Previsão de Preço Cudis - Projeção CUDIS
Previsão de Preço Cudis até $0.0320038 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.010721 | $0.0320038 |
| 2027 | $0.010321 | $0.027114 |
| 2028 | $0.018626 | $0.045623 |
| 2029 | $0.040917 | $0.1346015 |
| 2030 | $0.034798 | $0.100614 |
| 2031 | $0.041143 | $0.091849 |
| 2032 | $0.0628019 | $0.170375 |
| 2033 | $0.145938 | $0.453818 |
| 2034 | $0.117327 | $0.262827 |
| 2035 | $0.138717 | $0.309676 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Cudis hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.59, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Cudis para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Cudis'
'name_with_ticker' => 'Cudis <small>CUDIS</small>'
'name_lang' => 'Cudis'
'name_lang_with_ticker' => 'Cudis <small>CUDIS</small>'
'name_with_lang' => 'Cudis'
'name_with_lang_with_ticker' => 'Cudis <small>CUDIS</small>'
'image' => '/uploads/coins/cudis.jpg?1749136425'
'price_for_sd' => 0.03103
'ticker' => 'CUDIS'
'marketcap' => '$7.66M'
'low24h' => '$0.02972'
'high24h' => '$0.03119'
'volume24h' => '$6.72M'
'current_supply' => '247.5M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03103'
'change_24h_pct' => '3.9318%'
'ath_price' => '$0.2698'
'ath_days' => 63
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '4 de nov. de 2025'
'ath_pct' => '-88.53%'
'fdv' => '$30.96M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.53'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.031297'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.027426'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.010721'
'current_year_max_price_prediction' => '$0.0320038'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.034798'
'grand_prediction_max_price' => '$0.100614'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.031619836287273
107 => 0.031737893277969
108 => 0.032003881706147
109 => 0.029731039709913
110 => 0.030751479039087
111 => 0.031350891542742
112 => 0.028642724044416
113 => 0.031297359778722
114 => 0.029691474587376
115 => 0.029146413033847
116 => 0.029880266609275
117 => 0.029594283157234
118 => 0.029348411378682
119 => 0.029211210701636
120 => 0.029750071774967
121 => 0.029724933261818
122 => 0.028843251957422
123 => 0.027693134637764
124 => 0.028079151761555
125 => 0.027938908121552
126 => 0.027430647078391
127 => 0.027773153653809
128 => 0.026264928034279
129 => 0.023670104246623
130 => 0.025384324322351
131 => 0.025318328714148
201 => 0.02528505073583
202 => 0.026573239745176
203 => 0.026449410095504
204 => 0.026224658068807
205 => 0.027426519331168
206 => 0.026987823803091
207 => 0.028339780050959
208 => 0.029230265874853
209 => 0.029004409865715
210 => 0.029841916087178
211 => 0.028088044816443
212 => 0.028670610499479
213 => 0.028790676479351
214 => 0.027411688549751
215 => 0.026469670157618
216 => 0.026406848270658
217 => 0.02477351819683
218 => 0.025646029938489
219 => 0.02641380416416
220 => 0.026046099891751
221 => 0.025929695703959
222 => 0.026524379454401
223 => 0.026570591474932
224 => 0.025516952509489
225 => 0.025736037414811
226 => 0.02664965788984
227 => 0.025713016522949
228 => 0.023893275346579
301 => 0.023441954374949
302 => 0.023381739837837
303 => 0.022157721568059
304 => 0.023472113800348
305 => 0.022898346367432
306 => 0.024710870813225
307 => 0.023675566570551
308 => 0.023630936673886
309 => 0.023563472039294
310 => 0.022509908950938
311 => 0.022740572309861
312 => 0.023507332445942
313 => 0.023780921100666
314 => 0.023752383562533
315 => 0.02350357490297
316 => 0.023617478233212
317 => 0.023250555919954
318 => 0.023120988014315
319 => 0.022712036063658
320 => 0.022110989672052
321 => 0.022194568859237
322 => 0.021003738685123
323 => 0.020354911204124
324 => 0.020175324308793
325 => 0.019935173206903
326 => 0.020202450014769
327 => 0.021000365212859
328 => 0.02003791019681
329 => 0.018387848580163
330 => 0.018487020094892
331 => 0.0187098290442
401 => 0.018294626041193
402 => 0.017901671244193
403 => 0.018243313558754
404 => 0.017544160699403
405 => 0.01879431832701
406 => 0.01876050506671
407 => 0.019226486521053
408 => 0.019517874287356
409 => 0.018846319823937
410 => 0.018677425692464
411 => 0.018773635465562
412 => 0.017183502226178
413 => 0.019096538710924
414 => 0.019113082729884
415 => 0.018971422795378
416 => 0.01999005566513
417 => 0.022139688739867
418 => 0.021330910308361
419 => 0.021017726854224
420 => 0.020422364878975
421 => 0.021215649361898
422 => 0.021154737490775
423 => 0.020879270909417
424 => 0.020712667861503
425 => 0.021019639085612
426 => 0.020674630729736
427 => 0.020612657748825
428 => 0.020237168911772
429 => 0.020103136480598
430 => 0.020003904204541
501 => 0.019894659218965
502 => 0.020135626434992
503 => 0.019589563021598
504 => 0.018931064076301
505 => 0.018876317014057
506 => 0.019027478466324
507 => 0.018960600776342
508 => 0.018875996829407
509 => 0.018714464854193
510 => 0.018666541767732
511 => 0.018822268549755
512 => 0.018646462092286
513 => 0.018905874096954
514 => 0.018835328385605
515 => 0.018441265776645
516 => 0.017950117865216
517 => 0.017945745618587
518 => 0.017839928606714
519 => 0.017705154732399
520 => 0.017667663723773
521 => 0.018214541395939
522 => 0.019346561810653
523 => 0.019124319116292
524 => 0.019284912239315
525 => 0.020074871459733
526 => 0.020325975741002
527 => 0.020147747869888
528 => 0.019903778567292
529 => 0.019914511978441
530 => 0.020748228939943
531 => 0.020800226844174
601 => 0.020931608773006
602 => 0.021100471680084
603 => 0.020176505953148
604 => 0.019870993275793
605 => 0.019726224420065
606 => 0.019280392377019
607 => 0.019761184012693
608 => 0.019481047316136
609 => 0.019518847327334
610 => 0.019494230020453
611 => 0.019507672734625
612 => 0.018793968882475
613 => 0.019054005055028
614 => 0.018621644483314
615 => 0.018042762212539
616 => 0.018040821596185
617 => 0.018182502211855
618 => 0.018098225037692
619 => 0.017871437328982
620 => 0.017903651452596
621 => 0.01762142183244
622 => 0.017937919238415
623 => 0.017946995251537
624 => 0.017825126510506
625 => 0.018312734432637
626 => 0.018512507796184
627 => 0.018432291180156
628 => 0.018506879584563
629 => 0.019133554303608
630 => 0.019235729626547
701 => 0.019281109155674
702 => 0.01922030659828
703 => 0.018518334048024
704 => 0.018549469515645
705 => 0.018321018112945
706 => 0.018128000751279
707 => 0.018135720433503
708 => 0.0182349564479
709 => 0.018668325942887
710 => 0.019580326496559
711 => 0.019614936250907
712 => 0.019656884282815
713 => 0.019486260555655
714 => 0.019434798806894
715 => 0.019502690136914
716 => 0.019845189594162
717 => 0.0207261911859
718 => 0.020414786383262
719 => 0.020161609431413
720 => 0.020383713874201
721 => 0.020349522636146
722 => 0.020060914178115
723 => 0.020052813899939
724 => 0.019498881995273
725 => 0.019294105982537
726 => 0.019122979819076
727 => 0.018936114515938
728 => 0.018825334500457
729 => 0.018995542952853
730 => 0.019034471639764
731 => 0.018662307883864
801 => 0.018611583339127
802 => 0.018915500295907
803 => 0.018781757774395
804 => 0.018919315274426
805 => 0.018951229794379
806 => 0.018946090821613
807 => 0.018806448268923
808 => 0.018895452267806
809 => 0.018684931277077
810 => 0.018456021318889
811 => 0.01830999102716
812 => 0.018182560229519
813 => 0.018253266242371
814 => 0.018001212216959
815 => 0.017920575061384
816 => 0.018865299715638
817 => 0.019563177975237
818 => 0.019553030548952
819 => 0.01949126070115
820 => 0.019399483236873
821 => 0.019838475501004
822 => 0.019685539374108
823 => 0.019796813184666
824 => 0.0198251370396
825 => 0.019910864817886
826 => 0.019941505130072
827 => 0.019848888825581
828 => 0.019538057195582
829 => 0.01876349432661
830 => 0.018402933220211
831 => 0.018283942049479
901 => 0.018288267152538
902 => 0.018168961502041
903 => 0.018204102363017
904 => 0.018156740944683
905 => 0.018067049876316
906 => 0.018247728071643
907 => 0.01826854955052
908 => 0.018226377100787
909 => 0.018236310239364
910 => 0.017887140367665
911 => 0.017913686994653
912 => 0.017765872002201
913 => 0.017738158473053
914 => 0.017364495043857
915 => 0.016702496115656
916 => 0.01706930778367
917 => 0.016626250870235
918 => 0.016458458503709
919 => 0.017252761469775
920 => 0.017173035482517
921 => 0.017036579248384
922 => 0.016834732038132
923 => 0.016759864944405
924 => 0.016304996182967
925 => 0.016278120109911
926 => 0.016503565350569
927 => 0.016399530129102
928 => 0.016253425276943
929 => 0.015724248312835
930 => 0.015129278200705
1001 => 0.015147236608542
1002 => 0.015336485531398
1003 => 0.015886752298296
1004 => 0.015671753552757
1005 => 0.015515769496042
1006 => 0.015486558371083
1007 => 0.015852196757579
1008 => 0.016369651678081
1009 => 0.01661242994938
1010 => 0.016371844055809
1011 => 0.016095471935339
1012 => 0.016112293425727
1013 => 0.016224199265117
1014 => 0.016235958986574
1015 => 0.016056069147661
1016 => 0.016106707083604
1017 => 0.016029783428476
1018 => 0.015557703098948
1019 => 0.01554916466277
1020 => 0.01543330853658
1021 => 0.015429800459123
1022 => 0.015232700286809
1023 => 0.015205124610213
1024 => 0.014813770254958
1025 => 0.015071360876717
1026 => 0.014898582611756
1027 => 0.014638165012187
1028 => 0.014593268919863
1029 => 0.014591919289115
1030 => 0.014859309935562
1031 => 0.015068236261331
1101 => 0.014901588163647
1102 => 0.014863645622143
1103 => 0.015268772699631
1104 => 0.015217216586205
1105 => 0.01517256932448
1106 => 0.016323319265446
1107 => 0.015412410893034
1108 => 0.01501520284983
1109 => 0.014523582468604
1110 => 0.014683656543696
1111 => 0.014717386503295
1112 => 0.01353512810768
1113 => 0.01305548602382
1114 => 0.01289089093557
1115 => 0.012796164135249
1116 => 0.01283933232766
1117 => 0.012407598195781
1118 => 0.012697730672627
1119 => 0.012323885407997
1120 => 0.012261209032784
1121 => 0.012929690676484
1122 => 0.013022705991991
1123 => 0.012625873758442
1124 => 0.012880704293684
1125 => 0.012788299199196
1126 => 0.012330293912058
1127 => 0.012312801478948
1128 => 0.012082990525527
1129 => 0.011723380883592
1130 => 0.011559029627613
1201 => 0.011473434066536
1202 => 0.011508752463261
1203 => 0.011490894401116
1204 => 0.011374358465963
1205 => 0.011497574104507
1206 => 0.011182809064244
1207 => 0.011057467088977
1208 => 0.011000853026661
1209 => 0.010721480936228
1210 => 0.011166086169439
1211 => 0.011253679001371
1212 => 0.01134144441824
1213 => 0.012105382452094
1214 => 0.012067218266789
1215 => 0.012412203915233
1216 => 0.012398798407323
1217 => 0.012300402911989
1218 => 0.011885288502452
1219 => 0.012050745707391
1220 => 0.011541494148348
1221 => 0.011923060042123
1222 => 0.011748929302777
1223 => 0.01186418626399
1224 => 0.011656943855427
1225 => 0.011771640361155
1226 => 0.011274450511302
1227 => 0.010810181625158
1228 => 0.010997016977796
1229 => 0.011200128373328
1230 => 0.011640525630661
1231 => 0.011378228657392
]
'min_raw' => 0.010721480936228
'max_raw' => 0.032003881706147
'avg_raw' => 0.021362681321187
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.010721'
'max' => '$0.0320038'
'avg' => '$0.021362'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.020310319063772
'max_diff' => 0.00097208170614702
'year' => 2026
]
1 => [
'items' => [
101 => 0.011472560567526
102 => 0.011156564459547
103 => 0.010504574228961
104 => 0.01050826442286
105 => 0.010407969930264
106 => 0.010321300845425
107 => 0.011408356620048
108 => 0.011273164050665
109 => 0.011057752384919
110 => 0.01134608945964
111 => 0.01142233035872
112 => 0.011424500829935
113 => 0.011634864116594
114 => 0.011747135040393
115 => 0.011766923277323
116 => 0.012097934454081
117 => 0.012208885034387
118 => 0.012665874772354
119 => 0.011737609636902
120 => 0.0117184926273
121 => 0.011350146953586
122 => 0.011116536304003
123 => 0.011366142474626
124 => 0.011587259467158
125 => 0.011357017674906
126 => 0.011387082392304
127 => 0.011078001597651
128 => 0.011188483438136
129 => 0.011283645282674
130 => 0.011231102505475
131 => 0.011152443424909
201 => 0.011569130395355
202 => 0.011545619283473
203 => 0.011933647769945
204 => 0.012236143723333
205 => 0.012778270549424
206 => 0.012212532944688
207 => 0.012191915217768
208 => 0.012393456805597
209 => 0.01220885417942
210 => 0.012325516666898
211 => 0.012759474419096
212 => 0.012768643262578
213 => 0.012615053320863
214 => 0.012605707358951
215 => 0.012635205987347
216 => 0.012807980375238
217 => 0.012747607695288
218 => 0.012817472488975
219 => 0.012904839483288
220 => 0.013266226414606
221 => 0.013353355580277
222 => 0.013141676878989
223 => 0.01316078909565
224 => 0.013081615450658
225 => 0.013005134701639
226 => 0.013177052256317
227 => 0.013491234966541
228 => 0.013489280452207
301 => 0.013562164734139
302 => 0.013607571037977
303 => 0.013412653942458
304 => 0.013285770080576
305 => 0.013334425427052
306 => 0.013412226385642
307 => 0.013309195624756
308 => 0.012673242040078
309 => 0.012866149732797
310 => 0.012834040460024
311 => 0.012788312950975
312 => 0.012982283127715
313 => 0.012963574230975
314 => 0.01240317013824
315 => 0.01243904539003
316 => 0.012405351831124
317 => 0.012514222613004
318 => 0.012202974799915
319 => 0.012298712530935
320 => 0.012358758338345
321 => 0.012394125780204
322 => 0.012521897231878
323 => 0.012506904726756
324 => 0.012520965276709
325 => 0.012710416609129
326 => 0.013668596436665
327 => 0.013720748050573
328 => 0.013463934430133
329 => 0.013566526406074
330 => 0.013369572246666
331 => 0.013501788893355
401 => 0.01359224816508
402 => 0.013183480110469
403 => 0.013159275519157
404 => 0.012961508459873
405 => 0.013067777275433
406 => 0.012898695948878
407 => 0.012940182592201
408 => 0.012824182320729
409 => 0.013032959713955
410 => 0.013266405280307
411 => 0.013325382849413
412 => 0.013170238256536
413 => 0.013057903346767
414 => 0.012860680250631
415 => 0.013188666654908
416 => 0.013284579874723
417 => 0.013188162863596
418 => 0.013165820935364
419 => 0.013123483021737
420 => 0.013174803123885
421 => 0.01328405751073
422 => 0.013232535159505
423 => 0.013266566580196
424 => 0.013136873897572
425 => 0.013412718468128
426 => 0.013850826031781
427 => 0.013852234619236
428 => 0.013800711990287
429 => 0.013779630040592
430 => 0.013832495384548
501 => 0.013861172664994
502 => 0.014032129493503
503 => 0.014215572981713
504 => 0.015071623698525
505 => 0.014831248082786
506 => 0.015590787205427
507 => 0.016191484037624
508 => 0.016371606752311
509 => 0.016205902330228
510 => 0.015639036453457
511 => 0.015611223309166
512 => 0.016458360253661
513 => 0.016219005265511
514 => 0.016190534751292
515 => 0.015887656581693
516 => 0.016066695092117
517 => 0.016027536743551
518 => 0.015965723374647
519 => 0.016307316380606
520 => 0.016946747993542
521 => 0.016847086580114
522 => 0.01677269395815
523 => 0.016446727144071
524 => 0.01664303197347
525 => 0.016573131583693
526 => 0.016873468018061
527 => 0.016695555367608
528 => 0.016217191916064
529 => 0.016293372872429
530 => 0.016281858274129
531 => 0.016518827891205
601 => 0.016447695494106
602 => 0.016267968531961
603 => 0.016944562485804
604 => 0.016900628237855
605 => 0.016962916956679
606 => 0.016990338377049
607 => 0.01740216919383
608 => 0.017570883102349
609 => 0.017609184113335
610 => 0.017769449277626
611 => 0.01760519657005
612 => 0.018262324510553
613 => 0.018699276246509
614 => 0.019206818173153
615 => 0.019948473342389
616 => 0.020227342546715
617 => 0.020176967321015
618 => 0.020739281805936
619 => 0.021749748435791
620 => 0.020381211517255
621 => 0.021822284215541
622 => 0.021366057237248
623 => 0.020284351278889
624 => 0.020214702167646
625 => 0.020947246001511
626 => 0.022571957720293
627 => 0.022164985862066
628 => 0.02257262338046
629 => 0.022097092562312
630 => 0.022073478449102
701 => 0.022549527910027
702 => 0.023661843423582
703 => 0.023133424017615
704 => 0.022375805225408
705 => 0.02293521915172
706 => 0.022450603037434
707 => 0.021358627296438
708 => 0.022164674658356
709 => 0.021625693742349
710 => 0.021782997027441
711 => 0.022915854745528
712 => 0.022779546307718
713 => 0.022955942048065
714 => 0.022644608183432
715 => 0.022353773261021
716 => 0.021810908280655
717 => 0.021650192722888
718 => 0.021694608721115
719 => 0.021650170712525
720 => 0.021346442745197
721 => 0.021280852719571
722 => 0.021171533136629
723 => 0.021205415846546
724 => 0.020999863048042
725 => 0.021387783648193
726 => 0.021459785129926
727 => 0.021742081392822
728 => 0.021771390327318
729 => 0.022557581401249
730 => 0.022124560569132
731 => 0.022415068328536
801 => 0.02238908258017
802 => 0.020307795127026
803 => 0.020594578174714
804 => 0.02104072259944
805 => 0.020839735140835
806 => 0.020555585898191
807 => 0.020326120149637
808 => 0.019978456076501
809 => 0.020467786583143
810 => 0.02111120416488
811 => 0.021787708458991
812 => 0.022600484042049
813 => 0.022419081993662
814 => 0.021772514184821
815 => 0.021801518744408
816 => 0.021980813518898
817 => 0.021748610495285
818 => 0.02168012929048
819 => 0.021971405252958
820 => 0.021973411110429
821 => 0.02170623346909
822 => 0.021409314413733
823 => 0.02140807031205
824 => 0.021355236434047
825 => 0.022106491591837
826 => 0.022519605968159
827 => 0.022566968865637
828 => 0.022516418067791
829 => 0.022535873063592
830 => 0.022295490910365
831 => 0.022844933229529
901 => 0.023349155835808
902 => 0.02321401340618
903 => 0.02301141569254
904 => 0.022850036855198
905 => 0.023175997680796
906 => 0.023161483158342
907 => 0.023344751891216
908 => 0.023336437762881
909 => 0.023274811381102
910 => 0.023214015607053
911 => 0.023455063979114
912 => 0.023385645919079
913 => 0.023316120033622
914 => 0.023176675226459
915 => 0.023195628091686
916 => 0.022993065359397
917 => 0.022899350570801
918 => 0.021490105003528
919 => 0.021113508539525
920 => 0.021231993453428
921 => 0.021271001763545
922 => 0.021107106499789
923 => 0.021342090206776
924 => 0.021305468244951
925 => 0.021447942875279
926 => 0.02135893091178
927 => 0.02136258399381
928 => 0.021624349199111
929 => 0.021700340751839
930 => 0.021661690834794
1001 => 0.021688759911851
1002 => 0.022312555367468
1003 => 0.022223871601535
1004 => 0.022176760118416
1005 => 0.022189810321205
1006 => 0.022349203434441
1007 => 0.022393824803605
1008 => 0.022204760926967
1009 => 0.022293924544155
1010 => 0.022673571909593
1011 => 0.022806427001317
1012 => 0.023230436680037
1013 => 0.023050309832345
1014 => 0.02338094045699
1015 => 0.024397186276861
1016 => 0.025209033756636
1017 => 0.024462425263219
1018 => 0.025953279771673
1019 => 0.027114123856882
1020 => 0.027069568727404
1021 => 0.026867148710341
1022 => 0.025545558581967
1023 => 0.024329411642039
1024 => 0.025346770197616
1025 => 0.025349363653796
1026 => 0.025261971651621
1027 => 0.024719187431709
1028 => 0.025243083937321
1029 => 0.025284668939424
1030 => 0.025261392396591
1031 => 0.02484524100781
1101 => 0.024209854754773
1102 => 0.024334007707717
1103 => 0.02453737277729
1104 => 0.02415236027419
1105 => 0.024029325450719
1106 => 0.024258070595884
1107 => 0.024995135114549
1108 => 0.024855797336819
1109 => 0.024852158664334
1110 => 0.025448304765875
1111 => 0.025021592813553
1112 => 0.024335573674046
1113 => 0.02416234479384
1114 => 0.023547498970064
1115 => 0.023972175170552
1116 => 0.023987458510971
1117 => 0.023754867696049
1118 => 0.024354447136796
1119 => 0.024348921906695
1120 => 0.024918133350062
1121 => 0.026006251843723
1122 => 0.025684441662088
1123 => 0.025310211433695
1124 => 0.0253509006358
1125 => 0.025797160753384
1126 => 0.025527341699165
1127 => 0.025624370512308
1128 => 0.025797013888654
1129 => 0.025901173924098
1130 => 0.025335913609632
1201 => 0.025204124390803
1202 => 0.02493452990081
1203 => 0.024864197730591
1204 => 0.025083776817416
1205 => 0.025025925485881
1206 => 0.023986174005388
1207 => 0.023877514190554
1208 => 0.023880846631945
1209 => 0.023607616361052
1210 => 0.023190874615161
1211 => 0.024286047041005
1212 => 0.024198089368281
1213 => 0.024100990904978
1214 => 0.024112884912696
1215 => 0.024588262143918
1216 => 0.024312519342684
1217 => 0.025045626773121
1218 => 0.024894921924649
1219 => 0.024740352065476
1220 => 0.024718985802625
1221 => 0.024659489594124
1222 => 0.024455454957611
1223 => 0.024209070873439
1224 => 0.024046386759645
1225 => 0.022181520698578
1226 => 0.022527628992085
1227 => 0.022925795035002
1228 => 0.023063240357466
1229 => 0.022828130622464
1230 => 0.024464738522959
1231 => 0.024763762557126
]
'min_raw' => 0.010321300845425
'max_raw' => 0.027114123856882
'avg_raw' => 0.018717712351153
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.010321'
'max' => '$0.027114'
'avg' => '$0.018717'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00040018009080282
'max_diff' => -0.0048897578492652
'year' => 2027
]
2 => [
'items' => [
101 => 0.02385799925278
102 => 0.023688567920609
103 => 0.024475846412889
104 => 0.024001021241163
105 => 0.024214834986917
106 => 0.023752686618462
107 => 0.024691736423741
108 => 0.024684582437563
109 => 0.024319270853908
110 => 0.024628029702868
111 => 0.024574375254679
112 => 0.024161939376455
113 => 0.024704811376729
114 => 0.024705080634468
115 => 0.024353476177759
116 => 0.023942879148435
117 => 0.023869474097461
118 => 0.023814173252133
119 => 0.02420123436897
120 => 0.024548272156017
121 => 0.025194023439749
122 => 0.025356380655151
123 => 0.025990071675598
124 => 0.025612739526778
125 => 0.02578000598108
126 => 0.02596159737851
127 => 0.026048658972241
128 => 0.02590679677724
129 => 0.026891179769623
130 => 0.026974291854896
131 => 0.027002158618171
201 => 0.026670230211708
202 => 0.026965060325458
203 => 0.026827119078981
204 => 0.027186003881132
205 => 0.02724228160058
206 => 0.027194616374345
207 => 0.027212479810782
208 => 0.026372482583842
209 => 0.026328924296286
210 => 0.025735003954716
211 => 0.025977030883944
212 => 0.025524573140405
213 => 0.025668052151713
214 => 0.025731296332779
215 => 0.025698261161665
216 => 0.025990714723388
217 => 0.025742069451608
218 => 0.025085853698315
219 => 0.024429459159478
220 => 0.02442121866073
221 => 0.024248401564981
222 => 0.024123486457784
223 => 0.024147549539031
224 => 0.024232350975945
225 => 0.02411855764411
226 => 0.024142841220925
227 => 0.024546110396688
228 => 0.024626983153903
229 => 0.02435214592586
301 => 0.023248634796445
302 => 0.022977830397339
303 => 0.023172479229132
304 => 0.023079449624525
305 => 0.018626917124181
306 => 0.019672973589789
307 => 0.019051442358646
308 => 0.019337872545233
309 => 0.018703450102968
310 => 0.019006229745346
311 => 0.018950317401141
312 => 0.020632345242777
313 => 0.020606082691584
314 => 0.020618653185057
315 => 0.020018630779342
316 => 0.02097448276403
317 => 0.021445369823012
318 => 0.021358221160648
319 => 0.021380154601421
320 => 0.021003265419976
321 => 0.020622302296172
322 => 0.020199755562069
323 => 0.020984795165678
324 => 0.02089751216283
325 => 0.021097707967931
326 => 0.021606862266661
327 => 0.021681837171238
328 => 0.02178260420331
329 => 0.021746486395398
330 => 0.02260695911084
331 => 0.022502750187418
401 => 0.022753863709912
402 => 0.022237304142114
403 => 0.021652767958867
404 => 0.021763869177375
405 => 0.021753169236613
406 => 0.021616946709894
407 => 0.021493971103693
408 => 0.021289251367531
409 => 0.021937014905569
410 => 0.02191071688888
411 => 0.022336451210979
412 => 0.022261198534185
413 => 0.021758642741105
414 => 0.021776591619571
415 => 0.021897306453193
416 => 0.022315101870659
417 => 0.022439131996244
418 => 0.022381676300327
419 => 0.02251766967084
420 => 0.022625153285998
421 => 0.022531167958057
422 => 0.023861802004179
423 => 0.023309229976747
424 => 0.023578549738146
425 => 0.023642780914315
426 => 0.023478254107194
427 => 0.023513934080395
428 => 0.023567979517585
429 => 0.023896132829018
430 => 0.024757302070144
501 => 0.025138708064862
502 => 0.02628618681821
503 => 0.025107037606428
504 => 0.025037071772006
505 => 0.025243767346022
506 => 0.025917458847199
507 => 0.026463422532278
508 => 0.02664455018402
509 => 0.026668489193289
510 => 0.027008296709094
511 => 0.027203068040119
512 => 0.026967035138851
513 => 0.026767021968701
514 => 0.026050599619772
515 => 0.026133527457414
516 => 0.026704818023186
517 => 0.027511799596186
518 => 0.028204273737942
519 => 0.027961793428659
520 => 0.029811747024065
521 => 0.029995162366667
522 => 0.029969820296848
523 => 0.030387667743157
524 => 0.029558325655385
525 => 0.029203765845117
526 => 0.026810267086333
527 => 0.027482742608006
528 => 0.028460225271859
529 => 0.028330851775927
530 => 0.027620977737249
531 => 0.028203735234828
601 => 0.028011057381616
602 => 0.027859084364577
603 => 0.028555302217053
604 => 0.027789782089203
605 => 0.028452588622992
606 => 0.027602532387552
607 => 0.027962901058287
608 => 0.027758338371706
609 => 0.027890715500184
610 => 0.027116841512013
611 => 0.027534405131301
612 => 0.027099469492629
613 => 0.027099263276506
614 => 0.027089662048176
615 => 0.027601361898274
616 => 0.027618048412015
617 => 0.027239901449657
618 => 0.027185404564615
619 => 0.027386908111588
620 => 0.027151000231946
621 => 0.027261380044044
622 => 0.027154343524008
623 => 0.027130247348815
624 => 0.026938244925243
625 => 0.026855525001952
626 => 0.026887961615304
627 => 0.026777238731712
628 => 0.026710524189326
629 => 0.027076390846515
630 => 0.026880923050598
701 => 0.027046432603388
702 => 0.026857813579013
703 => 0.026203977863132
704 => 0.025827950028742
705 => 0.024592914972047
706 => 0.024943169382069
707 => 0.025175388418279
708 => 0.025098640028197
709 => 0.025263525267777
710 => 0.025273647882345
711 => 0.025220042010151
712 => 0.025157973277489
713 => 0.025127761651045
714 => 0.025352934362637
715 => 0.025483654700681
716 => 0.025198694705252
717 => 0.025131932565337
718 => 0.025420042853788
719 => 0.025595789963307
720 => 0.026893407876226
721 => 0.026797276149987
722 => 0.02703854791795
723 => 0.027011384419494
724 => 0.027264275669926
725 => 0.027677645984566
726 => 0.026837148554746
727 => 0.026983029846348
728 => 0.026947263122538
729 => 0.027337754834556
730 => 0.027338973907058
731 => 0.027104854619195
801 => 0.027231774483297
802 => 0.02716093129702
803 => 0.027288954509654
804 => 0.026795992252174
805 => 0.027396367069797
806 => 0.02773674090409
807 => 0.02774146699511
808 => 0.027902801491191
809 => 0.028066726683074
810 => 0.028381366814017
811 => 0.028057951540593
812 => 0.027476158947545
813 => 0.027518162493585
814 => 0.027177057709151
815 => 0.027182791742203
816 => 0.027152183024387
817 => 0.027244042090668
818 => 0.026816150151539
819 => 0.026916575534395
820 => 0.026775979410307
821 => 0.026982724217832
822 => 0.026760300981076
823 => 0.026947245874741
824 => 0.027027925093525
825 => 0.027325633147739
826 => 0.02671632925941
827 => 0.025473917384859
828 => 0.025735087423678
829 => 0.025348796421801
830 => 0.025384549124738
831 => 0.025456775274672
901 => 0.025222666691811
902 => 0.025267327231812
903 => 0.025265731643052
904 => 0.025251981721123
905 => 0.025191081037019
906 => 0.025102762996234
907 => 0.025454594887861
908 => 0.025514377982142
909 => 0.025647268395172
910 => 0.026042660123921
911 => 0.02600315116624
912 => 0.026067591915429
913 => 0.025926918121769
914 => 0.025391074578564
915 => 0.025420173460981
916 => 0.025057309930962
917 => 0.025637989158881
918 => 0.025500476653119
919 => 0.025411821446082
920 => 0.025387631051457
921 => 0.025784002879824
922 => 0.025902603543238
923 => 0.025828699568793
924 => 0.025677120361082
925 => 0.025968197250257
926 => 0.026046077146252
927 => 0.026063511582866
928 => 0.026579244022026
929 => 0.026092335297142
930 => 0.026209539066678
1001 => 0.027123929419308
1002 => 0.026294703546716
1003 => 0.026733962985372
1004 => 0.026712463521645
1005 => 0.026937173786732
1006 => 0.026694030721107
1007 => 0.02669704477081
1008 => 0.026896572263015
1009 => 0.026616371885185
1010 => 0.026546990331168
1011 => 0.026451140211213
1012 => 0.026660425441528
1013 => 0.026785882471945
1014 => 0.027796973999073
1015 => 0.028450185236972
1016 => 0.028421827614413
1017 => 0.02868096320136
1018 => 0.028564220246031
1019 => 0.028187226448036
1020 => 0.028830708891717
1021 => 0.028627084122087
1022 => 0.028643870700691
1023 => 0.028643245903397
1024 => 0.028778638574015
1025 => 0.028682700458326
1026 => 0.028493596584459
1027 => 0.02861913256104
1028 => 0.028991929531555
1029 => 0.030149102766839
1030 => 0.03079667223981
1031 => 0.030110118271454
1101 => 0.030583694005502
1102 => 0.030299717317361
1103 => 0.030248110305551
1104 => 0.030545550863505
1105 => 0.030843512051781
1106 => 0.03082453321221
1107 => 0.030608228689998
1108 => 0.030486043753924
1109 => 0.03141126902483
1110 => 0.032092959243632
1111 => 0.032046472540819
1112 => 0.032251649728751
1113 => 0.032854056298409
1114 => 0.032909132805533
1115 => 0.032902194431555
1116 => 0.032765681562007
1117 => 0.033358829062214
1118 => 0.033853643142323
1119 => 0.032734082776943
1120 => 0.033160396707958
1121 => 0.033351782766568
1122 => 0.033632794282293
1123 => 0.034106907812318
1124 => 0.034621920858328
1125 => 0.034694749349865
1126 => 0.034643074049955
1127 => 0.034303409101818
1128 => 0.034866942522146
1129 => 0.035197047183289
1130 => 0.035393616954689
1201 => 0.035892085188868
1202 => 0.033352964701711
1203 => 0.031555649018424
1204 => 0.031274972220926
1205 => 0.031845739525709
1206 => 0.031996246312196
1207 => 0.031935577215282
1208 => 0.02991253500895
1209 => 0.031264321322388
1210 => 0.032718729734225
1211 => 0.032774599484588
1212 => 0.0335027067458
1213 => 0.033739808316175
1214 => 0.034326030096651
1215 => 0.034289361764671
1216 => 0.034432097439391
1217 => 0.03439928497961
1218 => 0.035485137384381
1219 => 0.036682993837487
1220 => 0.036641515877466
1221 => 0.036469309839938
1222 => 0.03672506517116
1223 => 0.037961381400863
1224 => 0.037847561213996
1225 => 0.037958127830357
1226 => 0.039415814340907
1227 => 0.041311014158109
1228 => 0.040430503568068
1229 => 0.042340958188361
1230 => 0.043543488102987
1231 => 0.045623139246419
]
'min_raw' => 0.018626917124181
'max_raw' => 0.045623139246419
'avg_raw' => 0.0321250281853
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.018626'
'max' => '$0.045623'
'avg' => '$0.032125'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0083056162787558
'max_diff' => 0.018509015389538
'year' => 2028
]
3 => [
'items' => [
101 => 0.045362756680764
102 => 0.046172349609717
103 => 0.044896617544759
104 => 0.041967278855627
105 => 0.041503699795014
106 => 0.042431796814053
107 => 0.044713432772978
108 => 0.042359939978053
109 => 0.042836048505271
110 => 0.042698929217403
111 => 0.042691622713272
112 => 0.042970482258254
113 => 0.042565981943922
114 => 0.040917974895116
115 => 0.041673246813817
116 => 0.04138160005487
117 => 0.041705203877628
118 => 0.043451560244684
119 => 0.042679454466872
120 => 0.041866103750728
121 => 0.042886226045746
122 => 0.044185192279356
123 => 0.044103905306924
124 => 0.043946174605086
125 => 0.044835294312835
126 => 0.046303859582404
127 => 0.046700806873596
128 => 0.046993825248724
129 => 0.047034227532068
130 => 0.047450396160391
131 => 0.045212552557899
201 => 0.048764067826953
202 => 0.049377316405289
203 => 0.049262051089111
204 => 0.049943651074487
205 => 0.049743107068267
206 => 0.049452550267644
207 => 0.050533031224939
208 => 0.049294346997717
209 => 0.047536190683185
210 => 0.046571631356643
211 => 0.047841840886614
212 => 0.048617513522364
213 => 0.04913018379255
214 => 0.049285317506544
215 => 0.045386269986437
216 => 0.043284899624188
217 => 0.04463185393413
218 => 0.046275231154078
219 => 0.045203423514466
220 => 0.045245436344739
221 => 0.043717320316745
222 => 0.046410435514874
223 => 0.046018071283171
224 => 0.048053657611328
225 => 0.047567848597512
226 => 0.049227790227119
227 => 0.048790671965341
228 => 0.050605125431026
301 => 0.051328960042854
302 => 0.052544391011975
303 => 0.053438466980555
304 => 0.053963485490253
305 => 0.053931965348225
306 => 0.056012350246831
307 => 0.054785619955235
308 => 0.053244557590861
309 => 0.053216684634678
310 => 0.054014822670211
311 => 0.05568750103421
312 => 0.056121202197514
313 => 0.056363581981201
314 => 0.055992368905184
315 => 0.054660841094209
316 => 0.054085894136429
317 => 0.054575765602275
318 => 0.053976694894681
319 => 0.055010859005541
320 => 0.056430987215286
321 => 0.056137736355769
322 => 0.057118030012508
323 => 0.058132530817333
324 => 0.059583312532314
325 => 0.059962600594902
326 => 0.060589549339325
327 => 0.061234885539272
328 => 0.061442150134396
329 => 0.061837882556915
330 => 0.06183579685171
331 => 0.063028363142836
401 => 0.064343800692652
402 => 0.064840347915259
403 => 0.065982130873868
404 => 0.064026867570096
405 => 0.065509957246453
406 => 0.06684774125867
407 => 0.065252780008944
408 => 0.067451062513382
409 => 0.067536416841614
410 => 0.068825165860591
411 => 0.06751877183542
412 => 0.06674303923343
413 => 0.068982550189052
414 => 0.070066178996544
415 => 0.069739781180864
416 => 0.06725587768729
417 => 0.065810139314397
418 => 0.062026363130432
419 => 0.066508409467306
420 => 0.068691483494913
421 => 0.06725022405295
422 => 0.067977111482421
423 => 0.071942773603573
424 => 0.073452640981701
425 => 0.07313859912182
426 => 0.073191667026571
427 => 0.074006364057777
428 => 0.077619179355995
429 => 0.0754542966849
430 => 0.077109268370346
501 => 0.077987059384862
502 => 0.078802400598969
503 => 0.076800180268359
504 => 0.074195321036692
505 => 0.073370252773472
506 => 0.067106919205566
507 => 0.066780885493077
508 => 0.066597872890425
509 => 0.065444004318348
510 => 0.064537379691898
511 => 0.06381639812813
512 => 0.061924327201484
513 => 0.062562845596903
514 => 0.059547279445721
515 => 0.061476531804145
516 => 0.056663615413469
517 => 0.060671955200206
518 => 0.058490398091131
519 => 0.059955255017085
520 => 0.059950144269268
521 => 0.057252878235276
522 => 0.055697151477376
523 => 0.056688521117301
524 => 0.057751348066321
525 => 0.057923788163021
526 => 0.059301771045047
527 => 0.059686336447777
528 => 0.058521085323862
529 => 0.056563878419
530 => 0.057018492943863
531 => 0.05568793872854
601 => 0.053356193645214
602 => 0.055030893672422
603 => 0.055602709893073
604 => 0.055855256511764
605 => 0.053562253025046
606 => 0.052841741545991
607 => 0.052458147280219
608 => 0.05626788046317
609 => 0.056476586246918
610 => 0.055408817949237
611 => 0.0602352319047
612 => 0.059142865781355
613 => 0.060363306377329
614 => 0.056977241440776
615 => 0.057106593681293
616 => 0.055503576276231
617 => 0.056401158909404
618 => 0.055766776434716
619 => 0.056328643102728
620 => 0.056665423666872
621 => 0.058268178032551
622 => 0.060690256080523
623 => 0.058028779977467
624 => 0.056869136726325
625 => 0.057588572877252
626 => 0.059504526153358
627 => 0.062407293442502
628 => 0.060688796783692
629 => 0.061451436418906
630 => 0.061618039251725
701 => 0.060350883437723
702 => 0.062454015284816
703 => 0.063581100727486
704 => 0.064737257174195
705 => 0.065741115422104
706 => 0.064275462864954
707 => 0.065843921194146
708 => 0.064580020650983
709 => 0.06344617120413
710 => 0.063447890785708
711 => 0.0627366104648
712 => 0.061358415215952
713 => 0.061104254866756
714 => 0.062426429100189
715 => 0.063486687625036
716 => 0.063574015595438
717 => 0.064161029192843
718 => 0.064508417793067
719 => 0.067913298327158
720 => 0.069282769444619
721 => 0.070957332804288
722 => 0.071609669606099
723 => 0.073572969503863
724 => 0.071987445384997
725 => 0.071644407268466
726 => 0.066882083906993
727 => 0.067661914090644
728 => 0.06891049745709
729 => 0.066902672586824
730 => 0.068176175329429
731 => 0.068427591747295
801 => 0.066834447466036
802 => 0.067685414662357
803 => 0.065425498083118
804 => 0.060739516086311
805 => 0.062459232122337
806 => 0.063725521975012
807 => 0.061918370222833
808 => 0.065157619792183
809 => 0.063265317065452
810 => 0.062665547947628
811 => 0.060325634785869
812 => 0.061429983726702
813 => 0.062923631481933
814 => 0.06200073082439
815 => 0.063915888263023
816 => 0.06662826194996
817 => 0.068561260963917
818 => 0.068709652626065
819 => 0.067466863760966
820 => 0.069458440848659
821 => 0.069472947313489
822 => 0.06722644022274
823 => 0.06585046713826
824 => 0.065537843158394
825 => 0.066318839153641
826 => 0.067267112471685
827 => 0.06876227519557
828 => 0.06966577071561
829 => 0.072021607854879
830 => 0.072659029837621
831 => 0.073359363342385
901 => 0.074295224879604
902 => 0.075418966605008
903 => 0.072960283684476
904 => 0.073057971740467
905 => 0.07076848024765
906 => 0.068321830241282
907 => 0.070178532616886
908 => 0.072605923986222
909 => 0.072049077724068
910 => 0.071986421144238
911 => 0.072091792132025
912 => 0.071671948235259
913 => 0.069773009850328
914 => 0.068819374881398
915 => 0.070049807289545
916 => 0.070703727354229
917 => 0.071717900346731
918 => 0.07159288211881
919 => 0.074205282833267
920 => 0.075220382756008
921 => 0.074960676757196
922 => 0.075008468911152
923 => 0.076846258833782
924 => 0.078890259198072
925 => 0.080804735268833
926 => 0.082752222556672
927 => 0.08040445061946
928 => 0.079212396820186
929 => 0.080442292060034
930 => 0.079789692333742
1001 => 0.083539723934671
1002 => 0.083799367986391
1003 => 0.087549128417353
1004 => 0.091108097579502
1005 => 0.088872772814312
1006 => 0.090980583386647
1007 => 0.093260352372946
1008 => 0.097658396626703
1009 => 0.0961772900471
1010 => 0.095042785619023
1011 => 0.093970684416376
1012 => 0.096201556827812
1013 => 0.099071538546067
1014 => 0.099689705119836
1015 => 0.10069137112715
1016 => 0.099638241798351
1017 => 0.1009066200765
1018 => 0.105384552752
1019 => 0.10417457581528
1020 => 0.10245621405163
1021 => 0.10599111183371
1022 => 0.10727037759948
1023 => 0.11624893470034
1024 => 0.12758473392587
1025 => 0.12289163861163
1026 => 0.11997848290485
1027 => 0.12066314359692
1028 => 0.12480259373306
1029 => 0.12613205373721
1030 => 0.12251812315359
1031 => 0.12379462453151
1101 => 0.13082827262673
1102 => 0.13460159916337
1103 => 0.12947691490125
1104 => 0.11533811426999
1105 => 0.10230149437581
1106 => 0.10575939301839
1107 => 0.10536737462341
1108 => 0.11292415203626
1109 => 0.1041457182655
1110 => 0.10429352457665
1111 => 0.11200656814363
1112 => 0.109948860355
1113 => 0.10661563726873
1114 => 0.10232583059311
1115 => 0.094395726194128
1116 => 0.087371811580632
1117 => 0.10114732564863
1118 => 0.10055330043287
1119 => 0.099693063890845
1120 => 0.1016074272278
1121 => 0.11090303219056
1122 => 0.11068873840923
1123 => 0.10932551070606
1124 => 0.11035950690398
1125 => 0.10643437273594
1126 => 0.10744596918468
1127 => 0.10229942930861
1128 => 0.10462588027109
1129 => 0.10660848566901
1130 => 0.10700652305562
1201 => 0.10790332161194
1202 => 0.10024027613688
1203 => 0.10368075857999
1204 => 0.1057017196857
1205 => 0.096570943886882
1206 => 0.10552123360584
1207 => 0.10010687956389
1208 => 0.098269166481189
1209 => 0.10074340504676
1210 => 0.099779191871484
1211 => 0.098950218003875
1212 => 0.09848763634217
1213 => 0.10030444407298
1214 => 0.10021968782079
1215 => 0.097247037745991
1216 => 0.093369336904139
1217 => 0.094670820587856
1218 => 0.094197979364087
1219 => 0.092484341771417
1220 => 0.093639126603485
1221 => 0.088554038626288
1222 => 0.079805409061395
1223 => 0.085585021729735
1224 => 0.085362512929012
1225 => 0.085250313901717
1226 => 0.089593533085213
1227 => 0.089176032775835
1228 => 0.088418265626139
1229 => 0.092470424783465
1230 => 0.090991332181809
1231 => 0.095549547062067
]
'min_raw' => 0.040917974895116
'max_raw' => 0.13460159916337
'avg_raw' => 0.087759787029244
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.040917'
'max' => '$0.1346015'
'avg' => '$0.087759'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.022291057770935
'max_diff' => 0.088978459916952
'year' => 2029
]
4 => [
'items' => [
101 => 0.098551882189059
102 => 0.097790392885487
103 => 0.10061410358397
104 => 0.094700804143301
105 => 0.096664965017095
106 => 0.097069775850975
107 => 0.092420421768464
108 => 0.089244340989763
109 => 0.089032532611795
110 => 0.083525646232419
111 => 0.086467380486248
112 => 0.089055984892383
113 => 0.087816244265661
114 => 0.087423779419439
115 => 0.089428797203549
116 => 0.08958460425719
117 => 0.086032186922475
118 => 0.086770846976788
119 => 0.089851182195293
120 => 0.086693230432608
121 => 0.080557846006203
122 => 0.079036185840129
123 => 0.078833168324213
124 => 0.074706305269429
125 => 0.079137870448527
126 => 0.077203373489288
127 => 0.083314426204692
128 => 0.079823825667886
129 => 0.079673352855319
130 => 0.079445891129562
131 => 0.075893729619744
201 => 0.076671427238753
202 => 0.079256612571033
203 => 0.080179035821787
204 => 0.080082819519543
205 => 0.079243943752562
206 => 0.079627976782947
207 => 0.078390872586099
208 => 0.077954025346095
209 => 0.076575215292342
210 => 0.074548745419325
211 => 0.07483053848423
212 => 0.070815571411097
213 => 0.068628004259223
214 => 0.068022514503256
215 => 0.067212828296419
216 => 0.068113970714812
217 => 0.070804197513833
218 => 0.067559213230759
219 => 0.061995915286611
220 => 0.062330278972453
221 => 0.06308149490107
222 => 0.061681608987883
223 => 0.06035673445457
224 => 0.061508605370817
225 => 0.05915136269222
226 => 0.063366356416918
227 => 0.063252352649049
228 => 0.064823441656153
301 => 0.065805875854287
302 => 0.063541683094436
303 => 0.062972244738362
304 => 0.063296622705512
305 => 0.057935377469371
306 => 0.064385313541635
307 => 0.064441092856627
308 => 0.063963476497058
309 => 0.067397868336103
310 => 0.074645506330166
311 => 0.071918653381237
312 => 0.070862733499845
313 => 0.068855429033446
314 => 0.071530043052977
315 => 0.071324674426755
316 => 0.070395919615242
317 => 0.069834205807348
318 => 0.070869180721479
319 => 0.069705960961927
320 => 0.06949701472997
321 => 0.068231027900053
322 => 0.067779128200504
323 => 0.067444559653603
324 => 0.067076232557491
325 => 0.06788867035012
326 => 0.066047579426931
327 => 0.063827404257934
328 => 0.06364282071526
329 => 0.064152472105333
330 => 0.06392698930431
331 => 0.063641741190358
401 => 0.063097124858123
402 => 0.062935548826236
403 => 0.063460592544323
404 => 0.062867848798553
405 => 0.063742474483859
406 => 0.063504624692702
407 => 0.062176015094019
408 => 0.060520075619785
409 => 0.060505334285014
410 => 0.060148564841575
411 => 0.059694165314711
412 => 0.059567761761591
413 => 0.06141159801508
414 => 0.065228283878427
415 => 0.0644789771179
416 => 0.065020428044427
417 => 0.067683830709259
418 => 0.068530446325096
419 => 0.067929538614165
420 => 0.067106979077068
421 => 0.06714316752214
422 => 0.069954102466105
423 => 0.070129417030597
424 => 0.070572380376446
425 => 0.07114171345729
426 => 0.068026498499698
427 => 0.066996441177784
428 => 0.066508342873256
429 => 0.065005189013128
430 => 0.066626211580604
501 => 0.065681711149643
502 => 0.065809156526509
503 => 0.065726157557633
504 => 0.065771480607005
505 => 0.06336517824027
506 => 0.064241908351179
507 => 0.062784174497192
508 => 0.060832432505006
509 => 0.060825889581479
510 => 0.061303575669036
511 => 0.061019429292299
512 => 0.060254798698571
513 => 0.060363410865455
514 => 0.059411853996455
515 => 0.060478947097845
516 => 0.06050954750975
517 => 0.060098658540761
518 => 0.061742662693924
519 => 0.062416212536855
520 => 0.062145756615372
521 => 0.062397236628423
522 => 0.064510114196717
523 => 0.06485460543166
524 => 0.065007605682409
525 => 0.064802605615055
526 => 0.062435856151708
527 => 0.062540831554603
528 => 0.061770591700432
529 => 0.061119820189533
530 => 0.061145847637122
531 => 0.061480428788099
601 => 0.062941564297338
602 => 0.06601643783789
603 => 0.066133127041051
604 => 0.066274557759346
605 => 0.065699287950657
606 => 0.065525781071765
607 => 0.065754681430948
608 => 0.066909442263609
609 => 0.069879800639722
610 => 0.068829877606038
611 => 0.067976273836628
612 => 0.068725114472324
613 => 0.068609836326066
614 => 0.067636772759817
615 => 0.067609462106402
616 => 0.06574184201553
617 => 0.065051425391586
618 => 0.064474461583831
619 => 0.063844432167783
620 => 0.063470929611173
621 => 0.064044799292002
622 => 0.064176050077835
623 => 0.062921273991175
624 => 0.06275025264712
625 => 0.06377492988571
626 => 0.063324007636824
627 => 0.063787792352136
628 => 0.06389539438436
629 => 0.063878067978887
630 => 0.063407253362961
701 => 0.063707336559258
702 => 0.062997550340908
703 => 0.062225764434895
704 => 0.06173341311082
705 => 0.061303771279638
706 => 0.061542161538507
707 => 0.060692343793979
708 => 0.060420469994053
709 => 0.063605675124439
710 => 0.06595862040098
711 => 0.065924407644791
712 => 0.065716146290294
713 => 0.065406712161784
714 => 0.066886805229763
715 => 0.066371170400274
716 => 0.066746337821459
717 => 0.066841833675877
718 => 0.067130870865691
719 => 0.067234176817464
720 => 0.06692191448061
721 => 0.065873923938498
722 => 0.063262431147504
723 => 0.062046774203707
724 => 0.061645587163886
725 => 0.061660169550821
726 => 0.061257922220516
727 => 0.061376402086752
728 => 0.06121671975817
729 => 0.060914320059141
730 => 0.061523489209232
731 => 0.061593690278977
801 => 0.061451502920317
802 => 0.061484993190539
803 => 0.060307742589844
804 => 0.060397246396161
805 => 0.059898877828994
806 => 0.059805439730573
807 => 0.058545607390691
808 => 0.056313631784973
809 => 0.057550362933655
810 => 0.056056565616763
811 => 0.055490841938133
812 => 0.058168889844685
813 => 0.057900088112354
814 => 0.057440016391907
815 => 0.056759474430017
816 => 0.056507054796466
817 => 0.054973433009353
818 => 0.054882818452616
819 => 0.055642922821581
820 => 0.055292160808898
821 => 0.054799558099129
822 => 0.053015401018682
823 => 0.05100941774615
824 => 0.051069965771987
825 => 0.051708031728334
826 => 0.053563294551329
827 => 0.052838411270012
828 => 0.052312500132339
829 => 0.052214012785084
830 => 0.053446788133212
831 => 0.055191423525234
901 => 0.056009967417154
902 => 0.055198815279809
903 => 0.05426700737996
904 => 0.054323722209242
905 => 0.054701020559762
906 => 0.05474066928169
907 => 0.054134158130288
908 => 0.054304887466748
909 => 0.054045533992847
910 => 0.052453882202247
911 => 0.052425094268537
912 => 0.052034477250272
913 => 0.052022649522199
914 => 0.051358112530148
915 => 0.051265139211233
916 => 0.049945660679002
917 => 0.050814145444665
918 => 0.050231611461355
919 => 0.049353595342631
920 => 0.049202225032819
921 => 0.049197674658521
922 => 0.050099200891639
923 => 0.050803610585737
924 => 0.050241744889399
925 => 0.050113818961652
926 => 0.051479733188473
927 => 0.051305908152526
928 => 0.051155376792446
929 => 0.055035210561207
930 => 0.051964019386028
1001 => 0.050624804736187
1002 => 0.048967272297044
1003 => 0.049506973217233
1004 => 0.049620696130973
1005 => 0.045634629407512
1006 => 0.044017482634237
1007 => 0.043462538802539
1008 => 0.043143160781643
1009 => 0.043288705356262
1010 => 0.041833083587917
1011 => 0.042811285490007
1012 => 0.041550840079265
1013 => 0.04133952230431
1014 => 0.04359335483794
1015 => 0.043906962468296
1016 => 0.042569014886944
1017 => 0.04342819382821
1018 => 0.043116643600626
1019 => 0.041572446798134
1020 => 0.041513469838622
1021 => 0.040738646164274
1022 => 0.039526197149346
1023 => 0.038972075415174
1024 => 0.038683484004912
1025 => 0.038802562445321
1026 => 0.03874235274199
1027 => 0.038349443700342
1028 => 0.038764873828334
1029 => 0.037703621518895
1030 => 0.037281022298185
1031 => 0.037090144034418
1101 => 0.036148221526387
1102 => 0.037647239111505
1103 => 0.037942564459899
1104 => 0.03823847169046
1105 => 0.040814142108049
1106 => 0.040685468892755
1107 => 0.041848612092613
1108 => 0.041803414486749
1109 => 0.041471667204479
1110 => 0.040072079990362
1111 => 0.040629930508666
1112 => 0.038912953322545
1113 => 0.040199429373487
1114 => 0.039612335428361
1115 => 0.040000932320076
1116 => 0.039302200070403
1117 => 0.03968890734732
1118 => 0.038012597055852
1119 => 0.036447282092001
1120 => 0.037077210527847
1121 => 0.037762014778666
1122 => 0.03924684487932
1123 => 0.038362492320953
1124 => 0.038680538942014
1125 => 0.03761513600182
1126 => 0.035416905418895
1127 => 0.035429347165267
1128 => 0.03509119728114
1129 => 0.034798986410564
1130 => 0.038464070850517
1201 => 0.038008259663998
1202 => 0.037281984193373
1203 => 0.038254132771844
1204 => 0.038511184286064
1205 => 0.038518502181302
1206 => 0.039227756689369
1207 => 0.039606285947464
1208 => 0.039673003369843
1209 => 0.040789030662743
1210 => 0.041163108290567
1211 => 0.042703881098127
1212 => 0.039574170384552
1213 => 0.039509716051969
1214 => 0.038267812895971
1215 => 0.037480178280725
1216 => 0.038321742911928
1217 => 0.039067254290145
1218 => 0.038290978012597
1219 => 0.038392343306358
1220 => 0.037350255827852
1221 => 0.037722753066645
1222 => 0.03804359786949
1223 => 0.037866446227745
1224 => 0.037601241645816
1225 => 0.039006130858831
1226 => 0.038926861503627
1227 => 0.040235126637051
1228 => 0.041255012863491
1229 => 0.043082831307743
1230 => 0.041175407474836
1231 => 0.041105893369041
]
'min_raw' => 0.034798986410564
'max_raw' => 0.10061410358397
'avg_raw' => 0.067706544997266
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.034798'
'max' => '$0.100614'
'avg' => '$0.0677065'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0061189884845523
'max_diff' => -0.033987495579404
'year' => 2030
]
5 => [
'items' => [
101 => 0.041785404903593
102 => 0.041163004260892
103 => 0.041556339982539
104 => 0.043019458842039
105 => 0.043050372237988
106 => 0.042532533026185
107 => 0.042501022463086
108 => 0.042600479148253
109 => 0.043183000059748
110 => 0.042979449354212
111 => 0.043215003383932
112 => 0.043509567305027
113 => 0.044728008575194
114 => 0.045021770640418
115 => 0.044308081120092
116 => 0.044372519292935
117 => 0.044105579821118
118 => 0.043847719636084
119 => 0.044427351674584
120 => 0.045486640617638
121 => 0.0454800508361
122 => 0.045725785281254
123 => 0.045878875804811
124 => 0.045221699208593
125 => 0.044793901409508
126 => 0.044957946307158
127 => 0.045220257670934
128 => 0.04487288226723
129 => 0.042728720355626
130 => 0.043379122110013
131 => 0.043270863455062
201 => 0.04311668996571
202 => 0.043770673959154
203 => 0.043707595607582
204 => 0.041818154082761
205 => 0.041939109998902
206 => 0.04182550981264
207 => 0.042192575254864
208 => 0.041143181522406
209 => 0.041465967966735
210 => 0.041668416598684
211 => 0.041787660398185
212 => 0.042218450768223
213 => 0.042167902490463
214 => 0.042215308616304
215 => 0.042854057010629
216 => 0.046084627197144
217 => 0.046260460004544
218 => 0.045394594953076
219 => 0.045740490962705
220 => 0.045076446263359
221 => 0.045522223918742
222 => 0.045827213669031
223 => 0.044449023633633
224 => 0.044367416164116
225 => 0.043700630716083
226 => 0.044058923447198
227 => 0.043488853949835
228 => 0.043628729064303
301 => 0.043237626050156
302 => 0.043941533607787
303 => 0.044728611633395
304 => 0.044927458625317
305 => 0.044404377798583
306 => 0.044025632807322
307 => 0.043360681369024
308 => 0.044466510430323
309 => 0.044789888547377
310 => 0.044464811862741
311 => 0.044389484491845
312 => 0.04424673926011
313 => 0.044419768567557
314 => 0.044788127360703
315 => 0.044614416156374
316 => 0.044729155467231
317 => 0.044291887532909
318 => 0.045221916761391
319 => 0.046699026999943
320 => 0.046703776150892
321 => 0.046530064010195
322 => 0.046458984744902
323 => 0.046637223942992
324 => 0.0467339113962
325 => 0.047310304279341
326 => 0.047928796807456
327 => 0.05081503156674
328 => 0.050004588395788
329 => 0.052565427577098
330 => 0.054590718886165
331 => 0.055198015194498
401 => 0.054639331166331
402 => 0.052728103285488
403 => 0.05263432932766
404 => 0.055490510681237
405 => 0.054683508627458
406 => 0.05458751830102
407 => 0.053566343405938
408 => 0.054169984243903
409 => 0.054037959137763
410 => 0.053829551048832
411 => 0.054981255717684
412 => 0.057137144044388
413 => 0.056801128630878
414 => 0.056550308712
415 => 0.055451288840055
416 => 0.056113144277941
417 => 0.055877470233516
418 => 0.056890075490811
419 => 0.056290230568342
420 => 0.054677394793192
421 => 0.054934244206361
422 => 0.05489542193427
423 => 0.05569438154293
424 => 0.055454553699807
425 => 0.054848591698801
426 => 0.057129775452462
427 => 0.05698164806811
428 => 0.057191658832487
429 => 0.057284112065764
430 => 0.058672628417652
501 => 0.059241459139452
502 => 0.059370593672084
503 => 0.059910938862848
504 => 0.059357149391495
505 => 0.061572702122109
506 => 0.063045915406882
507 => 0.064757128448007
508 => 0.067257670631796
509 => 0.06819789762421
510 => 0.068028054033676
511 => 0.069923936579131
512 => 0.073330795370213
513 => 0.068716677601174
514 => 0.073575354815925
515 => 0.072037153705861
516 => 0.068390106544955
517 => 0.068155279703654
518 => 0.070625102384108
519 => 0.076102931377731
520 => 0.074730797343851
521 => 0.076105175697457
522 => 0.074501890343571
523 => 0.0744222737122
524 => 0.076027307706419
525 => 0.079777557119758
526 => 0.077995954199478
527 => 0.075441589546297
528 => 0.07732769265589
529 => 0.075693775591758
530 => 0.072012103141679
531 => 0.074729748098814
601 => 0.07291253631005
602 => 0.073442895318304
603 => 0.077262404208433
604 => 0.076802830793605
605 => 0.077397561347744
606 => 0.076347877486497
607 => 0.075367307240141
608 => 0.073537000057215
609 => 0.072995136333404
610 => 0.073144887972451
611 => 0.072995062123929
612 => 0.071971022076472
613 => 0.071749880725724
614 => 0.071381302119385
615 => 0.071495540041484
616 => 0.070802504430092
617 => 0.072110405817252
618 => 0.072353163839897
619 => 0.073304945399547
620 => 0.073403762518484
621 => 0.07605446061435
622 => 0.074594500646319
623 => 0.075573967839753
624 => 0.07548635507487
625 => 0.068469149115746
626 => 0.069436058183581
627 => 0.070940265260351
628 => 0.070262622011171
629 => 0.069304593000929
630 => 0.068530933208893
701 => 0.067358759513184
702 => 0.069008571480293
703 => 0.071177898779099
704 => 0.073458780238717
705 => 0.076199109863176
706 => 0.07558750019195
707 => 0.073407551682522
708 => 0.073505342580201
709 => 0.074109847430356
710 => 0.073326958724348
711 => 0.073096069561143
712 => 0.074078126804876
713 => 0.074084889693385
714 => 0.073184081621862
715 => 0.072182998296501
716 => 0.072178803720815
717 => 0.072000670612384
718 => 0.074533579827835
719 => 0.075926423790327
720 => 0.076086111105947
721 => 0.075915675561664
722 => 0.075981269438314
723 => 0.075170804225762
724 => 0.077023287365662
725 => 0.078723309086428
726 => 0.078267666949596
727 => 0.077584594613138
728 => 0.077040494595929
729 => 0.078139494277289
730 => 0.078090557551464
731 => 0.078708460879764
801 => 0.07868042921561
802 => 0.078472651566822
803 => 0.07826767436999
804 => 0.079080385785856
805 => 0.078846337949833
806 => 0.078611926572874
807 => 0.078141778669798
808 => 0.078205679578156
809 => 0.077522725183768
810 => 0.077206759231057
811 => 0.072455389410612
812 => 0.071185668139101
813 => 0.071585148298678
814 => 0.071716667539709
815 => 0.071164083215155
816 => 0.071956347189299
817 => 0.071832873688144
818 => 0.072313236851556
819 => 0.072013126802
820 => 0.072025443423117
821 => 0.072908003088651
822 => 0.073164213914233
823 => 0.073033903020468
824 => 0.073125168303665
825 => 0.075228338234286
826 => 0.07492933472574
827 => 0.074770495071186
828 => 0.074814494741027
829 => 0.075351899750772
830 => 0.075502343812275
831 => 0.074864901752171
901 => 0.075165523112725
902 => 0.076445530711433
903 => 0.076893460928825
904 => 0.078323039164039
905 => 0.077715728920993
906 => 0.078830473155876
907 => 0.082256816889589
908 => 0.084994017349032
909 => 0.082476774686935
910 => 0.087503294750325
911 => 0.091417161631152
912 => 0.09126694090138
913 => 0.090584467681335
914 => 0.086128634293048
915 => 0.082028309976413
916 => 0.085458405376245
917 => 0.085467149394825
918 => 0.085172501157978
919 => 0.083342466264562
920 => 0.085108819910518
921 => 0.08524902664848
922 => 0.085170548159202
923 => 0.083767464697163
924 => 0.081625215583799
925 => 0.08204380593273
926 => 0.082729465463292
927 => 0.081431368928376
928 => 0.081016548431028
929 => 0.081787778658427
930 => 0.084272843143306
1001 => 0.083803056097438
1002 => 0.083790788059112
1003 => 0.085800736262047
1004 => 0.084362047122716
1005 => 0.082049085697542
1006 => 0.081465032433473
1007 => 0.079392036811448
1008 => 0.080823862271338
1009 => 0.080875391120609
1010 => 0.080091194949129
1011 => 0.082112718894906
1012 => 0.082094090195864
1013 => 0.084013226318247
1014 => 0.087681893789634
1015 => 0.086596888294182
1016 => 0.085335144951235
1017 => 0.085472331436961
1018 => 0.086976928580282
1019 => 0.086067214800818
1020 => 0.086394354218663
1021 => 0.086976433415592
1022 => 0.087327616247313
1023 => 0.085421801631874
1024 => 0.084977465079364
1025 => 0.084068508433867
1026 => 0.083831378611536
1027 => 0.084571704833291
1028 => 0.08437665502997
1029 => 0.080871060320358
1030 => 0.080504706168258
1031 => 0.08051594172707
1101 => 0.079594726792426
1102 => 0.078189652900176
1103 => 0.081882103196406
1104 => 0.08158554776181
1105 => 0.081258173513583
1106 => 0.081298274991019
1107 => 0.082901042515861
1108 => 0.081971356409753
1109 => 0.084443079295397
1110 => 0.0839349673769
1111 => 0.083413824304975
1112 => 0.083341786458028
1113 => 0.083141190837175
1114 => 0.082453273814924
1115 => 0.081622572673153
1116 => 0.081074071825255
1117 => 0.074786545699576
1118 => 0.075953473975645
1119 => 0.077295918588403
1120 => 0.077759325089218
1121 => 0.07696663620282
1122 => 0.082484574003655
1123 => 0.083492754412039
1124 => 0.080438910193063
1125 => 0.07986766062733
1126 => 0.082522025030082
1127 => 0.080921118812371
1128 => 0.081642006784181
1129 => 0.080083841293766
1130 => 0.083249913274628
1201 => 0.083225793110755
1202 => 0.081994119601221
1203 => 0.083035121617343
1204 => 0.08285422189924
1205 => 0.081463665540454
1206 => 0.083293996391492
1207 => 0.083294904212759
1208 => 0.082109445238723
1209 => 0.080725088687389
1210 => 0.080477598433052
1211 => 0.080291147772047
1212 => 0.081596151351208
1213 => 0.082766213479642
1214 => 0.084943409017659
1215 => 0.085490807704806
1216 => 0.087627341223136
1217 => 0.086355139538899
1218 => 0.086919090067752
1219 => 0.087531338142493
1220 => 0.087824872384202
1221 => 0.087346574089254
1222 => 0.090665490075501
1223 => 0.090945708273699
1224 => 0.091039663011676
1225 => 0.089920543214784
1226 => 0.090914583527674
1227 => 0.090449504984428
1228 => 0.091659510151414
1229 => 0.091849254411719
1230 => 0.091688547773589
1231 => 0.091748775596719
]
'min_raw' => 0.041143181522406
'max_raw' => 0.091849254411719
'avg_raw' => 0.066496217967062
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.041143'
'max' => '$0.091849'
'avg' => '$0.066496'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0063441951118421
'max_diff' => -0.0087648491722485
'year' => 2031
]
6 => [
'items' => [
101 => 0.088916666299357
102 => 0.088769806491722
103 => 0.086767362593924
104 => 0.087583373283595
105 => 0.086057880411665
106 => 0.086541629915672
107 => 0.086754862087703
108 => 0.086643481701853
109 => 0.087629509303656
110 => 0.086791184409993
111 => 0.084578707182243
112 => 0.082365627166552
113 => 0.082337843749691
114 => 0.081755178845667
115 => 0.081334018840457
116 => 0.081415149198914
117 => 0.081701063164117
118 => 0.081317401001036
119 => 0.081399274775695
120 => 0.082758924957134
121 => 0.08303159310444
122 => 0.082104960201572
123 => 0.078384395384063
124 => 0.077471359445517
125 => 0.078127631571854
126 => 0.077813975764803
127 => 0.062801951574
128 => 0.066328803981127
129 => 0.064233268041403
130 => 0.0651989874134
131 => 0.063059987855343
201 => 0.06408083055902
202 => 0.063892318186858
203 => 0.069563392490368
204 => 0.069474846465426
205 => 0.069517228761815
206 => 0.06749421132872
207 => 0.070716933030549
208 => 0.072304561626194
209 => 0.072010733826507
210 => 0.072084683953417
211 => 0.070813975764614
212 => 0.069529531994713
213 => 0.068104886179413
214 => 0.070751702012695
215 => 0.070457421274687
216 => 0.07113239540881
217 => 0.072849044674997
218 => 0.07310182780036
219 => 0.07344157088432
220 => 0.07331979717328
221 => 0.07622094100968
222 => 0.075869593348728
223 => 0.076716240122
224 => 0.074974623474135
225 => 0.073003818921304
226 => 0.073378404436342
227 => 0.073342328839018
228 => 0.072883045079432
229 => 0.072468424237243
301 => 0.071778197353695
302 => 0.073962177347598
303 => 0.073873511748261
304 => 0.075308904739037
305 => 0.075055185085254
306 => 0.073360783141558
307 => 0.073421299038458
308 => 0.073828297528057
309 => 0.075236923947586
310 => 0.075655100175502
311 => 0.07546138428529
312 => 0.07591989542873
313 => 0.076282283941499
314 => 0.075965405846502
315 => 0.080451731434904
316 => 0.078588696265071
317 => 0.079496726643932
318 => 0.079713286538865
319 => 0.079158572921759
320 => 0.079278870442504
321 => 0.07946108840732
322 => 0.08056748020775
323 => 0.083470972429124
324 => 0.08475690936923
325 => 0.088625714100552
326 => 0.084650130207461
327 => 0.084414235511846
328 => 0.085111124070667
329 => 0.087382522002525
330 => 0.089223276684736
331 => 0.089833961208511
401 => 0.08991467324963
402 => 0.091060358013771
403 => 0.091717043154821
404 => 0.090921241748904
405 => 0.090246883381269
406 => 0.087831415412845
407 => 0.088111012407291
408 => 0.090037158436026
409 => 0.092757953151049
410 => 0.095092678066981
411 => 0.0942751387748
412 => 0.10051238648135
413 => 0.10113078411458
414 => 0.10104534155686
415 => 0.10245414339526
416 => 0.099657958643528
417 => 0.098462535488632
418 => 0.090392687314644
419 => 0.092659985486705
420 => 0.095955636533549
421 => 0.095519444759442
422 => 0.093126054876219
423 => 0.095090862466134
424 => 0.094441235631694
425 => 0.093928847994329
426 => 0.096276195092328
427 => 0.093695190534374
428 => 0.095929889038718
429 => 0.093063865091901
430 => 0.094278873225422
501 => 0.093589175845505
502 => 0.094035494576443
503 => 0.091426324395168
504 => 0.092834169290958
505 => 0.091367753418939
506 => 0.091367058146882
507 => 0.091334686935232
508 => 0.093059918705579
509 => 0.093116178451672
510 => 0.091841229566705
511 => 0.091657489513936
512 => 0.092336872791082
513 => 0.091541492904307
514 => 0.091913646147267
515 => 0.091552765046917
516 => 0.09147152310991
517 => 0.090824173533657
518 => 0.090545277536959
519 => 0.090654639843529
520 => 0.090281329911074
521 => 0.090056397173559
522 => 0.091289942152265
523 => 0.090630908831205
524 => 0.091188935843944
525 => 0.090552993634305
526 => 0.088348540868861
527 => 0.08708073677179
528 => 0.082916729850748
529 => 0.084097637048121
530 => 0.084880579741716
531 => 0.084621817186153
601 => 0.085177739283318
602 => 0.085211868385072
603 => 0.085031132444329
604 => 0.084821863378656
605 => 0.084720002770792
606 => 0.085479188288981
607 => 0.0859199210353
608 => 0.08495915851544
609 => 0.084734065299533
610 => 0.085705449252264
611 => 0.086297992902279
612 => 0.090673002292475
613 => 0.090348887465755
614 => 0.0911623520765
615 => 0.091070768444962
616 => 0.091923408952097
617 => 0.093317115828499
618 => 0.090483320062202
619 => 0.090975169021946
620 => 0.090854579015468
621 => 0.092171149085798
622 => 0.092175259273849
623 => 0.091385909749134
624 => 0.091813828932216
625 => 0.091574976183568
626 => 0.092006615383259
627 => 0.090344558714641
628 => 0.092368764329088
629 => 0.09351635847555
630 => 0.093532292821387
701 => 0.09407624333894
702 => 0.094628928568264
703 => 0.095689759737211
704 => 0.094599342562729
705 => 0.092637788215808
706 => 0.092779406103873
707 => 0.091629347507978
708 => 0.09164868020075
709 => 0.091545480771603
710 => 0.091855190026965
711 => 0.090412522479731
712 => 0.090751113669504
713 => 0.090277084021034
714 => 0.090974138574067
715 => 0.090224223102249
716 => 0.090854520863316
717 => 0.09112653648229
718 => 0.092130279972385
719 => 0.090075969372643
720 => 0.085887090995169
721 => 0.086767644015355
722 => 0.085465236932553
723 => 0.085585779666679
724 => 0.085829295173849
725 => 0.085039981741795
726 => 0.085190557870506
727 => 0.085185178231601
728 => 0.085138819409829
729 => 0.084933488501421
730 => 0.084635718060747
731 => 0.085821943847485
801 => 0.086023506723778
802 => 0.086471556029421
803 => 0.087804646848266
804 => 0.087671439639017
805 => 0.087888706124016
806 => 0.087414414607162
807 => 0.085607780689845
808 => 0.085705889603534
809 => 0.084482469877752
810 => 0.08644027043641
811 => 0.085976637422415
812 => 0.085677730202181
813 => 0.085596170597784
814 => 0.08693256589092
815 => 0.087332436308056
816 => 0.087083263898403
817 => 0.086572204016683
818 => 0.087553590070876
819 => 0.087816167577625
820 => 0.0878749489979
821 => 0.089613776923819
822 => 0.08797213016299
823 => 0.088367290854887
824 => 0.091450221769474
825 => 0.088654428845329
826 => 0.090135422710871
827 => 0.090062935767873
828 => 0.090820562115384
829 => 0.090000788293921
830 => 0.090010950372928
831 => 0.090683671243464
901 => 0.089738956106645
902 => 0.089505031353209
903 => 0.089181865981739
904 => 0.089887485747576
905 => 0.090310472884757
906 => 0.093719438560623
907 => 0.095921785854955
908 => 0.09582617615063
909 => 0.096699869874291
910 => 0.096306262849664
911 => 0.095035201938858
912 => 0.097204747924239
913 => 0.096518212796805
914 => 0.09657480991857
915 => 0.096572703370872
916 => 0.097029189212673
917 => 0.096705727157444
918 => 0.096068150243888
919 => 0.096491403553575
920 => 0.097748314567517
921 => 0.10164980492153
922 => 0.10383313061151
923 => 0.10151836597353
924 => 0.10311505962488
925 => 0.10215761239419
926 => 0.10198361575079
927 => 0.10298645735857
928 => 0.10399105430782
929 => 0.10392706582515
930 => 0.10319778002661
1001 => 0.10278582498396
1002 => 0.10590528658198
1003 => 0.10820365274877
1004 => 0.10804691958464
1005 => 0.10873868879876
1006 => 0.11076974460705
1007 => 0.11095543889614
1008 => 0.11093204568384
1009 => 0.11047178301314
1010 => 0.11247162122232
1011 => 0.11413992144023
1012 => 0.11036524550314
1013 => 0.11180259268585
1014 => 0.1124478641446
1015 => 0.11339531408946
1016 => 0.11499382095749
1017 => 0.11673022339918
1018 => 0.11697576974311
1019 => 0.11680154286162
1020 => 0.11565633877432
1021 => 0.1175563310456
1022 => 0.11866930195782
1023 => 0.11933205066616
1024 => 0.12101267111963
1025 => 0.11245184912145
1026 => 0.10639207381068
1027 => 0.10544575239168
1028 => 0.10737013420946
1029 => 0.10787757834815
1030 => 0.10767302825212
1031 => 0.10085220020918
1101 => 0.10540984214364
1102 => 0.1103134816477
1103 => 0.11050185041175
1104 => 0.11295671487775
1105 => 0.11375611937618
1106 => 0.11573260703775
1107 => 0.11560897719638
1108 => 0.11609022048918
1109 => 0.11597959099014
1110 => 0.11964061818462
1111 => 0.12367927484793
1112 => 0.12353942900982
1113 => 0.12295882433125
1114 => 0.12382112128673
1115 => 0.12798944777202
1116 => 0.12760569506533
1117 => 0.1279784781319
1118 => 0.13289316997464
1119 => 0.13928296847697
1120 => 0.13631426554736
1121 => 0.14275549668336
1122 => 0.14680991024848
1123 => 0.15382159927517
1124 => 0.15294370127573
1125 => 0.15567330035967
1126 => 0.15137208063389
1127 => 0.14149561072359
1128 => 0.13993262155467
1129 => 0.14306176545203
1130 => 0.15075446038628
1201 => 0.14281949511257
1202 => 0.14442472825292
1203 => 0.14396242100051
1204 => 0.14393778661171
1205 => 0.14487798103697
1206 => 0.14351417998589
1207 => 0.13795780916066
1208 => 0.14050426116596
1209 => 0.13952095375605
1210 => 0.14061200663777
1211 => 0.14649996905601
1212 => 0.14389676051941
1213 => 0.1411544917936
1214 => 0.14459390533392
1215 => 0.14897346068146
1216 => 0.14869939597863
1217 => 0.14816759590498
1218 => 0.15116532507601
1219 => 0.15611669541432
1220 => 0.15745503092054
1221 => 0.15844296283017
1222 => 0.15857918194927
1223 => 0.15998232353562
1224 => 0.15243727758857
1225 => 0.16441145927706
1226 => 0.16647906967457
1227 => 0.16609044461351
1228 => 0.168388506552
1229 => 0.16771235843349
1230 => 0.16673272589416
1231 => 0.17037564287846
]
'min_raw' => 0.062801951574
'max_raw' => 0.17037564287846
'avg_raw' => 0.11658879722623
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0628019'
'max' => '$0.170375'
'avg' => '$0.116588'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.021658770051594
'max_diff' => 0.078526388466736
'year' => 2032
]
7 => [
'items' => [
101 => 0.16619933252421
102 => 0.16027158575921
103 => 0.15701950664639
104 => 0.16130210675989
105 => 0.16391734120705
106 => 0.16564584481648
107 => 0.1661688889643
108 => 0.15302297802745
109 => 0.14593806113814
110 => 0.15047941163545
111 => 0.15602017266944
112 => 0.15240649838127
113 => 0.15254814757178
114 => 0.14739599769374
115 => 0.15647602361153
116 => 0.15515314021035
117 => 0.16201626163583
118 => 0.16037832262765
119 => 0.16597493172529
120 => 0.16450115698708
121 => 0.17061871352773
122 => 0.17305917245803
123 => 0.1771570828291
124 => 0.18017152237956
125 => 0.18194165894063
126 => 0.18183538658112
127 => 0.1888495495146
128 => 0.18471354268891
129 => 0.17951774333389
130 => 0.17942376771609
131 => 0.18211474582711
201 => 0.187754297714
202 => 0.18921655146613
203 => 0.19003375182925
204 => 0.18878218102619
205 => 0.18429284204718
206 => 0.18235436823751
207 => 0.18400600408634
208 => 0.18198619536991
209 => 0.18547295187271
210 => 0.19026101328205
211 => 0.18927229753507
212 => 0.19257742604068
213 => 0.19599788633433
214 => 0.20088929817673
215 => 0.20216809436079
216 => 0.20428189582478
217 => 0.20645769187884
218 => 0.20715649893205
219 => 0.20849073842373
220 => 0.20848370632301
221 => 0.21250452683586
222 => 0.21693961637598
223 => 0.21861376000482
224 => 0.22246336096651
225 => 0.21587105422572
226 => 0.22087139461557
227 => 0.22538182681386
228 => 0.22000430360377
301 => 0.22741596654666
302 => 0.22770374462355
303 => 0.23204885191861
304 => 0.22764425325323
305 => 0.2250288166257
306 => 0.23257948417024
307 => 0.23623301435125
308 => 0.23513254132732
309 => 0.22675788727813
310 => 0.22188347941569
311 => 0.20912621383663
312 => 0.22423774598789
313 => 0.23159813248932
314 => 0.22673882565523
315 => 0.22918957737335
316 => 0.2425600840885
317 => 0.24765070736943
318 => 0.24659189331314
319 => 0.24677081545909
320 => 0.24951762338013
321 => 0.26169848239678
322 => 0.2543994293239
323 => 0.25997928190782
324 => 0.26293881559867
325 => 0.26568779542734
326 => 0.25893716979213
327 => 0.2501547050271
328 => 0.24737292977322
329 => 0.22625566335705
330 => 0.22515641793244
331 => 0.22453937816507
401 => 0.22064902971378
402 => 0.21759228148719
403 => 0.21516144180763
404 => 0.20878219257827
405 => 0.21093500192835
406 => 0.20076781010954
407 => 0.20727241913206
408 => 0.1910453354938
409 => 0.20455973293814
410 => 0.19720446083344
411 => 0.20214332823233
412 => 0.20212609698925
413 => 0.19303207623854
414 => 0.18778683485691
415 => 0.19112930681314
416 => 0.19471270207596
417 => 0.19529409590137
418 => 0.19994006139581
419 => 0.20123665050062
420 => 0.1973079249811
421 => 0.19070906525354
422 => 0.19224182986429
423 => 0.18775577343099
424 => 0.17989413208532
425 => 0.18554050015087
426 => 0.18746841846173
427 => 0.18831989701889
428 => 0.18058887567103
429 => 0.17815962091489
430 => 0.17686630606614
501 => 0.18971108747954
502 => 0.19041475360082
503 => 0.18681469823599
504 => 0.20308728985629
505 => 0.19940430120487
506 => 0.20351910188263
507 => 0.19210274754154
508 => 0.19253886765153
509 => 0.18713418255126
510 => 0.19016044506622
511 => 0.18802158026164
512 => 0.18991595296112
513 => 0.1910514321464
514 => 0.19645523039102
515 => 0.20462143563385
516 => 0.19564808313407
517 => 0.19173826494914
518 => 0.19416389416142
519 => 0.20062366439939
520 => 0.21041054697948
521 => 0.2046165155127
522 => 0.20718780828862
523 => 0.20774952137131
524 => 0.20347721707441
525 => 0.21056807293286
526 => 0.21436812019341
527 => 0.21826618237376
528 => 0.22165076054373
529 => 0.2167092106187
530 => 0.22199737738184
531 => 0.21773604845785
601 => 0.21391319588494
602 => 0.21391899357429
603 => 0.21152086231234
604 => 0.20687418080833
605 => 0.20601726144611
606 => 0.21047506418538
607 => 0.21404979982679
608 => 0.21434423217605
609 => 0.21632338950368
610 => 0.21749463442323
611 => 0.22897442686509
612 => 0.23359169435103
613 => 0.23923760163243
614 => 0.24143700070444
615 => 0.24805640338297
616 => 0.24271069811845
617 => 0.24155412115841
618 => 0.22549761545041
619 => 0.22812686736059
620 => 0.23233655335387
621 => 0.22556703162191
622 => 0.22986073503173
623 => 0.2307084030379
624 => 0.22533700586385
625 => 0.22820610117888
626 => 0.22058663464964
627 => 0.20478751918259
628 => 0.21058566186479
629 => 0.21485504651262
630 => 0.20876210820884
701 => 0.21968346428908
702 => 0.21330343352956
703 => 0.21128127007427
704 => 0.20339208948188
705 => 0.20711547903908
706 => 0.212151416729
707 => 0.20903979272722
708 => 0.2154968797436
709 => 0.22464183700099
710 => 0.23115907813423
711 => 0.23165939098353
712 => 0.2274692415561
713 => 0.23418398275473
714 => 0.23423289231372
715 => 0.22665863681114
716 => 0.22201944748944
717 => 0.22096541391461
718 => 0.22359859643999
719 => 0.2267957661381
720 => 0.23183681165061
721 => 0.23488300987647
722 => 0.24282587927081
723 => 0.24497499198901
724 => 0.24733621529604
725 => 0.25049153780854
726 => 0.25428031149288
727 => 0.24599069036655
728 => 0.24632005246768
729 => 0.23860087205246
730 => 0.23035182073634
731 => 0.23661182242651
801 => 0.24479594190328
802 => 0.24291849585266
803 => 0.24270724481923
804 => 0.24306251046132
805 => 0.24164697745081
806 => 0.23524457410636
807 => 0.23202932722795
808 => 0.23617781599806
809 => 0.23838255315139
810 => 0.24180190820291
811 => 0.24138040051898
812 => 0.25018829191976
813 => 0.2536107721813
814 => 0.25273515527421
815 => 0.25289628985801
816 => 0.25909252689255
817 => 0.26598401682831
818 => 0.27243880656533
819 => 0.2790048959255
820 => 0.27108921892298
821 => 0.26707012631219
822 => 0.27121680398189
823 => 0.26901651844163
824 => 0.28166001180301
825 => 0.28253541985116
826 => 0.29517799894406
827 => 0.30717731195353
828 => 0.2996407584423
829 => 0.30674738894957
830 => 0.31443378925526
831 => 0.32926210251845
901 => 0.32426844827776
902 => 0.32044338738993
903 => 0.31682872333349
904 => 0.32435026542318
905 => 0.334026609162
906 => 0.33611080092447
907 => 0.33948798780221
908 => 0.33593728874303
909 => 0.34021371466314
910 => 0.3553113773179
911 => 0.35123185559783
912 => 0.34543827893949
913 => 0.35735643361048
914 => 0.36166956745526
915 => 0.39194139958365
916 => 0.43016083811275
917 => 0.41433773959934
918 => 0.40451583174386
919 => 0.40682421306867
920 => 0.42078065820986
921 => 0.42526302543378
922 => 0.41307840615452
923 => 0.41738221967268
924 => 0.44109665529934
925 => 0.45381868916286
926 => 0.4365404583791
927 => 0.38887050491127
928 => 0.3449166307503
929 => 0.35657517744654
930 => 0.35525346005801
1001 => 0.38073166270276
1002 => 0.35113456035399
1003 => 0.35163289965154
1004 => 0.37763796454511
1005 => 0.37070025907118
1006 => 0.35946206471761
1007 => 0.34499868200601
1008 => 0.31826178136265
1009 => 0.29458016284918
1010 => 0.34102527030511
1011 => 0.33902247281666
1012 => 0.33612212525543
1013 => 0.34257653490257
1014 => 0.3739173160329
1015 => 0.37319480958764
1016 => 0.3685985922089
1017 => 0.37208478258147
1018 => 0.35885091868982
1019 => 0.36226158674417
1020 => 0.34490966823207
1021 => 0.35275346007967
1022 => 0.35943795259986
1023 => 0.36077996343889
1024 => 0.363803582384
1025 => 0.33796708954807
1026 => 0.34956691631183
1027 => 0.35638072777875
1028 => 0.32559567968261
1029 => 0.35577220635936
1030 => 0.33751733368881
1031 => 0.33132135572544
1101 => 0.33966342379509
1102 => 0.33641251175542
1103 => 0.33361756848367
1104 => 0.33205794211481
1105 => 0.33818343622471
1106 => 0.33789767460294
1107 => 0.32787517733197
1108 => 0.31480123821124
1109 => 0.31918928131758
1110 => 0.31759506411892
1111 => 0.31181741533288
1112 => 0.31571085301869
1113 => 0.29856612387407
1114 => 0.26906950848622
1115 => 0.2885558761172
1116 => 0.2878056721605
1117 => 0.28742738530649
1118 => 0.30207085201752
1119 => 0.30066322057551
1120 => 0.2981083557247
1121 => 0.31177049323634
1122 => 0.30678362926291
1123 => 0.3221519689761
1124 => 0.3322745514731
1125 => 0.32970713712062
1126 => 0.33922747488573
1127 => 0.31929037296814
1128 => 0.32591267848747
1129 => 0.32727752647689
1130 => 0.31160190458017
1201 => 0.3008935264879
1202 => 0.30017939975359
1203 => 0.281612547847
1204 => 0.29153081026911
1205 => 0.30025847075498
1206 => 0.29607859867606
1207 => 0.294755376046
1208 => 0.301515433491
1209 => 0.30204074785045
1210 => 0.2900635247846
1211 => 0.29255396872932
1212 => 0.30293953398064
1213 => 0.2922922791316
1214 => 0.27160640217911
1215 => 0.26647601869027
1216 => 0.26579153096113
1217 => 0.25187752404355
1218 => 0.26681885544688
1219 => 0.26029656388654
1220 => 0.2809004047766
1221 => 0.26913160136082
1222 => 0.26862427176757
1223 => 0.26785736867831
1224 => 0.25588100814396
1225 => 0.25850306996356
1226 => 0.26721920280322
1227 => 0.27032921719467
1228 => 0.27000481721405
1229 => 0.26717648899724
1230 => 0.26847128317151
1231 => 0.26430029999998
]
'min_raw' => 0.14593806113814
'max_raw' => 0.45381868916286
'avg_raw' => 0.2998783751505
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.145938'
'max' => '$0.453818'
'avg' => '$0.299878'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.083136109564137
'max_diff' => 0.2834430462844
'year' => 2033
]
8 => [
'items' => [
101 => 0.26282743903061
102 => 0.25817868466894
103 => 0.25134630000845
104 => 0.25229638500094
105 => 0.23875964319782
106 => 0.23138410781422
107 => 0.22934265682803
108 => 0.22661274325119
109 => 0.22965100783056
110 => 0.2387212953091
111 => 0.22778060424115
112 => 0.20902355680539
113 => 0.21015088731673
114 => 0.21268366426829
115 => 0.20796385117506
116 => 0.20349694418621
117 => 0.2073805574014
118 => 0.19943294913308
119 => 0.21364409475737
120 => 0.2132597230945
121 => 0.21855675937189
122 => 0.22186910486226
123 => 0.21423522089154
124 => 0.21231531971712
125 => 0.21340898268071
126 => 0.19533317005687
127 => 0.21707957984466
128 => 0.21726764369955
129 => 0.21565732679715
130 => 0.22723661866407
131 => 0.25167253617498
201 => 0.24247876107487
202 => 0.23891865347279
203 => 0.2321508863188
204 => 0.24116853422124
205 => 0.24047611955955
206 => 0.23734475786895
207 => 0.23545090054802
208 => 0.23894039073066
209 => 0.23501851409792
210 => 0.23431403728871
211 => 0.23004567430327
212 => 0.22852206291561
213 => 0.22739404170091
214 => 0.22615220118059
215 => 0.22889139192103
216 => 0.22268402533264
217 => 0.21519854974268
218 => 0.21457621344135
219 => 0.2162945386857
220 => 0.21553430767934
221 => 0.21457257374777
222 => 0.21273636175974
223 => 0.21219159688735
224 => 0.21396181844027
225 => 0.21196334151736
226 => 0.21491220307978
227 => 0.21411027590275
228 => 0.20963077588023
301 => 0.20404766032885
302 => 0.20399795888946
303 => 0.20279508580206
304 => 0.20126304607208
305 => 0.20083686766752
306 => 0.20705349032869
307 => 0.21992171318947
308 => 0.21739537313142
309 => 0.2192209127331
310 => 0.22820076077042
311 => 0.23105518442803
312 => 0.22902918212659
313 => 0.22625586521799
314 => 0.22637787708715
315 => 0.23585514050394
316 => 0.2364462257982
317 => 0.23793970764544
318 => 0.23985925387707
319 => 0.22935608915019
320 => 0.22588317897305
321 => 0.2242375214614
322 => 0.21916953327513
323 => 0.22463492403755
324 => 0.22145047489165
325 => 0.22188016587771
326 => 0.22160032905934
327 => 0.22175313888465
328 => 0.21364012245254
329 => 0.21659607923281
330 => 0.21168122776836
331 => 0.20510079337544
401 => 0.20507873345195
402 => 0.20668928544713
403 => 0.20573126609949
404 => 0.20315326066793
405 => 0.20351945417165
406 => 0.20031121375223
407 => 0.20390899264563
408 => 0.20401216407082
409 => 0.20262682322452
410 => 0.20816969800762
411 => 0.21044061832881
412 => 0.20952875730689
413 => 0.21037663972867
414 => 0.21750035396658
415 => 0.2186618302168
416 => 0.21917768124433
417 => 0.2184865092046
418 => 0.21050684814775
419 => 0.21086078004776
420 => 0.208263862603
421 => 0.20606974101859
422 => 0.20615749437531
423 => 0.20728555808554
424 => 0.21221187846816
425 => 0.22257902929095
426 => 0.22297245508639
427 => 0.22344929862749
428 => 0.22150973630344
429 => 0.2209247457474
430 => 0.2216964992897
501 => 0.22558985605984
502 => 0.2356046267087
503 => 0.23206473789735
504 => 0.22918675319207
505 => 0.23171152167771
506 => 0.23132285335913
507 => 0.2280421016084
508 => 0.22795002183364
509 => 0.22165321030419
510 => 0.21932542245322
511 => 0.21738014869304
512 => 0.21525596052959
513 => 0.21399667058286
514 => 0.21593151227808
515 => 0.21637403346615
516 => 0.21214346828431
517 => 0.2115668578825
518 => 0.21502162873308
519 => 0.21350131288858
520 => 0.21506499543667
521 => 0.21542778320085
522 => 0.21536936601511
523 => 0.21378198166628
524 => 0.21479373311374
525 => 0.21240063932288
526 => 0.20979850925639
527 => 0.20813851239239
528 => 0.20668994496193
529 => 0.20749369436358
530 => 0.20462847450553
531 => 0.20371183300745
601 => 0.21445097448847
602 => 0.22238409376572
603 => 0.22226874306957
604 => 0.22156657537254
605 => 0.22052329660427
606 => 0.22551353371976
607 => 0.22377503489166
608 => 0.22503993804554
609 => 0.22536190898602
610 => 0.22633641805141
611 => 0.2266847212804
612 => 0.22563190701024
613 => 0.22209853372915
614 => 0.21329370345571
615 => 0.20919503119524
616 => 0.20784240108049
617 => 0.20789156661615
618 => 0.20653536165802
619 => 0.20693482479903
620 => 0.20639644467956
621 => 0.20537688298141
622 => 0.20743073930177
623 => 0.2076674271097
624 => 0.20718803250277
625 => 0.20730094728704
626 => 0.20333176469379
627 => 0.20363353302574
628 => 0.20195324860656
629 => 0.20163821553409
630 => 0.19739060284149
701 => 0.18986534125525
702 => 0.19403506666885
703 => 0.18899862472135
704 => 0.18709124784128
705 => 0.19612047333355
706 => 0.19521418952586
707 => 0.19366302559919
708 => 0.19136853086076
709 => 0.19051748044287
710 => 0.18534676751356
711 => 0.18504125420902
712 => 0.18760399915777
713 => 0.18642138054259
714 => 0.18476053611418
715 => 0.17874512595158
716 => 0.17198181329496
717 => 0.1721859551914
718 => 0.17433723911157
719 => 0.18059238724961
720 => 0.17814839265691
721 => 0.17637524653831
722 => 0.17604318957087
723 => 0.18019957772671
724 => 0.18608173775746
725 => 0.18884151563798
726 => 0.18610665957409
727 => 0.182965004183
728 => 0.18315622218962
729 => 0.18442830992053
730 => 0.1845619883547
731 => 0.18251709366249
801 => 0.18309271954031
802 => 0.18221829119557
803 => 0.17685192605798
804 => 0.17675486552957
805 => 0.17543787298048
806 => 0.1753979949695
807 => 0.1731574621043
808 => 0.17284399606839
809 => 0.16839528207393
810 => 0.17132343909703
811 => 0.16935938510108
812 => 0.16639909245567
813 => 0.1658887368878
814 => 0.16587339498316
815 => 0.16891295362067
816 => 0.17128792008463
817 => 0.16939355066122
818 => 0.16896223946432
819 => 0.17356751464513
820 => 0.17298145140036
821 => 0.17247392441009
822 => 0.18555505484281
823 => 0.17520031937197
824 => 0.17068506367905
825 => 0.16509657733526
826 => 0.16691621666839
827 => 0.16729964141195
828 => 0.15386033915551
829 => 0.14840801590383
830 => 0.14653698403032
831 => 0.14546017873461
901 => 0.14595089242953
902 => 0.14104316200929
903 => 0.14434123801806
904 => 0.14009155831426
905 => 0.13937908568226
906 => 0.14697803942696
907 => 0.14803538944809
908 => 0.14352440576504
909 => 0.14642118755148
910 => 0.14537077420744
911 => 0.14016440687546
912 => 0.13996556193882
913 => 0.13735318982429
914 => 0.13326533331998
915 => 0.13139707320567
916 => 0.13042406711717
917 => 0.1308255483928
918 => 0.13062254717431
919 => 0.12929782690836
920 => 0.13069847858929
921 => 0.12712039233375
922 => 0.12569556955619
923 => 0.1250520101632
924 => 0.12187625266445
925 => 0.12693029511074
926 => 0.12792600514181
927 => 0.12892367702923
928 => 0.13760772966969
929 => 0.13717389894065
930 => 0.14109551744704
1001 => 0.14094313056327
1002 => 0.13982462143924
1003 => 0.13510581543079
1004 => 0.13698664740113
1005 => 0.1311977389426
1006 => 0.13553518276724
1007 => 0.13355575454166
1008 => 0.13486593609305
1009 => 0.13251011152935
1010 => 0.13381392211251
1011 => 0.12816212492858
1012 => 0.12288455624116
1013 => 0.12500840394281
1014 => 0.12731726928595
1015 => 0.13232347763783
1016 => 0.12934182124378
1017 => 0.13041413763199
1018 => 0.12682205723507
1019 => 0.11941056934918
1020 => 0.11945251756573
1021 => 0.11831242162252
1022 => 0.11732721227086
1023 => 0.12968430034819
1024 => 0.12814750110912
1025 => 0.12569881265297
1026 => 0.12897647945853
1027 => 0.12984314658549
1028 => 0.1298678193802
1029 => 0.13225912047272
1030 => 0.13353535829446
1031 => 0.13376030074207
1101 => 0.13752306467862
1102 => 0.13878429351809
1103 => 0.1439791166121
1104 => 0.13342707843186
1105 => 0.1332097661495
1106 => 0.12902260295214
1107 => 0.12636703785595
1108 => 0.12920443176621
1109 => 0.13171797542782
1110 => 0.12910070576018
1111 => 0.1294424659252
1112 => 0.12592899523519
1113 => 0.12718489568271
1114 => 0.12826664633617
1115 => 0.12766936720769
1116 => 0.12677521144373
1117 => 0.13151189351164
1118 => 0.13124463134616
1119 => 0.13565553858365
1120 => 0.13909415620228
1121 => 0.14525677370128
1122 => 0.13882576107656
1123 => 0.13859138941555
1124 => 0.14088240999627
1125 => 0.13878394277478
1126 => 0.14011010162214
1127 => 0.14504310900864
1128 => 0.14514733568138
1129 => 0.14340140462441
1130 => 0.14329516456092
1201 => 0.14363048971881
1202 => 0.14559449964223
1203 => 0.14490821422705
1204 => 0.14570240108411
1205 => 0.14669554390988
1206 => 0.1508036037211
1207 => 0.15179404303382
1208 => 0.14938778898783
1209 => 0.1496050467865
1210 => 0.14870504172015
1211 => 0.14783564810308
1212 => 0.1497899179895
1213 => 0.1533613846182
1214 => 0.15333916670966
1215 => 0.15416767754813
1216 => 0.15468383293674
1217 => 0.15246811615998
1218 => 0.15102576601248
1219 => 0.15157885483816
1220 => 0.15246325591512
1221 => 0.15129205548856
1222 => 0.14406286390298
1223 => 0.1462557388275
1224 => 0.14589073721395
1225 => 0.14537093053055
1226 => 0.14757588322416
1227 => 0.14736321015784
1228 => 0.14099282614031
1229 => 0.14140063745645
1230 => 0.14101762649716
1231 => 0.14225521326331
]
'min_raw' => 0.11732721227086
'max_raw' => 0.26282743903061
'avg_raw' => 0.19007732565073
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.117327'
'max' => '$0.262827'
'avg' => '$0.190077'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.028610848867277
'max_diff' => -0.19099125013225
'year' => 2034
]
9 => [
'items' => [
101 => 0.13871710902799
102 => 0.13980540606128
103 => 0.14048797575841
104 => 0.14089001455376
105 => 0.14234245436317
106 => 0.14217202731553
107 => 0.1423318603786
108 => 0.14448544518605
109 => 0.15537753812109
110 => 0.1559703707075
111 => 0.1530510462337
112 => 0.15421725877986
113 => 0.15197838571389
114 => 0.15348135620222
115 => 0.15450965043902
116 => 0.14986298651252
117 => 0.14958784123139
118 => 0.14733972753988
119 => 0.14854773649803
120 => 0.14662570738669
121 => 0.14709730610089
122 => 0.14577867498275
123 => 0.14815194845856
124 => 0.15080563697393
125 => 0.15147606349025
126 => 0.14971245996258
127 => 0.14843549478141
128 => 0.14619356458176
129 => 0.14992194446845
130 => 0.15101223636764
131 => 0.14991621762926
201 => 0.14966224613909
202 => 0.14918097062415
203 => 0.14976435101472
204 => 0.1510062984038
205 => 0.15042061895028
206 => 0.15080747054768
207 => 0.14933319117804
208 => 0.15246884965443
209 => 0.15744902995226
210 => 0.15746504204625
211 => 0.1568793594357
212 => 0.15663971073017
213 => 0.15724065663079
214 => 0.15756664512979
215 => 0.15950999397776
216 => 0.16159528471807
217 => 0.17132642671947
218 => 0.16859396098527
219 => 0.17722800907714
220 => 0.18405642012698
221 => 0.1861039620306
222 => 0.18422031982356
223 => 0.17777648158563
224 => 0.17746031613973
225 => 0.18709013098553
226 => 0.18436926721813
227 => 0.18404562913071
228 => 0.18060266667579
301 => 0.18263788390584
302 => 0.18219275204279
303 => 0.18149008962038
304 => 0.18537314232086
305 => 0.19264187033366
306 => 0.19150897090717
307 => 0.19066331403898
308 => 0.1869578918096
309 => 0.1891893836277
310 => 0.18839479213269
311 => 0.1918088614555
312 => 0.18978644241956
313 => 0.18434865399904
314 => 0.1852146397282
315 => 0.18508374772736
316 => 0.18777749582954
317 => 0.1869688995122
318 => 0.18492585631889
319 => 0.19261702661152
320 => 0.19211760479326
321 => 0.19282567074784
322 => 0.19313738327871
323 => 0.19781886310221
324 => 0.19973671559526
325 => 0.20017210168791
326 => 0.20199391322427
327 => 0.20012677335726
328 => 0.20759666407347
329 => 0.21256370551955
330 => 0.21833317976079
331 => 0.22676393231571
401 => 0.22993397326518
402 => 0.2293613337416
403 => 0.23575343410989
404 => 0.24723989638331
405 => 0.23168307617758
406 => 0.24806444562912
407 => 0.24287829319277
408 => 0.23058201906107
409 => 0.22979028397054
410 => 0.2381174635752
411 => 0.25658634647701
412 => 0.25196010078245
413 => 0.25659391335766
414 => 0.25118832484923
415 => 0.2509198918179
416 => 0.25633137598931
417 => 0.26897560372043
418 => 0.26296880508716
419 => 0.25435658631892
420 => 0.26071571463643
421 => 0.25520684917826
422 => 0.24279383346666
423 => 0.25195656317955
424 => 0.24582970676006
425 => 0.24761784918487
426 => 0.26049559007753
427 => 0.25894610622305
428 => 0.26095128180909
429 => 0.25741219938431
430 => 0.25410613833749
501 => 0.24793512988229
502 => 0.24610819850574
503 => 0.24661309661211
504 => 0.24610794830332
505 => 0.24265532578712
506 => 0.24190973228348
507 => 0.24066704377887
508 => 0.24105220490906
509 => 0.23871558695906
510 => 0.24312526780063
511 => 0.24394374342279
512 => 0.24715274140242
513 => 0.24748591021811
514 => 0.25642292391415
515 => 0.25150056695079
516 => 0.25480290897766
517 => 0.25450751642393
518 => 0.23084851660707
519 => 0.23410851803671
520 => 0.23918005721643
521 => 0.23689533569028
522 => 0.2336652739948
523 => 0.23105682599075
524 => 0.22710476053711
525 => 0.23266721677041
526 => 0.23998125521593
527 => 0.24767140630309
528 => 0.25691061895566
529 => 0.2548485342479
530 => 0.24749868564921
531 => 0.24782839448828
601 => 0.24986652479576
602 => 0.24722696086391
603 => 0.24644850193
604 => 0.24975957649229
605 => 0.24978237804307
606 => 0.24674524073752
607 => 0.24337001841266
608 => 0.24335587610788
609 => 0.24275528789595
610 => 0.25129516815791
611 => 0.25599123882271
612 => 0.25652963575634
613 => 0.25595500041936
614 => 0.2561761547541
615 => 0.25344361470511
616 => 0.25968939094752
617 => 0.26542113287081
618 => 0.26388490359457
619 => 0.26158187752161
620 => 0.25974740632574
621 => 0.26345276048115
622 => 0.26328776689338
623 => 0.26537107110538
624 => 0.26527656039257
625 => 0.26457602354311
626 => 0.26388492861294
627 => 0.26662504189323
628 => 0.26583593327338
629 => 0.26504559894989
630 => 0.26346046246999
701 => 0.26367590884394
702 => 0.2613732804209
703 => 0.2603079791513
704 => 0.24428840407162
705 => 0.24000745015562
706 => 0.24135432540444
707 => 0.24179775170796
708 => 0.23993467507752
709 => 0.24260584838045
710 => 0.24218954885066
711 => 0.24380912679399
712 => 0.2427972848089
713 => 0.24283881115691
714 => 0.24581442268761
715 => 0.24667825537413
716 => 0.24623890309778
717 => 0.24654661037202
718 => 0.25363759463174
719 => 0.25262948342692
720 => 0.25209394444176
721 => 0.25224229240059
722 => 0.25405419091137
723 => 0.25456142356839
724 => 0.25241224315797
725 => 0.25342580906379
726 => 0.25774144405011
727 => 0.25925167205154
728 => 0.26407159488153
729 => 0.26202400599605
730 => 0.26578244401291
731 => 0.27733460113081
801 => 0.28656326358505
802 => 0.27807620420152
803 => 0.29502346753567
804 => 0.30821934298183
805 => 0.30771286330333
806 => 0.30541185719319
807 => 0.29038870382823
808 => 0.27656417411919
809 => 0.28812898024134
810 => 0.28815846131047
811 => 0.28716503420826
812 => 0.28099494379615
813 => 0.28695032843636
814 => 0.28742304524232
815 => 0.28715844953653
816 => 0.28242785568411
817 => 0.27520511323134
818 => 0.27661641981781
819 => 0.27892816879632
820 => 0.27455154569864
821 => 0.27315294942999
822 => 0.27575320598724
823 => 0.28413177439967
824 => 0.28254785457505
825 => 0.2825064920273
826 => 0.2892831727236
827 => 0.28443253184428
828 => 0.27663422091349
829 => 0.27466504455639
830 => 0.2676757950848
831 => 0.27250329458968
901 => 0.27267702770263
902 => 0.27003305555965
903 => 0.27684876468113
904 => 0.2767859567217
905 => 0.28325645814812
906 => 0.29562562666608
907 => 0.2919674548855
908 => 0.28771339911265
909 => 0.28817593292733
910 => 0.29324878724365
911 => 0.290181623722
912 => 0.29128459710941
913 => 0.29324711776133
914 => 0.29443115519728
915 => 0.2880055681616
916 => 0.28650745645223
917 => 0.28344284566061
918 => 0.28264334590874
919 => 0.28513940745331
920 => 0.28448178342348
921 => 0.27266242610721
922 => 0.27142723750538
923 => 0.27146511897635
924 => 0.26835917850703
925 => 0.26362187378018
926 => 0.27607122775257
927 => 0.27507137039999
928 => 0.27396760526555
929 => 0.27410281019652
930 => 0.27950665280818
1001 => 0.27637215119282
1002 => 0.28470573747196
1003 => 0.2829926026635
1004 => 0.28123553241146
1005 => 0.28099265178096
1006 => 0.28031632964011
1007 => 0.27799696937076
1008 => 0.27519620247358
1009 => 0.27334689356978
1010 => 0.252148060256
1011 => 0.2560824404111
1012 => 0.2606085861495
1013 => 0.26217099352101
1014 => 0.25949838759675
1015 => 0.27810250014238
1016 => 0.28150165077815
1017 => 0.27120540178128
1018 => 0.26927939398704
1019 => 0.27822876889272
1020 => 0.27283120180801
1021 => 0.27526172593576
1022 => 0.27000826219718
1023 => 0.28068289492874
1024 => 0.28060157211223
1025 => 0.27644889888214
1026 => 0.27995870985993
1027 => 0.27934879383033
1028 => 0.27466043598114
1029 => 0.28083152423503
1030 => 0.28083458501782
1031 => 0.27683772732075
1101 => 0.27217027255524
1102 => 0.27133584188353
1103 => 0.27070721046238
1104 => 0.27510712114196
1105 => 0.27905206729911
1106 => 0.28639263406247
1107 => 0.28823822695434
1108 => 0.2954416988794
1109 => 0.29115238207871
1110 => 0.2930537806605
1111 => 0.29511801779029
1112 => 0.29610768898012
1113 => 0.29449507288498
1114 => 0.30568502985192
1115 => 0.30662980507136
1116 => 0.30694658003016
1117 => 0.30317338950049
1118 => 0.30652486581708
1119 => 0.30495682103777
1120 => 0.30903643793813
1121 => 0.30967617395927
1122 => 0.30913434030863
1123 => 0.30933740261929
1124 => 0.29978874839168
1125 => 0.29929360029681
1126 => 0.29254222088922
1127 => 0.29529345790149
1128 => 0.29015015217727
1129 => 0.29178114740434
1130 => 0.29250007455974
1201 => 0.29212454781251
1202 => 0.29544900871424
1203 => 0.29262253780528
1204 => 0.28516301636169
1205 => 0.27770146257648
1206 => 0.27760778884676
1207 => 0.27564329344247
1208 => 0.27422332308046
1209 => 0.27449685974834
1210 => 0.27546083864389
1211 => 0.27416729487463
1212 => 0.27444333802214
1213 => 0.2790274935366
1214 => 0.27994681323233
1215 => 0.27682260570486
1216 => 0.26427846166109
1217 => 0.26120009724815
1218 => 0.26341276454155
1219 => 0.26235525208933
1220 => 0.21174116442398
1221 => 0.22363219355158
1222 => 0.21656694782515
1223 => 0.21982293811222
1224 => 0.21261115176205
1225 => 0.21605299421045
1226 => 0.21541741158619
1227 => 0.23453783454224
1228 => 0.23423929543707
1229 => 0.23438219030838
1230 => 0.22756144579013
1231 => 0.23842707701109
]
'min_raw' => 0.13871710902799
'max_raw' => 0.30967617395927
'avg_raw' => 0.22419664149363
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.138717'
'max' => '$0.309676'
'avg' => '$0.224196'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.021389896757134
'max_diff' => 0.046848734928664
'year' => 2035
]
10 => [
'items' => [
101 => 0.243779877666
102 => 0.24278921672495
103 => 0.24303854474086
104 => 0.2387542633643
105 => 0.23442367151708
106 => 0.2296203786852
107 => 0.23854430306189
108 => 0.23755211500767
109 => 0.23982783742606
110 => 0.24561564027963
111 => 0.24646791623554
112 => 0.24761338376322
113 => 0.24720281519448
114 => 0.2569842241903
115 => 0.25579963102109
116 => 0.25865415972817
117 => 0.25278217760409
118 => 0.24613747245705
119 => 0.24740041367372
120 => 0.24727878227863
121 => 0.24573027501702
122 => 0.24433235189967
123 => 0.24200520377169
124 => 0.24936864480175
125 => 0.24906970254315
126 => 0.25390923022749
127 => 0.25305379670062
128 => 0.24734100224808
129 => 0.24754503581956
130 => 0.24891725964297
131 => 0.25366654196357
201 => 0.25507645231212
202 => 0.25442332566346
203 => 0.25596922799579
204 => 0.25719104616775
205 => 0.25612266954675
206 => 0.2712486294933
207 => 0.26496727634524
208 => 0.26802876416423
209 => 0.26875891096972
210 => 0.26688865528078
211 => 0.26729424677088
212 => 0.26790860736131
213 => 0.27163888456227
214 => 0.28142821130198
215 => 0.2857638374768
216 => 0.29880778273977
217 => 0.28540382407781
218 => 0.28460848864191
219 => 0.28695809707318
220 => 0.29461627378437
221 => 0.30082250671284
222 => 0.30288147222138
223 => 0.30315359850314
224 => 0.3070163546746
225 => 0.30923041447594
226 => 0.30654731447481
227 => 0.30427366815614
228 => 0.296129749258
229 => 0.29707243004562
301 => 0.30356656586072
302 => 0.31273991520224
303 => 0.32061160326159
304 => 0.31785521245923
305 => 0.33888452857259
306 => 0.34096949936817
307 => 0.3406814238194
308 => 0.345431297577
309 => 0.33600376546313
310 => 0.33197331283462
311 => 0.30476525629722
312 => 0.31240961038202
313 => 0.32352112798146
314 => 0.32205047696113
315 => 0.31398099586869
316 => 0.32060548183658
317 => 0.31841521960877
318 => 0.31668766891563
319 => 0.32460191354307
320 => 0.31589987647595
321 => 0.32343431850501
322 => 0.31377131866891
323 => 0.31786780342024
324 => 0.31554244055071
325 => 0.31704723531305
326 => 0.30825023588044
327 => 0.31299688323919
328 => 0.30805275974479
329 => 0.30805041558651
330 => 0.30794127378634
331 => 0.3137580131519
401 => 0.31394769681378
402 => 0.30964911763403
403 => 0.3090296252178
404 => 0.31132021336972
405 => 0.30863853454981
406 => 0.30989327519136
407 => 0.30867653936562
408 => 0.30840262650286
409 => 0.30622004221002
410 => 0.30527972488526
411 => 0.30564844753729
412 => 0.30438980703635
413 => 0.30363143060752
414 => 0.30779041362659
415 => 0.3055684367724
416 => 0.30744986380605
417 => 0.30530574024618
418 => 0.29787327383751
419 => 0.29359878380898
420 => 0.27955954375301
421 => 0.28354105481726
422 => 0.28618080077203
423 => 0.28530836474972
424 => 0.28718269491355
425 => 0.28729776356293
426 => 0.28668839972014
427 => 0.28598283445452
428 => 0.28563940430343
429 => 0.28819905128264
430 => 0.28968501250784
501 => 0.28644573459383
502 => 0.2856868171009
503 => 0.28896190591739
504 => 0.29095970820349
505 => 0.30571035781594
506 => 0.30461758204868
507 => 0.30736023477809
508 => 0.30705145417019
509 => 0.30992619116946
510 => 0.31462517120876
511 => 0.30507083093338
512 => 0.30672913404096
513 => 0.30632255641479
514 => 0.3107614643269
515 => 0.31077532211288
516 => 0.30811397507967
517 => 0.3095567344818
518 => 0.30875142576357
519 => 0.31020672746141
520 => 0.30460298736207
521 => 0.3114277379167
522 => 0.31529693170397
523 => 0.31535065546346
524 => 0.3171846226108
525 => 0.31904803944871
526 => 0.32262470579969
527 => 0.31894828816542
528 => 0.31233477073343
529 => 0.31281224533049
530 => 0.3089347424799
531 => 0.30899992400335
601 => 0.30865197992282
602 => 0.30969618630048
603 => 0.30483213194115
604 => 0.30597371577715
605 => 0.30437549172164
606 => 0.30672565981399
607 => 0.30419726744333
608 => 0.30632236035075
609 => 0.30723948000165
610 => 0.31062367125763
611 => 0.30369741964322
612 => 0.28957432373541
613 => 0.29254316972122
614 => 0.28815201331039
615 => 0.28855843155453
616 => 0.28937946108866
617 => 0.28671823574439
618 => 0.28722591367523
619 => 0.28720777584706
620 => 0.28705147384279
621 => 0.28635918634934
622 => 0.28535523251894
623 => 0.28935467557857
624 => 0.29003425888866
625 => 0.29154488840444
626 => 0.2960394971736
627 => 0.29559037976739
628 => 0.29632290889063
629 => 0.29472380192758
630 => 0.28863260954019
701 => 0.28896339059244
702 => 0.28483854557053
703 => 0.29143940684331
704 => 0.28987623576681
705 => 0.28886844920475
706 => 0.28859346530422
707 => 0.29309921533917
708 => 0.2944474063686
709 => 0.29360730419279
710 => 0.29188423012051
711 => 0.29519304172041
712 => 0.29607834011699
713 => 0.29627652577944
714 => 0.30213910553276
715 => 0.29660417886251
716 => 0.29793649072448
717 => 0.30833080754637
718 => 0.29890459650659
719 => 0.30389787072395
720 => 0.30365347593476
721 => 0.30620786606117
722 => 0.30344394138733
723 => 0.3034782035462
724 => 0.30574632892908
725 => 0.30256115588739
726 => 0.30177246224908
727 => 0.30068288763648
728 => 0.3030619339418
729 => 0.30448806460682
730 => 0.31598163038939
731 => 0.3234069980552
801 => 0.32308464326182
802 => 0.32603036265049
803 => 0.32470328908619
804 => 0.32041781848277
805 => 0.32773259424535
806 => 0.32541789313085
807 => 0.32560871427837
808 => 0.32560161190573
809 => 0.32714068579218
810 => 0.32605011088958
811 => 0.32390047581133
812 => 0.32532750389554
813 => 0.32956526713377
814 => 0.3427194142557
815 => 0.35008064925439
816 => 0.34227625866574
817 => 0.34765962278884
818 => 0.34443152260374
819 => 0.34384488077245
820 => 0.34722603126924
821 => 0.35061310002239
822 => 0.35039735838551
823 => 0.34793852039863
824 => 0.34654958521055
825 => 0.35706706778215
826 => 0.36481616978026
827 => 0.36428773297463
828 => 0.36662008117783
829 => 0.37346792763926
830 => 0.37409400889968
831 => 0.37401513705118
901 => 0.37246332932239
902 => 0.3792059234689
903 => 0.38483071413057
904 => 0.37210413066921
905 => 0.37695024704808
906 => 0.37912582482268
907 => 0.38232021846062
908 => 0.38770969597037
909 => 0.39356409803426
910 => 0.39439197467635
911 => 0.39380455658125
912 => 0.38994342104533
913 => 0.39634937764119
914 => 0.40010183677687
915 => 0.40233634031867
916 => 0.40800266951474
917 => 0.37913926045036
918 => 0.35870830491008
919 => 0.35551771617589
920 => 0.36200590383057
921 => 0.36371678717278
922 => 0.3630271322428
923 => 0.34003023428101
924 => 0.35539664226744
925 => 0.37192960521656
926 => 0.37256470365605
927 => 0.38084145059633
928 => 0.38353669867541
929 => 0.39020056482036
930 => 0.38978373817861
1001 => 0.39140628353964
1002 => 0.39103328845971
1003 => 0.40337669725066
1004 => 0.41699331016101
1005 => 0.4165218101541
1006 => 0.41456426094379
1007 => 0.41747155533285
1008 => 0.43152535910126
1009 => 0.43023151005788
1010 => 0.43148837419372
1011 => 0.44805860087435
1012 => 0.46960225264642
1013 => 0.45959306345102
1014 => 0.48131012393844
1015 => 0.49497986234335
1016 => 0.51862026143733
1017 => 0.51566036703934
1018 => 0.52486340092536
1019 => 0.51036153831835
1020 => 0.47706233046264
1021 => 0.47179260335523
1022 => 0.48234273047501
1023 => 0.50827918853265
1024 => 0.48152589911076
1025 => 0.48693805471725
1026 => 0.48537935353849
1027 => 0.48529629697672
1028 => 0.48846622812376
1029 => 0.48386807766249
1030 => 0.46513438549182
1031 => 0.4737199262153
1101 => 0.47040463663044
1102 => 0.47408319759605
1103 => 0.49393487397355
1104 => 0.4851579746422
1105 => 0.47591222417403
1106 => 0.48750844705739
1107 => 0.50227442368243
1108 => 0.50135039540224
1109 => 0.49955739432483
1110 => 0.50966444751973
1111 => 0.52635833830897
1112 => 0.53087062990781
1113 => 0.53420151131634
1114 => 0.53466078358687
1115 => 0.53939157340949
1116 => 0.51395292422073
1117 => 0.55432471379415
1118 => 0.5612958066053
1119 => 0.55998553007899
1120 => 0.56773360635016
1121 => 0.56545392576146
1122 => 0.56215102625936
1123 => 0.57443337521224
1124 => 0.56035265327221
1125 => 0.54036684119195
1126 => 0.52940222941017
1127 => 0.54384131469441
1128 => 0.55265876022287
1129 => 0.55848653082231
1130 => 0.56025001068447
1201 => 0.5159276541427
1202 => 0.49204036219728
1203 => 0.50735184246594
1204 => 0.52603290513562
1205 => 0.51384914997437
1206 => 0.51432673010979
1207 => 0.49695589708437
1208 => 0.52756983841337
1209 => 0.52310964466551
1210 => 0.54624913771936
1211 => 0.54072671199602
1212 => 0.55959607031149
1213 => 0.55462713588597
1214 => 0.57525290487693
1215 => 0.58348108254783
1216 => 0.59729747347086
1217 => 0.60746086687668
1218 => 0.61342900587931
1219 => 0.61307070119951
1220 => 0.63671944124298
1221 => 0.62277460546339
1222 => 0.60525660517879
1223 => 0.60493975982222
1224 => 0.6140125804016
1225 => 0.63302672332921
1226 => 0.63795681394582
1227 => 0.64071206202516
1228 => 0.63649230368077
1229 => 0.62135618387741
1230 => 0.61482048408819
1231 => 0.62038908966606
]
'min_raw' => 0.2296203786852
'max_raw' => 0.64071206202516
'avg_raw' => 0.43516622035518
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.22962'
'max' => '$0.640712'
'avg' => '$0.435166'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.090903269657206
'max_diff' => 0.33103588806589
'year' => 2036
]
11 => [
'items' => [
101 => 0.61357916356006
102 => 0.62533500654681
103 => 0.64147828988017
104 => 0.6381447657093
105 => 0.64928823722267
106 => 0.66082055791163
107 => 0.67731229444576
108 => 0.68162384506302
109 => 0.68875067427976
110 => 0.69608652258523
111 => 0.69844259935429
112 => 0.70294108095412
113 => 0.70291737173557
114 => 0.71647384881938
115 => 0.73142706285196
116 => 0.73707155498156
117 => 0.75005075339447
118 => 0.72782433095773
119 => 0.74468332769473
120 => 0.75989056475957
121 => 0.74175986981008
122 => 0.76674880888783
123 => 0.76771907276606
124 => 0.78236890537708
125 => 0.76751849345748
126 => 0.75870036626381
127 => 0.78415796906101
128 => 0.7964761011476
129 => 0.79276577951484
130 => 0.76453004868832
131 => 0.74809564225983
201 => 0.7050836306762
202 => 0.75603321637763
203 => 0.78084927335301
204 => 0.76446578109588
205 => 0.77272866161954
206 => 0.81780825850865
207 => 0.83497165031627
208 => 0.83140178480145
209 => 0.83200503330847
210 => 0.84126608799026
211 => 0.88233470460532
212 => 0.8577254375665
213 => 0.87653830012603
214 => 0.88651657459279
215 => 0.89578495201279
216 => 0.87302474637003
217 => 0.84341405324264
218 => 0.83403510375685
219 => 0.76283676567424
220 => 0.75913058297833
221 => 0.75705019032229
222 => 0.74393360890332
223 => 0.73362756884203
224 => 0.72543182314656
225 => 0.70392373898481
226 => 0.71118208601297
227 => 0.67690268894518
228 => 0.69883343240191
301 => 0.64412268697673
302 => 0.6896874215054
303 => 0.66488860807571
304 => 0.6815403443318
305 => 0.68148224799269
306 => 0.65082112210744
307 => 0.6331364245782
308 => 0.64440580214255
309 => 0.65648746945585
310 => 0.65844767932982
311 => 0.67411187636529
312 => 0.6784834170571
313 => 0.6652374446732
314 => 0.64298892838404
315 => 0.64815675128339
316 => 0.63303169881208
317 => 0.60652562613287
318 => 0.62556275028271
319 => 0.63206286147073
320 => 0.63493368087453
321 => 0.60886800263754
322 => 0.60067760062207
323 => 0.59631709931316
324 => 0.63962417664242
325 => 0.64199663609872
326 => 0.62985879808834
327 => 0.68472297685226
328 => 0.67230552347593
329 => 0.68617886124723
330 => 0.64768782552183
331 => 0.64915823492159
401 => 0.63093596176297
402 => 0.64113921711907
403 => 0.63392788509965
404 => 0.64031489491683
405 => 0.64414324226662
406 => 0.66236252532951
407 => 0.68989545645194
408 => 0.65964117199947
409 => 0.64645894701419
410 => 0.65463712525541
411 => 0.6764166916195
412 => 0.70941384953659
413 => 0.68987886791998
414 => 0.69854816103593
415 => 0.70044201591176
416 => 0.686037643692
417 => 0.70994495928651
418 => 0.7227570839363
419 => 0.73589967273134
420 => 0.7473110143351
421 => 0.73065023375488
422 => 0.7484796572048
423 => 0.73411228922108
424 => 0.72122327486849
425 => 0.7212428221829
426 => 0.71315735520107
427 => 0.69749074408936
428 => 0.69460158063142
429 => 0.70963137380073
430 => 0.72168384459581
501 => 0.72267654381793
502 => 0.7293494109284
503 => 0.73329834494837
504 => 0.77200326665961
505 => 0.78757070635578
506 => 0.80660627693969
507 => 0.8140217044681
508 => 0.83633948275071
509 => 0.81831606422617
510 => 0.81441658425577
511 => 0.7602809542318
512 => 0.76914566061549
513 => 0.78333891085272
514 => 0.76051499570052
515 => 0.7749915165235
516 => 0.77784948838859
517 => 0.75973944779732
518 => 0.76941280296578
519 => 0.74372323958828
520 => 0.6904554187321
521 => 0.71000426159854
522 => 0.7243987900176
523 => 0.70385602313105
524 => 0.74067813766033
525 => 0.71916741851505
526 => 0.71234955324262
527 => 0.68575063007037
528 => 0.69830429792122
529 => 0.71528331344072
530 => 0.70479225587209
531 => 0.72656277556722
601 => 0.75739563744104
602 => 0.779368970941
603 => 0.78105581064316
604 => 0.76692842930169
605 => 0.78956764806113
606 => 0.789732550054
607 => 0.76419541880943
608 => 0.74855406811347
609 => 0.74500032032567
610 => 0.7538782790529
611 => 0.76465775990935
612 => 0.78165399680932
613 => 0.79192446680657
614 => 0.81870440552303
615 => 0.82595028909869
616 => 0.83391131833371
617 => 0.84454970848218
618 => 0.85732382348267
619 => 0.82937478709237
620 => 0.83048525441168
621 => 0.80445949870578
622 => 0.77664724626312
623 => 0.79775327902089
624 => 0.82534660923379
625 => 0.81901666879503
626 => 0.81830442118672
627 => 0.81950222410289
628 => 0.81472965572859
629 => 0.79314350585128
630 => 0.78230307651934
701 => 0.79628999604602
702 => 0.80372342128828
703 => 0.81525201557621
704 => 0.81383087299112
705 => 0.84352729379621
706 => 0.85506642494792
707 => 0.85211422141205
708 => 0.8526574979114
709 => 0.87354854368081
710 => 0.89678368314766
711 => 0.91854645740506
712 => 0.94068448611259
713 => 0.91399622844369
714 => 0.90044557710233
715 => 0.91442639037749
716 => 0.90700797405949
717 => 0.9496363946679
718 => 0.95258789402126
719 => 0.99521323210966
720 => 1.0356697536864
721 => 1.0102597373379
722 => 1.0342202382623
723 => 1.0601354735402
724 => 1.1101301669868
725 => 1.0932937130685
726 => 1.080397253228
727 => 1.0682101609939
728 => 1.0935695652866
729 => 1.1261940337828
730 => 1.1332210318236
731 => 1.1446074531696
801 => 1.1326360233896
802 => 1.1470542919498
803 => 1.1979571156755
804 => 1.1842027233731
805 => 1.1646692751749
806 => 1.2048521657472
807 => 1.2193941976382
808 => 1.3214577931709
809 => 1.4503172985678
810 => 1.3969686171964
811 => 1.3638533691179
812 => 1.3716362379205
813 => 1.4186913671219
814 => 1.4338039811663
815 => 1.3927226865633
816 => 1.4072332943224
817 => 1.4871881697267
818 => 1.5300813951216
819 => 1.4718266337066
820 => 1.31110405738
821 => 1.1629105018848
822 => 1.2022181060449
823 => 1.1977618435901
824 => 1.2836633826382
825 => 1.1838746856656
826 => 1.1855548714002
827 => 1.2732327633045
828 => 1.2498418049241
829 => 1.2119514480353
830 => 1.163187143422
831 => 1.0730418161922
901 => 0.99319758597621
902 => 1.1497905084577
903 => 1.1430379368946
904 => 1.1332592125961
905 => 1.1550207053539
906 => 1.2606883370783
907 => 1.2582523561543
908 => 1.2427558883642
909 => 1.2545098226034
910 => 1.2098909265338
911 => 1.2213902320043
912 => 1.1628870272684
913 => 1.1893329191187
914 => 1.2118701523469
915 => 1.2163948355869
916 => 1.2265891779626
917 => 1.13947963852
918 => 1.178589264328
919 => 1.2015625054139
920 => 1.0977685664143
921 => 1.1995108329628
922 => 1.1379632552395
923 => 1.1170730829467
924 => 1.1451989478681
925 => 1.1342382709549
926 => 1.1248149245775
927 => 1.1195565353853
928 => 1.1402090664451
929 => 1.1392456011861
930 => 1.1054540518886
1001 => 1.0613743533498
1002 => 1.0761689470462
1003 => 1.0707939324562
1004 => 1.0513141861915
1005 => 1.0644411831804
1006 => 1.0066365318625
1007 => 0.90718663369448
1008 => 0.97288628265706
1009 => 0.97035691763947
1010 => 0.96908149710002
1011 => 1.0184529674905
1012 => 1.0137070398061
1013 => 1.0050931345866
1014 => 1.0511559850671
1015 => 1.0343424250089
1016 => 1.0861578553351
1017 => 1.1202868489599
1018 => 1.1116306322194
1019 => 1.1437291156832
1020 => 1.0765097846041
1021 => 1.0988373500171
1022 => 1.103439030304
1023 => 1.0505875766423
1024 => 1.0144835322691
1025 => 1.0120758041257
1026 => 0.94947636662636
1027 => 0.98291648085348
1028 => 1.0123423975274
1029 => 0.99824966698397
1030 => 0.99378832950227
1031 => 1.0165803351502
1101 => 1.0183514691894
1102 => 0.97796942539987
1103 => 0.98636613103672
1104 => 1.0213817893786
1105 => 0.98548382628743
1106 => 0.91573994790032
1107 => 0.89844250177576
1108 => 0.89613470360756
1109 => 0.84922265783999
1110 => 0.89959839983676
1111 => 0.87760803846922
1112 => 0.9470753265443
1113 => 0.90739598415635
1114 => 0.9056854870121
1115 => 0.90309981970319
1116 => 0.86272068399884
1117 => 0.87156114849015
1118 => 0.90094819890001
1119 => 0.91143382955507
1120 => 0.91034009237151
1121 => 0.90080418632096
1122 => 0.90516967527916
1123 => 0.89110691430761
1124 => 0.88614106071749
1125 => 0.87046746082145
1126 => 0.84743159891676
1127 => 0.85063487680176
1128 => 0.80499480670742
1129 => 0.78012767421816
1130 => 0.77324477968868
1201 => 0.76404068546788
1202 => 0.77428440662207
1203 => 0.80486551412321
1204 => 0.76797821033296
1205 => 0.70473751532808
1206 => 0.70853838885478
1207 => 0.71707782317978
1208 => 0.70116464380915
1209 => 0.68610415502675
1210 => 0.69919802812697
1211 => 0.67240211196605
1212 => 0.72031598162882
1213 => 0.71902004573151
1214 => 0.73687937336797
1215 => 0.74804717744935
1216 => 0.72230900466128
1217 => 0.71583592380851
1218 => 0.71952328484737
1219 => 0.65857942057317
1220 => 0.73189895945855
1221 => 0.73253302987549
1222 => 0.72710373401033
1223 => 0.76614412498
1224 => 0.84853152692931
1225 => 0.81753407229041
1226 => 0.80553092095121
1227 => 0.78271292148112
1228 => 0.81311655097626
1229 => 0.81078202660154
1230 => 0.80022442203697
1231 => 0.79383914985458
]
'min_raw' => 0.59631709931316
'max_raw' => 1.5300813951216
'avg_raw' => 1.0631992472174
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.596317'
'max' => '$1.53'
'avg' => '$1.06'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.36669672062796
'max_diff' => 0.88936933309647
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.018717712351153
]
1 => [
'year' => 2028
'avg' => 0.0321250281853
]
2 => [
'year' => 2029
'avg' => 0.087759787029244
]
3 => [
'year' => 2030
'avg' => 0.067706544997266
]
4 => [
'year' => 2031
'avg' => 0.066496217967062
]
5 => [
'year' => 2032
'avg' => 0.11658879722623
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.018717712351153
'min' => '$0.018717'
'max_raw' => 0.11658879722623
'max' => '$0.116588'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.11658879722623
]
1 => [
'year' => 2033
'avg' => 0.2998783751505
]
2 => [
'year' => 2034
'avg' => 0.19007732565073
]
3 => [
'year' => 2035
'avg' => 0.22419664149363
]
4 => [
'year' => 2036
'avg' => 0.43516622035518
]
5 => [
'year' => 2037
'avg' => 1.0631992472174
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.11658879722623
'min' => '$0.116588'
'max_raw' => 1.0631992472174
'max' => '$1.06'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.0631992472174
]
]
]
]
'prediction_2025_max_price' => '$0.0320038'
'last_price' => 0.0310318
'sma_50day_nextmonth' => '$0.028798'
'sma_200day_nextmonth' => '$0.054253'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.03037'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.03000037'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.029235'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.029089'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.029137'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0398035'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.058795'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.03039'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.030055'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.029613'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.029347'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.032222'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.040852'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.059039'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0485078'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.030274'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.030236'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.033461'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.043986'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.037857'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.018928'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.009464'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '56.17'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 82.31
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0293069'
'vwma_10_action' => 'BUY'
'hma_9' => '0.030774'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 125.37
'cci_20_action' => 'SELL'
'adx_14' => 10.29
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0013024'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 65.43
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0108063'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 9
'buy_signals' => 22
'sell_pct' => 29.03
'buy_pct' => 70.97
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767709334
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Cudis para 2026
A previsão de preço para Cudis em 2026 sugere que o preço médio poderia variar entre $0.010721 na extremidade inferior e $0.0320038 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Cudis poderia potencialmente ganhar 3.13% até 2026 se CUDIS atingir a meta de preço prevista.
Previsão de preço de Cudis 2027-2032
A previsão de preço de CUDIS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.018717 na extremidade inferior e $0.116588 na extremidade superior. Considerando a volatilidade de preços no mercado, se Cudis atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Cudis | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.010321 | $0.018717 | $0.027114 |
| 2028 | $0.018626 | $0.032125 | $0.045623 |
| 2029 | $0.040917 | $0.087759 | $0.1346015 |
| 2030 | $0.034798 | $0.0677065 | $0.100614 |
| 2031 | $0.041143 | $0.066496 | $0.091849 |
| 2032 | $0.0628019 | $0.116588 | $0.170375 |
Previsão de preço de Cudis 2032-2037
A previsão de preço de Cudis para 2032-2037 é atualmente estimada entre $0.116588 na extremidade inferior e $1.06 na extremidade superior. Comparado ao preço atual, Cudis poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Cudis | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0628019 | $0.116588 | $0.170375 |
| 2033 | $0.145938 | $0.299878 | $0.453818 |
| 2034 | $0.117327 | $0.190077 | $0.262827 |
| 2035 | $0.138717 | $0.224196 | $0.309676 |
| 2036 | $0.22962 | $0.435166 | $0.640712 |
| 2037 | $0.596317 | $1.06 | $1.53 |
Cudis Histograma de preços potenciais
Previsão de preço de Cudis baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Cudis é Altista, com 22 indicadores técnicos mostrando sinais de alta e 9 indicando sinais de baixa. A previsão de preço de CUDIS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Cudis
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Cudis está projetado para aumentar no próximo mês, alcançando $0.054253 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Cudis é esperado para alcançar $0.028798 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 56.17, sugerindo que o mercado de CUDIS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de CUDIS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.03037 | BUY |
| SMA 5 | $0.03000037 | BUY |
| SMA 10 | $0.029235 | BUY |
| SMA 21 | $0.029089 | BUY |
| SMA 50 | $0.029137 | BUY |
| SMA 100 | $0.0398035 | SELL |
| SMA 200 | $0.058795 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.03039 | BUY |
| EMA 5 | $0.030055 | BUY |
| EMA 10 | $0.029613 | BUY |
| EMA 21 | $0.029347 | BUY |
| EMA 50 | $0.032222 | SELL |
| EMA 100 | $0.040852 | SELL |
| EMA 200 | $0.059039 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.0485078 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.043986 | SELL |
| EMA 50 | $0.037857 | SELL |
| EMA 100 | $0.018928 | BUY |
| EMA 200 | $0.009464 | BUY |
Osciladores de Cudis
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 56.17 | NEUTRAL |
| Stoch RSI (14) | 82.31 | NEUTRAL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 125.37 | SELL |
| Índice Direcional Médio (14) | 10.29 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.0013024 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 65.43 | NEUTRAL |
| VWMA (10) | 0.0293069 | BUY |
| Média Móvel de Hull (9) | 0.030774 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0108063 | NEUTRAL |
Previsão do preço de Cudis com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Cudis
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Cudis por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.0436048 | $0.061272 | $0.086097 | $0.120981 | $0.169999 | $0.238877 |
| Amazon.com stock | $0.064749 | $0.135104 | $0.2819027 | $0.5882067 | $1.22 | $2.56 |
| Apple stock | $0.044016 | $0.062433 | $0.088557 | $0.125611 | $0.17817 | $0.252721 |
| Netflix stock | $0.048963 | $0.077256 | $0.121898 | $0.192336 | $0.303477 | $0.478839 |
| Google stock | $0.040186 | $0.05204 | $0.067392 | $0.087273 | $0.113018 | $0.146358 |
| Tesla stock | $0.070346 | $0.15947 | $0.3615081 | $0.819511 | $1.85 | $4.21 |
| Kodak stock | $0.02327 | $0.01745 | $0.013085 | $0.009813 | $0.007358 | $0.005518 |
| Nokia stock | $0.020557 | $0.013618 | $0.009021 | $0.005976 | $0.003959 | $0.002622 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Cudis
Você pode fazer perguntas como: 'Devo investir em Cudis agora?', 'Devo comprar CUDIS hoje?', 'Cudis será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Cudis regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Cudis, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Cudis para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Cudis é de $0.03103 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Cudis
com base no histórico de preços de 4 horas
Previsão de longo prazo para Cudis
com base no histórico de preços de 1 mês
Previsão do preço de Cudis com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Cudis tiver 1% da média anterior do crescimento anual do Bitcoin | $0.031838 | $0.032665 | $0.033515 | $0.034386 |
| Se Cudis tiver 2% da média anterior do crescimento anual do Bitcoin | $0.032645 | $0.034342 | $0.036127 | $0.0380055 |
| Se Cudis tiver 5% da média anterior do crescimento anual do Bitcoin | $0.035064 | $0.039622 | $0.044771 | $0.05059 |
| Se Cudis tiver 10% da média anterior do crescimento anual do Bitcoin | $0.039097 | $0.04926 | $0.062065 | $0.078197 |
| Se Cudis tiver 20% da média anterior do crescimento anual do Bitcoin | $0.047164 | $0.071683 | $0.108948 | $0.165586 |
| Se Cudis tiver 50% da média anterior do crescimento anual do Bitcoin | $0.071362 | $0.1641097 | $0.377396 | $0.867884 |
| Se Cudis tiver 100% da média anterior do crescimento anual do Bitcoin | $0.111693 | $0.40202 | $1.44 | $5.20 |
Perguntas Frequentes sobre Cudis
CUDIS é um bom investimento?
A decisão de adquirir Cudis depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Cudis experimentou uma escalada de 3.9318% nas últimas 24 horas, e Cudis registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Cudis dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Cudis pode subir?
Parece que o valor médio de Cudis pode potencialmente subir para $0.0320038 até o final deste ano. Observando as perspectivas de Cudis em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.100614. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Cudis na próxima semana?
Com base na nossa nova previsão experimental de Cudis, o preço de Cudis aumentará 0.86% na próxima semana e atingirá $0.031297 até 13 de janeiro de 2026.
Qual será o preço de Cudis no próximo mês?
Com base na nossa nova previsão experimental de Cudis, o preço de Cudis diminuirá -11.62% no próximo mês e atingirá $0.027426 até 5 de fevereiro de 2026.
Até onde o preço de Cudis pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Cudis em 2026, espera-se que CUDIS fluctue dentro do intervalo de $0.010721 e $0.0320038. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Cudis não considera flutuações repentinas e extremas de preço.
Onde estará Cudis em 5 anos?
O futuro de Cudis parece seguir uma tendência de alta, com um preço máximo de $0.100614 projetada após um período de cinco anos. Com base na previsão de Cudis para 2030, o valor de Cudis pode potencialmente atingir seu pico mais alto de aproximadamente $0.100614, enquanto seu pico mais baixo está previsto para cerca de $0.034798.
Quanto será Cudis em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Cudis, espera-se que o valor de CUDIS em 2026 aumente 3.13% para $0.0320038 se o melhor cenário ocorrer. O preço ficará entre $0.0320038 e $0.010721 durante 2026.
Quanto será Cudis em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Cudis, o valor de CUDIS pode diminuir -12.62% para $0.027114 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.027114 e $0.010321 ao longo do ano.
Quanto será Cudis em 2028?
Nosso novo modelo experimental de previsão de preços de Cudis sugere que o valor de CUDIS em 2028 pode aumentar 47.02%, alcançando $0.045623 no melhor cenário. O preço é esperado para variar entre $0.045623 e $0.018626 durante o ano.
Quanto será Cudis em 2029?
Com base no nosso modelo de previsão experimental, o valor de Cudis pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.1346015 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.1346015 e $0.040917.
Quanto será Cudis em 2030?
Usando nossa nova simulação experimental para previsões de preços de Cudis, espera-se que o valor de CUDIS em 2030 aumente 224.23%, alcançando $0.100614 no melhor cenário. O preço está previsto para variar entre $0.100614 e $0.034798 ao longo de 2030.
Quanto será Cudis em 2031?
Nossa simulação experimental indica que o preço de Cudis poderia aumentar 195.98% em 2031, potencialmente atingindo $0.091849 sob condições ideais. O preço provavelmente oscilará entre $0.091849 e $0.041143 durante o ano.
Quanto será Cudis em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Cudis, CUDIS poderia ver um 449.04% aumento em valor, atingindo $0.170375 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.170375 e $0.0628019 ao longo do ano.
Quanto será Cudis em 2033?
De acordo com nossa previsão experimental de preços de Cudis, espera-se que o valor de CUDIS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.453818. Ao longo do ano, o preço de CUDIS poderia variar entre $0.453818 e $0.145938.
Quanto será Cudis em 2034?
Os resultados da nossa nova simulação de previsão de preços de Cudis sugerem que CUDIS pode aumentar 746.96% em 2034, atingindo potencialmente $0.262827 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.262827 e $0.117327.
Quanto será Cudis em 2035?
Com base em nossa previsão experimental para o preço de Cudis, CUDIS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.309676 em 2035. A faixa de preço esperada para o ano está entre $0.309676 e $0.138717.
Quanto será Cudis em 2036?
Nossa recente simulação de previsão de preços de Cudis sugere que o valor de CUDIS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.640712 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.640712 e $0.22962.
Quanto será Cudis em 2037?
De acordo com a simulação experimental, o valor de Cudis poderia aumentar 4830.69% em 2037, com um pico de $1.53 sob condições favoráveis. O preço é esperado para cair entre $1.53 e $0.596317 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Cudis?
Traders de Cudis utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Cudis
Médias móveis são ferramentas populares para a previsão de preço de Cudis. Uma média móvel simples (SMA) calcula o preço médio de fechamento de CUDIS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de CUDIS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de CUDIS.
Como ler gráficos de Cudis e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Cudis em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de CUDIS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Cudis?
A ação de preço de Cudis é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de CUDIS. A capitalização de mercado de Cudis pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de CUDIS, grandes detentores de Cudis, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Cudis.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


