356
1130 => 0.0030408859530645
1201 => 0.0030480019333241
1202 => 0.0030896804519685
1203 => 0.0030751166969026
1204 => 0.003091970242974
1205 => 0.0031130458604069
1206 => 0.0032002235499861
1207 => 0.0032212417958049
1208 => 0.0031701783551761
1209 => 0.0031747888121318
1210 => 0.0031556896836138
1211 => 0.0031372401647769
1212 => 0.0031787119887865
1213 => 0.0032545025622949
1214 => 0.0032540310730707
1215 => 0.0032716130129664
1216 => 0.0032825664158648
1217 => 0.0032355463922439
1218 => 0.003204938085841
1219 => 0.003216675258173
1220 => 0.0032354432523343
1221 => 0.0032105890506152
1222 => 0.0030571774040188
1223 => 0.0031037126976222
1224 => 0.003095966949307
1225 => 0.003084936061791
1226 => 0.003131727659356
1227 => 0.003127214495622
1228 => 0.0029920277198931
1229 => 0.0030006819386629
1230 => 0.0029925540116002
1231 => 0.0030188170067571
]
'min_raw' => 0.0024898165461472
'max_raw' => 0.0055774964206016
'avg_raw' => 0.0040336564833744
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002489'
'max' => '$0.005577'
'avg' => '$0.004033'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0006071546705176
'max_diff' => -0.0040530509976731
'year' => 2034
]
9 => [
'items' => [
101 => 0.0029437344210843
102 => 0.0029668293187484
103 => 0.002981314222062
104 => 0.002989845941392
105 => 0.0030206683618668
106 => 0.0030170517065751
107 => 0.0030204435454958
108 => 0.0030661450582425
109 => 0.00329728762685
110 => 0.003309868206872
111 => 0.0032479168297128
112 => 0.003272665182951
113 => 0.0032251537566035
114 => 0.0032570484954095
115 => 0.003278870065662
116 => 0.0031802625857376
117 => 0.0031744236907337
118 => 0.003126716167829
119 => 0.0031523514883458
120 => 0.0031115638501588
121 => 0.0031215717098788
122 => 0.003093588861632
123 => 0.0031439524171468
124 => 0.0032002666979177
125 => 0.0032144939091588
126 => 0.0031770682415831
127 => 0.0031499695917866
128 => 0.0031023932895942
129 => 0.0031815137404472
130 => 0.0032046509714287
131 => 0.0031813922104227
201 => 0.0031760026472837
202 => 0.0031657894348739
203 => 0.0031781694285774
204 => 0.0032045249610998
205 => 0.0031920961786725
206 => 0.0032003056084327
207 => 0.003169019727714
208 => 0.0032355619578283
209 => 0.0033412470335095
210 => 0.003341586828309
211 => 0.0033291579788859
212 => 0.0033240723614853
213 => 0.0033368251152391
214 => 0.0033437429610051
215 => 0.0033849830281896
216 => 0.0034292352633554
217 => 0.0036357411361112
218 => 0.0035777551133879
219 => 0.0037609794087862
220 => 0.0039058860377491
221 => 0.0039493371997762
222 => 0.0039093641752464
223 => 0.0037726186176306
224 => 0.0037659092281948
225 => 0.0039702648237582
226 => 0.0039125250079323
227 => 0.0039056570405664
228 => 0.003832593471407
301 => 0.0038757830898793
302 => 0.0038663368867659
303 => 0.0038514255930274
304 => 0.0039338283764576
305 => 0.0040880790308917
306 => 0.0040640376198447
307 => 0.004046091821747
308 => 0.0039674585584264
309 => 0.0040148133463206
310 => 0.0039979512133727
311 => 0.0040704016374909
312 => 0.0040274836112167
313 => 0.0039120875720387
314 => 0.0039304647716281
315 => 0.00392768709488
316 => 0.0039848514855285
317 => 0.0039676921543632
318 => 0.0039243364600725
319 => 0.0040875518189241
320 => 0.0040769535213718
321 => 0.0040919794841928
322 => 0.0040985943777199
323 => 0.0041979406904756
324 => 0.0042386396960842
325 => 0.0042478790828937
326 => 0.0042865399904478
327 => 0.0042469171642945
328 => 0.004405436719504
329 => 0.0045108429738459
330 => 0.0046332777624202
331 => 0.004812187895896
401 => 0.0048794597610942
402 => 0.0048673077007732
403 => 0.0050029553221015
404 => 0.0052467110823511
405 => 0.0049165777091636
406 => 0.0052642089527565
407 => 0.0051541529146307
408 => 0.004893212028058
409 => 0.0048764105112537
410 => 0.0050531227092267
411 => 0.0054450533564121
412 => 0.0053468791745327
413 => 0.0054452139342037
414 => 0.0053305012136892
415 => 0.005324804760241
416 => 0.0054396425934119
417 => 0.0057079674501001
418 => 0.0055804963686944
419 => 0.0053977353163078
420 => 0.0055326832333131
421 => 0.005415778858763
422 => 0.0051523605834273
423 => 0.0053468041025861
424 => 0.0052167852587572
425 => 0.0052547316695683
426 => 0.0055280119404533
427 => 0.0054951301352505
428 => 0.005537682235956
429 => 0.0054625788919931
430 => 0.0053924205260213
501 => 0.0052614647259065
502 => 0.0052226951695354
503 => 0.0052334096801338
504 => 0.005222689859956
505 => 0.0051494212933377
506 => 0.0051335989533524
507 => 0.0051072276935177
508 => 0.0051154012496461
509 => 0.0050658155659726
510 => 0.0051593939959895
511 => 0.0051767629772109
512 => 0.0052448615547838
513 => 0.0052519317750157
514 => 0.0054415853442336
515 => 0.0053371273453071
516 => 0.0054072067894567
517 => 0.0054009382243587
518 => 0.004898867408312
519 => 0.0049680483369549
520 => 0.0050756721517519
521 => 0.0050271877690665
522 => 0.0049586421955476
523 => 0.00490328796975
524 => 0.0048194206574063
525 => 0.0049374622890009
526 => 0.0050926744822197
527 => 0.0052558682123749
528 => 0.0054519347862795
529 => 0.0054081750094506
530 => 0.0052522028841568
531 => 0.0052591996797598
601 => 0.0053024511170397
602 => 0.0052464365759547
603 => 0.005229916794255
604 => 0.0053001815527127
605 => 0.0053006654274874
606 => 0.0052362139283857
607 => 0.0051645878816339
608 => 0.0051642877658827
609 => 0.0051515426026888
610 => 0.0053327685499079
611 => 0.0054324244968685
612 => 0.0054438498905839
613 => 0.0054316554768386
614 => 0.0054363486227102
615 => 0.0053783610229428
616 => 0.0055109034803226
617 => 0.0056325375463047
618 => 0.0055999370182887
619 => 0.0055510641923546
620 => 0.0055121346324638
621 => 0.0055907664511776
622 => 0.0055872651000683
623 => 0.0056314751788496
624 => 0.0056294695543063
625 => 0.0056146033676373
626 => 0.005599937549207
627 => 0.0056580858615341
628 => 0.0056413400814172
629 => 0.0056245682904785
630 => 0.0055909298961182
701 => 0.0055955019125864
702 => 0.0055466375252347
703 => 0.0055240306237636
704 => 0.005184077067179
705 => 0.0050932303685567
706 => 0.0051218125892984
707 => 0.0051312225985036
708 => 0.0050916859988399
709 => 0.0051483713266384
710 => 0.0051395369783457
711 => 0.005173906259632
712 => 0.005152433824825
713 => 0.0051533150610394
714 => 0.0052164609134009
715 => 0.0052347924229831
716 => 0.0052254688692561
717 => 0.0052319987666938
718 => 0.0053824774970464
719 => 0.0053610842336291
720 => 0.0053497194888223
721 => 0.0053528676008018
722 => 0.0053913181427073
723 => 0.0054020821951191
724 => 0.0053564741486738
725 => 0.0053779831670344
726 => 0.0054695658373127
727 => 0.0055016145887799
728 => 0.0056038988191897
729 => 0.0055604466601544
730 => 0.0056402049786292
731 => 0.005885354858006
801 => 0.0060811975447336
802 => 0.0059010925164776
803 => 0.0062607326702371
804 => 0.0065407641172548
805 => 0.0065300160439015
806 => 0.0064811860838699
807 => 0.0061623777264614
808 => 0.0058690055228093
809 => 0.006114423828406
810 => 0.0061150494501377
811 => 0.0060939678000362
812 => 0.0059630314818373
813 => 0.0060894114999838
814 => 0.0060994430868795
815 => 0.0060938280658322
816 => 0.0059934394976655
817 => 0.0058401647089836
818 => 0.005870114235804
819 => 0.0059191721716897
820 => 0.0058262952645006
821 => 0.0057966154650434
822 => 0.0058517958590472
823 => 0.006029598585819
824 => 0.0059959860102639
825 => 0.005995108250077
826 => 0.0061389171022523
827 => 0.0060359809999875
828 => 0.0058704919952489
829 => 0.0058287038390206
830 => 0.0056803840362851
831 => 0.0057828290523315
901 => 0.0057865158660797
902 => 0.0057304077777537
903 => 0.0058750448573872
904 => 0.0058737120012355
905 => 0.0060110233819592
906 => 0.0062735111701034
907 => 0.0061958806149096
908 => 0.0061056047253995
909 => 0.0061154202176682
910 => 0.006223071941156
911 => 0.0061579832516854
912 => 0.0061813895982335
913 => 0.0062230365128471
914 => 0.0062481631304683
915 => 0.0061118048840692
916 => 0.0060800132540647
917 => 0.0060149787364213
918 => 0.005998012444695
919 => 0.0060509817023257
920 => 0.0060370261743715
921 => 0.0057862060036602
922 => 0.0057599939002706
923 => 0.0057607977880593
924 => 0.0056948862077686
925 => 0.0055943552272334
926 => 0.0058585446416868
927 => 0.0058373265343777
928 => 0.0058139033860596
929 => 0.0058167725880779
930 => 0.0059314482586821
1001 => 0.0058649305784715
1002 => 0.0060417787333448
1003 => 0.006005424069245
1004 => 0.0059681370451897
1005 => 0.0059629828426748
1006 => 0.0059486305195929
1007 => 0.0058994110634809
1008 => 0.005839975612595
1009 => 0.0058007311797095
1010 => 0.005350867887792
1011 => 0.0054343598980375
1012 => 0.0055304098452888
1013 => 0.0055635659021839
1014 => 0.0055068501725355
1015 => 0.0059016505461739
1016 => 0.0059737843788287
1017 => 0.0057552862945438
1018 => 0.0057144142241921
1019 => 0.0059043301123017
1020 => 0.0057897876154985
1021 => 0.0058413660947955
1022 => 0.0057298816344753
1023 => 0.0059564094508673
1024 => 0.0059546836884443
1025 => 0.005866559251505
1026 => 0.005941041422156
1027 => 0.0059280983120892
1028 => 0.0058286060398257
1029 => 0.0059595635333593
1030 => 0.0059596284866422
1031 => 0.0058748106320786
1101 => 0.0057757619469642
1102 => 0.0057580543814913
1103 => 0.0057447141095841
1104 => 0.0058380852056798
1105 => 0.0059218014384754
1106 => 0.0060775765926939
1107 => 0.0061167421675907
1108 => 0.0062696080138132
1109 => 0.0061785838452907
1110 => 0.0062189336802364
1111 => 0.0062627391339026
1112 => 0.0062837410792824
1113 => 0.0062495195363126
1114 => 0.0064869831175887
1115 => 0.0065070323195445
1116 => 0.0065137546435354
1117 => 0.0064336832600029
1118 => 0.0065048053895204
1119 => 0.0064715297004365
1120 => 0.0065581037991802
1121 => 0.0065716797232967
1122 => 0.0065601813985475
1123 => 0.0065644906111435
1124 => 0.0063618573359706
1125 => 0.0063513497316772
1126 => 0.0062080778015512
1127 => 0.0062664621720902
1128 => 0.0061573153898033
1129 => 0.0061919269588029
1130 => 0.0062071834086268
1201 => 0.0061992143050347
1202 => 0.0062697631368013
1203 => 0.0062097822176255
1204 => 0.0060514827101447
1205 => 0.0058931400740689
1206 => 0.0058911522112561
1207 => 0.005849463390157
1208 => 0.0058193300081908
1209 => 0.0058251347665966
1210 => 0.0058455914923454
1211 => 0.005818141026102
1212 => 0.005823998974849
1213 => 0.0059212799553574
1214 => 0.0059407889622221
1215 => 0.0058744897342347
1216 => 0.005608288766932
1217 => 0.0055429623818413
1218 => 0.005589917691966
1219 => 0.0055674760780357
1220 => 0.0044933877186668
1221 => 0.0047457288465227
1222 => 0.0045957963170457
1223 => 0.0046648921246927
1224 => 0.004511849836937
1225 => 0.0045848896382875
1226 => 0.0045714018539646
1227 => 0.00497715892024
1228 => 0.0049708235817507
1229 => 0.0049738559730269
1230 => 0.0048291120365617
1231 => 0.0050596930575769
]
'min_raw' => 0.0029437344210843
'max_raw' => 0.0065716797232967
'avg_raw' => 0.0047577070721905
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.002943'
'max' => '$0.006571'
'avg' => '$0.004757'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00045391787493717
'max_diff' => 0.00099418330269509
'year' => 2035
]
10 => [
'items' => [
101 => 0.0051732855599543
102 => 0.0051522626109308
103 => 0.0051575536342784
104 => 0.0050666363231683
105 => 0.0049747362513338
106 => 0.0048728049283498
107 => 0.0050621807273619
108 => 0.0050411253712644
109 => 0.005089418782674
110 => 0.005212242525195
111 => 0.0052303287878432
112 => 0.0052546369082553
113 => 0.0052459241774574
114 => 0.00545349677286
115 => 0.0054283583619487
116 => 0.0054889346994306
117 => 0.0053643245772925
118 => 0.0052233163959919
119 => 0.0052501174413524
120 => 0.0052475362851638
121 => 0.0052146752043696
122 => 0.0051850096899468
123 => 0.0051356249666397
124 => 0.0052918855387472
125 => 0.0052855416448849
126 => 0.0053882419125448
127 => 0.0053700886426588
128 => 0.005248856663501
129 => 0.0052531864873535
130 => 0.0052823066336045
131 => 0.005383091792267
201 => 0.0054130116893349
202 => 0.0053991516009113
203 => 0.005431957402151
204 => 0.0054578857698507
205 => 0.0054352136059339
206 => 0.0057562036356325
207 => 0.0056229061959549
208 => 0.0056878744405761
209 => 0.0057033689841032
210 => 0.0056636800366738
211 => 0.0056722871482166
212 => 0.0056853245769064
213 => 0.0057644852909206
214 => 0.005972225909831
215 => 0.0060642328158083
216 => 0.0063410401319815
217 => 0.0060565929230648
218 => 0.0060397150028473
219 => 0.0060895763592702
220 => 0.0062520915568941
221 => 0.0063837948602919
222 => 0.0064274884441748
223 => 0.0064332632725874
224 => 0.0065152353406462
225 => 0.006562220201369
226 => 0.0065052817755045
227 => 0.006457032421286
228 => 0.0062842092234055
229 => 0.0063042139791421
301 => 0.0064420269084056
302 => 0.0066366957881313
303 => 0.0068037419387808
304 => 0.0067452481989695
305 => 0.0071915141435852
306 => 0.0072357595891609
307 => 0.0072296462992089
308 => 0.0073304440088355
309 => 0.0071303810823232
310 => 0.0070448503052026
311 => 0.0064674644793214
312 => 0.0066296863451322
313 => 0.0068654853540444
314 => 0.006834276471014
315 => 0.0066630329278164
316 => 0.0068036120351975
317 => 0.0067571321859822
318 => 0.0067204716004553
319 => 0.006888420849758
320 => 0.0067037537511748
321 => 0.0068636431584731
322 => 0.0066585833397689
323 => 0.0067455153934458
324 => 0.0066961685553485
325 => 0.0067281020073184
326 => 0.0065414196996096
327 => 0.0066421489413924
328 => 0.0065372290319844
329 => 0.0065371792862864
330 => 0.006534863173471
331 => 0.0066583009816035
401 => 0.0066623262840951
402 => 0.0065711055573811
403 => 0.006557959225526
404 => 0.0066065681046656
405 => 0.0065496598378787
406 => 0.006576286857732
407 => 0.0065504663431847
408 => 0.0065446536014969
409 => 0.0064983366867718
410 => 0.0064783820863982
411 => 0.0064862067993714
412 => 0.0064594970200778
413 => 0.0064434034119185
414 => 0.0065316617497379
415 => 0.0064845088801722
416 => 0.0065244348962096
417 => 0.00647893416187
418 => 0.0063212087929227
419 => 0.0062304992653255
420 => 0.0059325706645334
421 => 0.0060170628461388
422 => 0.0060730812499566
423 => 0.006054567167829
424 => 0.0060943425802378
425 => 0.0060967844675172
426 => 0.0060838530754808
427 => 0.0060688801801165
428 => 0.0060615922027062
429 => 0.0061159108153946
430 => 0.0061474445983406
501 => 0.0060787034462093
502 => 0.0060625983560559
503 => 0.0061320994561636
504 => 0.0061744950870799
505 => 0.0064875206057184
506 => 0.0064643306642385
507 => 0.0065225328665568
508 => 0.0065159801917613
509 => 0.0065769853721288
510 => 0.0066767030593167
511 => 0.0064739491197598
512 => 0.0065091401929631
513 => 0.0065005121544942
514 => 0.0065947108161045
515 => 0.0065950048940439
516 => 0.0065385280908364
517 => 0.0065691450820867
518 => 0.006552055517504
519 => 0.0065829386704981
520 => 0.0064640209484318
521 => 0.0066088498975337
522 => 0.0066909585791032
523 => 0.0066920986582264
524 => 0.0067310175216356
525 => 0.0067705613408878
526 => 0.0068464622584017
527 => 0.0067684445054936
528 => 0.0066280981628873
529 => 0.0066382307155075
530 => 0.0065559457061881
531 => 0.0065573289320608
601 => 0.0065499451639472
602 => 0.0065721044078803
603 => 0.0064688836563527
604 => 0.0064931093604216
605 => 0.0064591932328597
606 => 0.0065090664659255
607 => 0.0064554111114875
608 => 0.0065005079937928
609 => 0.0065199703132105
610 => 0.0065917866908555
611 => 0.0064448037741172
612 => 0.006145095657019
613 => 0.0062080979368427
614 => 0.0061149126162612
615 => 0.0061235372724626
616 => 0.0061409604505932
617 => 0.0060844862297627
618 => 0.00609525973139
619 => 0.0060948748260999
620 => 0.0060915579202525
621 => 0.0060768667942767
622 => 0.0060555617550609
623 => 0.0061404344739511
624 => 0.006154856002744
625 => 0.0061869132748012
626 => 0.0062822939717881
627 => 0.0062727631909274
628 => 0.0062883082899395
629 => 0.0062543734260781
630 => 0.0061251114134696
701 => 0.0061321309626525
702 => 0.0060445970718605
703 => 0.0061846748364107
704 => 0.006151502572829
705 => 0.0061301161986996
706 => 0.006124280728375
707 => 0.0062198978556611
708 => 0.0062485079987599
709 => 0.006230680077536
710 => 0.0061941144909822
711 => 0.0062643312268107
712 => 0.0062831182631121
713 => 0.0062873239877008
714 => 0.0064117345808652
715 => 0.0062942771578294
716 => 0.0063225503269805
717 => 0.0065431295217652
718 => 0.0063430946299436
719 => 0.0064490575734519
720 => 0.0064438712387718
721 => 0.0064980782950801
722 => 0.0064394246779691
723 => 0.0064401517598489
724 => 0.0064882839535466
725 => 0.006420690968185
726 => 0.0064039539944472
727 => 0.0063808319851009
728 => 0.0064313180466068
729 => 0.0064615821571914
730 => 0.0067054886619637
731 => 0.0068630633875346
801 => 0.0068562226531238
802 => 0.0069187341603203
803 => 0.0068905721537885
804 => 0.0067996296059353
805 => 0.0069548574458584
806 => 0.0069057368622981
807 => 0.0069097863035253
808 => 0.0069096355831205
809 => 0.0069422964769922
810 => 0.0069191532403572
811 => 0.006873535545345
812 => 0.0069038187001828
813 => 0.0069937488436251
814 => 0.0072728947682637
815 => 0.0074291085258831
816 => 0.0072634905039072
817 => 0.0073777315977525
818 => 0.0073092276497092
819 => 0.0072967784445338
820 => 0.0073685302938191
821 => 0.0074404077352182
822 => 0.0074358294529358
823 => 0.0073836501214275
824 => 0.00735417534106
825 => 0.0075773682527787
826 => 0.007741812988141
827 => 0.0077305989596408
828 => 0.0077800940344433
829 => 0.0079254131048886
830 => 0.0079386992594922
831 => 0.0079370255093909
901 => 0.0079040943889389
902 => 0.0080471798858582
903 => 0.0081665443247379
904 => 0.0078964717860259
905 => 0.0079993118732583
906 => 0.0080454801017176
907 => 0.008113268758592
908 => 0.0082276395854372
909 => 0.0083518766387546
910 => 0.0083694451202837
911 => 0.0083569794419095
912 => 0.0082750417655755
913 => 0.0084109834317717
914 => 0.0084906148716051
915 => 0.0085380335716928
916 => 0.0086582795053958
917 => 0.008045765220979
918 => 0.0076121971665336
919 => 0.0075444892540333
920 => 0.0076821759565848
921 => 0.0077184828420167
922 => 0.0077038475820241
923 => 0.0072158273184628
924 => 0.0075419199283438
925 => 0.0078927681579304
926 => 0.0079062456673032
927 => 0.0080818876269248
928 => 0.0081390838487847
929 => 0.008280498648198
930 => 0.0082716531139916
1001 => 0.0083060853672478
1002 => 0.0082981699885077
1003 => 0.0085601111260215
1004 => 0.0088490710993347
1005 => 0.0088390653342953
1006 => 0.0087975239193123
1007 => 0.0088592200044258
1008 => 0.0091574576637176
1009 => 0.0091300007192111
1010 => 0.0091566728020222
1011 => 0.0095083118102651
1012 => 0.0099654925410466
1013 => 0.0097530861914037
1014 => 0.010213946851848
1015 => 0.010504034208424
1016 => 0.011005710296029
1017 => 0.010942897979054
1018 => 0.01113819679849
1019 => 0.010830450822343
1020 => 0.010123803855386
1021 => 0.010011974267929
1022 => 0.010235859933994
1023 => 0.010786260997571
1024 => 0.010218525845791
1025 => 0.010333377927576
1026 => 0.010300300520295
1027 => 0.010298537965831
1028 => 0.010365807500897
1029 => 0.010268229531741
1030 => 0.0098706793314578
1031 => 0.01005287424547
1101 => 0.0099825200394512
1102 => 0.010060583276282
1103 => 0.01048185836973
1104 => 0.010295602608973
1105 => 0.010099397295204
1106 => 0.010345482300115
1107 => 0.010658833075348
1108 => 0.01063922414698
1109 => 0.010601174630048
1110 => 0.010815657764782
1111 => 0.011169921065701
1112 => 0.011265677012394
1113 => 0.011336362094598
1114 => 0.0113461083732
1115 => 0.011446501100077
1116 => 0.010906664105436
1117 => 0.011763399279928
1118 => 0.011911333777731
1119 => 0.011883528223401
1120 => 0.012047951191673
1121 => 0.011999573783399
1122 => 0.011929482508993
1123 => 0.012190127887474
1124 => 0.011891318994043
1125 => 0.011467197388812
1126 => 0.011234515888008
1127 => 0.011540929658148
1128 => 0.011728045855206
1129 => 0.011851717758635
1130 => 0.011889140801889
1201 => 0.010948570114611
1202 => 0.010441654680611
1203 => 0.010766581662008
1204 => 0.011163015004575
1205 => 0.010904461898202
1206 => 0.010914596690466
1207 => 0.010545967907339
1208 => 0.011195630472301
1209 => 0.011100980101109
1210 => 0.01159202639429
1211 => 0.01147483425553
1212 => 0.011875263445312
1213 => 0.011769817019799
1214 => 0.012207519236674
1215 => 0.012382130501299
1216 => 0.01267532999068
1217 => 0.012891008728604
1218 => 0.01301765940879
1219 => 0.013010055777007
1220 => 0.013511908869023
1221 => 0.013215983634072
1222 => 0.012844231794752
1223 => 0.012837507976841
1224 => 0.013030043522189
1225 => 0.013433545205692
1226 => 0.013538167321513
1227 => 0.013596636811446
1228 => 0.013507088752277
1229 => 0.013185883118891
1230 => 0.013047188154944
1231 => 0.013165360282607
]
'min_raw' => 0.0048728049283498
'max_raw' => 0.013596636811446
'avg_raw' => 0.009234720869898
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.004872'
'max' => '$0.013596'
'avg' => '$0.009234'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0019290705072655
'max_diff' => 0.0070249570881494
'year' => 2036
]
11 => [
'items' => [
101 => 0.013020845925122
102 => 0.013270318249707
103 => 0.013612897035776
104 => 0.013542155871156
105 => 0.013778632978372
106 => 0.014023361906223
107 => 0.014373335264515
108 => 0.014464831259848
109 => 0.014616070660853
110 => 0.014771745684042
111 => 0.014821744305931
112 => 0.014917207188778
113 => 0.014916704052264
114 => 0.015204387875116
115 => 0.015521712040549
116 => 0.015641494566929
117 => 0.015916927881491
118 => 0.015445257982637
119 => 0.015803025019071
120 => 0.016125739841425
121 => 0.015740985926244
122 => 0.016271279562156
123 => 0.016291869662367
124 => 0.016602755729863
125 => 0.016287613141892
126 => 0.016100482479125
127 => 0.016640721690838
128 => 0.01690212642801
129 => 0.016823389193792
130 => 0.016224194953652
131 => 0.01587543820524
201 => 0.014962674524494
202 => 0.016043882532794
203 => 0.016570507414367
204 => 0.016222831122432
205 => 0.016398178820962
206 => 0.01735481900746
207 => 0.017719045652614
208 => 0.017643289056558
209 => 0.017656090674232
210 => 0.017852620760775
211 => 0.018724143395605
212 => 0.018201906831079
213 => 0.018601137116829
214 => 0.018812887420858
215 => 0.019009572904214
216 => 0.018526575520178
217 => 0.017898203020188
218 => 0.017699171072158
219 => 0.016188261567149
220 => 0.016109612165866
221 => 0.016065463873605
222 => 0.0157871151358
223 => 0.01556840927402
224 => 0.015394486252706
225 => 0.014938060306965
226 => 0.015092090665128
227 => 0.014364642971116
228 => 0.014830038226582
301 => 0.013669014142099
302 => 0.014635949499673
303 => 0.014109690545701
304 => 0.014463059279604
305 => 0.014461826409381
306 => 0.013811162534607
307 => 0.013435873190646
308 => 0.013675022167098
309 => 0.013931408853523
310 => 0.013973006730807
311 => 0.014305418762136
312 => 0.014398187814907
313 => 0.014117093254038
314 => 0.013644954498571
315 => 0.013754621563127
316 => 0.013433650791083
317 => 0.012871161859038
318 => 0.013275151230147
319 => 0.013413090963603
320 => 0.01347401300815
321 => 0.012920869745774
322 => 0.012747060123411
323 => 0.012654525338868
324 => 0.013573550649474
325 => 0.013623896930571
326 => 0.01336631823823
327 => 0.014530598352223
328 => 0.014267085904608
329 => 0.014561493870711
330 => 0.013744670426494
331 => 0.013775874182062
401 => 0.013389176873394
402 => 0.013605701527124
403 => 0.013452668880783
404 => 0.013588208474841
405 => 0.013669450348669
406 => 0.014056084204115
407 => 0.014640364237244
408 => 0.013998333999214
409 => 0.013718592230462
410 => 0.013892142450468
411 => 0.014354329556526
412 => 0.015054566681125
413 => 0.014640012209777
414 => 0.01482398444457
415 => 0.014864174193517
416 => 0.014558497073985
417 => 0.015065837432535
418 => 0.015337725252308
419 => 0.015616625896138
420 => 0.015858787510557
421 => 0.015505226845836
422 => 0.015883587438018
423 => 0.015578695590354
424 => 0.015305176083861
425 => 0.015305590900048
426 => 0.015134008118142
427 => 0.014801544857377
428 => 0.014740233531191
429 => 0.01505918279278
430 => 0.015314949895967
501 => 0.015336016099628
502 => 0.01547762190974
503 => 0.015561422769509
504 => 0.016382785116988
505 => 0.01671314384781
506 => 0.017117100250488
507 => 0.017274464035067
508 => 0.017748072608609
509 => 0.017365595220866
510 => 0.017282843832132
511 => 0.016134024348903
512 => 0.016322143474923
513 => 0.016623340346478
514 => 0.016138990974377
515 => 0.016446199169118
516 => 0.016506848574319
517 => 0.016122532968051
518 => 0.016327812538656
519 => 0.015782650860281
520 => 0.014652247272077
521 => 0.015067095894872
522 => 0.015372564117785
523 => 0.014936623299728
524 => 0.015718030342857
525 => 0.015261548479776
526 => 0.015116865644173
527 => 0.014552406319332
528 => 0.014818809392625
529 => 0.015179123363779
530 => 0.014956491220601
531 => 0.01541848634608
601 => 0.016072794653357
602 => 0.016539093717856
603 => 0.01657489036997
604 => 0.016275091311108
605 => 0.016755521216227
606 => 0.016759020623588
607 => 0.016217093728001
608 => 0.015885166521915
609 => 0.015809751962312
610 => 0.015998152318096
611 => 0.016226905130644
612 => 0.016587584559028
613 => 0.016805535583696
614 => 0.017373836263739
615 => 0.017527602133301
616 => 0.017696544205051
617 => 0.017922302912714
618 => 0.018193384124609
619 => 0.017600273865646
620 => 0.01762383924193
621 => 0.017071543180954
622 => 0.016481335632534
623 => 0.016929229591375
624 => 0.017514791361724
625 => 0.017380462844617
626 => 0.01736534814236
627 => 0.017390766879088
628 => 0.017289487563949
629 => 0.016831404975162
630 => 0.016601358766823
701 => 0.016898177066628
702 => 0.017055922783112
703 => 0.017300572632506
704 => 0.017270414374637
705 => 0.017900606113201
706 => 0.018145479566798
707 => 0.018082830458642
708 => 0.018094359402277
709 => 0.018537691093334
710 => 0.019030767111906
711 => 0.019492597870409
712 => 0.019962391954051
713 => 0.019396036849845
714 => 0.019108476655856
715 => 0.019405165374077
716 => 0.019247738163993
717 => 0.02015236160908
718 => 0.020214995773684
719 => 0.0211195538042
720 => 0.021978087087926
721 => 0.021438857714639
722 => 0.021947326726224
723 => 0.02249727741834
724 => 0.023558221529716
725 => 0.023200932877469
726 => 0.022927255369274
727 => 0.02266863144643
728 => 0.023206786774477
729 => 0.023899115006767
730 => 0.024048235876965
731 => 0.024289868655243
801 => 0.024035821334334
802 => 0.024341793349974
803 => 0.025422009016098
804 => 0.025130125207784
805 => 0.024715603277314
806 => 0.025568329800704
807 => 0.025876928214629
808 => 0.028042833497794
809 => 0.030777378386876
810 => 0.029645258846806
811 => 0.028942515715016
812 => 0.029107677020276
813 => 0.030106240243583
814 => 0.030426947058096
815 => 0.02955515538198
816 => 0.029863086940176
817 => 0.031559820100998
818 => 0.032470063004062
819 => 0.03123383087977
820 => 0.027823115478524
821 => 0.024678280112858
822 => 0.025512432065615
823 => 0.025417865120921
824 => 0.027240793230452
825 => 0.025123163875488
826 => 0.025158819322863
827 => 0.027019443655184
828 => 0.026523060982497
829 => 0.025718984624634
830 => 0.024684150760115
831 => 0.022771164651004
901 => 0.0210767795066
902 => 0.02439985896837
903 => 0.024256561739351
904 => 0.024049046116271
905 => 0.024510849679899
906 => 0.026753236699648
907 => 0.026701542420945
908 => 0.026372689794485
909 => 0.026622121613281
910 => 0.025675258020814
911 => 0.025919286328276
912 => 0.024677781954869
913 => 0.025238993781451
914 => 0.025717259437899
915 => 0.025813278349275
916 => 0.026029613859452
917 => 0.024181050611134
918 => 0.025011001238663
919 => 0.025498519476479
920 => 0.02329589434196
921 => 0.02545498065955
922 => 0.024148871237663
923 => 0.023705558082769
924 => 0.024302420843766
925 => 0.024069822845338
926 => 0.023869848744901
927 => 0.023758259760867
928 => 0.024196529899204
929 => 0.024176084073404
930 => 0.023458989062516
1001 => 0.022523567853345
1002 => 0.022837525915297
1003 => 0.022723462008017
1004 => 0.022310079693498
1005 => 0.022588649461513
1006 => 0.021361969184109
1007 => 0.019251529524128
1008 => 0.020645750608026
1009 => 0.020592074612917
1010 => 0.02056500874217
1011 => 0.02161272735328
1012 => 0.021512013383803
1013 => 0.021329216543007
1014 => 0.022306722486166
1015 => 0.021949919667603
1016 => 0.023049501881098
1017 => 0.023773757843424
1018 => 0.023590063104152
1019 => 0.024271229337353
1020 => 0.022844758874939
1021 => 0.023318575142491
1022 => 0.023416228018553
1023 => 0.022294660214562
1024 => 0.02152849143476
1025 => 0.021477396712111
1026 => 0.020148965632495
1027 => 0.020858602792505
1028 => 0.021483054126532
1029 => 0.021183990396914
1030 => 0.021089315754392
1031 => 0.021572987970613
1101 => 0.021610573444186
1102 => 0.020753620663596
1103 => 0.020931808282846
1104 => 0.021674880276345
1105 => 0.020913084775136
1106 => 0.019433040554876
1107 => 0.019065969125039
1108 => 0.01901699502983
1109 => 0.018021468199311
1110 => 0.019090498593201
1111 => 0.018623838178035
1112 => 0.020098012838096
1113 => 0.019255972178426
1114 => 0.019219673488553
1115 => 0.01916480269495
1116 => 0.018307911627226
1117 => 0.01849551631279
1118 => 0.019119142860602
1119 => 0.019341659838517
1120 => 0.019318449494693
1121 => 0.019116086750299
1122 => 0.019208727378418
1123 => 0.018910299637114
1124 => 0.018804918590423
1125 => 0.018472307019727
1126 => 0.017983459897095
1127 => 0.01805143708777
1128 => 0.017082903024028
1129 => 0.016555194262108
1130 => 0.016409131431898
1201 => 0.016213810110956
1202 => 0.016431193494829
1203 => 0.017080159288716
1204 => 0.016297368855515
1205 => 0.014955329564157
1206 => 0.015035988412291
1207 => 0.015217204896222
1208 => 0.014879509177284
1209 => 0.014559908519962
1210 => 0.014837775361483
1211 => 0.014269135621943
1212 => 0.015285922292037
1213 => 0.015258421062123
1214 => 0.015637416255068
1215 => 0.015874409726981
1216 => 0.015328216501769
1217 => 0.015190850382692
1218 => 0.01526910036706
1219 => 0.013975802429445
1220 => 0.015531726221883
1221 => 0.015545181915452
1222 => 0.015429966097933
1223 => 0.016258447483648
1224 => 0.018006801617333
1225 => 0.017349000464859
1226 => 0.017094279976476
1227 => 0.01661005614186
1228 => 0.017255255651119
1229 => 0.017205714395488
1230 => 0.016981670049562
1231 => 0.016846167330085
]
'min_raw' => 0.012654525338868
'max_raw' => 0.032470063004062
'avg_raw' => 0.022562294171465
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.012654'
'max' => '$0.03247'
'avg' => '$0.022562'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0077817204105187
'max_diff' => 0.018873426192616
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00039721109038487
]
1 => [
'year' => 2028
'avg' => 0.00068172954230389
]
2 => [
'year' => 2029
'avg' => 0.0018623622397788
]
3 => [
'year' => 2030
'avg' => 0.0014368096944763
]
4 => [
'year' => 2031
'avg' => 0.0014111251818409
]
5 => [
'year' => 2032
'avg' => 0.0024741465412057
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00039721109038487
'min' => '$0.000397'
'max_raw' => 0.0024741465412057
'max' => '$0.002474'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0024741465412057
]
1 => [
'year' => 2033
'avg' => 0.0063637593174697
]
2 => [
'year' => 2034
'avg' => 0.0040336564833744
]
3 => [
'year' => 2035
'avg' => 0.0047577070721905
]
4 => [
'year' => 2036
'avg' => 0.009234720869898
]
5 => [
'year' => 2037
'avg' => 0.022562294171465
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0024741465412057
'min' => '$0.002474'
'max_raw' => 0.022562294171465
'max' => '$0.022562'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.022562294171465
]
]
]
]
'prediction_2025_max_price' => '$0.000679'
'last_price' => 0.00065853
'sma_50day_nextmonth' => '$0.0006079'
'sma_200day_nextmonth' => '$0.001033'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.000629'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000619'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00063'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0006071'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000614'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.000721'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001198'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000636'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000629'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000624'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000621'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000649'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000796'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001263'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0009064'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001636'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0063027'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000643'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000642'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000694'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000956'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.002413'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006627'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.010398'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.15'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 44.88
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000633'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000625'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 67.45
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 71.63
'cci_20_action' => 'NEUTRAL'
'adx_14' => 6.43
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.0000041'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -32.55
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 57.99
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0000088'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 13
'buy_signals' => 20
'sell_pct' => 39.39
'buy_pct' => 60.61
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767712365
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de DinoLFG para 2026
A previsão de preço para DinoLFG em 2026 sugere que o preço médio poderia variar entre $0.000227 na extremidade inferior e $0.000679 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, DinoLFG poderia potencialmente ganhar 3.13% até 2026 se DINO atingir a meta de preço prevista.
Previsão de preço de DinoLFG 2027-2032
A previsão de preço de DINO para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000397 na extremidade inferior e $0.002474 na extremidade superior. Considerando a volatilidade de preços no mercado, se DinoLFG atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de DinoLFG | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000219 | $0.000397 | $0.000575 |
| 2028 | $0.000395 | $0.000681 | $0.000968 |
| 2029 | $0.000868 | $0.001862 | $0.002856 |
| 2030 | $0.000738 | $0.001436 | $0.002135 |
| 2031 | $0.000873 | $0.001411 | $0.001949 |
| 2032 | $0.001332 | $0.002474 | $0.003615 |
Previsão de preço de DinoLFG 2032-2037
A previsão de preço de DinoLFG para 2032-2037 é atualmente estimada entre $0.002474 na extremidade inferior e $0.022562 na extremidade superior. Comparado ao preço atual, DinoLFG poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de DinoLFG | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001332 | $0.002474 | $0.003615 |
| 2033 | $0.003096 | $0.006363 | $0.00963 |
| 2034 | $0.002489 | $0.004033 | $0.005577 |
| 2035 | $0.002943 | $0.004757 | $0.006571 |
| 2036 | $0.004872 | $0.009234 | $0.013596 |
| 2037 | $0.012654 | $0.022562 | $0.03247 |
DinoLFG Histograma de preços potenciais
Previsão de preço de DinoLFG baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para DinoLFG é Altista, com 20 indicadores técnicos mostrando sinais de alta e 13 indicando sinais de baixa. A previsão de preço de DINO foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de DinoLFG
De acordo com nossos indicadores técnicos, o SMA de 200 dias de DinoLFG está projetado para aumentar no próximo mês, alcançando $0.001033 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para DinoLFG é esperado para alcançar $0.0006079 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 53.15, sugerindo que o mercado de DINO está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DINO para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.000629 | BUY |
| SMA 5 | $0.000619 | BUY |
| SMA 10 | $0.00063 | BUY |
| SMA 21 | $0.0006071 | BUY |
| SMA 50 | $0.000614 | BUY |
| SMA 100 | $0.000721 | SELL |
| SMA 200 | $0.001198 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.000636 | BUY |
| EMA 5 | $0.000629 | BUY |
| EMA 10 | $0.000624 | BUY |
| EMA 21 | $0.000621 | BUY |
| EMA 50 | $0.000649 | BUY |
| EMA 100 | $0.000796 | SELL |
| EMA 200 | $0.001263 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.0009064 | SELL |
| SMA 50 | $0.001636 | SELL |
| SMA 100 | $0.0063027 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.000956 | SELL |
| EMA 50 | $0.002413 | SELL |
| EMA 100 | $0.006627 | SELL |
| EMA 200 | $0.010398 | SELL |
Osciladores de DinoLFG
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 53.15 | NEUTRAL |
| Stoch RSI (14) | 44.88 | NEUTRAL |
| Estocástico Rápido (14) | 67.45 | NEUTRAL |
| Índice de Canal de Commodities (20) | 71.63 | NEUTRAL |
| Índice Direcional Médio (14) | 6.43 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.0000041 | SELL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -32.55 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 57.99 | NEUTRAL |
| VWMA (10) | 0.000633 | BUY |
| Média Móvel de Hull (9) | 0.000625 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0000088 | SELL |
Previsão do preço de DinoLFG com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do DinoLFG
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de DinoLFG por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.000925 | $0.00130026 | $0.001827 | $0.002567 | $0.0036075 | $0.005069 |
| Amazon.com stock | $0.001374 | $0.002867 | $0.005982 | $0.012482 | $0.026045 | $0.054345 |
| Apple stock | $0.000934 | $0.001324 | $0.001879 | $0.002665 | $0.00378 | $0.005363 |
| Netflix stock | $0.001039 | $0.001639 | $0.002586 | $0.004081 | $0.00644 | $0.010161 |
| Google stock | $0.000852 | $0.0011043 | $0.00143 | $0.001852 | $0.002398 | $0.0031058 |
| Tesla stock | $0.001492 | $0.003384 | $0.007671 | $0.01739 | $0.039424 | $0.089371 |
| Kodak stock | $0.000493 | $0.00037 | $0.000277 | $0.0002082 | $0.000156 | $0.000117 |
| Nokia stock | $0.000436 | $0.000288 | $0.000191 | $0.000126 | $0.000084 | $0.000055 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para DinoLFG
Você pode fazer perguntas como: 'Devo investir em DinoLFG agora?', 'Devo comprar DINO hoje?', 'DinoLFG será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para DinoLFG regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como DinoLFG, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre DinoLFG para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de DinoLFG é de $0.0006585 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de DinoLFG com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se DinoLFG tiver 1% da média anterior do crescimento anual do Bitcoin | $0.000675 | $0.000693 | $0.000711 | $0.000729 |
| Se DinoLFG tiver 2% da média anterior do crescimento anual do Bitcoin | $0.000692 | $0.000728 | $0.000766 | $0.0008065 |
| Se DinoLFG tiver 5% da média anterior do crescimento anual do Bitcoin | $0.000744 | $0.00084 | $0.00095 | $0.001073 |
| Se DinoLFG tiver 10% da média anterior do crescimento anual do Bitcoin | $0.000829 | $0.001045 | $0.001317 | $0.001659 |
| Se DinoLFG tiver 20% da média anterior do crescimento anual do Bitcoin | $0.00100087 | $0.001521 | $0.002312 | $0.003513 |
| Se DinoLFG tiver 50% da média anterior do crescimento anual do Bitcoin | $0.001514 | $0.003482 | $0.0080087 | $0.018417 |
| Se DinoLFG tiver 100% da média anterior do crescimento anual do Bitcoin | $0.00237 | $0.008531 | $0.030707 | $0.110524 |
Perguntas Frequentes sobre DinoLFG
DINO é um bom investimento?
A decisão de adquirir DinoLFG depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de DinoLFG experimentou uma queda de -9.0604% nas últimas 24 horas, e DinoLFG registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em DinoLFG dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
DinoLFG pode subir?
Parece que o valor médio de DinoLFG pode potencialmente subir para $0.000679 até o final deste ano. Observando as perspectivas de DinoLFG em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.002135. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de DinoLFG na próxima semana?
Com base na nossa nova previsão experimental de DinoLFG, o preço de DinoLFG aumentará 0.86% na próxima semana e atingirá $0.000664 até 13 de janeiro de 2026.
Qual será o preço de DinoLFG no próximo mês?
Com base na nossa nova previsão experimental de DinoLFG, o preço de DinoLFG diminuirá -11.62% no próximo mês e atingirá $0.000582 até 5 de fevereiro de 2026.
Até onde o preço de DinoLFG pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de DinoLFG em 2026, espera-se que DINO fluctue dentro do intervalo de $0.000227 e $0.000679. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de DinoLFG não considera flutuações repentinas e extremas de preço.
Onde estará DinoLFG em 5 anos?
O futuro de DinoLFG parece seguir uma tendência de alta, com um preço máximo de $0.002135 projetada após um período de cinco anos. Com base na previsão de DinoLFG para 2030, o valor de DinoLFG pode potencialmente atingir seu pico mais alto de aproximadamente $0.002135, enquanto seu pico mais baixo está previsto para cerca de $0.000738.
Quanto será DinoLFG em 2026?
Com base na nossa nova simulação experimental de previsão de preços de DinoLFG, espera-se que o valor de DINO em 2026 aumente 3.13% para $0.000679 se o melhor cenário ocorrer. O preço ficará entre $0.000679 e $0.000227 durante 2026.
Quanto será DinoLFG em 2027?
De acordo com nossa última simulação experimental para previsão de preços de DinoLFG, o valor de DINO pode diminuir -12.62% para $0.000575 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.000575 e $0.000219 ao longo do ano.
Quanto será DinoLFG em 2028?
Nosso novo modelo experimental de previsão de preços de DinoLFG sugere que o valor de DINO em 2028 pode aumentar 47.02%, alcançando $0.000968 no melhor cenário. O preço é esperado para variar entre $0.000968 e $0.000395 durante o ano.
Quanto será DinoLFG em 2029?
Com base no nosso modelo de previsão experimental, o valor de DinoLFG pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.002856 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.002856 e $0.000868.
Quanto será DinoLFG em 2030?
Usando nossa nova simulação experimental para previsões de preços de DinoLFG, espera-se que o valor de DINO em 2030 aumente 224.23%, alcançando $0.002135 no melhor cenário. O preço está previsto para variar entre $0.002135 e $0.000738 ao longo de 2030.
Quanto será DinoLFG em 2031?
Nossa simulação experimental indica que o preço de DinoLFG poderia aumentar 195.98% em 2031, potencialmente atingindo $0.001949 sob condições ideais. O preço provavelmente oscilará entre $0.001949 e $0.000873 durante o ano.
Quanto será DinoLFG em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de DinoLFG, DINO poderia ver um 449.04% aumento em valor, atingindo $0.003615 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.003615 e $0.001332 ao longo do ano.
Quanto será DinoLFG em 2033?
De acordo com nossa previsão experimental de preços de DinoLFG, espera-se que o valor de DINO seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.00963. Ao longo do ano, o preço de DINO poderia variar entre $0.00963 e $0.003096.
Quanto será DinoLFG em 2034?
Os resultados da nossa nova simulação de previsão de preços de DinoLFG sugerem que DINO pode aumentar 746.96% em 2034, atingindo potencialmente $0.005577 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.005577 e $0.002489.
Quanto será DinoLFG em 2035?
Com base em nossa previsão experimental para o preço de DinoLFG, DINO poderia aumentar 897.93%, com o valor potencialmente atingindo $0.006571 em 2035. A faixa de preço esperada para o ano está entre $0.006571 e $0.002943.
Quanto será DinoLFG em 2036?
Nossa recente simulação de previsão de preços de DinoLFG sugere que o valor de DINO pode aumentar 1964.7% em 2036, possivelmente atingindo $0.013596 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.013596 e $0.004872.
Quanto será DinoLFG em 2037?
De acordo com a simulação experimental, o valor de DinoLFG poderia aumentar 4830.69% em 2037, com um pico de $0.03247 sob condições favoráveis. O preço é esperado para cair entre $0.03247 e $0.012654 ao longo do ano.
Previsões relacionadas
Previsão de Preço do ICE Token
Previsão de Preço do Silly GoosePrevisão de Preço do DeHub
Previsão de Preço do Crowny Token
Previsão de Preço do 5ire
Previsão de Preço do Giddy
Previsão de Preço do Dope Wars Paper
Previsão de Preço do Chumbi ValleyPrevisão de Preço do OccamFi
Previsão de Preço do NMKR
Previsão de Preço do Dypius
Previsão de Preço do COMDEX
Previsão de Preço do Effect Network
Previsão de Preço do Sin City
Previsão de Preço do Parex
Previsão de Preço do Grai
Previsão de Preço do MIMO Parallel Governance Token
Previsão de Preço do Good Person Coin
Previsão de Preço do LilAI
Previsão de Preço do SavePlanetEarth
Previsão de Preço do MBD Financials
Previsão de Preço do RepubliK
Previsão de Preço do Dogebonk
Previsão de Preço do Raptoreum
Previsão de Preço do Litecoin Cash
Como ler e prever os movimentos de preço de DinoLFG?
Traders de DinoLFG utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de DinoLFG
Médias móveis são ferramentas populares para a previsão de preço de DinoLFG. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DINO em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DINO acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DINO.
Como ler gráficos de DinoLFG e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de DinoLFG em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DINO dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de DinoLFG?
A ação de preço de DinoLFG é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DINO. A capitalização de mercado de DinoLFG pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DINO, grandes detentores de DinoLFG, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de DinoLFG.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


