Previsão de Preço Cudis - Projeção CUDIS
Previsão de Preço Cudis até $0.032052 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.010737 | $0.032052 |
| 2027 | $0.010337 | $0.027155 |
| 2028 | $0.018655 | $0.045692 |
| 2029 | $0.04098 | $0.1348069 |
| 2030 | $0.034852 | $0.100767 |
| 2031 | $0.0412059 | $0.091989 |
| 2032 | $0.062897 | $0.170635 |
| 2033 | $0.14616 | $0.454511 |
| 2034 | $0.1175062 | $0.263228 |
| 2035 | $0.138928 | $0.310148 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Cudis hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.47, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Cudis para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Cudis'
'name_with_ticker' => 'Cudis <small>CUDIS</small>'
'name_lang' => 'Cudis'
'name_lang_with_ticker' => 'Cudis <small>CUDIS</small>'
'name_with_lang' => 'Cudis'
'name_with_lang_with_ticker' => 'Cudis <small>CUDIS</small>'
'image' => '/uploads/coins/cudis.jpg?1749136425'
'price_for_sd' => 0.03107
'ticker' => 'CUDIS'
'marketcap' => '$7.7M'
'low24h' => '$0.02987'
'high24h' => '$0.03134'
'volume24h' => '$6.67M'
'current_supply' => '247.5M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03107'
'change_24h_pct' => '3.6469%'
'ath_price' => '$0.2698'
'ath_days' => 63
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '4 de nov. de 2025'
'ath_pct' => '-88.40%'
'fdv' => '$31.12M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.53'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.031345'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.027468'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.010737'
'current_year_max_price_prediction' => '$0.032052'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.034852'
'grand_prediction_max_price' => '$0.100767'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.031668083544867
107 => 0.031786320673309
108 => 0.032052714961027
109 => 0.029776404939461
110 => 0.030798401310193
111 => 0.031398728429888
112 => 0.028686428663017
113 => 0.031345114984206
114 => 0.029736779446318
115 => 0.02919088620837
116 => 0.029925859537302
117 => 0.029639439716232
118 => 0.029393192773212
119 => 0.029255782747948
120 => 0.029795466044669
121 => 0.029770289173816
122 => 0.028887262552366
123 => 0.027735390321453
124 => 0.028121996451065
125 => 0.027981538819725
126 => 0.027472502244355
127 => 0.027815531434844
128 => 0.026305004483032
129 => 0.0237062213728
130 => 0.025423057098299
131 => 0.025356960790425
201 => 0.025323632034766
202 => 0.026613786632625
203 => 0.026489768036971
204 => 0.026264673071467
205 => 0.027468368198792
206 => 0.027029003285334
207 => 0.028383022421218
208 => 0.029274866996579
209 => 0.029048666364118
210 => 0.029887450497903
211 => 0.028130903075456
212 => 0.028714357668742
213 => 0.028834606851785
214 => 0.027453514787766
215 => 0.026510059012984
216 => 0.02644714126899
217 => 0.024811318971733
218 => 0.025685162039031
219 => 0.02645410777617
220 => 0.02608584244068
221 => 0.025969260637078
222 => 0.026564851788174
223 => 0.026611134321507
224 => 0.025555887656703
225 => 0.025775306853632
226 => 0.02669032138023
227 => 0.025752250835247
228 => 0.023929732999298
301 => 0.023477723377702
302 => 0.023417416961991
303 => 0.022191531018888
304 => 0.023507928821986
305 => 0.022933285903666
306 => 0.024748575997358
307 => 0.023711692031437
308 => 0.02366699403606
309 => 0.023599426460277
310 => 0.022544255788338
311 => 0.022775271105898
312 => 0.023543201206095
313 => 0.023817207317197
314 => 0.023788626234943
315 => 0.023539437929661
316 => 0.023653515059768
317 => 0.023286032876585
318 => 0.023156267269223
319 => 0.022746691317546
320 => 0.022144727816825
321 => 0.022228434533657
322 => 0.021035787326411
323 => 0.020385969829326
324 => 0.020206108910589
325 => 0.01996559137315
326 => 0.020233276006436
327 => 0.021032408706721
328 => 0.020068485124717
329 => 0.018415905754748
330 => 0.018515228590741
331 => 0.018738377514003
401 => 0.018322540971782
402 => 0.017928986583084
403 => 0.01827115019398
404 => 0.017570930529355
405 => 0.018822995715134
406 => 0.018789130860731
407 => 0.019255823334798
408 => 0.019547655716326
409 => 0.01887507655876
410 => 0.01870592471948
411 => 0.018802281294656
412 => 0.017209721743911
413 => 0.019125677243267
414 => 0.019142246505987
415 => 0.019000370419085
416 => 0.020020557574002
417 => 0.022173470675231
418 => 0.02136345816582
419 => 0.021049796839418
420 => 0.020453526428644
421 => 0.021248021347967
422 => 0.021187016534214
423 => 0.020911129631037
424 => 0.020744272371175
425 => 0.021051711988593
426 => 0.020706177200294
427 => 0.020644109657654
428 => 0.020268047879411
429 => 0.020133810934299
430 => 0.020034427244265
501 => 0.019925015566777
502 => 0.020166350463624
503 => 0.019619453837118
504 => 0.01895995011849
505 => 0.018905119520215
506 => 0.019056511622808
507 => 0.018989531887227
508 => 0.01890479884701
509 => 0.018743020397566
510 => 0.018695024187466
511 => 0.018850988585841
512 => 0.018674913873365
513 => 0.01893472170291
514 => 0.018864068349096
515 => 0.018469404458079
516 => 0.017977507126584
517 => 0.017973128208544
518 => 0.017867149735347
519 => 0.01773217021576
520 => 0.017694622001324
521 => 0.018242334129042
522 => 0.019376081841774
523 => 0.019153500037481
524 => 0.019314338202183
525 => 0.020105502785136
526 => 0.020356990214907
527 => 0.020178490394062
528 => 0.019934148829899
529 => 0.019944898618667
530 => 0.020779887710634
531 => 0.020831964956081
601 => 0.020963547354571
602 => 0.021132667921811
603 => 0.020207292357961
604 => 0.019901313512828
605 => 0.019756323760944
606 => 0.019309811443236
607 => 0.019791336696811
608 => 0.01951077255252
609 => 0.019548630241021
610 => 0.019523975371721
611 => 0.019537438597514
612 => 0.018822645737398
613 => 0.019083078687217
614 => 0.018650058396341
615 => 0.018070292835667
616 => 0.018068349258215
617 => 0.018210246057837
618 => 0.018125840289
619 => 0.017898706535329
620 => 0.017930969812997
621 => 0.017648309551611
622 => 0.017965289886458
623 => 0.017974379748252
624 => 0.0178523250533
625 => 0.01834067699399
626 => 0.018540755182548
627 => 0.018460416167665
628 => 0.018535118383096
629 => 0.019162749316346
630 => 0.019265080543923
701 => 0.019310529315591
702 => 0.019249633982364
703 => 0.018546590324397
704 => 0.018577773300201
705 => 0.018348973313986
706 => 0.018155661435982
707 => 0.018163392897315
708 => 0.018262780331394
709 => 0.018696811085012
710 => 0.01961020321849
711 => 0.019644865782275
712 => 0.01968687782076
713 => 0.019515993746682
714 => 0.0194644534748
715 => 0.019532448397085
716 => 0.019875470458543
717 => 0.020757816330193
718 => 0.020445936369252
719 => 0.020192373106307
720 => 0.020414816448075
721 => 0.020380573039178
722 => 0.020091524206742
723 => 0.020083411568723
724 => 0.019528634444776
725 => 0.019323545973716
726 => 0.019152158696693
727 => 0.018965008264362
728 => 0.018854059214737
729 => 0.019024527380402
730 => 0.01906351546681
731 => 0.018690783843309
801 => 0.018639981900316
802 => 0.018944362590038
803 => 0.018810415996948
804 => 0.018948183389657
805 => 0.018980146606513
806 => 0.018974999792424
807 => 0.018835144165568
808 => 0.018924283971571
809 => 0.01871344175652
810 => 0.018484182515128
811 => 0.018337929402476
812 => 0.018210304164027
813 => 0.018281118063941
814 => 0.018028679440854
815 => 0.017947919244743
816 => 0.018894085411006
817 => 0.019593028531026
818 => 0.019582865621249
819 => 0.01952100152167
820 => 0.01942908401837
821 => 0.019868746120658
822 => 0.019715576635542
823 => 0.019827020233702
824 => 0.019855387306707
825 => 0.019941245893077
826 => 0.01997193295791
827 => 0.019879175334449
828 => 0.019567869420726
829 => 0.018792124681806
830 => 0.018431013411755
831 => 0.018311840677855
901 => 0.018316172380391
902 => 0.018196684686875
903 => 0.018231879167678
904 => 0.018184445482729
905 => 0.018094617558875
906 => 0.018275571442771
907 => 0.018296424692188
908 => 0.018254187893449
909 => 0.018264136188546
910 => 0.017914433534559
911 => 0.017941020667827
912 => 0.017792980131259
913 => 0.017765224315308
914 => 0.017390990730228
915 => 0.016727981688232
916 => 0.017095353057343
917 => 0.016651620103689
918 => 0.016483571710489
919 => 0.017279086667011
920 => 0.017199239029526
921 => 0.017062574583086
922 => 0.016860419383436
923 => 0.016785438053446
924 => 0.016329875228632
925 => 0.016302958146608
926 => 0.016528747383817
927 => 0.016424553419779
928 => 0.016278225632929
929 => 0.015748241221967
930 => 0.015152363272239
1001 => 0.015170349081986
1002 => 0.015359886771091
1003 => 0.015910993164804
1004 => 0.015695666362543
1005 => 0.015539444296912
1006 => 0.015510188600038
1007 => 0.015876384897374
1008 => 0.0163946293786
1009 => 0.016637778094125
1010 => 0.016396825101576
1011 => 0.016120031277566
1012 => 0.016136878435095
1013 => 0.016248955026472
1014 => 0.016260732691548
1015 => 0.016080568366982
1016 => 0.016131283569029
1017 => 0.016054242539625
1018 => 0.015581441884379
1019 => 0.015572890419793
1020 => 0.015456857514055
1021 => 0.015453344083783
1022 => 0.015255943165359
1023 => 0.015228325412303
1024 => 0.014836373907391
1025 => 0.015094357574862
1026 => 0.014921315675473
1027 => 0.014660500716636
1028 => 0.014615536119425
1029 => 0.014614184429337
1030 => 0.014881983074905
1031 => 0.015091228191769
1101 => 0.014924325813399
1102 => 0.01488632537711
1103 => 0.015292070619421
1104 => 0.015240435838887
1105 => 0.015195720451953
1106 => 0.016348226269461
1107 => 0.015435927983753
1108 => 0.015038113859018
1109 => 0.014545743336806
1110 => 0.014706061661586
1111 => 0.014739843088183
1112 => 0.01355578073872
1113 => 0.013075406791008
1114 => 0.012910560554664
1115 => 0.012815689215064
1116 => 0.012858923275839
1117 => 0.012426530380654
1118 => 0.012717105557337
1119 => 0.012342689859369
1120 => 0.01227991784915
1121 => 0.012949419498322
1122 => 0.013042576741633
1123 => 0.012645138999984
1124 => 0.012900358369448
1125 => 0.012807812278266
1126 => 0.012349108141872
1127 => 0.012331589017861
1128 => 0.012101427406449
1129 => 0.011741269052659
1130 => 0.011576667020638
1201 => 0.011490940853221
1202 => 0.011526313140667
1203 => 0.011508427829724
1204 => 0.011391714077734
1205 => 0.011515117725368
1206 => 0.011199872399571
1207 => 0.011074339170734
1208 => 0.011017638723617
1209 => 0.010737840352128
1210 => 0.011183123988068
1211 => 0.011270850473883
1212 => 0.011358749807976
1213 => 0.012123853499829
1214 => 0.012085631081545
1215 => 0.012431143127763
1216 => 0.012417717165003
1217 => 0.012319171532498
1218 => 0.011903423718927
1219 => 0.012069133387424
1220 => 0.01155910478479
1221 => 0.011941252892457
1222 => 0.011766856455004
1223 => 0.011882289281527
1224 => 0.01167473065128
1225 => 0.011789602167145
1226 => 0.011291653678108
1227 => 0.010826676385371
1228 => 0.011013796821502
1229 => 0.011217218135394
1230 => 0.011658287374698
1231 => 0.011395590174511
]
'min_raw' => 0.010737840352128
'max_raw' => 0.032052714961027
'avg_raw' => 0.021395277656578
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.010737'
'max' => '$0.032052'
'avg' => '$0.021395'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.020341309647872
'max_diff' => 0.00097356496102705
'year' => 2026
]
1 => [
'items' => [
101 => 0.011490066021379
102 => 0.011173587749436
103 => 0.010520602676868
104 => 0.010524298501464
105 => 0.010423850974103
106 => 0.010337049644883
107 => 0.011425764108043
108 => 0.011290365254521
109 => 0.011074624901996
110 => 0.011363401937031
111 => 0.011439759168602
112 => 0.011441932951639
113 => 0.011652617221986
114 => 0.011765059454838
115 => 0.011784877885731
116 => 0.012116394137257
117 => 0.012227514011964
118 => 0.012685201049607
119 => 0.011755519516971
120 => 0.0117363733376
121 => 0.011367465622122
122 => 0.011133498516765
123 => 0.011383485549993
124 => 0.0116049399348
125 => 0.011374346827159
126 => 0.011404457418931
127 => 0.011094905012072
128 => 0.01120555543173
129 => 0.01130086247936
130 => 0.011248239529548
131 => 0.0111694604267
201 => 0.011586783200678
202 => 0.011563236214269
203 => 0.011951856775607
204 => 0.012254814293693
205 => 0.012797768326237
206 => 0.012231167488444
207 => 0.01221051830188
208 => 0.012412367412773
209 => 0.012227483109917
210 => 0.012344323607332
211 => 0.012778943515757
212 => 0.012788126349556
213 => 0.012634302051995
214 => 0.012624941829508
215 => 0.012654485468509
216 => 0.012827523484911
217 => 0.012767058685059
218 => 0.01283703008223
219 => 0.012924530385831
220 => 0.013286468740888
221 => 0.013373730852956
222 => 0.013161729160849
223 => 0.013180870539964
224 => 0.01310157608754
225 => 0.013024978640054
226 => 0.013197158515843
227 => 0.01351182062305
228 => 0.013509863126412
301 => 0.013582858619127
302 => 0.013628334206361
303 => 0.013433119695788
304 => 0.013306042227642
305 => 0.013354771815078
306 => 0.013432691486582
307 => 0.013329503515785
308 => 0.012692579558707
309 => 0.012885781600425
310 => 0.012853623333586
311 => 0.012807826051028
312 => 0.013002092197962
313 => 0.012983354754175
314 => 0.012422095566544
315 => 0.012458025558735
316 => 0.012424280588373
317 => 0.012533317491184
318 => 0.012221594759336
319 => 0.012317478572168
320 => 0.012377616000721
321 => 0.012413037408137
322 => 0.012541003820407
323 => 0.01252598843891
324 => 0.012540070443211
325 => 0.012729810850728
326 => 0.013689452720905
327 => 0.013741683910568
328 => 0.013484478430006
329 => 0.013587226946337
330 => 0.013389972263612
331 => 0.013522390653617
401 => 0.013612987952995
402 => 0.013203596177962
403 => 0.013179354653975
404 => 0.012981285831007
405 => 0.013087716797278
406 => 0.012918377477284
407 => 0.012959927423172
408 => 0.012843750152208
409 => 0.01305284610928
410 => 0.013286647879513
411 => 0.013345715439785
412 => 0.013190334118892
413 => 0.013077827802437
414 => 0.012880303772627
415 => 0.013208790636311
416 => 0.013304850205708
417 => 0.013208286076287
418 => 0.013185910057532
419 => 0.013143507542424
420 => 0.013194905951562
421 => 0.013304327044664
422 => 0.013252726077847
423 => 0.013286809425521
424 => 0.013156918850783
425 => 0.013433184319914
426 => 0.0138719603718
427 => 0.013873371108554
428 => 0.01382176986359
429 => 0.013800655745914
430 => 0.013853601754674
501 => 0.013882322792467
502 => 0.014053540476157
503 => 0.01423726387237
504 => 0.015094620797698
505 => 0.014853878403835
506 => 0.015614576472378
507 => 0.016216189880314
508 => 0.016396587435988
509 => 0.016230630173129
510 => 0.015662899341722
511 => 0.015635043758631
512 => 0.016483473310526
513 => 0.01624375310158
514 => 0.016215239145509
515 => 0.015911898828006
516 => 0.01609121052508
517 => 0.016051992426586
518 => 0.015990084739498
519 => 0.016332198966554
520 => 0.016972606258853
521 => 0.016872792776647
522 => 0.016798286642394
523 => 0.016471822450507
524 => 0.01666842681244
525 => 0.016598419764864
526 => 0.01689921446882
527 => 0.016721030349615
528 => 0.016241936985226
529 => 0.016318234182617
530 => 0.01630670201472
531 => 0.016544033212863
601 => 0.016472792278103
602 => 0.016292791078832
603 => 0.01697041741635
604 => 0.016926416131147
605 => 0.01698879989347
606 => 0.017016263154927
607 => 0.017428722365458
608 => 0.01759769370679
609 => 0.017636053159532
610 => 0.017796562865085
611 => 0.017632059531837
612 => 0.018290190153718
613 => 0.018727808614283
614 => 0.019236124975868
615 => 0.019978911802702
616 => 0.020258206520754
617 => 0.020207754429808
618 => 0.020770926924605
619 => 0.021782935379134
620 => 0.020412310272898
621 => 0.021855581837902
622 => 0.021398658723793
623 => 0.020315302239937
624 => 0.020245546854311
625 => 0.020979208443206
626 => 0.022606399235064
627 => 0.022198806397148
628 => 0.02260706591093
629 => 0.022130809502123
630 => 0.022107159357221
701 => 0.022583935200179
702 => 0.023697947944947
703 => 0.023168722248051
704 => 0.022409947440086
705 => 0.022970214950444
706 => 0.022484859382661
707 => 0.021391217445978
708 => 0.022198494718587
709 => 0.021658691396326
710 => 0.021816234703285
711 => 0.022950820996992
712 => 0.02281430457239
713 => 0.022990969466906
714 => 0.022679160552211
715 => 0.022387881858134
716 => 0.021844188544999
717 => 0.021683227758736
718 => 0.021727711529297
719 => 0.021683205714789
720 => 0.021379014302889
721 => 0.021313324196452
722 => 0.021203837807773
723 => 0.021237772217763
724 => 0.021031905775674
725 => 0.021420418286072
726 => 0.021492529631563
727 => 0.021775256637376
728 => 0.02180461029303
729 => 0.022592000979853
730 => 0.022158319421114
731 => 0.022449270452981
801 => 0.022423245054153
802 => 0.020338781859966
803 => 0.020626002496751
804 => 0.021072827672786
805 => 0.02087153353664
806 => 0.020586950723702
807 => 0.020357134843889
808 => 0.020008940286093
809 => 0.020499017439707
810 => 0.021143416782814
811 => 0.021820953323792
812 => 0.022634969083825
813 => 0.022453290242374
814 => 0.021805735865376
815 => 0.02183478468169
816 => 0.022014353033851
817 => 0.021781795702297
818 => 0.021713210005163
819 => 0.02200493041227
820 => 0.022006939330387
821 => 0.021739354014941
822 => 0.02144198190442
823 => 0.021440735904419
824 => 0.021387821409625
825 => 0.022140222873196
826 => 0.022553967601792
827 => 0.022601402768143
828 => 0.022550774837153
829 => 0.02257025951844
830 => 0.022329510577113
831 => 0.022879791265106
901 => 0.023384783241528
902 => 0.023249434604267
903 => 0.02304652775607
904 => 0.022884902678163
905 => 0.023211360872431
906 => 0.023196824202933
907 => 0.023380372577159
908 => 0.023372045762678
909 => 0.023310325348029
910 => 0.023249436808497
911 => 0.023490852985211
912 => 0.023421329003343
913 => 0.023351697031528
914 => 0.02321203945193
915 => 0.023231021236464
916 => 0.023028149422996
917 => 0.022934291639302
918 => 0.021522895768869
919 => 0.021145724673599
920 => 0.021264390378196
921 => 0.021303458209304
922 => 0.021139312865284
923 => 0.021374655123129
924 => 0.021337977281533
925 => 0.021480669307363
926 => 0.021391521524592
927 => 0.021395180180693
928 => 0.021657344801512
929 => 0.021733452306264
930 => 0.021694743415084
1001 => 0.021721853795603
1002 => 0.022346601072088
1003 => 0.022257781987665
1004 => 0.022210598619296
1005 => 0.022223668734791
1006 => 0.022383305058666
1007 => 0.02242799451353
1008 => 0.022238642152996
1009 => 0.022327941820857
1010 => 0.022708168472794
1011 => 0.022841226282007
1012 => 0.023265882937643
1013 => 0.023085481242659
1014 => 0.023416616361405
1015 => 0.024434412824152
1016 => 0.025247499064752
1017 => 0.024499751355686
1018 => 0.02599288069064
1019 => 0.027155496054583
1020 => 0.027110872940478
1021 => 0.026908144059996
1022 => 0.025584537377875
1023 => 0.024366534775124
1024 => 0.025385445671448
1025 => 0.025388043084863
1026 => 0.025300517735242
1027 => 0.02475690530579
1028 => 0.025281601201045
1029 => 0.025323249655795
1030 => 0.025299937596353
1031 => 0.024883151221259
1101 => 0.024246795461488
1102 => 0.024371137853727
1103 => 0.02457481322873
1104 => 0.024189213252715
1105 => 0.024065990696051
1106 => 0.024295084872939
1107 => 0.025033274044539
1108 => 0.024893723657687
1109 => 0.024890079433119
1110 => 0.025487135166646
1111 => 0.025059772114132
1112 => 0.024372706209492
1113 => 0.024199213007285
1114 => 0.023583429018473
1115 => 0.024008753212893
1116 => 0.02402405987346
1117 => 0.023791114158884
1118 => 0.024391608470393
1119 => 0.024386074809598
1120 => 0.024956154786592
1121 => 0.026045933590344
1122 => 0.025723632373317
1123 => 0.025348831124186
1124 => 0.025389582412078
1125 => 0.025836523457503
1126 => 0.025566292698767
1127 => 0.025663469563724
1128 => 0.025836376368679
1129 => 0.025940695337142
1130 => 0.025374572517894
1201 => 0.025242582207943
1202 => 0.024972576356085
1203 => 0.024902136869234
1204 => 0.025122051001715
1205 => 0.025064111397487
1206 => 0.02402277340791
1207 => 0.023913947794049
1208 => 0.023917285320259
1209 => 0.02364363813983
1210 => 0.023226260506828
1211 => 0.024323104006034
1212 => 0.024235012122733
1213 => 0.024137765501339
1214 => 0.024149677657578
1215 => 0.024625780245108
1216 => 0.024349616700584
1217 => 0.025083842746016
1218 => 0.024932907943931
1219 => 0.0247781022337
1220 => 0.024756703369049
1221 => 0.024697116378013
1222 => 0.024492770414408
1223 => 0.024246010384066
1224 => 0.024083078038046
1225 => 0.022215366463409
1226 => 0.022562002867683
1227 => 0.022960776453898
1228 => 0.023098431497875
1229 => 0.022862963019714
1230 => 0.024502068145123
1231 => 0.024801548446345
]
'min_raw' => 0.010337049644883
'max_raw' => 0.027155496054583
'avg_raw' => 0.018746272849733
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.010337'
'max' => '$0.027155'
'avg' => '$0.018746'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00040079070724464
'max_diff' => -0.0048972189064441
'year' => 2027
]
2 => [
'items' => [
101 => 0.023894403079326
102 => 0.023724713219658
103 => 0.024513192984072
104 => 0.0240376432984
105 => 0.02425178329274
106 => 0.023788929753291
107 => 0.024729412411588
108 => 0.024722247509471
109 => 0.024356378513629
110 => 0.024665608483552
111 => 0.024611872166502
112 => 0.024198806971292
113 => 0.024742507315047
114 => 0.024742776983634
115 => 0.024390636029814
116 => 0.02397941248932
117 => 0.023905895432946
118 => 0.023850510206595
119 => 0.024238161922234
120 => 0.024585729238319
121 => 0.02523246584431
122 => 0.025395070793139
123 => 0.026029728733643
124 => 0.025651820831007
125 => 0.025819342509519
126 => 0.026001210988931
127 => 0.026088405425954
128 => 0.025946326769937
129 => 0.026932211787169
130 => 0.02701545068936
131 => 0.027043359973251
201 => 0.02671092509246
202 => 0.027006205073955
203 => 0.026868053349259
204 => 0.027227485757264
205 => 0.027283849348303
206 => 0.027236111391886
207 => 0.027254002085321
208 => 0.026412723145148
209 => 0.026369098394
210 => 0.025774271816627
211 => 0.026016668043643
212 => 0.025563519915591
213 => 0.025707217854939
214 => 0.025770558537399
215 => 0.025737472959434
216 => 0.02603037276263
217 => 0.025781348094437
218 => 0.02512413105163
219 => 0.02446673495048
220 => 0.024458481877933
221 => 0.024285401088505
222 => 0.024160295379076
223 => 0.024184395177076
224 => 0.024269326008612
225 => 0.024155359044752
226 => 0.024179679674763
227 => 0.024583564180461
228 => 0.024664560337706
229 => 0.024389303748145
301 => 0.023284108821723
302 => 0.023012891214608
303 => 0.023207837052123
304 => 0.023114665497911
305 => 0.018655339082489
306 => 0.019702991677669
307 => 0.019080512080534
308 => 0.019367379317803
309 => 0.018731988839438
310 => 0.019035230479382
311 => 0.018979232821096
312 => 0.02066382719185
313 => 0.020637524567835
314 => 0.020650114242047
315 => 0.02004917628967
316 => 0.02100648676505
317 => 0.021478092328994
318 => 0.021390810690484
319 => 0.021412777598488
320 => 0.021035313339131
321 => 0.020653768921174
322 => 0.020230577442394
323 => 0.021016814901919
324 => 0.020929398717941
325 => 0.021129899992637
326 => 0.021639831186554
327 => 0.021714920491898
328 => 0.021815841279762
329 => 0.021779668361343
330 => 0.022641454032627
331 => 0.02253708610159
401 => 0.022788582786687
402 => 0.022271235024343
403 => 0.02168580692415
404 => 0.02179707766691
405 => 0.021786361399599
406 => 0.021649931017176
407 => 0.021526767768139
408 => 0.021321735659523
409 => 0.021970487590228
410 => 0.021944149446601
411 => 0.022370533377171
412 => 0.02229516587577
413 => 0.02179184325586
414 => 0.021809819521697
415 => 0.021930718548546
416 => 0.022349151460872
417 => 0.022473370838335
418 => 0.022415827473408
419 => 0.022552028349966
420 => 0.022659675969441
421 => 0.022565547233601
422 => 0.023898211633169
423 => 0.023344796461431
424 => 0.023614527165498
425 => 0.023678856349072
426 => 0.023514078498043
427 => 0.023549812913679
428 => 0.023603940816322
429 => 0.023932594841838
430 => 0.024795078101603
501 => 0.02517706606623
502 => 0.026326295704766
503 => 0.025145347283297
504 => 0.025075274691218
505 => 0.025282285652528
506 => 0.025957005108661
507 => 0.02650380185468
508 => 0.026685205880796
509 => 0.026709181417501
510 => 0.027049507430006
511 => 0.027244575953669
512 => 0.027008182900625
513 => 0.026807864539554
514 => 0.02609034903463
515 => 0.026173403408055
516 => 0.026745565679893
517 => 0.027553778589054
518 => 0.028247309345335
519 => 0.028004459046472
520 => 0.029857235401201
521 => 0.030040930608859
522 => 0.030015549870738
523 => 0.030434034891297
524 => 0.02960342734848
525 => 0.029248326531663
526 => 0.026851175642928
527 => 0.027524677264148
528 => 0.028503651423956
529 => 0.028374080522941
530 => 0.027663123320034
531 => 0.028246770020543
601 => 0.028053798169035
602 => 0.027901593263341
603 => 0.028598873442698
604 => 0.027832185242804
605 => 0.028496003122676
606 => 0.027644649825424
607 => 0.028005568366181
608 => 0.027800693546782
609 => 0.027933272663447
610 => 0.02715821785646
611 => 0.027576418616918
612 => 0.027140819329908
613 => 0.027140612799129
614 => 0.027130996920725
615 => 0.02764347755015
616 => 0.027660189525076
617 => 0.027281465565617
618 => 0.027226885526278
619 => 0.027428696538269
620 => 0.027192428697616
621 => 0.027302976933205
622 => 0.027195777091055
623 => 0.027171644148612
624 => 0.026979348757351
625 => 0.026896502615523
626 => 0.026928988722416
627 => 0.026818096891856
628 => 0.02675128055281
629 => 0.027117705469146
630 => 0.026921939417887
701 => 0.02708770151411
702 => 0.026898794684619
703 => 0.026243961310815
704 => 0.025867359712804
705 => 0.024630440172774
706 => 0.024981229019932
707 => 0.025213802388516
708 => 0.025136936891586
709 => 0.025302073721989
710 => 0.02531221178219
711 => 0.025258524115256
712 => 0.025196360674761
713 => 0.025166102949783
714 => 0.025391619242085
715 => 0.025522539040296
716 => 0.025237144237483
717 => 0.025170280228282
718 => 0.025458830131005
719 => 0.025634845404976
720 => 0.026934443293538
721 => 0.026838164884308
722 => 0.027079804797793
723 => 0.027052599851801
724 => 0.027305876977391
725 => 0.02771987803483
726 => 0.02687809812854
727 => 0.027024202013713
728 => 0.0269883807151
729 => 0.027379468260507
730 => 0.027380689193135
731 => 0.027146212673392
801 => 0.027273326198692
802 => 0.027202374916046
803 => 0.027330593473427
804 => 0.026836879027454
805 => 0.027438169929468
806 => 0.027779063124581
807 => 0.027783796426926
808 => 0.027945377095913
809 => 0.028109552413726
810 => 0.02842467263961
811 => 0.028100763881657
812 => 0.027518083557983
813 => 0.027560151195306
814 => 0.02721852593473
815 => 0.02722426871708
816 => 0.027193613294826
817 => 0.027285612524642
818 => 0.026857067684833
819 => 0.026957646302173
820 => 0.02681683564891
821 => 0.027023895918852
822 => 0.026801133296683
823 => 0.026988363440985
824 => 0.027069165764488
825 => 0.027367328077764
826 => 0.026757094480584
827 => 0.025512786866751
828 => 0.02577435541295
829 => 0.025387474987356
830 => 0.025423282243702
831 => 0.025495618600204
901 => 0.025261152801797
902 => 0.025305881487267
903 => 0.025304283463871
904 => 0.025290512561567
905 => 0.025229518951903
906 => 0.025141066150671
907 => 0.025493434886441
908 => 0.025553309201004
909 => 0.025686402385418
910 => 0.026082397424267
911 => 0.02604282818168
912 => 0.026107367258051
913 => 0.025966478816703
914 => 0.025429817654418
915 => 0.025458960937485
916 => 0.025095543730653
917 => 0.025677108990366
918 => 0.02553938666058
919 => 0.025450596178629
920 => 0.025426368872991
921 => 0.025823345506947
922 => 0.025942127137673
923 => 0.025868110396543
924 => 0.025716299901073
925 => 0.02600782093112
926 => 0.026085819660476
927 => 0.026103280699496
928 => 0.026619800071126
929 => 0.026132148394555
930 => 0.026249530999947
1001 => 0.027165316578867
1002 => 0.026334825428558
1003 => 0.026774755113039
1004 => 0.026753222844267
1005 => 0.026978275984439
1006 => 0.026734761917964
1007 => 0.026737780566667
1008 => 0.02693761250872
1009 => 0.026656984585988
1010 => 0.02658749716584
1011 => 0.026491500792584
1012 => 0.026701105361631
1013 => 0.026826753821176
1014 => 0.027839388126479
1015 => 0.02849359606944
1016 => 0.028465195177285
1017 => 0.028724726167336
1018 => 0.028607805079287
1019 => 0.028230236043751
1020 => 0.028874700347772
1021 => 0.028670764876448
1022 => 0.028687577068923
1023 => 0.028686951318279
1024 => 0.028822550578361
1025 => 0.028726466075103
1026 => 0.02853707365631
1027 => 0.028662801182479
1028 => 0.029036166986788
1029 => 0.030195105899626
1030 => 0.030843663469148
1031 => 0.030156061919587
1101 => 0.030630360261123
1102 => 0.030345950265981
1103 => 0.030294264509399
1104 => 0.030592158918255
1105 => 0.030890574751839
1106 => 0.030871566953327
1107 => 0.030654932381967
1108 => 0.030532561009505
1109 => 0.031459198039206
1110 => 0.03214192841784
1111 => 0.0320953707831
1112 => 0.03230086104149
1113 => 0.032904186795696
1114 => 0.032959347341536
1115 => 0.032952398380611
1116 => 0.032815677212339
1117 => 0.033409729769105
1118 => 0.033905298863319
1119 => 0.032784030212138
1120 => 0.033210994636023
1121 => 0.03340267272184
1122 => 0.033684113020144
1123 => 0.034158949978254
1124 => 0.034674748859045
1125 => 0.034747688476236
1126 => 0.034695934327357
1127 => 0.034355751100057
1128 => 0.034920144390179
1129 => 0.035250752742881
1130 => 0.035447622451077
1201 => 0.035946851275067
1202 => 0.033403856460443
1203 => 0.031603798335609
1204 => 0.031322693266262
1205 => 0.03189433147869
1206 => 0.032045067916578
1207 => 0.031984306247473
1208 => 0.029958177173848
1209 => 0.031312026116006
1210 => 0.032768653742916
1211 => 0.032824608742369
1212 => 0.033553826989047
1213 => 0.033791290341832
1214 => 0.034378406611229
1215 => 0.034341682328723
1216 => 0.034484635797261
1217 => 0.034451773270453
1218 => 0.035539282527594
1219 => 0.036738966734908
1220 => 0.036697425485571
1221 => 0.03652495668675
1222 => 0.036781102263299
1223 => 0.03801930493122
1224 => 0.037905311071351
1225 => 0.03801604639624
1226 => 0.039475957123763
1227 => 0.041374048739422
1228 => 0.040492194618666
1229 => 0.042405564314019
1230 => 0.043609929113875
1231 => 0.045692753501581
]
'min_raw' => 0.018655339082489
'max_raw' => 0.045692753501581
'avg_raw' => 0.032174046292035
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.018655'
'max' => '$0.045692'
'avg' => '$0.032174'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0083182894376058
'max_diff' => 0.018537257446998
'year' => 2028
]
3 => [
'items' => [
101 => 0.045431973630114
102 => 0.046242801879776
103 => 0.044965123233786
104 => 0.042031314801135
105 => 0.0415670283865
106 => 0.042496541546203
107 => 0.044781658948765
108 => 0.042424575067154
109 => 0.042901410066532
110 => 0.042764081554632
111 => 0.042756763901842
112 => 0.043036048945811
113 => 0.042630931423006
114 => 0.040980409755849
115 => 0.041736834109321
116 => 0.041444742339965
117 => 0.04176883993495
118 => 0.04351786098707
119 => 0.042744577088474
120 => 0.041929985317785
121 => 0.042951664170613
122 => 0.044252612437208
123 => 0.044171201432713
124 => 0.044013230056834
125 => 0.044903706431555
126 => 0.046374512517498
127 => 0.04677206549235
128 => 0.047065530970774
129 => 0.047105994902109
130 => 0.047522798543049
131 => 0.045281540317669
201 => 0.048838474680941
202 => 0.04945265898715
203 => 0.049337217792914
204 => 0.050019857800438
205 => 0.049819007793319
206 => 0.049528007645404
207 => 0.050610137259023
208 => 0.049369562980366
209 => 0.04760872397577
210 => 0.046642692872402
211 => 0.047914840556823
212 => 0.048691696755863
213 => 0.049205149286094
214 => 0.049360519711506
215 => 0.045455522813661
216 => 0.04335094606678
217 => 0.044699955632509
218 => 0.046345840406366
219 => 0.045272397344647
220 => 0.04531447428037
221 => 0.043784026570233
222 => 0.046481251069293
223 => 0.046088288147009
224 => 0.04812698048296
225 => 0.047640430195457
226 => 0.049302904653844
227 => 0.048865119413364
228 => 0.050682341470352
301 => 0.051407280548208
302 => 0.052624566087685
303 => 0.053520006285768
304 => 0.054045825897124
305 => 0.054014257659958
306 => 0.056097816922441
307 => 0.054869214819371
308 => 0.053325801018632
309 => 0.053297885532385
310 => 0.05409724141013
311 => 0.055772472037309
312 => 0.056206834965322
313 => 0.056449584585201
314 => 0.056077805092181
315 => 0.054744245564005
316 => 0.054168421321039
317 => 0.05465904025928
318 => 0.054059055457177
319 => 0.05509479755161
320 => 0.056517092669841
321 => 0.05622339435229
322 => 0.057205183794148
323 => 0.058221232579209
324 => 0.059674227975453
325 => 0.060054094776295
326 => 0.060682000153046
327 => 0.061328321041894
328 => 0.061535901892556
329 => 0.061932238145024
330 => 0.061930149257336
331 => 0.063124535230656
401 => 0.064441979946282
402 => 0.064939284827516
403 => 0.066082809980361
404 => 0.064124563230014
405 => 0.06560991588487
406 => 0.066949741160338
407 => 0.065352346232412
408 => 0.067553982995275
409 => 0.06763946756176
410 => 0.068930183023743
411 => 0.067621795631861
412 => 0.066844879375082
413 => 0.069087807497731
414 => 0.070173089764707
415 => 0.069846193913574
416 => 0.067358500345611
417 => 0.06591055598686
418 => 0.062121006312401
419 => 0.066609891598161
420 => 0.068796296678276
421 => 0.06735283808465
422 => 0.068080834638303
423 => 0.072052547781356
424 => 0.073564718996849
425 => 0.073250197954901
426 => 0.073303346833534
427 => 0.074119286973564
428 => 0.077737614900904
429 => 0.075569428934657
430 => 0.077226925865474
501 => 0.07810605626103
502 => 0.078922641566891
503 => 0.076917366140132
504 => 0.074308532273265
505 => 0.073482205076233
506 => 0.067209314574973
507 => 0.0668827833826
508 => 0.066699491529413
509 => 0.065543862322218
510 => 0.064635854318842
511 => 0.063913772642382
512 => 0.06201881469151
513 => 0.062658307372855
514 => 0.059638139907627
515 => 0.061570336023717
516 => 0.056750075824718
517 => 0.06076453175325
518 => 0.058579645906263
519 => 0.060046737990198
520 => 0.060041619444126
521 => 0.057340237775633
522 => 0.055782137205643
523 => 0.056775019531022
524 => 0.057839468198925
525 => 0.058012171414057
526 => 0.059392256896947
527 => 0.059777409090383
528 => 0.058610379963234
529 => 0.056650186646146
530 => 0.057105494846456
531 => 0.055772910399496
601 => 0.05343760741332
602 => 0.05511486278847
603 => 0.05568755151726
604 => 0.05594048348525
605 => 0.053643981209706
606 => 0.05292237033524
607 => 0.052538190760576
608 => 0.056353737040614
609 => 0.056562761278943
610 => 0.055493363722602
611 => 0.060327142081701
612 => 0.059233109167003
613 => 0.060455411977293
614 => 0.057064180399593
615 => 0.05719373001276
616 => 0.05558826663698
617 => 0.056487218850315
618 => 0.055851868400512
619 => 0.056414592395096
620 => 0.056751886837252
621 => 0.05835708677229
622 => 0.06078286055804
623 => 0.058117323430696
624 => 0.056955910733118
625 => 0.057676444638662
626 => 0.059595321379976
627 => 0.062502517868558
628 => 0.060781399034535
629 => 0.061545202346581
630 => 0.061712059391019
701 => 0.060442970082094
702 => 0.062549311001588
703 => 0.063678116212229
704 => 0.06483603678502
705 => 0.065841426774176
706 => 0.064373537845028
707 => 0.065944389412829
708 => 0.064678560341811
709 => 0.063542980806104
710 => 0.063544703011512
711 => 0.062832337380593
712 => 0.061452039206842
713 => 0.061197491046028
714 => 0.062521682724467
715 => 0.063583559049157
716 => 0.063671020269303
717 => 0.064258929563826
718 => 0.064606848228378
719 => 0.068016924113474
720 => 0.069388484844087
721 => 0.071065603343164
722 => 0.071718935515774
723 => 0.073685231122783
724 => 0.072097287725402
725 => 0.071753726182746
726 => 0.066984136210533
727 => 0.067765156301286
728 => 0.06901564482381
729 => 0.067004756305686
730 => 0.068280202227702
731 => 0.068532002270347
801 => 0.066936427083316
802 => 0.067788692731443
803 => 0.065525327849172
804 => 0.060832195727411
805 => 0.062554535799243
806 => 0.063822757825511
807 => 0.062012848623378
808 => 0.065257040815042
809 => 0.063361850710392
810 => 0.062761166432387
811 => 0.06041768290448
812 => 0.061523716920699
813 => 0.063019643764516
814 => 0.062095334895199
815 => 0.064013414584708
816 => 0.066729926958221
817 => 0.068665875446694
818 => 0.068814493532872
819 => 0.067569808353258
820 => 0.069564424297063
821 => 0.069578952896642
822 => 0.067329017963784
823 => 0.065950945345099
824 => 0.065637844346644
825 => 0.066420032027851
826 => 0.067369752272648
827 => 0.068867196396741
828 => 0.069772070519147
829 => 0.07213150232223
830 => 0.072769896917933
831 => 0.073471299029463
901 => 0.074408588554868
902 => 0.075534044946218
903 => 0.073071610434212
904 => 0.073169447547926
905 => 0.070876462625073
906 => 0.068426079387704
907 => 0.070285614820285
908 => 0.072716710034752
909 => 0.072159014106431
910 => 0.072096261921801
911 => 0.072201793690345
912 => 0.071781309173037
913 => 0.06987947328514
914 => 0.068924383208361
915 => 0.070156693076871
916 => 0.070811610928182
917 => 0.071827331400727
918 => 0.071702122413228
919 => 0.074318509270088
920 => 0.075335158087233
921 => 0.075075055814952
922 => 0.075122920892762
923 => 0.076963515014725
924 => 0.079010634225399
925 => 0.080928031507368
926 => 0.082878490376716
927 => 0.080527136082012
928 => 0.079333263382532
929 => 0.080565035263104
930 => 0.079911439764828
1001 => 0.083667193366941
1002 => 0.083927233597608
1003 => 0.087682715615987
1004 => 0.091247115245908
1005 => 0.089008379701207
1006 => 0.091119406484997
1007 => 0.093402654066204
1008 => 0.097807409093923
1009 => 0.096324042561738
1010 => 0.095187807045401
1011 => 0.094114069972713
1012 => 0.096348346370017
1013 => 0.099222707261712
1014 => 0.099841817067497
1015 => 0.10084501147102
1016 => 0.099790275220491
1017 => 0.10106058885886
1018 => 0.10554535420641
1019 => 0.10433353102138
1020 => 0.10261254728835
1021 => 0.10615283880879
1022 => 0.10743405654751
1023 => 0.11642631361675
1024 => 0.12777940961827
1025 => 0.12307915332519
1026 => 0.12016155256776
1027 => 0.12084725795217
1028 => 0.12499302428537
1029 => 0.12632451285155
1030 => 0.12270506793705
1031 => 0.12398351706986
1101 => 0.13102789748604
1102 => 0.13480698156853
1103 => 0.1296744777858
1104 => 0.11551410340729
1105 => 0.10245759153288
1106 => 0.10592076642437
1107 => 0.1055281498665
1108 => 0.11309645781932
1109 => 0.1043046294392
1110 => 0.10445266128122
1111 => 0.11217747382753
1112 => 0.11011662627699
1113 => 0.10677831717852
1114 => 0.10248196488369
1115 => 0.094539760302214
1116 => 0.087505128219639
1117 => 0.10130166171258
1118 => 0.100706730101
1119 => 0.099845180963501
1120 => 0.10176246533965
1121 => 0.11107225403957
1122 => 0.11085763327719
1123 => 0.10949232548741
1124 => 0.11052789941269
1125 => 0.10659677606249
1126 => 0.10760991605985
1127 => 0.10245552331469
1128 => 0.10478552410196
1129 => 0.10677115466651
1130 => 0.1071697994001
1201 => 0.1080679663402
1202 => 0.1003932281756
1203 => 0.10383896029303
1204 => 0.10586300509058
1205 => 0.096718297059854
1206 => 0.10568224361529
1207 => 0.1002596280589
1208 => 0.09841911089411
1209 => 0.1008971247868
1210 => 0.099931440362873
1211 => 0.09910120160207
1212 => 0.098637914108229
1213 => 0.10045749402261
1214 => 0.10037260844474
1215 => 0.097395422539566
1216 => 0.093511804891894
1217 => 0.094815274449857
1218 => 0.094341711739357
1219 => 0.092625459385699
1220 => 0.093782006250965
1221 => 0.088689159171308
1222 => 0.079927180473916
1223 => 0.085715611988079
1224 => 0.085492763671386
1225 => 0.085380393444742
1226 => 0.08973023974714
1227 => 0.089312102393193
1228 => 0.088553179001367
1229 => 0.092611521162453
1230 => 0.091130171681252
1231 => 0.095695341732482
]
'min_raw' => 0.040980409755849
'max_raw' => 0.13480698156853
'avg_raw' => 0.087893695662189
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.04098'
'max' => '$0.1348069'
'avg' => '$0.087893'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.022325070673359
'max_diff' => 0.089114228066949
'year' => 2029
]
4 => [
'items' => [
101 => 0.098702257984908
102 => 0.097939606759742
103 => 0.10076762602884
104 => 0.094845303755834
105 => 0.096812461652597
106 => 0.097217890168757
107 => 0.092561441850146
108 => 0.089380514835491
109 => 0.089168383268836
110 => 0.083653094184169
111 => 0.08659931709534
112 => 0.089191871334183
113 => 0.087950239044113
114 => 0.087557175353787
115 => 0.089565252502551
116 => 0.089721297295028
117 => 0.086163459489673
118 => 0.086903246631477
119 => 0.089988281992177
120 => 0.086825511655772
121 => 0.080680765527739
122 => 0.079156783530225
123 => 0.078953456239195
124 => 0.074820296193401
125 => 0.079258623294502
126 => 0.0773211745751
127 => 0.083441551865492
128 => 0.079945625181462
129 => 0.079794922769333
130 => 0.079567113970164
131 => 0.076009532380057
201 => 0.076788416652186
202 => 0.079377546600165
203 => 0.080301377334241
204 => 0.080205014219955
205 => 0.079364858450925
206 => 0.079749477459693
207 => 0.078510485622306
208 => 0.078072971817139
209 => 0.07669205790038
210 => 0.07466249592995
211 => 0.074944718969965
212 => 0.070923625642766
213 => 0.068732720582533
214 => 0.068126306937525
215 => 0.067315385267649
216 => 0.068217902697917
217 => 0.070912234390594
218 => 0.06766229873487
219 => 0.062090512009612
220 => 0.062425385885663
221 => 0.063177748060202
222 => 0.061775726125321
223 => 0.060448830026739
224 => 0.061602458529973
225 => 0.059241619042915
226 => 0.063463044233169
227 => 0.06334886651218
228 => 0.064922352771925
301 => 0.065906286021331
302 => 0.063638638433621
303 => 0.063068331197683
304 => 0.063393204118292
305 => 0.058023778403999
306 => 0.064483556137817
307 => 0.064539420563907
308 => 0.064061075431446
309 => 0.067500707651442
310 => 0.074759404483826
311 => 0.072028390755079
312 => 0.070970859693982
313 => 0.068960492373785
314 => 0.071639187464147
315 => 0.07143350547536
316 => 0.070503333519488
317 => 0.069940762618264
318 => 0.070977316753136
319 => 0.069812322089916
320 => 0.06960305703649
321 => 0.068335138495348
322 => 0.067882549262779
323 => 0.06754747021308
324 => 0.06717858110355
325 => 0.067992258557735
326 => 0.066148358398369
327 => 0.063924795565934
328 => 0.063739930375701
329 => 0.06425035941945
330 => 0.064024532564564
331 => 0.063738849203601
401 => 0.06319340186629
402 => 0.063031579292948
403 => 0.063557424151157
404 => 0.062963775964899
405 => 0.063839736201414
406 => 0.063601523486172
407 => 0.062270886623054
408 => 0.060612420426744
409 => 0.060597656598847
410 => 0.060240342777281
411 => 0.059785249903026
412 => 0.059658653476522
413 => 0.061505303155162
414 => 0.065327812724374
415 => 0.064577362631036
416 => 0.065119639732692
417 => 0.067787106361463
418 => 0.06863501378923
419 => 0.068033189180789
420 => 0.06720937453783
421 => 0.067245618201191
422 => 0.070060842221832
423 => 0.070236424290775
424 => 0.070680063534073
425 => 0.071250265334145
426 => 0.068130297012964
427 => 0.067098667973837
428 => 0.066609824902499
429 => 0.065104377448854
430 => 0.0667278734603
501 => 0.065781931859461
502 => 0.065909571699381
503 => 0.065826446086186
504 => 0.06587183829192
505 => 0.063461864258796
506 => 0.06433993213196
507 => 0.06287997398876
508 => 0.060925253923007
509 => 0.060918701015933
510 => 0.061397115982776
511 => 0.061112536040118
512 => 0.060346738731646
513 => 0.060455516624853
514 => 0.05950250781888
515 => 0.060571229148679
516 => 0.060601876252349
517 => 0.060190360326732
518 => 0.061836872990412
519 => 0.062511450572148
520 => 0.062240581974382
521 => 0.062492445709249
522 => 0.064608547220493
523 => 0.064953564098808
524 => 0.06510679780562
525 => 0.064901484938068
526 => 0.062531124160292
527 => 0.062636259740339
528 => 0.06186484461251
529 => 0.061213080119217
530 => 0.061239147280895
531 => 0.0615742389539
601 => 0.063037603942782
602 => 0.066117169291806
603 => 0.066234036545668
604 => 0.066375683066608
605 => 0.065799535480109
606 => 0.065625763855031
607 => 0.065855013482771
608 => 0.067011536312011
609 => 0.069986427021701
610 => 0.068934901958626
611 => 0.068079995714384
612 => 0.068829978971653
613 => 0.068714524927759
614 => 0.067739976608456
615 => 0.067712624282967
616 => 0.065842154476278
617 => 0.065150684377281
618 => 0.06457284020692
619 => 0.06394184945789
620 => 0.063567776990864
621 => 0.064142522313112
622 => 0.064273973368497
623 => 0.063017282676572
624 => 0.062846000378894
625 => 0.063872241125473
626 => 0.063420630835015
627 => 0.063885123218147
628 => 0.063992889435376
629 => 0.063975536592336
630 => 0.063504003581986
701 => 0.063804544661466
702 => 0.063093675412887
703 => 0.062320711874167
704 => 0.061827609293793
705 => 0.061397311891852
706 => 0.061636065899481
707 => 0.060784951457042
708 => 0.060512662817357
709 => 0.063702728106126
710 => 0.066059263633922
711 => 0.066024998674057
712 => 0.065816419543113
713 => 0.065506513263262
714 => 0.066988864737353
715 => 0.066472443124333
716 => 0.066848182996274
717 => 0.066943824563436
718 => 0.067233302781838
719 => 0.067336766363423
720 => 0.067024027559795
721 => 0.065974437936993
722 => 0.063358960388955
723 => 0.062141448529996
724 => 0.061739649337276
725 => 0.061754253974806
726 => 0.061351392873754
727 => 0.061470053522982
728 => 0.061310127542461
729 => 0.061007266425603
730 => 0.061617365078955
731 => 0.061687673265292
801 => 0.061545268949463
802 => 0.061578810320952
803 => 0.060399763407573
804 => 0.060489403783642
805 => 0.059990274778742
806 => 0.059896694107414
807 => 0.058634939447161
808 => 0.056399558172261
809 => 0.057638176392266
810 => 0.056142099758577
811 => 0.055575512868139
812 => 0.058257647085134
813 => 0.05798843520057
814 => 0.057527661477791
815 => 0.056846081108143
816 => 0.056593276319053
817 => 0.055057314448812
818 => 0.05496656162748
819 => 0.055727825804831
820 => 0.055376528580484
821 => 0.054883174230839
822 => 0.053096294786953
823 => 0.051087250676573
824 => 0.051147891089864
825 => 0.051786930641782
826 => 0.053645024325206
827 => 0.052919034977745
828 => 0.052392321376394
829 => 0.052293683751814
830 => 0.053528340135291
831 => 0.05527563758642
901 => 0.056095430456913
902 => 0.055283040619734
903 => 0.054349810916959
904 => 0.054406612284797
905 => 0.054784486337561
906 => 0.054824195557655
907 => 0.054216758958712
908 => 0.054387748803234
909 => 0.054127999593765
910 => 0.052533919174716
911 => 0.052505087314819
912 => 0.052113874271965
913 => 0.052102028496506
914 => 0.051436477517944
915 => 0.051343362335307
916 => 0.050021870471316
917 => 0.050891680418041
918 => 0.05030825757285
919 => 0.049428901729611
920 => 0.049277300450787
921 => 0.049272743133282
922 => 0.05017564496392
923 => 0.050881129484455
924 => 0.050318406463027
925 => 0.050190285338975
926 => 0.051558283751653
927 => 0.051384193484057
928 => 0.051233432435081
929 => 0.055119186264198
930 => 0.0520433088993
1001 => 0.050702050803262
1002 => 0.049041989211411
1003 => 0.049582513636475
1004 => 0.049696410074792
1005 => 0.045704261194983
1006 => 0.044084646891635
1007 => 0.043528856296603
1008 => 0.043208990951437
1009 => 0.043354757605846
1010 => 0.041896914771022
1011 => 0.042876609266518
1012 => 0.041614240599949
1013 => 0.041402600384895
1014 => 0.043659871938192
1015 => 0.043973958088044
1016 => 0.042633968993857
1017 => 0.043494458916853
1018 => 0.04318243330907
1019 => 0.041635880287519
1020 => 0.04157681333777
1021 => 0.040800807395523
1022 => 0.039586508360266
1023 => 0.039031541117161
1024 => 0.038742509358505
1025 => 0.038861769495243
1026 => 0.038801467920688
1027 => 0.038407959357159
1028 => 0.038824023370925
1029 => 0.037761151745273
1030 => 0.0373379076998
1031 => 0.037146738183647
1101 => 0.036203378439272
1102 => 0.037704683306554
1103 => 0.038000459278349
1104 => 0.038296818020178
1105 => 0.040876418535095
1106 => 0.040747548983245
1107 => 0.041912466969951
1108 => 0.041867200399134
1109 => 0.041534946918906
1110 => 0.040133224138866
1111 => 0.040691925855683
1112 => 0.038972328812843
1113 => 0.040260767838572
1114 => 0.039672778073729
1115 => 0.040061967907614
1116 => 0.039362169494456
1117 => 0.039749466830266
1118 => 0.038070598733827
1119 => 0.036502895327684
1120 => 0.037133784942431
1121 => 0.03781963410464
1122 => 0.039306729839427
1123 => 0.038421027888061
1124 => 0.038739559801871
1125 => 0.037672531212207
1126 => 0.035470946450082
1127 => 0.035483407180744
1128 => 0.035144741329222
1129 => 0.034852084587483
1130 => 0.038522761411643
1201 => 0.038066254723746
1202 => 0.037338871062699
1203 => 0.038312502998088
1204 => 0.038569946735421
1205 => 0.0385772757967
1206 => 0.039287612523682
1207 => 0.039666719362207
1208 => 0.03973353858564
1209 => 0.040851268773387
1210 => 0.041225917189102
1211 => 0.042769040991205
1212 => 0.03963455479563
1213 => 0.039570002115138
1214 => 0.038326203996088
1215 => 0.037537367565317
1216 => 0.038380216301382
1217 => 0.039126865221211
1218 => 0.038349404459303
1219 => 0.038450924421716
1220 => 0.037407246869733
1221 => 0.037780312484974
1222 => 0.038101646850185
1223 => 0.037924224900876
1224 => 0.037658615655442
1225 => 0.039065648524457
1226 => 0.038986258215781
1227 => 0.040296519570953
1228 => 0.041317961994998
1229 => 0.04314856942356
1230 => 0.041238235140132
1231 => 0.041168614965953
]
'min_raw' => 0.034852084587483
'max_raw' => 0.10076762602884
'avg_raw' => 0.06780985530816
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.034852'
'max' => '$0.100767'
'avg' => '$0.0678098'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0061283251683651
'max_diff' => -0.034039355539692
'year' => 2030
]
5 => [
'items' => [
101 => 0.041849163335981
102 => 0.041225813000693
103 => 0.041619748895273
104 => 0.043085100260718
105 => 0.043116060825999
106 => 0.0425974314671
107 => 0.042565872823478
108 => 0.042665481265038
109 => 0.043248891018469
110 => 0.043045029724249
111 => 0.043280943175057
112 => 0.043575956557726
113 => 0.044796256991529
114 => 0.045090467294812
115 => 0.044375688788388
116 => 0.044440225284483
117 => 0.044172878501972
118 => 0.043914624859912
119 => 0.044495141332347
120 => 0.045556046595804
121 => 0.045549446759221
122 => 0.045795556159291
123 => 0.045948880276655
124 => 0.045290700924817
125 => 0.044862250368696
126 => 0.04502654557493
127 => 0.045289257187582
128 => 0.044941351739686
129 => 0.042793918149787
130 => 0.043445312322373
131 => 0.043336888480507
201 => 0.0431824797449
202 => 0.043837461622518
203 => 0.043774287022583
204 => 0.041881962485619
205 => 0.042003102962844
206 => 0.041889329439269
207 => 0.042256954969812
208 => 0.041205960015599
209 => 0.041529238984956
210 => 0.041731996523984
211 => 0.041851422272129
212 => 0.042282869965429
213 => 0.042232244558371
214 => 0.042279723019045
215 => 0.042919446050241
216 => 0.046154945615598
217 => 0.046331046718213
218 => 0.045463860482985
219 => 0.045810284279466
220 => 0.045145226344778
221 => 0.045591684191835
222 => 0.045897139311992
223 => 0.044516846359645
224 => 0.044435114369034
225 => 0.043767311503675
226 => 0.044126150937231
227 => 0.043555211596975
228 => 0.043695300140463
301 => 0.04330360036017
302 => 0.04400858197805
303 => 0.044796860969909
304 => 0.044996011373333
305 => 0.044472132401564
306 => 0.044092809500696
307 => 0.043426843443503
308 => 0.044534359838636
309 => 0.044858231383523
310 => 0.044532658679287
311 => 0.044457216369811
312 => 0.044314253329676
313 => 0.044487546654606
314 => 0.044856467509535
315 => 0.044682491247249
316 => 0.044797405633556
317 => 0.044359470492154
318 => 0.045290918809569
319 => 0.04677028290287
320 => 0.04677503930033
321 => 0.046601062100248
322 => 0.046529874378365
323 => 0.046708385543469
324 => 0.046805220527627
325 => 0.047382492902225
326 => 0.048001929159715
327 => 0.050892567892209
328 => 0.050080888103202
329 => 0.052645634751538
330 => 0.0546740163597
331 => 0.05528223931361
401 => 0.054722702815114
402 => 0.052808558679328
403 => 0.05271464163612
404 => 0.055575181105793
405 => 0.054766947684603
406 => 0.05467081089093
407 => 0.053648077831923
408 => 0.054252639737749
409 => 0.054120413180557
410 => 0.053911687091284
411 => 0.055065149093454
412 => 0.057224326991252
413 => 0.056887798867238
414 => 0.056636596233752
415 => 0.055535899417804
416 => 0.056198764750539
417 => 0.055962731101901
418 => 0.056976881447104
419 => 0.056376121248786
420 => 0.054760824521518
421 => 0.055018065849423
422 => 0.054979184340208
423 => 0.055779363044682
424 => 0.055539169259255
425 => 0.054932282648631
426 => 0.05721694715593
427 => 0.057068593750798
428 => 0.057278924960965
429 => 0.05737151926439
430 => 0.058762154289679
501 => 0.059331852964182
502 => 0.059461184537273
503 => 0.060002354215975
504 => 0.059447719742673
505 => 0.061666653083558
506 => 0.063142114276896
507 => 0.064855938379497
508 => 0.067360296025889
509 => 0.068301957667536
510 => 0.068131854920459
511 => 0.070030630306115
512 => 0.073442687466733
513 => 0.068821529227068
514 => 0.073687620074484
515 => 0.072147071893912
516 => 0.068494459871056
517 => 0.068259274718251
518 => 0.070732865987827
519 => 0.076219053349409
520 => 0.074844825639155
521 => 0.07622130109364
522 => 0.074615569360185
523 => 0.074535831245449
524 => 0.076143314287406
525 => 0.079899286034279
526 => 0.078114964647835
527 => 0.075556702406815
528 => 0.077445683434615
529 => 0.075809273251393
530 => 0.072121983106223
531 => 0.074843774793124
601 => 0.073023790204258
602 => 0.073554958462991
603 => 0.077380295366511
604 => 0.076920020709694
605 => 0.077515658735901
606 => 0.076464373210206
607 => 0.075482306756696
608 => 0.073649206792006
609 => 0.073106516263198
610 => 0.073256496401401
611 => 0.07310644194049
612 => 0.072080839357304
613 => 0.071859360577114
614 => 0.071490219573589
615 => 0.071604631806092
616 => 0.070910538723455
617 => 0.07222043577734
618 => 0.072463564213314
619 => 0.073416798052783
620 => 0.073515765952228
621 => 0.076170508626714
622 => 0.074708320972745
623 => 0.075689282690236
624 => 0.075601536241054
625 => 0.068573623049279
626 => 0.069542007479303
627 => 0.071048509756644
628 => 0.070369832522718
629 => 0.06941034169996
630 => 0.06863550141594
701 => 0.067461539154163
702 => 0.069113868493666
703 => 0.071286505869477
704 => 0.073570867621476
705 => 0.076315378589193
706 => 0.075702835690828
707 => 0.073519560897977
708 => 0.073617501010301
709 => 0.074222928246675
710 => 0.073438844966706
711 => 0.073207603500319
712 => 0.074191159220147
713 => 0.074197932427837
714 => 0.073295749854603
715 => 0.072293139022122
716 => 0.072288938046125
717 => 0.072110533132557
718 => 0.07464730719798
719 => 0.076042276437175
720 => 0.076202207412344
721 => 0.076031511808283
722 => 0.07609720577162
723 => 0.075285503907382
724 => 0.07714081366632
725 => 0.07884342937224
726 => 0.078387091991974
727 => 0.077702977386775
728 => 0.07715804715231
729 => 0.078258723746866
730 => 0.078209712350736
731 => 0.078828558509378
801 => 0.078800484072993
802 => 0.078592389385823
803 => 0.078387099423691
804 => 0.079201050918622
805 => 0.078966645959743
806 => 0.078731876905218
807 => 0.078261011625025
808 => 0.078325010036847
809 => 0.07764101355368
810 => 0.077324565483017
811 => 0.072565945765338
812 => 0.071294287084389
813 => 0.071694376792415
814 => 0.071826096712622
815 => 0.071272669224998
816 => 0.072066142078394
817 => 0.071942480174688
818 => 0.072423576302214
819 => 0.072123008328501
820 => 0.072135343742985
821 => 0.073019250065825
822 => 0.073275851831751
823 => 0.073145342102571
824 => 0.073236746643277
825 => 0.07534312570441
826 => 0.075043665960127
827 => 0.074884583939431
828 => 0.07492865074635
829 => 0.075466875757746
830 => 0.07561754937494
831 => 0.074979134671239
901 => 0.075280214736136
902 => 0.076562175439718
903 => 0.077010789133279
904 => 0.078442548696339
905 => 0.077834311786454
906 => 0.078950756958424
907 => 0.082382328792853
908 => 0.085123705820905
909 => 0.082602622213711
910 => 0.087636812013469
911 => 0.091556650884216
912 => 0.091406200939524
913 => 0.090722686364902
914 => 0.086260054024864
915 => 0.082153473211462
916 => 0.085588802436505
917 => 0.085597559797181
918 => 0.085302461970107
919 => 0.083469634710402
920 => 0.085238683554353
921 => 0.085379104227344
922 => 0.08530050599134
923 => 0.083895281628614
924 => 0.081749763755606
925 => 0.082168992812348
926 => 0.082855698559332
927 => 0.081555621318465
928 => 0.08114016786555
929 => 0.081912574877772
930 => 0.084401431208544
1001 => 0.083930927336174
1002 => 0.083918640578611
1003 => 0.0859316556693
1004 => 0.084490771300213
1005 => 0.082174280633311
1006 => 0.08158933618916
1007 => 0.079513177478216
1008 => 0.080947187694888
1009 => 0.080998795169667
1010 => 0.080213402429225
1011 => 0.082238010925651
1012 => 0.082219353801931
1013 => 0.084141418246081
1014 => 0.087815683568858
1015 => 0.086729022513297
1016 => 0.085465353934067
1017 => 0.085602749746358
1018 => 0.087109642685434
1019 => 0.086198540815449
1020 => 0.086526179400323
1021 => 0.087109146765195
1022 => 0.087460865450688
1023 => 0.085552142840159
1024 => 0.085107128294888
1025 => 0.084196784714145
1026 => 0.083959293066297
1027 => 0.08470074891787
1028 => 0.084505401497003
1029 => 0.080994457761246
1030 => 0.080627544606153
1031 => 0.080638797308788
1101 => 0.079716176734537
1102 => 0.078308958904495
1103 => 0.082007043341236
1104 => 0.081710035406307
1105 => 0.081382161632734
1106 => 0.081422324299175
1107 => 0.083027537413453
1108 => 0.082096432741966
1109 => 0.084571927116169
1110 => 0.084063039893005
1111 => 0.083541101632775
1112 => 0.083468953866583
1113 => 0.083268052166074
1114 => 0.082579085482798
1115 => 0.081747116812264
1116 => 0.081197779032085
1117 => 0.074900659058739
1118 => 0.07606936789713
1119 => 0.077413860884537
1120 => 0.077877974476072
1121 => 0.077084076062068
1122 => 0.082610433431051
1123 => 0.083620152175669
1124 => 0.080561648235897
1125 => 0.079989527026659
1126 => 0.082647941602281
1127 => 0.081044592635216
1128 => 0.081766580576911
1129 => 0.080206037553257
1130 => 0.083376940498107
1201 => 0.083352783530382
1202 => 0.082119230666744
1203 => 0.083161821100086
1204 => 0.082980645355402
1205 => 0.081587967210462
1206 => 0.083421090879376
1207 => 0.083422000085846
1208 => 0.082234732274346
1209 => 0.080848263396859
1210 => 0.080600395508497
1211 => 0.080413660350983
1212 => 0.081720655175236
1213 => 0.082892502647794
1214 => 0.0850730202686
1215 => 0.085621254206292
1216 => 0.087761047763102
1217 => 0.086486904884679
1218 => 0.087051715919771
1219 => 0.087664898195763
1220 => 0.087958880327905
1221 => 0.08747985221953
1222 => 0.090803832387422
1223 => 0.091084478157713
1224 => 0.091178576256915
1225 => 0.090057748846465
1226 => 0.091053305919866
1227 => 0.090587517734607
1228 => 0.091799369192967
1229 => 0.091989402975334
1230 => 0.091828451122317
1231 => 0.09188877084432
]
'min_raw' => 0.041205960015599
'max_raw' => 0.091989402975334
'avg_raw' => 0.066597681495467
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0412059'
'max' => '$0.091989'
'avg' => '$0.066597'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0063538754281159
'max_diff' => -0.008778223053503
'year' => 2031
]
6 => [
'items' => [
101 => 0.089052340161308
102 => 0.08890525626703
103 => 0.086899756931952
104 => 0.087717012734899
105 => 0.086189192183379
106 => 0.086673679818562
107 => 0.086887237351782
108 => 0.086775687015711
109 => 0.087763219151797
110 => 0.086923615096637
111 => 0.084707761951386
112 => 0.082491305098426
113 => 0.082463479288124
114 => 0.081879925322453
115 => 0.081458122688513
116 => 0.081539376840062
117 => 0.081825727068267
118 => 0.081441479492693
119 => 0.081523478194789
120 => 0.082885203004064
121 => 0.083158287203187
122 => 0.082230240393682
123 => 0.078503998537004
124 => 0.077589569438806
125 => 0.078246842940674
126 => 0.077932708540616
127 => 0.062897778190794
128 => 0.06643001206021
129 => 0.064331278638331
130 => 0.065298471557215
131 => 0.063156208197861
201 => 0.064178608558587
202 => 0.063989808544044
203 => 0.069669536079667
204 => 0.069580854946408
205 => 0.069623301911998
206 => 0.067597197649411
207 => 0.070824836754438
208 => 0.072414887839723
209 => 0.072120611701676
210 => 0.072194674665692
211 => 0.07092202756156
212 => 0.069635623917835
213 => 0.068208804300843
214 => 0.07085965878898
215 => 0.070564929021494
216 => 0.071240933067683
217 => 0.072960201690232
218 => 0.073213370525768
219 => 0.073553632008115
220 => 0.073431672488155
221 => 0.076337243046842
222 => 0.075985359280613
223 => 0.076833297913356
224 => 0.075089023812545
225 => 0.073115212099461
226 => 0.073490369177352
227 => 0.073454238533928
228 => 0.072994253974324
229 => 0.072579000481213
301 => 0.071887720412128
302 => 0.074075032840911
303 => 0.073986231950804
304 => 0.075423815141895
305 => 0.075169708348931
306 => 0.073472720995042
307 => 0.073533329230373
308 => 0.073940948740295
309 => 0.075351724518255
310 => 0.075770538822093
311 => 0.075576527349691
312 => 0.07603573811425
313 => 0.076398679579027
314 => 0.076081317974281
315 => 0.080574489041084
316 => 0.078708611151353
317 => 0.079618027052113
318 => 0.079834917385855
319 => 0.079279357356688
320 => 0.079399838433901
321 => 0.079582334436751
322 => 0.080690414429671
323 => 0.083598336956625
324 => 0.084886236048915
325 => 0.08876094401189
326 => 0.084779293957721
327 => 0.084543039321212
328 => 0.085240991230315
329 => 0.087515854984073
330 => 0.089359418389407
331 => 0.089971034728681
401 => 0.090051869924601
402 => 0.091199302836564
403 => 0.091856989983344
404 => 0.09105997430057
405 => 0.09038458696044
406 => 0.087965433340254
407 => 0.088245456958927
408 => 0.090174542005523
409 => 0.092899488256382
410 => 0.095237775621956
411 => 0.094418988884074
412 => 0.10066575372076
413 => 0.10128509493857
414 => 0.10119952200796
415 => 0.10261047347247
416 => 0.099810022150697
417 => 0.09861277495445
418 => 0.090530613369348
419 => 0.092801371107675
420 => 0.096102050837259
421 => 0.095665193498134
422 => 0.093268151651088
423 => 0.095235957250767
424 => 0.094585339180542
425 => 0.094072169714388
426 => 0.096423098521637
427 => 0.093838155727234
428 => 0.096076264055506
429 => 0.093205866974231
430 => 0.094422729032923
501 => 0.093731979275415
502 => 0.094178979023629
503 => 0.091565827629273
504 => 0.092975820691003
505 => 0.091507167282278
506 => 0.091506470949338
507 => 0.091474050343941
508 => 0.093201914566299
509 => 0.093258260156558
510 => 0.091981365885577
511 => 0.091797345472291
512 => 0.092477765389212
513 => 0.091681171868756
514 => 0.092053892963278
515 => 0.091692461211012
516 => 0.09161109531066
517 => 0.090962757973387
518 => 0.090683436422083
519 => 0.090792965599579
520 => 0.090419086050624
521 => 0.090193810098564
522 => 0.091429237286963
523 => 0.090769198377192
524 => 0.09132807685775
525 => 0.090691164293067
526 => 0.088483347854281
527 => 0.0872136092731
528 => 0.083043248684925
529 => 0.084225957774415
530 => 0.085010095124348
531 => 0.084750937734873
601 => 0.085307708088062
602 => 0.085341889265846
603 => 0.085160877548423
604 => 0.084951289168683
605 => 0.084849273136391
606 => 0.085609617060934
607 => 0.086051022301131
608 => 0.085088793797818
609 => 0.0848633571225
610 => 0.08583622326544
611 => 0.086429671050627
612 => 0.090811356066943
613 => 0.090486746688278
614 => 0.091301452527354
615 => 0.091209729152554
616 => 0.092063670664723
617 => 0.09345950413451
618 => 0.090621384409257
619 => 0.091113983858765
620 => 0.090993209849528
621 => 0.092311788813729
622 => 0.092315905273328
623 => 0.091525351316385
624 => 0.091953923441717
625 => 0.091714706238618
626 => 0.092147004056762
627 => 0.090482411332121
628 => 0.092509705589052
629 => 0.093659050796776
630 => 0.0936750094561
701 => 0.094219789962794
702 => 0.094773318509153
703 => 0.095835768351715
704 => 0.09474368735969
705 => 0.092779139966979
706 => 0.092920973943284
707 => 0.091769160525737
708 => 0.091788522717378
709 => 0.091685165820956
710 => 0.091995347647463
711 => 0.090550478800002
712 => 0.090889586630539
713 => 0.090414833681975
714 => 0.091112951838572
715 => 0.090361892105139
716 => 0.090993151608644
717 => 0.091265582283772
718 => 0.09227085734001
719 => 0.090213412161969
720 => 0.086018142167148
721 => 0.086900038782791
722 => 0.08559564441677
723 => 0.085716371081525
724 => 0.085960258157836
725 => 0.085169740348627
726 => 0.085320546234545
727 => 0.085315158387095
728 => 0.085268728828524
729 => 0.085063084615103
730 => 0.084764859820173
731 => 0.08595289561442
801 => 0.086154766046259
802 => 0.086603499009782
803 => 0.087938623930751
804 => 0.087805213466732
805 => 0.088022811468693
806 => 0.087547796252173
807 => 0.085738405675043
808 => 0.085836664288622
809 => 0.084611377802806
810 => 0.08657216567952
811 => 0.086107825229179
812 => 0.085808461920131
813 => 0.085726777867675
814 => 0.08706521230508
815 => 0.087465692866141
816 => 0.087216140255739
817 => 0.086704300571191
818 => 0.087687184077342
819 => 0.087950162239062
820 => 0.08800903335121
821 => 0.089750514474891
822 => 0.088106362800581
823 => 0.08850212645005
824 => 0.091589761467486
825 => 0.088789702571179
826 => 0.090272956217318
827 => 0.090200358669819
828 => 0.090959141044617
829 => 0.090138116367887
830 => 0.090148293952745
831 => 0.090822041297195
901 => 0.089875884662888
902 => 0.089641602974403
903 => 0.089317944499719
904 => 0.090024640938384
905 => 0.090448273492234
906 => 0.093862440752434
907 => 0.096068148507467
908 => 0.09597239291668
909 => 0.096847419769512
910 => 0.096453212157984
911 => 0.095180211793646
912 => 0.097353068189715
913 => 0.096665485509826
914 => 0.096722168990543
915 => 0.09672005922856
916 => 0.097177241601165
917 => 0.096853285990025
918 => 0.096214736227107
919 => 0.096638635359601
920 => 0.097897464236398
921 => 0.10180490769556
922 => 0.10399156482205
923 => 0.1016732681909
924 => 0.10327239816384
925 => 0.10231349000834
926 => 0.10213922787144
927 => 0.10314359966923
928 => 0.10414972948688
929 => 0.10408564336712
930 => 0.10335524478483
1001 => 0.10294266115888
1002 => 0.10606688260025
1003 => 0.10836875573853
1004 => 0.10821178342245
1005 => 0.10890460817548
1006 => 0.11093876307865
1007 => 0.11112474071014
1008 => 0.11110131180322
1009 => 0.11064034683882
1010 => 0.11264323650938
1011 => 0.11431408231005
1012 => 0.11053364676812
1013 => 0.11197318713295
1014 => 0.11261944318182
1015 => 0.11356833879709
1016 => 0.11516928475341
1017 => 0.11690833669193
1018 => 0.11715425770377
1019 => 0.11697976497746
1020 => 0.11583281347579
1021 => 0.11773570485811
1022 => 0.11885037400158
1023 => 0.11951413396777
1024 => 0.1211973188029
1025 => 0.11262343423917
1026 => 0.10655441259524
1027 => 0.10560664722781
1028 => 0.10753396537152
1029 => 0.10804218379594
1030 => 0.10783732158631
1031 => 0.10100608595477
1101 => 0.10557068218597
1102 => 0.11048180392859
1103 => 0.11067046011589
1104 => 0.11312907034696
1105 => 0.11392969462004
1106 => 0.11590919811346
1107 => 0.11578537963098
1108 => 0.11626735723085
1109 => 0.11615655892733
1110 => 0.11982317231525
1111 => 0.12386799137949
1112 => 0.12372793215703
1113 => 0.12314644156042
1114 => 0.12401005425527
1115 => 0.12818474099871
1116 => 0.12780040274137
1117 => 0.12817375462052
1118 => 0.13309594556608
1119 => 0.1394954939688
1120 => 0.13652226123158
1121 => 0.14297332074667
1122 => 0.14703392075545
1123 => 0.15405630859675
1124 => 0.15317707105303
1125 => 0.15591083510699
1126 => 0.15160305234736
1127 => 0.14171151238471
1128 => 0.14014613832233
1129 => 0.14328005683681
1130 => 0.15098448970135
1201 => 0.14303741682815
1202 => 0.14464509932011
1203 => 0.14418208665427
1204 => 0.14415741467699
1205 => 0.14509904370179
1206 => 0.14373316168925
1207 => 0.13816831265268
1208 => 0.14071865017228
1209 => 0.1397338423787
1210 => 0.14082656004796
1211 => 0.14672350663794
1212 => 0.14411632598486
1213 => 0.141369872957
1214 => 0.14481453454065
1215 => 0.14920077245078
1216 => 0.14892628956519
1217 => 0.14839367804221
1218 => 0.15139598131066
1219 => 0.15635490671781
1220 => 0.15769528432879
1221 => 0.1586847236784
1222 => 0.158821150648
1223 => 0.16022643322373
1224 => 0.15266987463721
1225 => 0.16466232718021
1226 => 0.16673309244957
1227 => 0.16634387440336
1228 => 0.16864544284913
1229 => 0.16796826302722
1230 => 0.16698713571155
1231 => 0.17063561125574
]
'min_raw' => 0.062897778190794
'max_raw' => 0.17063561125574
'avg_raw' => 0.11676669472327
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.062897'
'max' => '$0.170635'
'avg' => '$0.116766'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.021691818175194
'max_diff' => 0.078646208280408
'year' => 2032
]
7 => [
'items' => [
101 => 0.16645292846112
102 => 0.16051613681927
103 => 0.15725909550813
104 => 0.16154823024467
105 => 0.1641674551581
106 => 0.16589859621188
107 => 0.16642243844878
108 => 0.15325646876952
109 => 0.14616074133055
110 => 0.15070902126625
111 => 0.15625823669331
112 => 0.15263904846532
113 => 0.15278091379183
114 => 0.14762090248466
115 => 0.15671478319744
116 => 0.15538988126916
117 => 0.16226347481677
118 => 0.1606230365526
119 => 0.16622818525931
120 => 0.16475216175585
121 => 0.17087905279537
122 => 0.17332323550999
123 => 0.1774273986945
124 => 0.18044643783998
125 => 0.18221927537122
126 => 0.18211284085559
127 => 0.18913770637851
128 => 0.18499538860975
129 => 0.17979166122285
130 => 0.17969754221197
131 => 0.18239262636304
201 => 0.18804078338344
202 => 0.18950526832148
203 => 0.19032371561314
204 => 0.18907023509561
205 => 0.18457404604021
206 => 0.18263261440229
207 => 0.18428677040649
208 => 0.1822638797566
209 => 0.18575595654118
210 => 0.19055132383377
211 => 0.18956109945079
212 => 0.19287127110036
213 => 0.19629695051746
214 => 0.20119582594079
215 => 0.20247657338128
216 => 0.20459360019795
217 => 0.20677271619939
218 => 0.20747258953022
219 => 0.20880886487673
220 => 0.20880182204605
221 => 0.21282877774447
222 => 0.21727063458425
223 => 0.21894733271205
224 => 0.22280280760325
225 => 0.21620044196403
226 => 0.22120841214388
227 => 0.22572572660374
228 => 0.22033999807769
301 => 0.22776297013705
302 => 0.22805118732129
303 => 0.23240292461624
304 => 0.22799160517582
305 => 0.22537217777353
306 => 0.23293436653528
307 => 0.23659347147038
308 => 0.23549131928515
309 => 0.22710388673554
310 => 0.22222204123777
311 => 0.20944530993242
312 => 0.22457990007732
313 => 0.23195151745486
314 => 0.22708479602739
315 => 0.22953928723512
316 => 0.24293019539308
317 => 0.24802858622254
318 => 0.24696815657046
319 => 0.2471473517255
320 => 0.24989835087474
321 => 0.26209779610535
322 => 0.25478760574224
323 => 0.26037597236723
324 => 0.26334002187477
325 => 0.26609319624565
326 => 0.25933227014047
327 => 0.25053640461536
328 => 0.24775038477824
329 => 0.22660089649402
330 => 0.22549997378125
331 => 0.22488199250121
401 => 0.22098570794569
402 => 0.21792429556722
403 => 0.2154897467809
404 => 0.20910076374779
405 => 0.2112568579709
406 => 0.20107415250052
407 => 0.20758868660755
408 => 0.1913368428068
409 => 0.20487186125021
410 => 0.19750536607324
411 => 0.20245176946332
412 => 0.20243451192787
413 => 0.1933266150281
414 => 0.18807337017328
415 => 0.19142094225412
416 => 0.19500980525539
417 => 0.19559208620296
418 => 0.20024514076301
419 => 0.20154370827365
420 => 0.1976089880921
421 => 0.19100005946721
422 => 0.19253516285316
423 => 0.18804226135216
424 => 0.18016862428862
425 => 0.18582360788817
426 => 0.18775446792113
427 => 0.18860724571036
428 => 0.18086442795169
429 => 0.17843146650716
430 => 0.17713617824862
501 => 0.19000055892471
502 => 0.19070529873784
503 => 0.18709975021368
504 => 0.20339717143501
505 => 0.19970856308017
506 => 0.20382964234352
507 => 0.19239586831107
508 => 0.19283265387673
509 => 0.18741972201542
510 => 0.19045060216552
511 => 0.18830847376525
512 => 0.19020573700113
513 => 0.191342948762
514 => 0.19675499241446
515 => 0.20493365809524
516 => 0.19594661356854
517 => 0.19203082957141
518 => 0.19446015994002
519 => 0.20092978684506
520 => 0.21073160278029
521 => 0.2049287304667
522 => 0.20750394666031
523 => 0.20806651683522
524 => 0.20378769362519
525 => 0.21088936909529
526 => 0.21469521467363
527 => 0.21859922472823
528 => 0.22198896727075
529 => 0.2170398772614
530 => 0.2223361129956
531 => 0.21806828190529
601 => 0.21423959621703
602 => 0.2142454027528
603 => 0.21184361229238
604 => 0.20718984063023
605 => 0.20633161373407
606 => 0.21079621843003
607 => 0.21437640859656
608 => 0.21467129020663
609 => 0.21665346743963
610 => 0.21782649950807
611 => 0.22932380843857
612 => 0.23394812120114
613 => 0.23960264331346
614 => 0.24180539834761
615 => 0.24843490126901
616 => 0.24308103923808
617 => 0.24192269751031
618 => 0.22584169191686
619 => 0.22847495568191
620 => 0.23269106504192
621 => 0.22591121400732
622 => 0.23021146898218
623 => 0.23106043040608
624 => 0.2256808372635
625 => 0.22855431039945
626 => 0.22092321767578
627 => 0.20509999506324
628 => 0.21090698486537
629 => 0.21518288397136
630 => 0.20908064873255
701 => 0.22001866920901
702 => 0.21362890345323
703 => 0.2116036544715
704 => 0.20370243614037
705 => 0.20743150704688
706 => 0.21247512884309
707 => 0.209358756957
708 => 0.21582569654623
709 => 0.22498460767436
710 => 0.23151179316686
711 => 0.23201286942059
712 => 0.22781632643638
713 => 0.23454131335056
714 => 0.23459029753839
715 => 0.22700448482682
716 => 0.22235821677896
717 => 0.22130257490266
718 => 0.22393977528045
719 => 0.22714182339313
720 => 0.23219056080572
721 => 0.23524140708571
722 => 0.24319639614007
723 => 0.24534878809077
724 => 0.24771361428012
725 => 0.25087375135449
726 => 0.25466830615478
727 => 0.24636603627587
728 => 0.24669590093553
729 => 0.23896494217703
730 => 0.23070330401195
731 => 0.23697285755151
801 => 0.24516946480073
802 => 0.24328915404132
803 => 0.24307758066962
804 => 0.24343338839525
805 => 0.24201569548786
806 => 0.23560352300987
807 => 0.23238337013375
808 => 0.23653818889256
809 => 0.23874629015316
810 => 0.24217086264169
811 => 0.24174871179852
812 => 0.25057004275672
813 => 0.25399774522388
814 => 0.25312079225312
815 => 0.25328217270479
816 => 0.25948786429317
817 => 0.26638986963726
818 => 0.27285450844182
819 => 0.27943061669651
820 => 0.2715028615256
821 => 0.26747763636578
822 => 0.27163064126069
823 => 0.26942699840568
824 => 0.28208978389354
825 => 0.28296652768666
826 => 0.29562839751101
827 => 0.30764601972173
828 => 0.30009796652924
829 => 0.30721544071797
830 => 0.31491356934927
831 => 0.3297645084554
901 => 0.32476323462679
902 => 0.32093233725403
903 => 0.31731215774753
904 => 0.32484517661324
905 => 0.33453628504106
906 => 0.33662365697613
907 => 0.34000599694839
908 => 0.33644988004041
909 => 0.34073283116265
910 => 0.35585353064822
911 => 0.35176778417311
912 => 0.34596536736194
913 => 0.35790170739838
914 => 0.36222142245622
915 => 0.3925394449845
916 => 0.43081720080149
917 => 0.41496995854796
918 => 0.40513306389389
919 => 0.40744496747185
920 => 0.42142270811241
921 => 0.42591191477485
922 => 0.41370870354402
923 => 0.41801908405378
924 => 0.44176970444984
925 => 0.45451115028119
926 => 0.43720655543773
927 => 0.38946386457483
928 => 0.34544292321371
929 => 0.3571192591515
930 => 0.35579552501505
1001 => 0.38131260368037
1002 => 0.35167034047093
1003 => 0.35216944016155
1004 => 0.37821418499062
1005 => 0.37126589359019
1006 => 0.36001055139142
1007 => 0.34552509966767
1008 => 0.3187474024142
1009 => 0.29502964920547
1010 => 0.34154562512014
1011 => 0.33953977165488
1012 => 0.33663499858637
1013 => 0.34309925672108
1014 => 0.37448785931154
1015 => 0.37376425042684
1016 => 0.36916101989086
1017 => 0.37265252968139
1018 => 0.35939847284394
1019 => 0.36281434508021
1020 => 0.34543595007169
1021 => 0.35329171040143
1022 => 0.35998640248209
1023 => 0.3613304610339
1024 => 0.36435869358044
1025 => 0.33848277802538
1026 => 0.35010030443264
1027 => 0.35692451278188
1028 => 0.32609249119316
1029 => 0.35631506284758
1030 => 0.33803233590428
1031 => 0.33182690378238
1101 => 0.34018170063101
1102 => 0.33692582817379
1103 => 0.33412662022632
1104 => 0.33256461409514
1105 => 0.33869945481549
1106 => 0.33841325716316
1107 => 0.3283754670234
1108 => 0.31528157897875
1109 => 0.31967631759876
1110 => 0.31807966785721
1111 => 0.31229320322195
1112 => 0.31619258172571
1113 => 0.29902169222542
1114 => 0.26948006930535
1115 => 0.28899617029073
1116 => 0.28824482163223
1117 => 0.28786595756766
1118 => 0.30253176807276
1119 => 0.30112198879051
1120 => 0.29856322558863
1121 => 0.31224620952914
1122 => 0.30725173632875
1123 => 0.32264352588646
1124 => 0.33278155396771
1125 => 0.33021022211545
1126 => 0.33974508652721
1127 => 0.31977756350044
1128 => 0.32640997369195
1129 => 0.3277769042403
1130 => 0.31207736363126
1201 => 0.30135264611612
1202 => 0.30063742972859
1203 => 0.28204224751445
1204 => 0.29197564375818
1205 => 0.30071662138079
1206 => 0.29653037142683
1207 => 0.29520512975206
1208 => 0.30197550205859
1209 => 0.30250161797113
1210 => 0.29050611941007
1211 => 0.29300036340895
1212 => 0.30340177551784
1213 => 0.29273827451108
1214 => 0.27202083392794
1215 => 0.26688262222229
1216 => 0.26619709006473
1217 => 0.25226185240231
1218 => 0.26722598209778
1219 => 0.26069373847197
1220 => 0.28132901781762
1221 => 0.26954225692461
1222 => 0.26903415322041
1223 => 0.26826607994891
1224 => 0.25627144523545
1225 => 0.25889750793889
1226 => 0.26762694032578
1227 => 0.27074170014552
1228 => 0.27041680517785
1229 => 0.26758416134476
1230 => 0.26888093118607
1231 => 0.26470358370267
]
'min_raw' => 0.14616074133055
'max_raw' => 0.45451115028119
'avg_raw' => 0.30033594580587
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.14616'
'max' => '$0.454511'
'avg' => '$0.300335'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.083262963139755
'max_diff' => 0.28387553902545
'year' => 2033
]
8 => [
'items' => [
101 => 0.26322847536231
102 => 0.25857262767962
103 => 0.25172981779683
104 => 0.25268135248042
105 => 0.239123955584
106 => 0.23173716620932
107 => 0.22969260026672
108 => 0.22695852124
109 => 0.2300014217679
110 => 0.23908554918199
111 => 0.22812816421546
112 => 0.20934249626152
113 => 0.21047154691477
114 => 0.21300818851448
115 => 0.20828117367499
116 => 0.20380745083769
117 => 0.20769698988011
118 => 0.19973725472095
119 => 0.21397008448038
120 => 0.21358512632244
121 => 0.21889024510447
122 => 0.22220764475087
123 => 0.2145621125868
124 => 0.21263928192326
125 => 0.21373461365699
126 => 0.19563121997992
127 => 0.21741081161677
128 => 0.21759916242966
129 => 0.21598638841858
130 => 0.22758334859575
131 => 0.25205655175216
201 => 0.2428487482924
202 => 0.23928320848545
203 => 0.23250511470604
204 => 0.24153652222372
205 => 0.24084305103826
206 => 0.23770691134651
207 => 0.23581016427558
208 => 0.2393049789112
209 => 0.23537711806683
210 => 0.23467156632878
211 => 0.23039669044408
212 => 0.2288707542477
213 => 0.22774101183717
214 => 0.22649727644937
215 => 0.2292406467953
216 => 0.223023808671
217 => 0.21552691133725
218 => 0.2149036254415
219 => 0.21662457259952
220 => 0.21586318159154
221 => 0.21489998019428
222 => 0.21306096641462
223 => 0.21251537031051
224 => 0.21428829296328
225 => 0.21228676665611
226 => 0.21524012775111
227 => 0.2144369769502
228 => 0.20995064186409
301 => 0.20435900729282
302 => 0.20430923001629
303 => 0.20310452152003
304 => 0.2015701441209
305 => 0.20114331543027
306 => 0.20736942375077
307 => 0.22025728164246
308 => 0.21772708675802
309 => 0.21955541186683
310 => 0.2285489618423
311 => 0.23140774093402
312 => 0.22937864724861
313 => 0.22660109866298
314 => 0.22672329670445
315 => 0.2362150210427
316 => 0.2368070082469
317 => 0.23830276892958
318 => 0.24022524410874
319 => 0.22970605308464
320 => 0.22622784375319
321 => 0.22457967520824
322 => 0.21950395401129
323 => 0.22497768416275
324 => 0.22178837601199
325 => 0.22221872264381
326 => 0.22193845883528
327 => 0.22209150182609
328 => 0.2139661061144
329 => 0.21692657325351
330 => 0.21200422244269
331 => 0.20541374726681
401 => 0.2053916536831
402 => 0.20700466314568
403 => 0.20604518200027
404 => 0.2034632429085
405 => 0.20382999517007
406 => 0.20061685944379
407 => 0.20422012802294
408 => 0.20432345687268
409 => 0.20293600219834
410 => 0.20848733459978
411 => 0.2107617200141
412 => 0.20984846762529
413 => 0.21069764379196
414 => 0.21783222777861
415 => 0.21899547627216
416 => 0.21951211441311
417 => 0.21881988774567
418 => 0.2108280508901
419 => 0.21118252283856
420 => 0.2085816428766
421 => 0.20638417338272
422 => 0.20647206063826
423 => 0.20760184560915
424 => 0.21253568283805
425 => 0.22291865242067
426 => 0.22331267852648
427 => 0.22379024966127
428 => 0.22184772784805
429 => 0.22126184468175
430 => 0.22203477580738
501 => 0.225934073272
502 => 0.23596412499996
503 => 0.23241883483467
504 => 0.22953645874456
505 => 0.2320650796586
506 => 0.23167581828887
507 => 0.22839006058954
508 => 0.22829784031448
509 => 0.2219914207692
510 => 0.21966008105353
511 => 0.21771183908937
512 => 0.21558440972464
513 => 0.21432319828516
514 => 0.21626099226656
515 => 0.21670418867741
516 => 0.21246716827024
517 => 0.21188967804507
518 => 0.215349720372
519 => 0.2138270847473
520 => 0.21539315324685
521 => 0.21575649457223
522 => 0.21569798825039
523 => 0.21410818178461
524 => 0.21512147701718
525 => 0.2127247317143
526 => 0.21011863117691
527 => 0.20845610139986
528 => 0.2070053236668
529 => 0.2078102994728
530 => 0.20494070770721
531 => 0.20402266754792
601 => 0.21477819539225
602 => 0.22272341945227
603 => 0.22260789274778
604 => 0.22190465364528
605 => 0.22085978298579
606 => 0.22585763447516
607 => 0.22411648295146
608 => 0.22538331616303
609 => 0.2257057783842
610 => 0.22668177440827
611 => 0.22703060909718
612 => 0.22597618838602
613 => 0.22243742369273
614 => 0.21361915853271
615 => 0.20951423229627
616 => 0.20815953826529
617 => 0.20820877882039
618 => 0.20685050449132
619 => 0.20725057715482
620 => 0.20671137554582
621 => 0.20569025814524
622 => 0.20774724835075
623 => 0.20798429730974
624 => 0.20750417121657
625 => 0.20761725829233
626 => 0.20364201930545
627 => 0.20394424809186
628 => 0.20226139980376
629 => 0.20194588603678
630 => 0.19769179210684
701 => 0.19015504806918
702 => 0.19433113587549
703 => 0.18928700905228
704 => 0.18737672179333
705 => 0.19641972456656
706 => 0.19551205790198
707 => 0.19395852712544
708 => 0.19166053132275
709 => 0.19080818232606
710 => 0.18562957964311
711 => 0.18532360016983
712 => 0.18789025549354
713 => 0.18670583237486
714 => 0.18504245374013
715 => 0.17901786493913
716 => 0.17224423245401
717 => 0.1724486858412
718 => 0.1746032523068
719 => 0.18086794488843
720 => 0.1784202211165
721 => 0.17664436943558
722 => 0.17631180579765
723 => 0.1804745359955
724 => 0.18636567134439
725 => 0.18912966024337
726 => 0.18639063118807
727 => 0.18324418208915
728 => 0.18343569186656
729 => 0.18470972061778
730 => 0.18484360302573
731 => 0.18279558812253
801 => 0.18337209232146
802 => 0.18249632972663
803 => 0.17712177629866
804 => 0.17702456767005
805 => 0.17570556558244
806 => 0.17566562672343
807 => 0.17342167513193
808 => 0.17310773079257
809 => 0.16865222870951
810 => 0.17158485367309
811 => 0.16961780281724
812 => 0.1666529931971
813 => 0.16614185890108
814 => 0.16612649358693
815 => 0.16917069014752
816 => 0.17154928046386
817 => 0.16965202050905
818 => 0.16922005119418
819 => 0.17383235335312
820 => 0.17324539586132
821 => 0.1727370944589
822 => 0.18583818478844
823 => 0.17546764950178
824 => 0.17094550418734
825 => 0.16534849062862
826 => 0.16717090646593
827 => 0.16755491625971
828 => 0.1540951075885
829 => 0.1486344648869
830 => 0.14676057809169
831 => 0.14568212974818
901 => 0.14617359220062
902 => 0.14125837329968
903 => 0.14456148169133
904 => 0.14030531759622
905 => 0.13959175783492
906 => 0.14720230647453
907 => 0.14826126985755
908 => 0.14374340307145
909 => 0.14664460492432
910 => 0.14559258880275
911 => 0.1403782773137
912 => 0.1401791289687
913 => 0.13756277075541
914 => 0.13346867677839
915 => 0.13159756597169
916 => 0.13062307521782
917 => 0.13102516909531
918 => 0.13082185812658
919 => 0.12949511653075
920 => 0.13089790540182
921 => 0.12731435950861
922 => 0.12588736265934
923 => 0.1252428212886
924 => 0.12206221804717
925 => 0.12712397222497
926 => 0.1281212015643
927 => 0.12912039575348
928 => 0.13781769899148
929 => 0.13738320630003
930 => 0.14131080862419
1001 => 0.14115818922027
1002 => 0.14003797341448
1003 => 0.13531196719642
1004 => 0.13719566904197
1005 => 0.13139792755361
1006 => 0.13574198968479
1007 => 0.13375954114049
1008 => 0.1350717218378
1009 => 0.13271230262947
1010 => 0.13401810263739
1011 => 0.12835768163542
1012 => 0.12307206014805
1013 => 0.12519914853148
1014 => 0.12751153686633
1015 => 0.13252538396187
1016 => 0.1295391779951
1017 => 0.1306131305817
1018 => 0.12701556919409
1019 => 0.11959277245885
1020 => 0.11963478468226
1021 => 0.11849294911895
1022 => 0.11750623648154
1023 => 0.12988217967267
1024 => 0.12834303550214
1025 => 0.12589061070462
1026 => 0.12917327875159
1027 => 0.13004126828616
1028 => 0.13006597872796
1029 => 0.13246092859711
1030 => 0.13373911377159
1031 => 0.13396439944856
1101 => 0.13773290481398
1102 => 0.13899605810468
1103 => 0.14419880774093
1104 => 0.13363066868972
1105 => 0.13341302482051
1106 => 0.12921947262292
1107 => 0.12655985552178
1108 => 0.12940157888124
1109 => 0.13191895784381
1110 => 0.12929769460446
1111 => 0.12963997624563
1112 => 0.12612114451188
1113 => 0.12737896128027
1114 => 0.12846236252743
1115 => 0.12786417203813
1116 => 0.12696865192291
1117 => 0.13171256147669
1118 => 0.13144489150813
1119 => 0.13586252914662
1120 => 0.13930639359412
1121 => 0.14547841434845
1122 => 0.13903758893659
1123 => 0.13880285965862
1124 => 0.14109737600254
1125 => 0.13899570682618
1126 => 0.14032388919849
1127 => 0.14526442363465
1128 => 0.14536880934209
1129 => 0.14362021424902
1130 => 0.14351381207869
1201 => 0.14384964889385
1202 => 0.14581665560991
1203 => 0.14512932302331
1204 => 0.14592472169366
1205 => 0.14691937991051
1206 => 0.15103370802173
1207 => 0.15202565860035
1208 => 0.1496157329617
1209 => 0.14983332226408
1210 => 0.14893194392129
1211 => 0.14806122373639
1212 => 0.15001847555357
1213 => 0.15359539171936
1214 => 0.15357313990953
1215 => 0.15440291493468
1216 => 0.15491985790112
1217 => 0.15270076026378
1218 => 0.15125620930036
1219 => 0.1518101420589
1220 => 0.1526958926029
1221 => 0.15152290509533
1222 => 0.14428268281796
1223 => 0.14647890374972
1224 => 0.14611334519696
1225 => 0.14559274536439
1226 => 0.14780106249415
1227 => 0.14758806491976
1228 => 0.14120796062551
1229 => 0.14161639420223
1230 => 0.14123279882408
1231 => 0.1424722739671
]
'min_raw' => 0.11750623648154
'max_raw' => 0.26322847536231
'avg_raw' => 0.19036735592192
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.1175062'
'max' => '$0.263228'
'avg' => '$0.190367'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.028654504849007
'max_diff' => -0.19128267491888
'year' => 2034
]
9 => [
'items' => [
101 => 0.13892877110085
102 => 0.14001872871665
103 => 0.14070233991557
104 => 0.14110499216348
105 => 0.14255964818415
106 => 0.1423889610897
107 => 0.14254903803471
108 => 0.14470590889842
109 => 0.15561462157839
110 => 0.15620835874084
111 => 0.15328457980376
112 => 0.15445257182013
113 => 0.15221028256047
114 => 0.15371554636251
115 => 0.15474540962632
116 => 0.1500916555685
117 => 0.14981609045581
118 => 0.14756454647075
119 => 0.14877439867435
120 => 0.14684943682697
121 => 0.14732175513201
122 => 0.14600111197514
123 => 0.14837800672007
124 => 0.151035744377
125 => 0.15170719386639
126 => 0.149940899337
127 => 0.14866198569325
128 => 0.14641663463516
129 => 0.15015070348567
130 => 0.15124265901125
131 => 0.15014496790816
201 => 0.14989060889455
202 => 0.14940859902337
203 => 0.14999286956732
204 => 0.15123671198695
205 => 0.15065013887202
206 => 0.15103758074852
207 => 0.14956105184362
208 => 0.15270149487744
209 => 0.1576892742039
210 => 0.15770531073002
211 => 0.15711873445324
212 => 0.15687872007874
213 => 0.15748058293515
214 => 0.15780706884504
215 => 0.15975338295986
216 => 0.16184185554965
217 => 0.1715878458542
218 => 0.1688512107759
219 => 0.17749843316565
220 => 0.18433726337465
221 => 0.18638792952853
222 => 0.18450141315826
223 => 0.17804774256318
224 => 0.17773109469493
225 => 0.18737560323342
226 => 0.18465058782482
227 => 0.18432645591289
228 => 0.18087823999951
301 => 0.18291656267417
302 => 0.18247075160483
303 => 0.18176701702206
304 => 0.18565599469452
305 => 0.19293581372593
306 => 0.19180118566018
307 => 0.19095423844297
308 => 0.1872431622798
309 => 0.1894780590289
310 => 0.18868225510317
311 => 0.19210153379774
312 => 0.19007602884538
313 => 0.18462994315297
314 => 0.18549725025002
315 => 0.18536615852708
316 => 0.18806401689591
317 => 0.18725418677855
318 => 0.18520802619936
319 => 0.1929109320959
320 => 0.19241074823279
321 => 0.19311989459273
322 => 0.19343208275145
323 => 0.19812070583025
324 => 0.20004148468643
325 => 0.20047753511475
326 => 0.20230212646975
327 => 0.20043213761967
328 => 0.20791342629944
329 => 0.2128880467262
330 => 0.21866632434349
331 => 0.22710994099697
401 => 0.2302848189665
402 => 0.22971130567854
403 => 0.23611315945954
404 => 0.24761714839878
405 => 0.23203659075479
406 => 0.24844295578646
407 => 0.24324889003803
408 => 0.23093385358574
409 => 0.23014091042296
410 => 0.23848079608896
411 => 0.2569778598119
412 => 0.25234455514127
413 => 0.25698543823851
414 => 0.25157160159056
415 => 0.25130275896959
416 => 0.25672250027643
417 => 0.26938602125458
418 => 0.26337005712285
419 => 0.25474469736508
420 => 0.26111352878475
421 => 0.25559625760151
422 => 0.24316430143869
423 => 0.2523410121405
424 => 0.24620480703188
425 => 0.24799567790118
426 => 0.26089306834789
427 => 0.25934122020708
428 => 0.26134945539856
429 => 0.25780497285027
430 => 0.25449386723657
501 => 0.24831344272266
502 => 0.24648372371534
503 => 0.24698939222257
504 => 0.24648347313114
505 => 0.24302558241665
506 => 0.24227885124608
507 => 0.24103426658009
508 => 0.24142001540998
509 => 0.23907983212184
510 => 0.24349624149311
511 => 0.24431596598968
512 => 0.24752986043211
513 => 0.24786353761481
514 => 0.25681418789005
515 => 0.25188432012802
516 => 0.25519170104709
517 => 0.25489585776741
518 => 0.23120075776812
519 => 0.23446573348438
520 => 0.23954501109307
521 => 0.23725680341516
522 => 0.23402181311672
523 => 0.23140938500152
524 => 0.22745128927252
525 => 0.2330222330026
526 => 0.24034743160384
527 => 0.24804931673975
528 => 0.25730262708305
529 => 0.25523739593483
530 => 0.24787633253935
531 => 0.24820654446602
601 => 0.25024778466303
602 => 0.24760419314167
603 => 0.24682454639298
604 => 0.25014067317205
605 => 0.25016350951467
606 => 0.24712173798063
607 => 0.24374136555887
608 => 0.24372720167499
609 => 0.24312569705306
610 => 0.25167860792655
611 => 0.25638184411014
612 => 0.25692106255894
613 => 0.25634555041226
614 => 0.25656704219626
615 => 0.25383033268977
616 => 0.26008563907562
617 => 0.26582612680096
618 => 0.26428755346293
619 => 0.26198101330815
620 => 0.26014374297684
621 => 0.26385475096217
622 => 0.26368950561825
623 => 0.26577598864857
624 => 0.2656813337262
625 => 0.2649797279597
626 => 0.26428757851949
627 => 0.26703187281292
628 => 0.26624156012843
629 => 0.26545001987005
630 => 0.26386246470312
701 => 0.2640782398168
702 => 0.26177209791869
703 => 0.26070517115476
704 => 0.24466115254038
705 => 0.24037366651319
706 => 0.24172259689717
707 => 0.24216669980454
708 => 0.24030078039094
709 => 0.24297602951467
710 => 0.24255909477253
711 => 0.24418114395554
712 => 0.24316775804718
713 => 0.24320934775834
714 => 0.24618949963817
715 => 0.24705465040735
716 => 0.24661462774352
717 => 0.24692280453417
718 => 0.25402460860147
719 => 0.25301495916601
720 => 0.25247860302648
721 => 0.25262717734266
722 => 0.25444184054625
723 => 0.25494984716632
724 => 0.2527973874201
725 => 0.25381249987963
726 => 0.2581347198954
727 => 0.25964725228445
728 => 0.26447452961356
729 => 0.26242381640614
730 => 0.26618798925115
731 => 0.27775777327563
801 => 0.28700051732253
802 => 0.27850050792444
803 => 0.29547363031023
804 => 0.30868964073737
805 => 0.30818238824476
806 => 0.30587787113496
807 => 0.29083179462948
808 => 0.27698617070478
809 => 0.28856862303404
810 => 0.28859814908698
811 => 0.28760320615992
812 => 0.28142370108991
813 => 0.28738817277834
814 => 0.28786161088119
815 => 0.28759661144095
816 => 0.28285879939239
817 => 0.27562503608827
818 => 0.27703849612271
819 => 0.27935377249293
820 => 0.27497047130685
821 => 0.27356974098432
822 => 0.27617396515376
823 => 0.28456531803935
824 => 0.28297898138413
825 => 0.28293755572317
826 => 0.28972457664566
827 => 0.28486653439594
828 => 0.27705632438027
829 => 0.2750841433473
830 => 0.26808422930058
831 => 0.27291909486548
901 => 0.27309309306982
902 => 0.27044508661105
903 => 0.2772711955104
904 => 0.27720829171518
905 => 0.28368866618289
906 => 0.29607670824764
907 => 0.29241295463057
908 => 0.28815240778917
909 => 0.28861564736298
910 => 0.29369624211498
911 => 0.29062439854922
912 => 0.29172905491312
913 => 0.29369457008527
914 => 0.29488041418962
915 => 0.28844502264547
916 => 0.28694462503616
917 => 0.28387533809553
918 => 0.28307461842367
919 => 0.28557448859404
920 => 0.28491586112587
921 => 0.2730784691945
922 => 0.27184139587505
923 => 0.27187933514762
924 => 0.26876865546622
925 => 0.26402412230342
926 => 0.2764924721739
927 => 0.27549108918486
928 => 0.27438563986584
929 => 0.27452105109982
930 => 0.27993313918701
1001 => 0.27679385477944
1002 => 0.28514015689556
1003 => 0.28342440809329
1004 => 0.28166465680836
1005 => 0.28142140557744
1006 => 0.28074405146767
1007 => 0.27842115219289
1008 => 0.27561611173398
1009 => 0.27376398105457
1010 => 0.25253280141356
1011 => 0.25647318485884
1012 => 0.26100623683538
1013 => 0.26257102821262
1014 => 0.25989434428159
1015 => 0.27852684398907
1016 => 0.28193118123286
1017 => 0.27161922166199
1018 => 0.26969027506082
1019 => 0.2786533054071
1020 => 0.2732475024224
1021 => 0.27568173517541
1022 => 0.27042025541752
1023 => 0.28111117608146
1024 => 0.28102972917819
1025 => 0.27687071957452
1026 => 0.28038588601187
1027 => 0.27977503933939
1028 => 0.27507952774004
1029 => 0.28126003217439
1030 => 0.28126309762748
1031 => 0.27726014130862
1101 => 0.27258556468801
1102 => 0.27174986079681
1103 => 0.27112027017582
1104 => 0.27552689447725
1105 => 0.27947786004676
1106 => 0.28682962744419
1107 => 0.28867803644158
1108 => 0.29589249981398
1109 => 0.29159663814157
1110 => 0.29350093798023
1111 => 0.29556832483475
1112 => 0.29655950611845
1113 => 0.29494442940639
1114 => 0.30615146061532
1115 => 0.30709767742392
1116 => 0.3074149357351
1117 => 0.30363598786709
1118 => 0.30699257804764
1119 => 0.30542214066074
1120 => 0.30950798246137
1121 => 0.31014869462636
1122 => 0.30960603421661
1123 => 0.30980940637073
1124 => 0.30024618228969
1125 => 0.29975027867106
1126 => 0.29298859764336
1127 => 0.29574403264197
1128 => 0.2905928789835
1129 => 0.29222636287136
1130 => 0.29294638700473
1201 => 0.29257028725847
1202 => 0.29589982080257
1203 => 0.29306903711132
1204 => 0.28559813352618
1205 => 0.27812519449835
1206 => 0.27803137783618
1207 => 0.27606388489848
1208 => 0.27464174786883
1209 => 0.27491570191376
1210 => 0.27588115170049
1211 => 0.27458563417213
1212 => 0.27486209852122
1213 => 0.27945324878828
1214 => 0.28037397123175
1215 => 0.27724499661935
1216 => 0.26468171204166
1217 => 0.26159865049368
1218 => 0.2638146939946
1219 => 0.26275556793264
1220 => 0.2120642505529
1221 => 0.22397342365633
1222 => 0.21689739739558
1223 => 0.22015835584885
1224 => 0.21293556536474
1225 => 0.21638265956264
1226 => 0.21574610713201
1227 => 0.23489570506428
1228 => 0.23459671043197
1229 => 0.23473982334001
1230 => 0.22790867136062
1231 => 0.23879088194978
]
'min_raw' => 0.13892877110085
'max_raw' => 0.31014869462636
'avg_raw' => 0.22453873286361
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.138928'
'max' => '$0.310148'
'avg' => '$0.224538'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.021422534619309
'max_diff' => 0.046920219264052
'year' => 2035
]
10 => [
'items' => [
101 => 0.24415185019764
102 => 0.24315967765251
103 => 0.2434093861066
104 => 0.23911856754164
105 => 0.23478136784299
106 => 0.22997074588693
107 => 0.23890828687044
108 => 0.23791458488198
109 => 0.2401937797208
110 => 0.24599041391723
111 => 0.24684399032192
112 => 0.24799120566595
113 => 0.24758001062947
114 => 0.25737634462854
115 => 0.25618994394296
116 => 0.25904882824443
117 => 0.25316788633222
118 => 0.24651304233443
119 => 0.24777791061517
120 => 0.2476560936283
121 => 0.2461052235705
122 => 0.2447051674264
123 => 0.24237446840985
124 => 0.24974914497677
125 => 0.2494497465759
126 => 0.25429665867351
127 => 0.25343991987986
128 => 0.24771840853635
129 => 0.2479227534333
130 => 0.24929707107009
131 => 0.2540536001027
201 => 0.25546566176877
202 => 0.25481153854412
203 => 0.2563597996979
204 => 0.25758348218616
205 => 0.25651347537828
206 => 0.27166251533319
207 => 0.26537157775653
208 => 0.26843773695934
209 => 0.26916899786235
210 => 0.26729588843605
211 => 0.26770209879959
212 => 0.26831739681466
213 => 0.27205336587447
214 => 0.28185762969876
215 => 0.28619987140666
216 => 0.2992637198273
217 => 0.28583930867974
218 => 0.28504275967798
219 => 0.28739595326896
220 => 0.29506581524068
221 => 0.30128151797525
222 => 0.3033436251648
223 => 0.30361616667158
224 => 0.30748481684547
225 => 0.30970225497909
226 => 0.30701506095875
227 => 0.30473794538747
228 => 0.2965816000571
229 => 0.29752571923808
301 => 0.3040297641571
302 => 0.31321711069154
303 => 0.32110080979858
304 => 0.31834021314595
305 => 0.33940161692801
306 => 0.34148976908488
307 => 0.34120125397485
308 => 0.34595837534691
309 => 0.33651645819429
310 => 0.33247985568301
311 => 0.30523028362034
312 => 0.31288630187435
313 => 0.32401477402874
314 => 0.32254187900948
315 => 0.31446008506605
316 => 0.32109467903316
317 => 0.3189010747847
318 => 0.31717088810121
319 => 0.32509720871146
320 => 0.31638189360519
321 => 0.32392783209369
322 => 0.31425008792945
323 => 0.31835282331892
324 => 0.31602391228487
325 => 0.3175310031445
326 => 0.30872058077403
327 => 0.31347447082422
328 => 0.3085228033186
329 => 0.30852045558348
330 => 0.30841114724884
331 => 0.31423676211015
401 => 0.31442673520164
402 => 0.31012159701711
403 => 0.30950115934582
404 => 0.31179524260112
405 => 0.30910947193052
406 => 0.31036612712326
407 => 0.30914753473614
408 => 0.30887320392231
409 => 0.30668728932423
410 => 0.3057455372124
411 => 0.30611482248141
412 => 0.30485426147867
413 => 0.30409472787804
414 => 0.3082600568985
415 => 0.30603468963176
416 => 0.30791898744861
417 => 0.30577159226896
418 => 0.29832778500078
419 => 0.29404677272401
420 => 0.2799861108357
421 => 0.28397369710503
422 => 0.28661747092705
423 => 0.28574370369464
424 => 0.28762089381288
425 => 0.28773613804024
426 => 0.28712584439711
427 => 0.28641920254182
428 => 0.28607524836642
429 => 0.28863880099353
430 => 0.29012702957878
501 => 0.28688280899922
502 => 0.2861227335089
503 => 0.28940281963316
504 => 0.29140367027412
505 => 0.30617682722611
506 => 0.30508238404244
507 => 0.30782922165983
508 => 0.30751996989777
509 => 0.31039909332634
510 => 0.31510524332371
511 => 0.30553632451882
512 => 0.30719715795504
513 => 0.30678995995072
514 => 0.31123564098877
515 => 0.31124951991971
516 => 0.30858411205916
517 => 0.31002907290167
518 => 0.30922253539981
519 => 0.31068005767575
520 => 0.30506776708647
521 => 0.31190293121488
522 => 0.31577802882744
523 => 0.31583183456155
524 => 0.31766860007523
525 => 0.31953486021541
526 => 0.32311698403748
527 => 0.31943495672621
528 => 0.31281134803137
529 => 0.31328955118501
530 => 0.30940613183071
531 => 0.30947141281165
601 => 0.30912293781921
602 => 0.31016873750349
603 => 0.30529726130675
604 => 0.30644058703316
605 => 0.30483992432088
606 => 0.3071936784269
607 => 0.30466142809832
608 => 0.30678976358751
609 => 0.30770828262921
610 => 0.31109763766738
611 => 0.30416081760338
612 => 0.29001617191144
613 => 0.29298954792314
614 => 0.28859169124819
615 => 0.28899872962728
616 => 0.28982101193272
617 => 0.28715572594678
618 => 0.28766417852008
619 => 0.28764601301623
620 => 0.2874894725179
621 => 0.28679612869473
622 => 0.28579064297724
623 => 0.28979618860355
624 => 0.29047680885864
625 => 0.2919897433747
626 => 0.29649121026119
627 => 0.29604140756733
628 => 0.29677505442314
629 => 0.29517350745614
630 => 0.28907302079773
701 => 0.28940430657361
702 => 0.28527316763991
703 => 0.29188410086409
704 => 0.29031854461655
705 => 0.28930922031922
706 => 0.28903381683337
707 => 0.29354644198559
708 => 0.29489669015786
709 => 0.29405530610868
710 => 0.29232960287672
711 => 0.29564346324045
712 => 0.29653011247324
713 => 0.29672860053809
714 => 0.30260012573291
715 => 0.29705675357197
716 => 0.29839109834749
717 => 0.30880127538057
718 => 0.2993606813178
719 => 0.30436157454322
720 => 0.30411680684323
721 => 0.30667509459635
722 => 0.30390695257665
723 => 0.30394126701457
724 => 0.30621285322592
725 => 0.30302282007481
726 => 0.30223292300506
727 => 0.30114168586055
728 => 0.30352436224348
729 => 0.30495266897586
730 => 0.31646377226317
731 => 0.32390046995686
801 => 0.32357762329709
802 => 0.32652783742383
803 => 0.32519873893887
804 => 0.32090672933246
805 => 0.32823266637579
806 => 0.32591443336506
807 => 0.32610554567781
808 => 0.32609843246798
809 => 0.32763985475667
810 => 0.32654761579586
811 => 0.32439470068806
812 => 0.32582390620896
813 => 0.3300681356557
814 => 0.34324235408726
815 => 0.35061482125673
816 => 0.34279852230651
817 => 0.34819010065796
818 => 0.34495707486289
819 => 0.34436953790174
820 => 0.34775584754096
821 => 0.35114808446693
822 => 0.35093201363979
823 => 0.34846942382483
824 => 0.34707836932426
825 => 0.35761190004001
826 => 0.36537282603736
827 => 0.36484358291425
828 => 0.36717948994058
829 => 0.37403778521676
830 => 0.37466482178586
831 => 0.37458582959043
901 => 0.37303165402941
902 => 0.379784536391
903 => 0.3854179096627
904 => 0.37267190729149
905 => 0.37752541813702
906 => 0.37970431552594
907 => 0.38290358334259
908 => 0.38830128440882
909 => 0.39416461943624
910 => 0.39499375929732
911 => 0.39440544488789
912 => 0.3905384178224
913 => 0.39695414897354
914 => 0.40071233381447
915 => 0.40295024688272
916 => 0.40862522207055
917 => 0.37971777165443
918 => 0.35925564145638
919 => 0.35606018434922
920 => 0.36255827203178
921 => 0.3642717659324
922 => 0.3635810586896
923 => 0.34054907081621
924 => 0.35593892569964
925 => 0.37249711553846
926 => 0.37313318304552
927 => 0.38142255909425
928 => 0.38412191972872
929 => 0.39079595396131
930 => 0.39037849130292
1001 => 0.39200351243147
1002 => 0.39162994821546
1003 => 0.40399219124761
1004 => 0.41762958112293
1005 => 0.4171573616758
1006 => 0.41519682553094
1007 => 0.41810855602714
1008 => 0.43218380384998
1009 => 0.4308879805817
1010 => 0.43214676250887
1011 => 0.44874227293821
1012 => 0.47031879718018
1013 => 0.46029433542217
1014 => 0.48204453297589
1015 => 0.49573512940753
1016 => 0.51941160030195
1017 => 0.51644718953689
1018 => 0.52566426591012
1019 => 0.51114027557624
1020 => 0.47779025798691
1021 => 0.47251249004466
1022 => 0.48307871511941
1023 => 0.50905474842853
1024 => 0.48226063738965
1025 => 0.48768105115609
1026 => 0.48611997162671
1027 => 0.48603678833275
1028 => 0.4892115563323
1029 => 0.48460638976419
1030 => 0.46584411271206
1031 => 0.47444275371826
1101 => 0.47112240548511
1102 => 0.47480657939815
1103 => 0.49468854653791
1104 => 0.48589825493852
1105 => 0.47663839680387
1106 => 0.48825231383174
1107 => 0.5030408211831
1108 => 0.50211538297055
1109 => 0.50031964603505
1110 => 0.51044212111875
1111 => 0.52716148435009
1112 => 0.53168066104768
1113 => 0.53501662489534
1114 => 0.53547659794836
1115 => 0.54021460626614
1116 => 0.51473714140961
1117 => 0.55517053244463
1118 => 0.5621522621265
1119 => 0.56083998630935
1120 => 0.56859988501465
1121 => 0.56631672596592
1122 => 0.56300878672099
1123 => 0.57530987674667
1124 => 0.56120766967901
1125 => 0.54119136216496
1126 => 0.53021001998508
1127 => 0.54467113720715
1128 => 0.55350203687123
1129 => 0.55933869979848
1130 => 0.56110487047365
1201 => 0.51671488448138
1202 => 0.49279114401303
1203 => 0.508125987367
1204 => 0.52683555461319
1205 => 0.51463320881889
1206 => 0.51511151767193
1207 => 0.4977141792893
1208 => 0.52837483302693
1209 => 0.52390783367404
1210 => 0.54708263421879
1211 => 0.54155178207939
1212 => 0.56044993228306
1213 => 0.55547341598845
1214 => 0.57613065689409
1215 => 0.58437138956382
1216 => 0.59820886228392
1217 => 0.60838776354547
1218 => 0.61436500905761
1219 => 0.61400615765714
1220 => 0.63769098222812
1221 => 0.62372486866336
1222 => 0.60618013846578
1223 => 0.60586280964942
1224 => 0.6149494740295
1225 => 0.6339926297655
1226 => 0.6389302429812
1227 => 0.6416896951672
1228 => 0.63746349808713
1229 => 0.62230428277295
1230 => 0.61575861045926
1231 => 0.62133571291691
]
'min_raw' => 0.22997074588693
'max_raw' => 0.6416896951672
'avg_raw' => 0.43583022052706
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.22997'
'max' => '$0.641689'
'avg' => '$0.43583'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.091041974786082
'max_diff' => 0.33154100054084
'year' => 2036
]
11 => [
'items' => [
101 => 0.61451539585708
102 => 0.62628917654532
103 => 0.64245709217414
104 => 0.63911848153166
105 => 0.650278956357
106 => 0.66182887368503
107 => 0.67834577420337
108 => 0.68266390361791
109 => 0.68980160733641
110 => 0.69714864907626
111 => 0.69950832087478
112 => 0.7040136665013
113 => 0.70398992110595
114 => 0.71756708339622
115 => 0.7325431138521
116 => 0.73819621865329
117 => 0.75119522142962
118 => 0.72893488471455
119 => 0.74581960582125
120 => 0.76105004691147
121 => 0.74289168716632
122 => 0.76791875571981
123 => 0.76889050007919
124 => 0.78356268619771
125 => 0.76868961471584
126 => 0.75985803234643
127 => 0.78535447973184
128 => 0.79769140749108
129 => 0.79397542444875
130 => 0.76569661001591
131 => 0.74923712708059
201 => 0.70615948544171
202 => 0.7571868127786
203 => 0.78204073543685
204 => 0.76563224436049
205 => 0.77390773283448
206 => 0.8190561146124
207 => 0.83624569525219
208 => 0.83267038264336
209 => 0.83327455161959
210 => 0.84254973731987
211 => 0.88368101865295
212 => 0.85903420146253
213 => 0.87787576970598
214 => 0.88786926956398
215 => 0.89715178917589
216 => 0.87435685477949
217 => 0.84470098005388
218 => 0.83530771965934
219 => 0.76400074329896
220 => 0.7602889055089
221 => 0.75820533847715
222 => 0.74506874306833
223 => 0.73474697749331
224 => 0.72653872628547
225 => 0.70499782392481
226 => 0.71226724613171
227 => 0.67793554370454
228 => 0.69989975027662
301 => 0.64510552423491
302 => 0.69073978390166
303 => 0.66590313110023
304 => 0.68258027547676
305 => 0.68252209049111
306 => 0.65181418020048
307 => 0.63410249840259
308 => 0.64538907139318
309 => 0.65748917356836
310 => 0.65945237443666
311 => 0.67514047275177
312 => 0.67951868377697
313 => 0.66625249997148
314 => 0.643970035692
315 => 0.64914574393522
316 => 0.63399761284024
317 => 0.60745109576072
318 => 0.62651726778495
319 => 0.63302729719443
320 => 0.63590249704985
321 => 0.60979704639023
322 => 0.60159414701607
323 => 0.59722699221826
324 => 0.64060014983005
325 => 0.64297622931339
326 => 0.63081987073284
327 => 0.68576776423017
328 => 0.6733313636314
329 => 0.68722587009235
330 => 0.64867610266136
331 => 0.65014875569137
401 => 0.63189867800211
402 => 0.64211750203746
403 => 0.63489516657734
404 => 0.64129192203979
405 => 0.64512611088917
406 => 0.66337319392026
407 => 0.69094813627919
408 => 0.66064768820201
409 => 0.64744534906438
410 => 0.65563600601259
411 => 0.67744880481784
412 => 0.71049631158441
413 => 0.69093152243554
414 => 0.69961404362815
415 => 0.70151078825025
416 => 0.68708443705974
417 => 0.71102823173034
418 => 0.72385990581335
419 => 0.73702254828171
420 => 0.74845130192811
421 => 0.73176509942714
422 => 0.74962172797635
423 => 0.73523243748495
424 => 0.72232375637665
425 => 0.72234333351742
426 => 0.71424552929244
427 => 0.69855501321756
428 => 0.69566144131765
429 => 0.71071416775885
430 => 0.72278502886619
501 => 0.72377924280252
502 => 0.73046229173478
503 => 0.73441725125202
504 => 0.77318123102766
505 => 0.78877242436588
506 => 0.80783704045367
507 => 0.81526378284276
508 => 0.83761561479939
509 => 0.81956469516737
510 => 0.81565926515938
511 => 0.76144103206109
512 => 0.77031926469358
513 => 0.78453417176021
514 => 0.76167543064295
515 => 0.77617404052493
516 => 0.77903637323818
517 => 0.76089869936679
518 => 0.77058681466412
519 => 0.7448580527604
520 => 0.69150895298009
521 => 0.71108762452904
522 => 0.72550411689865
523 => 0.70493000474653
524 => 0.74180830445111
525 => 0.72026476308632
526 => 0.71343649474604
527 => 0.68679698549718
528 => 0.6993698084139
529 => 0.71637473143424
530 => 0.70586766604216
531 => 0.72767140437454
601 => 0.75855131269781
602 => 0.7805581742993
603 => 0.78224758787277
604 => 0.76809865020823
605 => 0.79077241311297
606 => 0.79093756672222
607 => 0.76536146954063
608 => 0.74969625242522
609 => 0.74613708213669
610 => 0.75502858733386
611 => 0.76582451610563
612 => 0.78284668678376
613 => 0.79313282802002
614 => 0.8199536290164
615 => 0.82721056875339
616 => 0.8351837453577
617 => 0.84583836813765
618 => 0.85863197457419
619 => 0.83064029203146
620 => 0.83175245376191
621 => 0.80568698654934
622 => 0.7778322966666
623 => 0.79897053415149
624 => 0.82660596776109
625 => 0.8202663687566
626 => 0.81955303436235
627 => 0.82075266495103
628 => 0.8159728143336
629 => 0.79435372714048
630 => 0.78349675689474
701 => 0.79750501842025
702 => 0.80494978598507
703 => 0.81649597122615
704 => 0.81507266018478
705 => 0.84481439339602
706 => 0.85637113157858
707 => 0.85341442341077
708 => 0.8539585288708
709 => 0.87488145132856
710 => 0.89815204422878
711 => 0.91994802530503
712 => 0.94211983341495
713 => 0.91539085335804
714 => 0.90181952569944
715 => 0.91582167165619
716 => 0.90839193591707
717 => 0.95108540127685
718 => 0.95404140418767
719 => 0.99673178232397
720 => 1.037250034651
721 => 1.0118012463243
722 => 1.0357983074778
723 => 1.0617530856244
724 => 1.1118240636801
725 => 1.0949619197892
726 => 1.0820457818322
727 => 1.0698400938732
728 => 1.0952381929175
729 => 1.1279124415935
730 => 1.1349501618082
731 => 1.1463539571722
801 => 1.1343642607367
802 => 1.1488045294715
803 => 1.1997850234806
804 => 1.1860096439821
805 => 1.1664463905914
806 => 1.2066905943929
807 => 1.2212548153033
808 => 1.3234741449941
809 => 1.4525302711987
810 => 1.3991001875218
811 => 1.3659344104055
812 => 1.3737291547306
813 => 1.4208560831949
814 => 1.4359917568837
815 => 1.3948477782179
816 => 1.4093805270478
817 => 1.4894574019284
818 => 1.5324160761282
819 => 1.4740724264452
820 => 1.3131046109127
821 => 1.1646849336697
822 => 1.2040525154997
823 => 1.1995894534385
824 => 1.2856220657042
825 => 1.1856811057368
826 => 1.1873638551898
827 => 1.275175530767
828 => 1.2517488811963
829 => 1.2138007091502
830 => 1.1649619973216
831 => 1.0746791214724
901 => 0.99471306060856
902 => 1.1515449210466
903 => 1.1447820460443
904 => 1.134988400839
905 => 1.1567830984603
906 => 1.2626119635763
907 => 1.2601722657007
908 => 1.2446521525614
909 => 1.2564240215896
910 => 1.2117370435934
911 => 1.2232538953266
912 => 1.1646614232346
913 => 1.1911476676579
914 => 1.2137192894164
915 => 1.218250876663
916 => 1.2284607741181
917 => 1.1412183182255
918 => 1.1803876196173
919 => 1.2033959145178
920 => 1.0994436011084
921 => 1.2013411115139
922 => 1.1396996211653
923 => 1.1187775735169
924 => 1.1469463544053
925 => 1.1359689530981
926 => 1.1265312280687
927 => 1.1212648153416
928 => 1.1419488591512
929 => 1.1409839237847
930 => 1.1071408135124
1001 => 1.0629938557838
1002 => 1.077811023872
1003 => 1.0724278077938
1004 => 1.052918338278
1005 => 1.0660653651493
1006 => 1.0081725123659
1007 => 0.90857086816059
1008 => 0.97437076520347
1009 => 0.97183754074384
1010 => 0.97056017409871
1011 => 1.0200069781509
1012 => 1.0152538088731
1013 => 1.0066267600908
1014 => 1.0527598957617
1015 => 1.0359206806636
1016 => 1.0878151737778
1017 => 1.1219962432683
1018 => 1.1133268184037
1019 => 1.1454742794709
1020 => 1.0781523814983
1021 => 1.100514015519
1022 => 1.1051227172988
1023 => 1.0521906200285
1024 => 1.0160314861504
1025 => 1.013620084165
1026 => 0.95092512905586
1027 => 0.98441626801918
1028 => 1.0138870843494
1029 => 0.99977285035495
1030 => 0.99530470552306
1031 => 1.0181314884468
1101 => 1.0199053249782
1102 => 0.9794616640806
1103 => 0.98787118186538
1104 => 1.0229402689939
1105 => 0.98698753084775
1106 => 0.91713723347619
1107 => 0.89981339397212
1108 => 0.89750207444057
1109 => 0.85051844773451
1110 => 0.90097105576495
1111 => 0.87894714031383
1112 => 0.94852042533689
1113 => 0.90878053806073
1114 => 0.90706743094736
1115 => 0.90447781828732
1116 => 0.86403706991224
1117 => 0.87289102366275
1118 => 0.90232291442467
1119 => 0.9128245446225
1120 => 0.91172913855555
1121 => 0.90217868210342
1122 => 0.90655083216096
1123 => 0.89246661346758
1124 => 0.88749318270929
1125 => 0.87179566718622
1126 => 0.84872465591664
1127 => 0.85193282153641
1128 => 0.8062231113529
1129 => 0.78131803524699
1130 => 0.7744246384245
1201 => 0.76520650009858
1202 => 0.77546585167694
1203 => 0.80609362148707
1204 => 0.76915003305221
1205 => 0.70581284197207
1206 => 0.70961951507731
1207 => 0.71817197933339
1208 => 0.70223451877239
1209 => 0.68715104988108
1210 => 0.70026490232156
1211 => 0.67342809950147
1212 => 0.72141507873986
1213 => 0.72011716543341
1214 => 0.7380037437986
1215 => 0.74918858831988
1216 => 0.72341114283473
1217 => 0.71692818500484
1218 => 0.72062117241875
1219 => 0.65958431669792
1220 => 0.73301573050407
1221 => 0.73365076841997
1222 => 0.72821318824133
1223 => 0.76731314915255
1224 => 0.84982626225888
1225 => 0.81878151002599
1226 => 0.80676004362882
1227 => 0.78390722722015
1228 => 0.81435724821873
1229 => 0.81201916170036
1230 => 0.80144544777133
1231 => 0.79505043259505
]
'min_raw' => 0.59722699221826
'max_raw' => 1.5324160761282
'avg_raw' => 1.0648215341732
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.597226'
'max' => '$1.53'
'avg' => '$1.06'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.36725624633133
'max_diff' => 0.89072638096099
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.018746272849733
]
1 => [
'year' => 2028
'avg' => 0.032174046292035
]
2 => [
'year' => 2029
'avg' => 0.087893695662189
]
3 => [
'year' => 2030
'avg' => 0.06780985530816
]
4 => [
'year' => 2031
'avg' => 0.066597681495467
]
5 => [
'year' => 2032
'avg' => 0.11676669472327
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.018746272849733
'min' => '$0.018746'
'max_raw' => 0.11676669472327
'max' => '$0.116766'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.11676669472327
]
1 => [
'year' => 2033
'avg' => 0.30033594580587
]
2 => [
'year' => 2034
'avg' => 0.19036735592192
]
3 => [
'year' => 2035
'avg' => 0.22453873286361
]
4 => [
'year' => 2036
'avg' => 0.43583022052706
]
5 => [
'year' => 2037
'avg' => 1.0648215341732
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.11676669472327
'min' => '$0.116766'
'max_raw' => 1.0648215341732
'max' => '$1.06'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.0648215341732
]
]
]
]
'prediction_2025_max_price' => '$0.032052'
'last_price' => 0.03107915
'sma_50day_nextmonth' => '$0.028825'
'sma_200day_nextmonth' => '$0.05426'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.030386'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0300098'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.02924'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.029091'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.029138'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.039804'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.058796'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.030413'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.030071'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.029621'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.029351'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.032224'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.040853'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.05904'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.04851'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.030298'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.030252'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.033469'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.043991'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.037858'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.018929'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.009464'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '56.33'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 82.76
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.029311'
'vwma_10_action' => 'BUY'
'hma_9' => '0.030788'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 128.04
'cci_20_action' => 'SELL'
'adx_14' => 10.31
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001310'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 65.64
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0108063'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 9
'buy_signals' => 22
'sell_pct' => 29.03
'buy_pct' => 70.97
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767711725
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Cudis para 2026
A previsão de preço para Cudis em 2026 sugere que o preço médio poderia variar entre $0.010737 na extremidade inferior e $0.032052 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Cudis poderia potencialmente ganhar 3.13% até 2026 se CUDIS atingir a meta de preço prevista.
Previsão de preço de Cudis 2027-2032
A previsão de preço de CUDIS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.018746 na extremidade inferior e $0.116766 na extremidade superior. Considerando a volatilidade de preços no mercado, se Cudis atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Cudis | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.010337 | $0.018746 | $0.027155 |
| 2028 | $0.018655 | $0.032174 | $0.045692 |
| 2029 | $0.04098 | $0.087893 | $0.1348069 |
| 2030 | $0.034852 | $0.0678098 | $0.100767 |
| 2031 | $0.0412059 | $0.066597 | $0.091989 |
| 2032 | $0.062897 | $0.116766 | $0.170635 |
Previsão de preço de Cudis 2032-2037
A previsão de preço de Cudis para 2032-2037 é atualmente estimada entre $0.116766 na extremidade inferior e $1.06 na extremidade superior. Comparado ao preço atual, Cudis poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Cudis | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.062897 | $0.116766 | $0.170635 |
| 2033 | $0.14616 | $0.300335 | $0.454511 |
| 2034 | $0.1175062 | $0.190367 | $0.263228 |
| 2035 | $0.138928 | $0.224538 | $0.310148 |
| 2036 | $0.22997 | $0.43583 | $0.641689 |
| 2037 | $0.597226 | $1.06 | $1.53 |
Cudis Histograma de preços potenciais
Previsão de preço de Cudis baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Cudis é Altista, com 22 indicadores técnicos mostrando sinais de alta e 9 indicando sinais de baixa. A previsão de preço de CUDIS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Cudis
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Cudis está projetado para aumentar no próximo mês, alcançando $0.05426 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Cudis é esperado para alcançar $0.028825 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 56.33, sugerindo que o mercado de CUDIS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de CUDIS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.030386 | BUY |
| SMA 5 | $0.0300098 | BUY |
| SMA 10 | $0.02924 | BUY |
| SMA 21 | $0.029091 | BUY |
| SMA 50 | $0.029138 | BUY |
| SMA 100 | $0.039804 | SELL |
| SMA 200 | $0.058796 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.030413 | BUY |
| EMA 5 | $0.030071 | BUY |
| EMA 10 | $0.029621 | BUY |
| EMA 21 | $0.029351 | BUY |
| EMA 50 | $0.032224 | SELL |
| EMA 100 | $0.040853 | SELL |
| EMA 200 | $0.05904 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.04851 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.043991 | SELL |
| EMA 50 | $0.037858 | SELL |
| EMA 100 | $0.018929 | BUY |
| EMA 200 | $0.009464 | BUY |
Osciladores de Cudis
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 56.33 | NEUTRAL |
| Stoch RSI (14) | 82.76 | NEUTRAL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 128.04 | SELL |
| Índice Direcional Médio (14) | 10.31 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.001310 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 65.64 | NEUTRAL |
| VWMA (10) | 0.029311 | BUY |
| Média Móvel de Hull (9) | 0.030788 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0108063 | NEUTRAL |
Previsão do preço de Cudis com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Cudis
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Cudis por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.043671 | $0.061365 | $0.086228 | $0.121166 | $0.170258 | $0.239241 |
| Amazon.com stock | $0.064848 | $0.13531 | $0.282332 | $0.5891042 | $1.22 | $2.56 |
| Apple stock | $0.044083 | $0.062528 | $0.088692 | $0.1258035 | $0.178442 | $0.2531074 |
| Netflix stock | $0.049038 | $0.077374 | $0.122084 | $0.19263 | $0.30394 | $0.47957 |
| Google stock | $0.040247 | $0.05212 | $0.067495 | $0.0874061 | $0.11319 | $0.146581 |
| Tesla stock | $0.070454 | $0.159714 | $0.362059 | $0.820762 | $1.86 | $4.21 |
| Kodak stock | $0.023306 | $0.017477 | $0.0131059 | $0.009828 | $0.00737 | $0.005526 |
| Nokia stock | $0.020588 | $0.013639 | $0.009035 | $0.005985 | $0.003965 | $0.002626 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Cudis
Você pode fazer perguntas como: 'Devo investir em Cudis agora?', 'Devo comprar CUDIS hoje?', 'Cudis será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Cudis regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Cudis, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Cudis para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Cudis é de $0.03107 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Cudis
com base no histórico de preços de 4 horas
Previsão de longo prazo para Cudis
com base no histórico de preços de 1 mês
Previsão do preço de Cudis com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Cudis tiver 1% da média anterior do crescimento anual do Bitcoin | $0.031886 | $0.032715 | $0.033566 | $0.034438 |
| Se Cudis tiver 2% da média anterior do crescimento anual do Bitcoin | $0.032694 | $0.034394 | $0.036182 | $0.038063 |
| Se Cudis tiver 5% da média anterior do crescimento anual do Bitcoin | $0.035118 | $0.039682 | $0.044839 | $0.050667 |
| Se Cudis tiver 10% da média anterior do crescimento anual do Bitcoin | $0.039157 | $0.049335 | $0.062159 | $0.078317 |
| Se Cudis tiver 20% da média anterior do crescimento anual do Bitcoin | $0.047236 | $0.071792 | $0.109114 | $0.165839 |
| Se Cudis tiver 50% da média anterior do crescimento anual do Bitcoin | $0.071471 | $0.16436 | $0.377972 | $0.8692088 |
| Se Cudis tiver 100% da média anterior do crescimento anual do Bitcoin | $0.111863 | $0.402633 | $1.44 | $5.21 |
Perguntas Frequentes sobre Cudis
CUDIS é um bom investimento?
A decisão de adquirir Cudis depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Cudis experimentou uma escalada de 3.6469% nas últimas 24 horas, e Cudis registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Cudis dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Cudis pode subir?
Parece que o valor médio de Cudis pode potencialmente subir para $0.032052 até o final deste ano. Observando as perspectivas de Cudis em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.100767. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Cudis na próxima semana?
Com base na nossa nova previsão experimental de Cudis, o preço de Cudis aumentará 0.86% na próxima semana e atingirá $0.031345 até 13 de janeiro de 2026.
Qual será o preço de Cudis no próximo mês?
Com base na nossa nova previsão experimental de Cudis, o preço de Cudis diminuirá -11.62% no próximo mês e atingirá $0.027468 até 5 de fevereiro de 2026.
Até onde o preço de Cudis pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Cudis em 2026, espera-se que CUDIS fluctue dentro do intervalo de $0.010737 e $0.032052. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Cudis não considera flutuações repentinas e extremas de preço.
Onde estará Cudis em 5 anos?
O futuro de Cudis parece seguir uma tendência de alta, com um preço máximo de $0.100767 projetada após um período de cinco anos. Com base na previsão de Cudis para 2030, o valor de Cudis pode potencialmente atingir seu pico mais alto de aproximadamente $0.100767, enquanto seu pico mais baixo está previsto para cerca de $0.034852.
Quanto será Cudis em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Cudis, espera-se que o valor de CUDIS em 2026 aumente 3.13% para $0.032052 se o melhor cenário ocorrer. O preço ficará entre $0.032052 e $0.010737 durante 2026.
Quanto será Cudis em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Cudis, o valor de CUDIS pode diminuir -12.62% para $0.027155 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.027155 e $0.010337 ao longo do ano.
Quanto será Cudis em 2028?
Nosso novo modelo experimental de previsão de preços de Cudis sugere que o valor de CUDIS em 2028 pode aumentar 47.02%, alcançando $0.045692 no melhor cenário. O preço é esperado para variar entre $0.045692 e $0.018655 durante o ano.
Quanto será Cudis em 2029?
Com base no nosso modelo de previsão experimental, o valor de Cudis pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.1348069 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.1348069 e $0.04098.
Quanto será Cudis em 2030?
Usando nossa nova simulação experimental para previsões de preços de Cudis, espera-se que o valor de CUDIS em 2030 aumente 224.23%, alcançando $0.100767 no melhor cenário. O preço está previsto para variar entre $0.100767 e $0.034852 ao longo de 2030.
Quanto será Cudis em 2031?
Nossa simulação experimental indica que o preço de Cudis poderia aumentar 195.98% em 2031, potencialmente atingindo $0.091989 sob condições ideais. O preço provavelmente oscilará entre $0.091989 e $0.0412059 durante o ano.
Quanto será Cudis em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Cudis, CUDIS poderia ver um 449.04% aumento em valor, atingindo $0.170635 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.170635 e $0.062897 ao longo do ano.
Quanto será Cudis em 2033?
De acordo com nossa previsão experimental de preços de Cudis, espera-se que o valor de CUDIS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.454511. Ao longo do ano, o preço de CUDIS poderia variar entre $0.454511 e $0.14616.
Quanto será Cudis em 2034?
Os resultados da nossa nova simulação de previsão de preços de Cudis sugerem que CUDIS pode aumentar 746.96% em 2034, atingindo potencialmente $0.263228 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.263228 e $0.1175062.
Quanto será Cudis em 2035?
Com base em nossa previsão experimental para o preço de Cudis, CUDIS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.310148 em 2035. A faixa de preço esperada para o ano está entre $0.310148 e $0.138928.
Quanto será Cudis em 2036?
Nossa recente simulação de previsão de preços de Cudis sugere que o valor de CUDIS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.641689 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.641689 e $0.22997.
Quanto será Cudis em 2037?
De acordo com a simulação experimental, o valor de Cudis poderia aumentar 4830.69% em 2037, com um pico de $1.53 sob condições favoráveis. O preço é esperado para cair entre $1.53 e $0.597226 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Cudis?
Traders de Cudis utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Cudis
Médias móveis são ferramentas populares para a previsão de preço de Cudis. Uma média móvel simples (SMA) calcula o preço médio de fechamento de CUDIS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de CUDIS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de CUDIS.
Como ler gráficos de Cudis e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Cudis em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de CUDIS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Cudis?
A ação de preço de Cudis é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de CUDIS. A capitalização de mercado de Cudis pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de CUDIS, grandes detentores de Cudis, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Cudis.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


