Previsão de Preço Cudis - Projeção CUDIS
Previsão de Preço Cudis até $0.032069 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.010743 | $0.032069 |
| 2027 | $0.010342 | $0.027169 |
| 2028 | $0.018664 | $0.045716 |
| 2029 | $0.0410015 | $0.134876 |
| 2030 | $0.03487 | $0.100819 |
| 2031 | $0.041227 | $0.092036 |
| 2032 | $0.06293 | $0.170723 |
| 2033 | $0.146236 | $0.454745 |
| 2034 | $0.117566 | $0.263364 |
| 2035 | $0.13900038 | $0.3103085 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Cudis hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.69, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Cudis para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Cudis'
'name_with_ticker' => 'Cudis <small>CUDIS</small>'
'name_lang' => 'Cudis'
'name_lang_with_ticker' => 'Cudis <small>CUDIS</small>'
'name_with_lang' => 'Cudis'
'name_with_lang_with_ticker' => 'Cudis <small>CUDIS</small>'
'image' => '/uploads/coins/cudis.jpg?1749136425'
'price_for_sd' => 0.03109
'ticker' => 'CUDIS'
'marketcap' => '$7.71M'
'low24h' => '$0.02987'
'high24h' => '$0.03134'
'volume24h' => '$6.67M'
'current_supply' => '247.5M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03109'
'change_24h_pct' => '3.9045%'
'ath_price' => '$0.2698'
'ath_days' => 63
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '4 de nov. de 2025'
'ath_pct' => '-88.45%'
'fdv' => '$31.16M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.53'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.031361'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.027482'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.010743'
'current_year_max_price_prediction' => '$0.032069'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.03487'
'grand_prediction_max_price' => '$0.100819'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.031684407115441
107 => 0.03180270519017
108 => 0.032069236792984
109 => 0.02979175342895
110 => 0.030814276596003
111 => 0.031414913159182
112 => 0.028701215315393
113 => 0.031361272078015
114 => 0.029752107510526
115 => 0.029205932887479
116 => 0.029941285064376
117 => 0.029654717605886
118 => 0.029408343732882
119 => 0.029270862878505
120 => 0.02981082435936
121 => 0.029785634510885
122 => 0.028902152726199
123 => 0.0277496867534
124 => 0.028136492162278
125 => 0.027995962130912
126 => 0.02748666316851
127 => 0.027829869176178
128 => 0.026318563610995
129 => 0.023718440936925
130 => 0.025436161619327
131 => 0.025370031241575
201 => 0.025336685306339
202 => 0.026627504924851
203 => 0.026503422402807
204 => 0.026278211410276
205 => 0.02748252699202
206 => 0.027042935604353
207 => 0.028397652680385
208 => 0.029289956964267
209 => 0.029063639734855
210 => 0.029902856226727
211 => 0.028145403377661
212 => 0.028729158717351
213 => 0.028849469883811
214 => 0.027467665924682
215 => 0.026523723837968
216 => 0.026460773662511
217 => 0.024824108167381
218 => 0.025698401664177
219 => 0.026467743760635
220 => 0.02609928859979
221 => 0.025982646703152
222 => 0.026578544856538
223 => 0.026624851246578
224 => 0.02556906064632
225 => 0.025788592944654
226 => 0.026704079122913
227 => 0.025765525041858
228 => 0.023942067774305
301 => 0.023489825160683
302 => 0.02342948765954
303 => 0.022202969823583
304 => 0.023520046174607
305 => 0.022945107051933
306 => 0.024761332851631
307 => 0.023723914415458
308 => 0.023679193380137
309 => 0.023611590976099
310 => 0.022555876407877
311 => 0.022787010804156
312 => 0.023555336740153
313 => 0.023829484089927
314 => 0.023800888275323
315 => 0.023551571523908
316 => 0.023665707455997
317 => 0.023298035851142
318 => 0.023168203355045
319 => 0.02275841628412
320 => 0.02215614249643
321 => 0.022239892360568
322 => 0.021046630393643
323 => 0.020396477942857
324 => 0.020216524313351
325 => 0.019975882799196
326 => 0.020243705412698
327 => 0.021043250032417
328 => 0.020078829588182
329 => 0.01842539838277
330 => 0.018524772415525
331 => 0.01874803636271
401 => 0.018331985474169
402 => 0.017938228224669
403 => 0.018280568206574
404 => 0.017579987608042
405 => 0.018832698180979
406 => 0.018798815870662
407 => 0.019265748905151
408 => 0.019557731714047
409 => 0.018884805870098
410 => 0.01871556684013
411 => 0.018811973083085
412 => 0.0172185926346
413 => 0.01913553572876
414 => 0.019152113532242
415 => 0.01901016431416
416 => 0.020030877332823
417 => 0.022184900170575
418 => 0.021374470133644
419 => 0.021060647127967
420 => 0.020464069364772
421 => 0.021258973812947
422 => 0.021197937553769
423 => 0.020921908442448
424 => 0.020754965174659
425 => 0.021062563264321
426 => 0.020716850367312
427 => 0.020654750831454
428 => 0.020278495209117
429 => 0.020144189070482
430 => 0.020044754152319
501 => 0.019935286077694
502 => 0.020176745372572
503 => 0.019629566843763
504 => 0.018969723178593
505 => 0.018914864317441
506 => 0.019066334456321
507 => 0.018999320195493
508 => 0.018914543478943
509 => 0.018752681639485
510 => 0.018704660689348
511 => 0.018860705480838
512 => 0.018684540009223
513 => 0.018944481758821
514 => 0.018873791986163
515 => 0.018478924662442
516 => 0.017986773778477
517 => 0.017982392603288
518 => 0.017876359502627
519 => 0.017741310406752
520 => 0.017703742837784
521 => 0.018251737288162
522 => 0.019386069400349
523 => 0.01916337286446
524 => 0.019324293934499
525 => 0.020115866329654
526 => 0.020367483390662
527 => 0.020188891560635
528 => 0.019944424048631
529 => 0.019955179378465
530 => 0.020790598872333
531 => 0.020842702961419
601 => 0.020974353185124
602 => 0.021143560926932
603 => 0.02021770837074
604 => 0.019911571806329
605 => 0.019766507318301
606 => 0.019319764842198
607 => 0.01980153830187
608 => 0.019520829538515
609 => 0.019558706741069
610 => 0.019534039163216
611 => 0.019547509328738
612 => 0.018832348022844
613 => 0.01909291521494
614 => 0.018659671720242
615 => 0.018079607314706
616 => 0.018077662735421
617 => 0.0182196326769
618 => 0.018135183400424
619 => 0.017907932568818
620 => 0.017940212476854
621 => 0.017657406515943
622 => 0.017974550240875
623 => 0.017983644788112
624 => 0.017861527179077
625 => 0.018350130844737
626 => 0.01855031216522
627 => 0.018469931738941
628 => 0.018544672460234
629 => 0.019172626910941
630 => 0.019275010885979
701 => 0.019320483084586
702 => 0.019259556362365
703 => 0.018556150314841
704 => 0.018587349364162
705 => 0.018358431441138
706 => 0.018165019918959
707 => 0.018172755365537
708 => 0.018272194029674
709 => 0.018706448507965
710 => 0.019620311456829
711 => 0.019654991887713
712 => 0.019697025581644
713 => 0.019526053423984
714 => 0.01947448658525
715 => 0.01954251655607
716 => 0.019885715431032
717 => 0.02076851611502
718 => 0.020456475393023
719 => 0.020202781428837
720 => 0.02042533943083
721 => 0.020391078370891
722 => 0.020101880545889
723 => 0.020093763726144
724 => 0.019538700637828
725 => 0.019333506452253
726 => 0.019162030832267
727 => 0.018974783931727
728 => 0.018863777692514
729 => 0.019034333727379
730 => 0.019073341910512
731 => 0.018700418159472
801 => 0.018649590030205
802 => 0.018954127615423
803 => 0.018820111978474
804 => 0.018957950384504
805 => 0.018989930077059
806 => 0.018984780610003
807 => 0.01884485289343
808 => 0.018934038647269
809 => 0.018723087751888
810 => 0.01849371033696
811 => 0.018347381836955
812 => 0.018219690813041
813 => 0.018290541214554
814 => 0.018037972469931
815 => 0.017957170645322
816 => 0.018903824520612
817 => 0.019603127916532
818 => 0.019592959768201
819 => 0.01953106378027
820 => 0.019439098897348
821 => 0.019878987627032
822 => 0.019725739189463
823 => 0.01983724023213
824 => 0.019865621927173
825 => 0.019951524770048
826 => 0.019982227652777
827 => 0.019889422216647
828 => 0.019577955837765
829 => 0.018801811234926
830 => 0.018440513827142
831 => 0.018321279664689
901 => 0.018325613600036
902 => 0.018206064315619
903 => 0.018241276937703
904 => 0.018193818802676
905 => 0.01810394457629
906 => 0.018284991734334
907 => 0.018305855732727
908 => 0.018263597162687
909 => 0.018273550585714
910 => 0.017923667674657
911 => 0.017950268512479
912 => 0.017802151667215
913 => 0.017774381544303
914 => 0.017399955057485
915 => 0.016736604262101
916 => 0.017104164995764
917 => 0.016660203316359
918 => 0.016492068301252
919 => 0.017287993312412
920 => 0.017208104516815
921 => 0.017071369625577
922 => 0.016869110223388
923 => 0.016794090243664
924 => 0.016338292595296
925 => 0.016311361638644
926 => 0.016537267260747
927 => 0.016433019589085
928 => 0.01628661637639
929 => 0.015756358780664
930 => 0.015160173680812
1001 => 0.015178168761491
1002 => 0.015367804149336
1003 => 0.015919194615311
1004 => 0.015703756821102
1005 => 0.01554745422954
1006 => 0.015518183452579
1007 => 0.015884568508768
1008 => 0.016403080123316
1009 => 0.016646354171819
1010 => 0.016405276978095
1011 => 0.016128340478464
1012 => 0.016145196319996
1013 => 0.016257330682161
1014 => 0.01626911441813
1015 => 0.016088857226402
1016 => 0.016139598570011
1017 => 0.016062517829183
1018 => 0.015589473465004
1019 => 0.015580917592496
1020 => 0.015464824876656
1021 => 0.015461309635358
1022 => 0.015263806965028
1023 => 0.015236174976178
1024 => 0.014844021436683
1025 => 0.015102138083929
1026 => 0.014929006988689
1027 => 0.014668057590665
1028 => 0.014623069816088
1029 => 0.01462171742926
1030 => 0.014889654113812
1031 => 0.015099007087769
1101 => 0.014932018678214
1102 => 0.014893998654293
1103 => 0.01529995304128
1104 => 0.015248291645179
1105 => 0.015203553209336
1106 => 0.016356653095319
1107 => 0.015443884558058
1108 => 0.015045865376805
1109 => 0.014553241058213
1110 => 0.014713642020374
1111 => 0.014747440859882
1112 => 0.013562768175874
1113 => 0.013082146615514
1114 => 0.01291721540784
1115 => 0.012822295166039
1116 => 0.012865551512161
1117 => 0.012432935736551
1118 => 0.012723660692565
1119 => 0.012349051998988
1120 => 0.012286247632427
1121 => 0.012956094381656
1122 => 0.013049299643623
1123 => 0.012651657039466
1124 => 0.012907007963825
1125 => 0.012814414169009
1126 => 0.012355473589847
1127 => 0.012337945435461
1128 => 0.012107665185379
1129 => 0.011747321185044
1130 => 0.01158263430757
1201 => 0.011496863951905
1202 => 0.011532254472283
1203 => 0.011514359942212
1204 => 0.011397586029172
1205 => 0.011521053286217
1206 => 0.011205645464659
1207 => 0.011080047528701
1208 => 0.011023317854879
1209 => 0.010743375259049
1210 => 0.011188888420052
1211 => 0.011276660125196
1212 => 0.011364604767714
1213 => 0.012130102838472
1214 => 0.012091860718132
1215 => 0.012437550861337
1216 => 0.012424117978056
1217 => 0.012325521549404
1218 => 0.01190955943525
1219 => 0.01207535452014
1220 => 0.011565063019125
1221 => 0.011947408108135
1222 => 0.011772921776624
1223 => 0.011888414103933
1224 => 0.011680748485907
1225 => 0.011795679213226
1226 => 0.011297474052601
1227 => 0.010832257083546
1228 => 0.011019473972424
1229 => 0.011223000141482
1230 => 0.011664296733504
1231 => 0.011401464123914
]
'min_raw' => 0.010743375259049
'max_raw' => 0.032069236792984
'avg_raw' => 0.021406306026017
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.010743'
'max' => '$0.032069'
'avg' => '$0.0214063'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.020351794740951
'max_diff' => 0.00097406679298435
'year' => 2026
]
1 => [
'items' => [
101 => 0.011495988669124
102 => 0.011179347265888
103 => 0.010526025606867
104 => 0.010529723336506
105 => 0.010429224032652
106 => 0.010342377960983
107 => 0.011431653610845
108 => 0.011296184964885
109 => 0.011080333407246
110 => 0.011369259294746
111 => 0.011445655885272
112 => 0.011447830788803
113 => 0.011658623658067
114 => 0.011771123850179
115 => 0.011790952496643
116 => 0.012122639630911
117 => 0.012233816783258
118 => 0.012691739739398
119 => 0.011761578994874
120 => 0.011742422946449
121 => 0.011373325074496
122 => 0.011139237368897
123 => 0.011389353259969
124 => 0.011610921795236
125 => 0.011380209826507
126 => 0.011410335939027
127 => 0.011100623970869
128 => 0.011211331426183
129 => 0.011306687600604
130 => 0.011254037525866
131 => 0.01117521781569
201 => 0.011592755702078
202 => 0.011569196578184
203 => 0.011958017457143
204 => 0.012261131137139
205 => 0.012804365039744
206 => 0.012237472142952
207 => 0.012216812312598
208 => 0.012418765468252
209 => 0.012233785865282
210 => 0.01235068658908
211 => 0.012785530525862
212 => 0.012794718093028
213 => 0.012640814505484
214 => 0.012631449458196
215 => 0.012661008325704
216 => 0.012834135535956
217 => 0.012773639569032
218 => 0.012843647033527
219 => 0.01293119243987
220 => 0.013293317358988
221 => 0.01338062445102
222 => 0.013168513480921
223 => 0.013187664726615
224 => 0.013108329401222
225 => 0.013031692470961
226 => 0.013203961098263
227 => 0.013518785400606
228 => 0.013516826894961
301 => 0.013589860013794
302 => 0.013635359041789
303 => 0.013440043906313
304 => 0.013312900935055
305 => 0.013361655640552
306 => 0.013439615476383
307 => 0.013336374316509
308 => 0.01269912205181
309 => 0.012892423681088
310 => 0.012860248838009
311 => 0.012814427948871
312 => 0.013008794231866
313 => 0.012990047129712
314 => 0.012428498636479
315 => 0.012464447149076
316 => 0.012430684784595
317 => 0.012539777891363
318 => 0.012227894479504
319 => 0.012323827716425
320 => 0.012383996143303
321 => 0.012419435808971
322 => 0.012547468182567
323 => 0.012532445061269
324 => 0.012546534324253
325 => 0.012736372535003
326 => 0.013696509060367
327 => 0.01374876717302
328 => 0.013491429113807
329 => 0.013594230592694
330 => 0.013396874233443
331 => 0.013529360879581
401 => 0.013620004878072
402 => 0.013210402078727
403 => 0.01318614805925
404 => 0.012987977140101
405 => 0.013094462967077
406 => 0.012925036359756
407 => 0.012966607722901
408 => 0.01285037056742
409 => 0.013059574304699
410 => 0.013293496589951
411 => 0.013352594597077
412 => 0.013197133183621
413 => 0.013084568874873
414 => 0.012886943029699
415 => 0.013215599214602
416 => 0.013311708298684
417 => 0.013215094394499
418 => 0.013192706841843
419 => 0.013150282470015
420 => 0.01320170737288
421 => 0.013311184867971
422 => 0.013259557303018
423 => 0.01329365821923
424 => 0.013163700691341
425 => 0.01344010856375
426 => 0.013879110786312
427 => 0.013880522250241
428 => 0.013828894406996
429 => 0.013807769405878
430 => 0.013860742706087
501 => 0.013889478548372
502 => 0.014060784487606
503 => 0.014244602585534
504 => 0.015102401442445
505 => 0.014861534955962
506 => 0.015622625132495
507 => 0.016224548646943
508 => 0.01640503919
509 => 0.016238996383124
510 => 0.015670972910255
511 => 0.015643102968777
512 => 0.016491969850567
513 => 0.016252126075895
514 => 0.016223597422075
515 => 0.015920100745344
516 => 0.016099504870086
517 => 0.016060266556306
518 => 0.015998326958398
519 => 0.016340617531007
520 => 0.016981354926441
521 => 0.016881489994566
522 => 0.016806945455522
523 => 0.016480312985019
524 => 0.016677018688265
525 => 0.016606975554988
526 => 0.016907925306015
527 => 0.01672964934036
528 => 0.016250309023409
529 => 0.01632664554881
530 => 0.016315107436563
531 => 0.016552560968998
601 => 0.01648128331252
602 => 0.016301189330171
603 => 0.016979164955681
604 => 0.016935140989659
605 => 0.016997556908198
606 => 0.017025034325816
607 => 0.017437706141793
608 => 0.017606764580774
609 => 0.017645143806207
610 => 0.01780573624779
611 => 0.017641148119964
612 => 0.018299617980614
613 => 0.018737462015164
614 => 0.019246040392542
615 => 0.019989210094872
616 => 0.020268648777652
617 => 0.020218170680767
618 => 0.020781633467395
619 => 0.021794163569891
620 => 0.020422831963825
621 => 0.021866847474866
622 => 0.021409688836031
623 => 0.020325773927286
624 => 0.02025598258568
625 => 0.020990022346393
626 => 0.022618051886946
627 => 0.022210248951996
628 => 0.022618718906456
629 => 0.022142217007419
630 => 0.022118554671858
701 => 0.022595576272792
702 => 0.023710163244467
703 => 0.023180664753892
704 => 0.022421498829296
705 => 0.022982055134088
706 => 0.022496449385841
707 => 0.021402243722549
708 => 0.022209937112777
709 => 0.021669855544515
710 => 0.021827480058449
711 => 0.022962651183866
712 => 0.022826064390765
713 => 0.023002820348634
714 => 0.022690850709505
715 => 0.022399421873462
716 => 0.021855448309198
717 => 0.021694404554392
718 => 0.021738911254473
719 => 0.021694382499082
720 => 0.021390034289251
721 => 0.021324310322315
722 => 0.021214767497989
723 => 0.021248719399746
724 => 0.021042746842129
725 => 0.021431459614453
726 => 0.021503608130322
727 => 0.021786480870064
728 => 0.021815849656298
729 => 0.022603646210038
730 => 0.022169741106621
731 => 0.022460842111558
801 => 0.022434803297727
802 => 0.020349265650076
803 => 0.020636634337068
804 => 0.021083689832766
805 => 0.020882291937923
806 => 0.020597562434466
807 => 0.020367628094194
808 => 0.020019254056688
809 => 0.020509583824546
810 => 0.021154315328523
811 => 0.021832201111208
812 => 0.022646636462268
813 => 0.022464863972984
814 => 0.021816975808829
815 => 0.02184603959859
816 => 0.022025700510716
817 => 0.021793023305598
818 => 0.021724402255411
819 => 0.022016273032168
820 => 0.022018282985798
821 => 0.021750559741331
822 => 0.021453034347943
823 => 0.021451787705681
824 => 0.021398845935682
825 => 0.022151635230691
826 => 0.022565593227364
827 => 0.022613052844556
828 => 0.022562398816988
829 => 0.022581893541813
830 => 0.022341020504491
831 => 0.022891584839128
901 => 0.023396837117761
902 => 0.023261418713947
903 => 0.023058407275769
904 => 0.022896698886905
905 => 0.023223325356697
906 => 0.023208781194155
907 => 0.02339242417988
908 => 0.023384093073274
909 => 0.023322340844337
910 => 0.023261420919313
911 => 0.023502961535954
912 => 0.023433401717385
913 => 0.023363733853205
914 => 0.023224004285976
915 => 0.023242995854824
916 => 0.023040019469434
917 => 0.022946113305985
918 => 0.0215339899201
919 => 0.021156624408928
920 => 0.021275351280726
921 => 0.021314439249664
922 => 0.021150209295595
923 => 0.021385672862516
924 => 0.021348976115029
925 => 0.021491741692622
926 => 0.021402547957903
927 => 0.021406208499887
928 => 0.021668508255587
929 => 0.021744654990569
930 => 0.021705926146578
1001 => 0.021733050501362
1002 => 0.0223581198089
1003 => 0.022269254941959
1004 => 0.02222204725254
1005 => 0.022235124105132
1006 => 0.022394842714845
1007 => 0.022439555205252
1008 => 0.022250105241507
1009 => 0.022339450939606
1010 => 0.022719873582455
1011 => 0.022852999977395
1012 => 0.02327787552575
1013 => 0.023097380841248
1014 => 0.023428686646278
1015 => 0.024447007740468
1016 => 0.025260513092967
1017 => 0.024512379951279
1018 => 0.026006278931861
1019 => 0.027169493575326
1020 => 0.027124847459874
1021 => 0.026922014081147
1022 => 0.025597725135224
1023 => 0.024379094703149
1024 => 0.025398530805361
1025 => 0.025401129557634
1026 => 0.025313559092361
1027 => 0.024769666453472
1028 => 0.025294632807484
1029 => 0.025336302730267
1030 => 0.025312978654435
1031 => 0.024895977443423
1101 => 0.024259293668913
1102 => 0.024383700154447
1103 => 0.024587480515574
1104 => 0.024201681778923
1105 => 0.024078395706193
1106 => 0.024307607971533
1107 => 0.02504617764873
1108 => 0.024906555329499
1109 => 0.024902909226485
1110 => 0.025500272717235
1111 => 0.025072689376968
1112 => 0.024385269318634
1113 => 0.024211686687948
1114 => 0.023595585288284
1115 => 0.02402112871951
1116 => 0.024036443270019
1117 => 0.023803377481685
1118 => 0.024404181322858
1119 => 0.024398644809692
1120 => 0.024969018639036
1121 => 0.026059359178113
1122 => 0.025736891828309
1123 => 0.025361897384834
1124 => 0.025402669678308
1125 => 0.02584984110312
1126 => 0.025579471051748
1127 => 0.025676698007308
1128 => 0.025849693938478
1129 => 0.025954066679
1130 => 0.025387652047152
1201 => 0.025255593701724
1202 => 0.024985448673161
1203 => 0.024914972877704
1204 => 0.025135000366708
1205 => 0.025077030897042
1206 => 0.02403515614135
1207 => 0.023926274432443
1208 => 0.023929613679008
1209 => 0.02365582544492
1210 => 0.023238232671231
1211 => 0.024335641547317
1212 => 0.02424750425634
1213 => 0.024150207508386
1214 => 0.024162125804843
1215 => 0.024638473803314
1216 => 0.02436216790805
1217 => 0.025096772416255
1218 => 0.024945759813601
1219 => 0.024790874307511
1220 => 0.024769464412642
1221 => 0.024709846707008
1222 => 0.024505395411618
1223 => 0.024258508186816
1224 => 0.024095491855997
1225 => 0.022226817554277
1226 => 0.022573632635097
1227 => 0.022972611772393
1228 => 0.023110337771778
1229 => 0.02287474791948
1230 => 0.024514697934924
1231 => 0.024814332605697
]
'min_raw' => 0.010342377960983
'max_raw' => 0.027169493575326
'avg_raw' => 0.018755935768154
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.010342'
'max' => '$0.027169'
'avg' => '$0.018755'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00040099729806614
'max_diff' => -0.0048997432176586
'year' => 2027
]
2 => [
'items' => [
101 => 0.023906719643239
102 => 0.023736942315556
103 => 0.024525828508262
104 => 0.024050033696645
105 => 0.024264284071183
106 => 0.023801191950122
107 => 0.024742159387835
108 => 0.024734990792511
109 => 0.024368933206527
110 => 0.024678322571547
111 => 0.024624558555676
112 => 0.024211280442661
113 => 0.024755261041168
114 => 0.024755530848758
115 => 0.024403208381027
116 => 0.023991772872023
117 => 0.023918217920686
118 => 0.023862804145571
119 => 0.024250655679431
120 => 0.024598402151909
121 => 0.025245472123531
122 => 0.025408160888399
123 => 0.026043145968487
124 => 0.025665043270157
125 => 0.025832651299077
126 => 0.026014613524073
127 => 0.026101852906175
128 => 0.025959701014563
129 => 0.026946094214225
130 => 0.027029376022583
131 => 0.027057299692541
201 => 0.026724693455494
202 => 0.027020125641451
203 => 0.026881902705327
204 => 0.027241520385683
205 => 0.027297913029792
206 => 0.027250150466459
207 => 0.027268050381796
208 => 0.026426337797569
209 => 0.026382690559689
210 => 0.025787557374131
211 => 0.026030078546248
212 => 0.025576696839318
213 => 0.025720468848935
214 => 0.025783842180864
215 => 0.025750739548669
216 => 0.026043790329444
217 => 0.025794637299466
218 => 0.025137081488803
219 => 0.024479346527499
220 => 0.024471089200839
221 => 0.024297919195514
222 => 0.024172748999332
223 => 0.024196861219768
224 => 0.02428183582959
225 => 0.024167810120534
226 => 0.024192143286811
227 => 0.024596235978054
228 => 0.024677273885425
229 => 0.024401875412623
301 => 0.02329611080451
302 => 0.023024753396078
303 => 0.023219799720008
304 => 0.023126580139761
305 => 0.018664955128362
306 => 0.019713147744571
307 => 0.019090347285278
308 => 0.019377362390592
309 => 0.01874164439505
310 => 0.019045042343357
311 => 0.018989015820624
312 => 0.020674478529214
313 => 0.020648162347297
314 => 0.020660758510959
315 => 0.020059510800239
316 => 0.021017314729071
317 => 0.021489163385928
318 => 0.021401836757389
319 => 0.021423814988414
320 => 0.021046156162043
321 => 0.02066441507392
322 => 0.020241005457659
323 => 0.021027648189661
324 => 0.020940186946302
325 => 0.021140791571007
326 => 0.021650985613094
327 => 0.02172611362383
328 => 0.021827086432132
329 => 0.02179089486809
330 => 0.022653124753789
331 => 0.022548703025455
401 => 0.022800329346558
402 => 0.022282714913113
403 => 0.021696985049257
404 => 0.021808313147424
405 => 0.021797591356327
406 => 0.021661090649756
407 => 0.021537863915223
408 => 0.021332726121144
409 => 0.021981812456294
410 => 0.021955460736457
411 => 0.022382064450083
412 => 0.022306658099892
413 => 0.021803076038255
414 => 0.021821061570103
415 => 0.021942022915337
416 => 0.022360671512302
417 => 0.022484954919651
418 => 0.02242738189353
419 => 0.022563652975935
420 => 0.022671356083249
421 => 0.022577178827987
422 => 0.023910530160232
423 => 0.023356829726153
424 => 0.0236266994651
425 => 0.023691061807675
426 => 0.023526199020565
427 => 0.023561951855796
428 => 0.023616107659105
429 => 0.023944931092005
430 => 0.024807858925763
501 => 0.025190043789185
502 => 0.026339865807462
503 => 0.025158308656548
504 => 0.025088199944983
505 => 0.025295317611773
506 => 0.025970384857523
507 => 0.026517463454361
508 => 0.026698960986653
509 => 0.026722948881743
510 => 0.027063450318052
511 => 0.027258619391368
512 => 0.027022104487607
513 => 0.026821682870812
514 => 0.0261037975167
515 => 0.026186894701176
516 => 0.026759351898698
517 => 0.02756798140776
518 => 0.028261869650096
519 => 0.028018894172076
520 => 0.029872625555408
521 => 0.030056415450252
522 => 0.030031021629423
523 => 0.03044972236148
524 => 0.029618686675268
525 => 0.029263402818854
526 => 0.026865016299246
527 => 0.027538865082341
528 => 0.028518343862321
529 => 0.028388706172933
530 => 0.027677382501369
531 => 0.028261330047305
601 => 0.02806825872689
602 => 0.027915975365943
603 => 0.028613614964025
604 => 0.027846531568479
605 => 0.028510691618662
606 => 0.027658899484446
607 => 0.028020004063593
608 => 0.027815023639806
609 => 0.027947671095452
610 => 0.027172216780177
611 => 0.02759063310561
612 => 0.027154809285414
613 => 0.027154602648177
614 => 0.027144981813191
615 => 0.027657726604913
616 => 0.027674447194163
617 => 0.027295528018366
618 => 0.027240919845304
619 => 0.027442834882417
620 => 0.027206445255589
621 => 0.027317050474163
622 => 0.027209795374984
623 => 0.027185649993021
624 => 0.02699325548154
625 => 0.026910366635997
626 => 0.026942869488117
627 => 0.026831920497463
628 => 0.026765069717393
629 => 0.027131683510425
630 => 0.026935816549967
701 => 0.027101664089607
702 => 0.026912659886559
703 => 0.02625748897358
704 => 0.025880693253219
705 => 0.024643136132978
706 => 0.024994105797093
707 => 0.025226799047506
708 => 0.025149893929633
709 => 0.025315115881155
710 => 0.025325259167101
711 => 0.025271543826423
712 => 0.025209348343279
713 => 0.02517907502171
714 => 0.025404707558215
715 => 0.025535694840099
716 => 0.025250152928219
717 => 0.025183254453422
718 => 0.025471953091533
719 => 0.025648059094005
720 => 0.026948326870842
721 => 0.026851998834124
722 => 0.027093763302863
723 => 0.027066544333862
724 => 0.0273199520132
725 => 0.027734166470843
726 => 0.026891952662271
727 => 0.027038131857877
728 => 0.027002292094885
729 => 0.02739358122954
730 => 0.027394802791508
731 => 0.02716020540894
801 => 0.027287384455938
802 => 0.027216396600879
803 => 0.027344681249555
804 => 0.026850712314466
805 => 0.027452313156753
806 => 0.027793382068029
807 => 0.027798117810192
808 => 0.027959781767247
809 => 0.028124041710559
810 => 0.02843932436772
811 => 0.02811524864837
812 => 0.027532267977396
813 => 0.027574357298824
814 => 0.027232555944736
815 => 0.027238301687249
816 => 0.02720763046341
817 => 0.027299677114975
818 => 0.026870911378252
819 => 0.026971541839656
820 => 0.026830658604399
821 => 0.027037825605238
822 => 0.026814948158268
823 => 0.027002274811866
824 => 0.027083118785582
825 => 0.027381434789042
826 => 0.026770886642003
827 => 0.025525937639716
828 => 0.025787641013545
829 => 0.025400561167296
830 => 0.025436386880783
831 => 0.025508760523648
901 => 0.025274173867942
902 => 0.025318925609176
903 => 0.025317326762066
904 => 0.025303548761439
905 => 0.025242523712123
906 => 0.025154025317178
907 => 0.025506575684271
908 => 0.025566480861535
909 => 0.025699642649911
910 => 0.026095841807615
911 => 0.026056252168741
912 => 0.026120824512303
913 => 0.025979863448865
914 => 0.02544292566023
915 => 0.025472083965439
916 => 0.025108479432258
917 => 0.025690344464503
918 => 0.025552551144624
919 => 0.0254637148949
920 => 0.025439475101101
921 => 0.025836656359883
922 => 0.025955499217564
923 => 0.025881444323905
924 => 0.025729555576483
925 => 0.02602122687341
926 => 0.026099265807843
927 => 0.026116735847298
928 => 0.026633521463028
929 => 0.026145618422445
930 => 0.026263061533652
1001 => 0.027179319161679
1002 => 0.026348399927969
1003 => 0.026788556377775
1004 => 0.026767013010021
1005 => 0.026992182155659
1006 => 0.026748542567883
1007 => 0.026751562772573
1008 => 0.026951497719621
1009 => 0.02667072514495
1010 => 0.026601201906948
1011 => 0.026505156051583
1012 => 0.026714868663005
1013 => 0.026840581889067
1014 => 0.027853738164939
1015 => 0.028508283324691
1016 => 0.028479867793066
1017 => 0.028739532560471
1018 => 0.028622551204499
1019 => 0.02824478754794
1020 => 0.028889584046315
1021 => 0.028685543454798
1022 => 0.028702364313253
1023 => 0.028701738240062
1024 => 0.028837407395883
1025 => 0.028741273365088
1026 => 0.028551783322436
1027 => 0.028677575655878
1028 => 0.02905113391462
1029 => 0.030210670211922
1030 => 0.030859562085705
1031 => 0.030171606106348
1101 => 0.030646148928811
1102 => 0.03036159233223
1103 => 0.030309879933805
1104 => 0.030607927894751
1105 => 0.030906497549198
1106 => 0.030887479952961
1107 => 0.030670733715555
1108 => 0.030548299265776
1109 => 0.031475413938051
1110 => 0.032158496235598
1111 => 0.032111914602347
1112 => 0.032317510782357
1113 => 0.032921147525719
1114 => 0.032976336504509
1115 => 0.032969383961686
1116 => 0.032832592319378
1117 => 0.033426951085354
1118 => 0.033922775624678
1119 => 0.032800929006474
1120 => 0.033228113512636
1121 => 0.033419890400477
1122 => 0.033701475769466
1123 => 0.034176557486138
1124 => 0.034692622239647
1125 => 0.034765599454155
1126 => 0.03471381862818
1127 => 0.034373460050676
1128 => 0.034938144261898
1129 => 0.035268923029357
1130 => 0.035465894215641
1201 => 0.035965380371179
1202 => 0.033421074749247
1203 => 0.03162008876985
1204 => 0.031338838802614
1205 => 0.031910771670597
1206 => 0.032061585806805
1207 => 0.032000792817604
1208 => 0.029973619359311
1209 => 0.03132816615389
1210 => 0.032785544611327
1211 => 0.032841528453238
1212 => 0.033571122581377
1213 => 0.033808708336574
1214 => 0.034396127239814
1215 => 0.03435938402748
1216 => 0.034502411182543
1217 => 0.034469531716479
1218 => 0.035557601539089
1219 => 0.03675790413336
1220 => 0.036716341471249
1221 => 0.036543783771987
1222 => 0.036800061380851
1223 => 0.038038902290382
1224 => 0.037924849671453
1225 => 0.038035642075764
1226 => 0.039496305326115
1227 => 0.041395375328496
1228 => 0.040513066648879
1229 => 0.042427422606164
1230 => 0.043632408205627
1231 => 0.04571630620206
]
'min_raw' => 0.018664955128362
'max_raw' => 0.04571630620206
'avg_raw' => 0.032190630665211
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.018664'
'max' => '$0.045716'
'avg' => '$0.03219'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0083225771673793
'max_diff' => 0.018546812626734
'year' => 2028
]
3 => [
'items' => [
101 => 0.045455391909492
102 => 0.046266638107154
103 => 0.044988300871341
104 => 0.042052980183332
105 => 0.041588454448499
106 => 0.042518446733301
107 => 0.044804742018166
108 => 0.042446443158546
109 => 0.042923523946392
110 => 0.042786124647397
111 => 0.042778803222663
112 => 0.043058232226374
113 => 0.042652905882455
114 => 0.041001533440515
115 => 0.041758347699057
116 => 0.041466105368628
117 => 0.041790370022348
118 => 0.043540292621559
119 => 0.042766610127503
120 => 0.041951598468878
121 => 0.04297380395436
122 => 0.044275422805292
123 => 0.044193969836835
124 => 0.044035917033328
125 => 0.044926852411321
126 => 0.046398416636192
127 => 0.046796174532951
128 => 0.047089791280536
129 => 0.047130276069333
130 => 0.047547294555092
131 => 0.045304881054976
201 => 0.048863648868923
202 => 0.049478149761414
203 => 0.049362649062078
204 => 0.050045640941932
205 => 0.049844687405047
206 => 0.049553537258746
207 => 0.050636224664853
208 => 0.049395010922119
209 => 0.047633264278773
210 => 0.046666735226837
211 => 0.047939538650102
212 => 0.048716795285972
213 => 0.049230512479475
214 => 0.049385962991833
215 => 0.045478953231658
216 => 0.043373291663619
217 => 0.044722996587273
218 => 0.046369729745789
219 => 0.045295733369135
220 => 0.045337831993756
221 => 0.043806595401931
222 => 0.046505210207241
223 => 0.04611204472903
224 => 0.048151787925484
225 => 0.047664986841689
226 => 0.049328318236022
227 => 0.048890307335589
228 => 0.050708466094428
301 => 0.051433778848013
302 => 0.052651691847197
303 => 0.053547593607194
304 => 0.054073684256535
305 => 0.054042099747265
306 => 0.056126732997272
307 => 0.054897497601281
308 => 0.053353288235378
309 => 0.053325358359867
310 => 0.054125126272084
311 => 0.05580122041048
312 => 0.056235807234388
313 => 0.056478681981528
314 => 0.056106710851752
315 => 0.054772463929499
316 => 0.054196342873255
317 => 0.054687214705008
318 => 0.054086920635871
319 => 0.05512319661197
320 => 0.056546224863757
321 => 0.056252375157027
322 => 0.057234670670217
323 => 0.058251243185868
324 => 0.059704987540376
325 => 0.060085050146642
326 => 0.060713279182313
327 => 0.061359933222507
328 => 0.061567621072402
329 => 0.061964161619607
330 => 0.061962071655185
331 => 0.063157073284445
401 => 0.064475197087637
402 => 0.064972758308706
403 => 0.066116872900869
404 => 0.064157616756348
405 => 0.065643735048279
406 => 0.066984250947555
407 => 0.065386032629455
408 => 0.067588804243848
409 => 0.067674332874047
410 => 0.068965713645785
411 => 0.067656651835007
412 => 0.066879335110441
413 => 0.069123419368587
414 => 0.070209261053112
415 => 0.069882196700861
416 => 0.067393220831066
417 => 0.065944530117649
418 => 0.062153027089067
419 => 0.066644226207164
420 => 0.068831758287515
421 => 0.067387555651447
422 => 0.068115927456829
423 => 0.072089687851643
424 => 0.073602638528057
425 => 0.073287955363686
426 => 0.073341131638339
427 => 0.074157492361335
428 => 0.077777685385158
429 => 0.075608381809866
430 => 0.077266733110922
501 => 0.078146316661373
502 => 0.078963322882754
503 => 0.076957013820509
504 => 0.07434683520906
505 => 0.073520082074971
506 => 0.067243958161413
507 => 0.066917258655888
508 => 0.066733872323428
509 => 0.065577647437782
510 => 0.064669171394315
511 => 0.063946717514997
512 => 0.062050782792676
513 => 0.062690605105712
514 => 0.059668880870662
515 => 0.061602072952916
516 => 0.056779328111693
517 => 0.0607958533241
518 => 0.058609841259979
519 => 0.06007768956843
520 => 0.060072568383962
521 => 0.057369794266372
522 => 0.055810890560804
523 => 0.056804284675432
524 => 0.057869282022036
525 => 0.058042074258442
526 => 0.059422871117589
527 => 0.059808221840848
528 => 0.058640591159069
529 => 0.056679387444433
530 => 0.057134930337048
531 => 0.055801658998625
601 => 0.053465152261579
602 => 0.055143272191619
603 => 0.05571625611746
604 => 0.055969318461285
605 => 0.053671632435012
606 => 0.052949649600367
607 => 0.052565271997224
608 => 0.056382785031546
609 => 0.056591917013115
610 => 0.055521968227128
611 => 0.060358238196497
612 => 0.059263641353657
613 => 0.060486574209847
614 => 0.057093594594318
615 => 0.057223210984884
616 => 0.055616920059983
617 => 0.056516335645529
618 => 0.055880657699183
619 => 0.056443671754415
620 => 0.056781140057728
621 => 0.058387167406094
622 => 0.060814191576621
623 => 0.058147280476541
624 => 0.056985269119365
625 => 0.057706174429957
626 => 0.059626040271854
627 => 0.062534735298451
628 => 0.060812729299762
629 => 0.061576926320422
630 => 0.061743869372677
701 => 0.060474125901372
702 => 0.062581552551381
703 => 0.063710939613825
704 => 0.064869457046169
705 => 0.065875365271752
706 => 0.064406719707346
707 => 0.065978380983332
708 => 0.06471189943045
709 => 0.063575734551058
710 => 0.063577457644192
711 => 0.062864724818629
712 => 0.061483715158986
713 => 0.061229035789258
714 => 0.062553910033041
715 => 0.063616333710496
716 => 0.063703840013238
717 => 0.064292052350377
718 => 0.064640150352426
719 => 0.068051983988802
720 => 0.06942425170152
721 => 0.071102234684934
722 => 0.071755903622912
723 => 0.073723212772944
724 => 0.072134450857256
725 => 0.071790712223016
726 => 0.067018663726958
727 => 0.067800086400853
728 => 0.069051219497831
729 => 0.067039294450906
730 => 0.06831539781187
731 => 0.068567327646889
801 => 0.066970930007685
802 => 0.067823634963054
803 => 0.065559103410993
804 => 0.060863552176205
805 => 0.0625867800422
806 => 0.0638556557838
807 => 0.062044813649286
808 => 0.065290678086134
809 => 0.06339451109037
810 => 0.06279351718478
811 => 0.060448825689277
812 => 0.061555429819702
813 => 0.063052127751147
814 => 0.062127342439325
815 => 0.06404641081857
816 => 0.066764323440424
817 => 0.068701269829252
818 => 0.068849964521827
819 => 0.06760463775914
820 => 0.069600281843915
821 => 0.069614817932378
822 => 0.067363723252307
823 => 0.065984940294911
824 => 0.065671677906006
825 => 0.066454268772199
826 => 0.067404478558
827 => 0.068902694551815
828 => 0.069808035098928
829 => 0.072168683090275
830 => 0.072807406751652
831 => 0.073509170406591
901 => 0.074446943065485
902 => 0.075572979582462
903 => 0.073109275788611
904 => 0.073207163333259
905 => 0.070912996472725
906 => 0.068461350165437
907 => 0.070321844110642
908 => 0.07275419245286
909 => 0.072196209055649
910 => 0.072133424524897
911 => 0.072239010690646
912 => 0.071818309431183
913 => 0.069915493226549
914 => 0.068959910840841
915 => 0.07019285591347
916 => 0.070848111347501
917 => 0.071864355381404
918 => 0.071739081853916
919 => 0.074356817348608
920 => 0.075373990205632
921 => 0.075113753861525
922 => 0.075161643611778
923 => 0.077003186482913
924 => 0.079051360897792
925 => 0.080969746517745
926 => 0.08292121076694
927 => 0.080568644447589
928 => 0.079374156356742
929 => 0.080606563164122
930 => 0.079952630764744
1001 => 0.08371032030052
1002 => 0.083970494571034
1003 => 0.087727912383085
1004 => 0.091294149311713
1005 => 0.089054259792613
1006 => 0.091166374722284
1007 => 0.093450799221981
1008 => 0.097857824716413
1009 => 0.096373693570914
1010 => 0.095236872372762
1011 => 0.094162581833589
1012 => 0.096398009906788
1013 => 0.099273852411124
1014 => 0.09989328134208
1015 => 0.10089699285029
1016 => 0.099841712927411
1017 => 0.10111268135925
1018 => 0.10559975841548
1019 => 0.10438731058636
1020 => 0.1026654397583
1021 => 0.10620755615073
1022 => 0.10748943430353
1023 => 0.11648632650462
1024 => 0.12784527455158
1025 => 0.12314259547327
1026 => 0.12022349081485
1027 => 0.12090954965167
1028 => 0.12505745295376
1029 => 0.12638962784652
1030 => 0.12276831725977
1031 => 0.12404742537957
1101 => 0.13109543687877
1102 => 0.13487646892081
1103 => 0.12974131954737
1104 => 0.11557364608901
1105 => 0.10251040412963
1106 => 0.10597536414271
1107 => 0.10558254520746
1108 => 0.11315475430601
1109 => 0.10435839410662
1110 => 0.10450650225286
1111 => 0.11223529661646
1112 => 0.11017338678533
1113 => 0.10683335692836
1114 => 0.10253479004389
1115 => 0.094588491588624
1116 => 0.087550233447873
1117 => 0.10135387847593
1118 => 0.10075864020202
1119 => 0.099896646972032
1120 => 0.10181491962797
1121 => 0.111129507134
1122 => 0.11091477574361
1123 => 0.10954876419485
1124 => 0.11058487191511
1125 => 0.10665172223549
1126 => 0.10766538446408
1127 => 0.10250833484536
1128 => 0.10483953665044
1129 => 0.10682619072437
1130 => 0.10722504094263
1201 => 0.10812367085016
1202 => 0.10044497667951
1203 => 0.10389248492751
1204 => 0.10591757303538
1205 => 0.09676815129071
1206 => 0.10573671838512
1207 => 0.10031130769755
1208 => 0.098469841823255
1209 => 0.10094913302831
1210 => 0.099982950834512
1211 => 0.099152284120404
1212 => 0.098688757821266
1213 => 0.10050927565288
1214 => 0.10042434632004
1215 => 0.097445625800244
1216 => 0.093560006310349
1217 => 0.09486414775227
1218 => 0.094390340940029
1219 => 0.092673203930172
1220 => 0.093830346946902
1221 => 0.088734874717902
1222 => 0.079968379587508
1223 => 0.085759794795654
1224 => 0.085536831609988
1225 => 0.0854244034612
1226 => 0.089776491927163
1227 => 0.089358139040925
1228 => 0.088598824455879
1229 => 0.092659258522356
1230 => 0.091177145467547
1231 => 0.095744668672715
]
'min_raw' => 0.041001533440515
'max_raw' => 0.13487646892081
'avg_raw' => 0.087939001180664
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0410015'
'max' => '$0.134876'
'avg' => '$0.087939'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.022336578312152
'max_diff' => 0.089160162718753
'year' => 2029
]
4 => [
'items' => [
101 => 0.098753134864518
102 => 0.097990090524591
103 => 0.10081956751916
104 => 0.094894192537096
105 => 0.096862364421356
106 => 0.097268001918934
107 => 0.092609153396261
108 => 0.089426586746971
109 => 0.089214345835379
110 => 0.083696213850209
111 => 0.086643955415882
112 => 0.089237846007839
113 => 0.087995573708333
114 => 0.087602307410139
115 => 0.08961141963856
116 => 0.089767544865591
117 => 0.086207873143876
118 => 0.086948041614964
119 => 0.090034667182168
120 => 0.086870266570135
121 => 0.080722353082861
122 => 0.079197585536462
123 => 0.078994153438731
124 => 0.07485886292206
125 => 0.079299477794873
126 => 0.07736103040181
127 => 0.083484562490328
128 => 0.079986833802528
129 => 0.079836053709619
130 => 0.079608127484556
131 => 0.076048712110157
201 => 0.076827997864502
202 => 0.079418462400518
203 => 0.080342769330641
204 => 0.080246356545205
205 => 0.079405767711069
206 => 0.079790584974825
207 => 0.078550954489043
208 => 0.078113215163836
209 => 0.076731589443796
210 => 0.074700981319184
211 => 0.074983349833354
212 => 0.070960183800978
213 => 0.068768149420958
214 => 0.068161423195117
215 => 0.067350083529088
216 => 0.068253066169287
217 => 0.070948786677093
218 => 0.06769717581567
219 => 0.062122517067743
220 => 0.062457563557249
221 => 0.063210313542975
222 => 0.061807568924514
223 => 0.060479988866573
224 => 0.061634212016978
225 => 0.059272155616054
226 => 0.063495756774169
227 => 0.063381520199348
228 => 0.06495581752535
301 => 0.065940257951132
302 => 0.063671441486076
303 => 0.063100840280647
304 => 0.063425880659638
305 => 0.058053687231301
306 => 0.064516794709957
307 => 0.064572687931819
308 => 0.064094096232479
309 => 0.067535501438807
310 => 0.07479793982536
311 => 0.072065518373431
312 => 0.071007442199369
313 => 0.068996038619027
314 => 0.071676114464505
315 => 0.071470326455269
316 => 0.070539675034716
317 => 0.069976814151756
318 => 0.071013902586866
319 => 0.069848307417697
320 => 0.069638934496901
321 => 0.068370362396861
322 => 0.0679175398735
323 => 0.067582288104587
324 => 0.067213208848173
325 => 0.068027305719002
326 => 0.06618245510634
327 => 0.063957746120405
328 => 0.063772785639909
329 => 0.064283477788449
330 => 0.064057534529279
331 => 0.063771703910511
401 => 0.063225975417944
402 => 0.063064069431844
403 => 0.063590185341052
404 => 0.06299623115402
405 => 0.063872642911344
406 => 0.063634307407426
407 => 0.062302984656742
408 => 0.060643663590577
409 => 0.060628892152545
410 => 0.060271394150671
411 => 0.059816066695101
412 => 0.059689405013443
413 => 0.061537006562641
414 => 0.065361486475421
415 => 0.064610649556494
416 => 0.065153206179281
417 => 0.067822047775366
418 => 0.068670392263895
419 => 0.068068257440078
420 => 0.067244018155178
421 => 0.067280280500629
422 => 0.07009695565133
423 => 0.070272628225475
424 => 0.07071649614622
425 => 0.071286991861436
426 => 0.068165415327272
427 => 0.067133254526588
428 => 0.066644159477123
429 => 0.065137936028376
430 => 0.066762268884011
501 => 0.0658158396899
502 => 0.065943545322811
503 => 0.065860376861845
504 => 0.065905792465359
505 => 0.063494576191568
506 => 0.064373096671941
507 => 0.062912385981472
508 => 0.060956658339403
509 => 0.060950102054581
510 => 0.061428763624299
511 => 0.061144036992601
512 => 0.060377844947694
513 => 0.060486678911348
514 => 0.059533178869255
515 => 0.060602451080134
516 => 0.060633113981102
517 => 0.060221385936263
518 => 0.061868747308252
519 => 0.062543672606476
520 => 0.062272664387293
521 => 0.062524657947365
522 => 0.064641850220301
523 => 0.064987044940364
524 => 0.065140357632733
525 => 0.064934938934998
526 => 0.06256335633553
527 => 0.062668546108564
528 => 0.061896733348549
529 => 0.061244632897962
530 => 0.061270713496169
531 => 0.061605977894896
601 => 0.063070097187133
602 => 0.066151249923099
603 => 0.066268177417136
604 => 0.066409896950924
605 => 0.065833452384477
606 => 0.065659591187405
607 => 0.065888958983726
608 => 0.06704607795204
609 => 0.07002250209328
610 => 0.068970435013082
611 => 0.06811508810048
612 => 0.068865457942703
613 => 0.068749944387086
614 => 0.067774893728945
615 => 0.067747527304478
616 => 0.065876093348953
617 => 0.065184266826085
618 => 0.064606124801258
619 => 0.063974808802927
620 => 0.063600543517213
621 => 0.064175585096601
622 => 0.064307103909499
623 => 0.063049765446161
624 => 0.062878394859633
625 => 0.06390516459033
626 => 0.063453321513684
627 => 0.063918053323184
628 => 0.064025875089384
629 => 0.06400851330168
630 => 0.063536737235814
701 => 0.063837433231632
702 => 0.063126197559732
703 => 0.062352835590685
704 => 0.061859478836586
705 => 0.061428959634358
706 => 0.061667836709677
707 => 0.060816283553394
708 => 0.060543854560321
709 => 0.063735564194123
710 => 0.066093314417274
711 => 0.066059031795257
712 => 0.065850345150508
713 => 0.065540279126952
714 => 0.067023394691135
715 => 0.066506706884405
716 => 0.066882640434512
717 => 0.066978331300896
718 => 0.067267958733194
719 => 0.067371475645921
720 => 0.06705857563854
721 => 0.066008444996251
722 => 0.063391619279093
723 => 0.062173479843769
724 => 0.061771473540396
725 => 0.061786085706005
726 => 0.061383016946929
727 => 0.061501738760752
728 => 0.061341730345086
729 => 0.06103871311601
730 => 0.061649126249662
731 => 0.061719470676923
801 => 0.061576992957635
802 => 0.061610551618296
803 => 0.060430896955621
804 => 0.060520583537549
805 => 0.060021197252554
806 => 0.059927568344309
807 => 0.05866516330238
808 => 0.056428629782067
809 => 0.057667886457882
810 => 0.056171038659356
811 => 0.055604159717108
812 => 0.058287676461944
813 => 0.058018325809931
814 => 0.057557314577599
815 => 0.05687538288182
816 => 0.05662244778245
817 => 0.055085694188202
818 => 0.054994894587592
819 => 0.055756551164739
820 => 0.055405072861388
821 => 0.054911464208241
822 => 0.05312366370285
823 => 0.051113584014384
824 => 0.051174255685268
825 => 0.051813624635307
826 => 0.053672676088195
827 => 0.052946312523635
828 => 0.052419327423485
829 => 0.052320638955341
830 => 0.053555931752467
831 => 0.055304129862243
901 => 0.056124345301622
902 => 0.055311536711511
903 => 0.054377825967914
904 => 0.054434656614478
905 => 0.054812725445488
906 => 0.054852455134022
907 => 0.054244705426955
908 => 0.05441578340958
909 => 0.054155900310274
910 => 0.052560998209541
911 => 0.052532151488028
912 => 0.052140736791238
913 => 0.052128884909777
914 => 0.051462990867564
915 => 0.051369827687951
916 => 0.050047654650258
917 => 0.050917912947576
918 => 0.050334189372346
919 => 0.049454380258004
920 => 0.049302700835071
921 => 0.04929814116846
922 => 0.050201508407171
923 => 0.050907356575425
924 => 0.050344343493851
925 => 0.050216156328727
926 => 0.051584859887284
927 => 0.051410679883448
928 => 0.051259841123466
929 => 0.055147597895917
930 => 0.052070135045078
1001 => 0.050728185586674
1002 => 0.049067268302608
1003 => 0.049608071345371
1004 => 0.049722026492532
1005 => 0.045727819827196
1006 => 0.044107370680516
1007 => 0.043551293598713
1008 => 0.04323126337636
1009 => 0.043377105167373
1010 => 0.041918510875634
1011 => 0.042898710362605
1012 => 0.041635690997865
1013 => 0.041423941691146
1014 => 0.043682376773377
1015 => 0.043996624821483
1016 => 0.042655945019047
1017 => 0.043516878488555
1018 => 0.043204692044641
1019 => 0.041657341839788
1020 => 0.041598244443501
1021 => 0.040821838502695
1022 => 0.03960691354715
1023 => 0.039051660241677
1024 => 0.038762479499256
1025 => 0.038881801109599
1026 => 0.038821468452108
1027 => 0.038427757051398
1028 => 0.038844035528735
1029 => 0.037780616037281
1030 => 0.037357153827231
1031 => 0.0371658857712
1101 => 0.036222039764392
1102 => 0.037724118491447
1103 => 0.038020046923367
1104 => 0.038316558425713
1105 => 0.040897488616643
1106 => 0.040768552637937
1107 => 0.041934071091069
1108 => 0.041888781187232
1109 => 0.041556356444251
1110 => 0.040153911134833
1111 => 0.040712900838983
1112 => 0.038992417415896
1113 => 0.040281520577974
1114 => 0.039693227729036
1115 => 0.040082618173979
1116 => 0.039382459044052
1117 => 0.039769956015415
1118 => 0.038090222532796
1119 => 0.036521711041213
1120 => 0.037152925853131
1121 => 0.037839128541855
1122 => 0.039326990812202
1123 => 0.03844083231858
1124 => 0.038759528422249
1125 => 0.037691949824042
1126 => 0.035489230237191
1127 => 0.035501697390838
1128 => 0.035162856971255
1129 => 0.034870049377225
1130 => 0.038542618281532
1201 => 0.038085876283559
1202 => 0.037358117686703
1203 => 0.038332251488572
1204 => 0.038589827927368
1205 => 0.038597160766471
1206 => 0.039307863642282
1207 => 0.039687165894502
1208 => 0.039754019560446
1209 => 0.040872325891286
1210 => 0.041247167422567
1211 => 0.042791086640351
1212 => 0.039654984748439
1213 => 0.039590398793744
1214 => 0.038345959548863
1215 => 0.037556716505954
1216 => 0.038399999695238
1217 => 0.039147033481309
1218 => 0.038369171970945
1219 => 0.038470744262646
1220 => 0.037426528738602
1221 => 0.037799786653541
1222 => 0.038121286653157
1223 => 0.037943773250265
1224 => 0.037678027094391
1225 => 0.039085785229912
1226 => 0.039006353998858
1227 => 0.040317290738875
1228 => 0.041339259673704
1229 => 0.043170810703716
1230 => 0.041259491722984
1231 => 0.041189835662521
]
'min_raw' => 0.034870049377225
'max_raw' => 0.10081956751916
'avg_raw' => 0.067844808448193
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.03487'
'max' => '$0.100819'
'avg' => '$0.067844'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0061314840632898
'max_diff' => -0.034056901401652
'year' => 2030
]
5 => [
'items' => [
101 => 0.041870734826728
102 => 0.041247063180452
103 => 0.041641202132485
104 => 0.043107308825179
105 => 0.043138285349335
106 => 0.042619388658726
107 => 0.042587813747945
108 => 0.042687473533484
109 => 0.043271184010205
110 => 0.043067217634028
111 => 0.043303252688337
112 => 0.043598418138048
113 => 0.044819347585609
114 => 0.045113709541979
115 => 0.044398562597176
116 => 0.044463132359131
117 => 0.044195647770552
118 => 0.043937261009557
119 => 0.044518076713918
120 => 0.045579528829599
121 => 0.045572925591077
122 => 0.045819161850234
123 => 0.045972564999758
124 => 0.045314046384034
125 => 0.044885374979598
126 => 0.045049754873129
127 => 0.045312601902613
128 => 0.044964517124031
129 => 0.042815976622067
130 => 0.043467706561064
131 => 0.043359226831249
201 => 0.043204738504407
202 => 0.043860057997747
203 => 0.043796850833952
204 => 0.041903550882954
205 => 0.04202475380302
206 => 0.04191092163396
207 => 0.042278736660065
208 => 0.041227199961977
209 => 0.041550645568101
210 => 0.041753507620147
211 => 0.041872994927263
212 => 0.042304665013777
213 => 0.042254013511442
214 => 0.042301516445274
215 => 0.042941569226896
216 => 0.046178736556752
217 => 0.046354928432109
218 => 0.0454872951987
219 => 0.045833897562138
220 => 0.045168496817942
221 => 0.045615184795319
222 => 0.045920797364795
223 => 0.044539792929248
224 => 0.04445801880922
225 => 0.043789871719456
226 => 0.044148896119709
227 => 0.043577662484138
228 => 0.043717823237403
301 => 0.04332592155228
302 => 0.044031266558655
303 => 0.044819951875315
304 => 0.04501920493243
305 => 0.044495055922994
306 => 0.04411553749706
307 => 0.04344922816226
308 => 0.044557315435704
309 => 0.044881353922807
310 => 0.044555613399479
311 => 0.044480132202652
312 => 0.044337095471059
313 => 0.044510478121438
314 => 0.044879589139615
315 => 0.044705523199853
316 => 0.044820496819713
317 => 0.044382335941089
318 => 0.045314264381096
319 => 0.046794391024621
320 => 0.046799149873805
321 => 0.046625082995763
322 => 0.046553858579591
323 => 0.046732461759724
324 => 0.04682934665826
325 => 0.047406916592587
326 => 0.048026672143521
327 => 0.050918800879199
328 => 0.050106702703261
329 => 0.052672771371063
330 => 0.054702198524981
331 => 0.055310734992347
401 => 0.054750910076224
402 => 0.052835779279314
403 => 0.052741813825803
404 => 0.055603827783753
405 => 0.054795177752089
406 => 0.054698991403925
407 => 0.053675731168866
408 => 0.054280604701032
409 => 0.054148309986588
410 => 0.053939476307759
411 => 0.055093532871275
412 => 0.057253823734837
413 => 0.056917122144672
414 => 0.056665790026751
415 => 0.055564525847699
416 => 0.056227732859747
417 => 0.05599157754565
418 => 0.057006250642876
419 => 0.056405180777841
420 => 0.05478905143277
421 => 0.055046425357804
422 => 0.0550075238068
423 => 0.055808114969879
424 => 0.055567797374617
425 => 0.054960597939365
426 => 0.057246440095519
427 => 0.057098010220421
428 => 0.057308449847517
429 => 0.057401091879427
430 => 0.058792443718821
501 => 0.059362436049128
502 => 0.059491834287228
503 => 0.06003328291623
504 => 0.05947836255209
505 => 0.061698439660166
506 => 0.063174661391947
507 => 0.064889368899085
508 => 0.067395017436943
509 => 0.068337164465722
510 => 0.068166974037804
511 => 0.070066728162636
512 => 0.073480544095798
513 => 0.068857003842629
514 => 0.073725602956049
515 => 0.07218426068742
516 => 0.068529765896064
517 => 0.068294459515164
518 => 0.070769325817427
519 => 0.076258341078793
520 => 0.074883405011716
521 => 0.076260589981641
522 => 0.074654030560737
523 => 0.074574251344343
524 => 0.076182562976476
525 => 0.079940470769455
526 => 0.078155229640078
527 => 0.075595648722031
528 => 0.077485603440427
529 => 0.075848349756301
530 => 0.072159158967512
531 => 0.074882353624018
601 => 0.073061430909331
602 => 0.073592872963053
603 => 0.077420181667513
604 => 0.076959669758389
605 => 0.07755561481105
606 => 0.076503787391702
607 => 0.075521214724071
608 => 0.073687169873133
609 => 0.073144199610089
610 => 0.073294257056771
611 => 0.073144125249071
612 => 0.072117994010714
613 => 0.071896401067489
614 => 0.071527069787239
615 => 0.071641540994456
616 => 0.070947090135908
617 => 0.072257662386856
618 => 0.072500916145355
619 => 0.07345464133694
620 => 0.073553660250192
621 => 0.076209771333326
622 => 0.074746829982869
623 => 0.075728297345035
624 => 0.075640505666234
625 => 0.06860896987959
626 => 0.069577853471224
627 => 0.071085132287386
628 => 0.070406105223773
629 => 0.069446119823687
630 => 0.068670880141957
701 => 0.067496312751808
702 => 0.069149493797874
703 => 0.071323251077246
704 => 0.073608790322042
705 => 0.076354715970202
706 => 0.075741857331631
707 => 0.073557457152076
708 => 0.073655447748426
709 => 0.07426118705718
710 => 0.073476699615124
711 => 0.073245338953447
712 => 0.07422940165505
713 => 0.074236178354045
714 => 0.073333530743485
715 => 0.072330403107116
716 => 0.072326199965692
717 => 0.072147703091864
718 => 0.074685784758058
719 => 0.076081473045465
720 => 0.076241486458352
721 => 0.076070702867858
722 => 0.076136430693681
723 => 0.075324310431132
724 => 0.077180576524536
725 => 0.078884069857534
726 => 0.078427497254464
727 => 0.077743030016842
728 => 0.077197818893667
729 => 0.078299062840903
730 => 0.078250026181451
731 => 0.078869191329366
801 => 0.078841102421785
802 => 0.07863290047052
803 => 0.078427504690011
804 => 0.079241875742844
805 => 0.079007349958027
806 => 0.078772459889889
807 => 0.078301351898367
808 => 0.07836538329869
809 => 0.077681034243986
810 => 0.077364423057598
811 => 0.072603350470781
812 => 0.071331036303048
813 => 0.07173133224056
814 => 0.071863120056868
815 => 0.071309407300556
816 => 0.072103289155971
817 => 0.071979563509734
818 => 0.072460907622162
819 => 0.072160184718249
820 => 0.072172526491122
821 => 0.073056888430647
822 => 0.073313622464035
823 => 0.073183045462556
824 => 0.073274497118475
825 => 0.075381961929782
826 => 0.075082347826545
827 => 0.074923183805731
828 => 0.074967273327243
829 => 0.075505775771087
830 => 0.07565652705422
831 => 0.075017783274481
901 => 0.07531901853354
902 => 0.076601640034166
903 => 0.077050484969295
904 => 0.078482982544437
905 => 0.077874432113903
906 => 0.078991452766594
907 => 0.082424793432564
908 => 0.085167583525644
909 => 0.082645200405453
910 => 0.087681985119183
911 => 0.091603844502676
912 => 0.091453317007339
913 => 0.090769450109585
914 => 0.086304517469504
915 => 0.082195819885706
916 => 0.085632919879068
917 => 0.085641681753797
918 => 0.085346431816154
919 => 0.083512659810769
920 => 0.085282620525298
921 => 0.085423113579264
922 => 0.085344474829161
923 => 0.083938526132138
924 => 0.081791902334537
925 => 0.082211347486297
926 => 0.082898407201329
927 => 0.081597659825101
928 => 0.081181992223334
929 => 0.081954797379017
930 => 0.084444936610975
1001 => 0.083974190213567
1002 => 0.083961897122696
1003 => 0.085975949838344
1004 => 0.084534322753719
1005 => 0.08221663803291
1006 => 0.0816313920744
1007 => 0.079554163190605
1008 => 0.080988912579477
1009 => 0.081040546655748
1010 => 0.080254749078246
1011 => 0.082280401175546
1012 => 0.082261734434861
1013 => 0.084184789622721
1014 => 0.087860948875367
1015 => 0.086773727691549
1016 => 0.085509407744098
1017 => 0.085646874378175
1018 => 0.087154544057442
1019 => 0.086242972552606
1020 => 0.086570780021447
1021 => 0.087154047881577
1022 => 0.087505947863319
1023 => 0.085596241386236
1024 => 0.085150997454608
1025 => 0.084240184629881
1026 => 0.084002570565036
1027 => 0.084744408606043
1028 => 0.084548960491762
1029 => 0.081036207011574
1030 => 0.080669104728119
1031 => 0.080680363231051
1101 => 0.07975726708454
1102 => 0.078349323892651
1103 => 0.082049314537016
1104 => 0.081752153506938
1105 => 0.081424110728168
1106 => 0.081464294096781
1107 => 0.083070334631182
1108 => 0.082138750014238
1109 => 0.084615520402099
1110 => 0.084106370868888
1111 => 0.083584163571347
1112 => 0.083511978616003
1113 => 0.083310973359083
1114 => 0.082621651542341
1115 => 0.081789254026806
1116 => 0.081239633086012
1117 => 0.074939267211089
1118 => 0.076108578469933
1119 => 0.077453764487157
1120 => 0.077918117309808
1121 => 0.077123809674426
1122 => 0.082653015649148
1123 => 0.083663254861484
1124 => 0.080603174391045
1125 => 0.080030758277288
1126 => 0.082690543154269
1127 => 0.081086367727972
1128 => 0.081808727824208
1129 => 0.080247380405993
1130 => 0.08341991781849
1201 => 0.08339574839886
1202 => 0.082161559690392
1203 => 0.08320468753543
1204 => 0.083023418402239
1205 => 0.08163002239005
1206 => 0.083464090957431
1207 => 0.083465000632559
1208 => 0.082277120834234
1209 => 0.080889937290116
1210 => 0.080641941636241
1211 => 0.080455110224574
1212 => 0.081762778749912
1213 => 0.082935230260757
1214 => 0.085116871847061
1215 => 0.085665388376383
1216 => 0.087806284907141
1217 => 0.086531485261435
1218 => 0.087096587432957
1219 => 0.087710085778727
1220 => 0.088004219446344
1221 => 0.087524944419045
1222 => 0.090850637959481
1223 => 0.091131428390911
1224 => 0.091225574993741
1225 => 0.09010416984371
1226 => 0.091100240085081
1227 => 0.090634211805523
1228 => 0.091846687922549
1229 => 0.092036819659371
1230 => 0.091875784842415
1231 => 0.091936135656708
]
'min_raw' => 0.041227199961977
'max_raw' => 0.092036819659371
'avg_raw' => 0.066632009810674
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.041227'
'max' => '$0.092036'
'avg' => '$0.066632'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0063571505847517
'max_diff' => -0.00878274785979
'year' => 2031
]
6 => [
'items' => [
101 => 0.089098242912489
102 => 0.088951083202625
103 => 0.086944550116645
104 => 0.087762227180725
105 => 0.086233619101708
106 => 0.086718356469973
107 => 0.086932024083156
108 => 0.086820416247559
109 => 0.087808457415096
110 => 0.086968420579215
111 => 0.084751425254483
112 => 0.082533825910858
113 => 0.082505985757516
114 => 0.081922130994219
115 => 0.081500110938689
116 => 0.08158140697335
117 => 0.081867904803103
118 => 0.081483459163999
119 => 0.081565500132991
120 => 0.082927926854366
121 => 0.083201151816955
122 => 0.082272626638194
123 => 0.078544464059921
124 => 0.077629563611825
125 => 0.078287175910652
126 => 0.077972879587469
127 => 0.062930199360826
128 => 0.066464253948846
129 => 0.064364438717799
130 => 0.065332130184119
131 => 0.063188762577737
201 => 0.064211689943024
202 => 0.064022792609982
203 => 0.06970544780724
204 => 0.069616720962572
205 => 0.069659189807794
206 => 0.067632041173328
207 => 0.070861343991117
208 => 0.072452214681133
209 => 0.072157786856063
210 => 0.072231887996435
211 => 0.070958584896028
212 => 0.069671518165109
213 => 0.06824396308237
214 => 0.070896183974958
215 => 0.070601302286623
216 => 0.071277654784581
217 => 0.072997809618089
218 => 0.073251108951556
219 => 0.073591545824444
220 => 0.07346952343946
221 => 0.076376591698063
222 => 0.076024526550493
223 => 0.076872902260082
224 => 0.075127729059036
225 => 0.073152899928692
226 => 0.073528250384342
227 => 0.073492101117085
228 => 0.073031879454708
229 => 0.072616411915815
301 => 0.071924775520811
302 => 0.07411321541753
303 => 0.074024368754284
304 => 0.075462692959292
305 => 0.075208455184921
306 => 0.073510593105134
307 => 0.073571232581471
308 => 0.073979062202177
309 => 0.075390565175956
310 => 0.075809595361025
311 => 0.075615483883835
312 => 0.076074931352309
313 => 0.076438059898207
314 => 0.076120534706848
315 => 0.080616021815128
316 => 0.078749182143502
317 => 0.079659066810066
318 => 0.07987606894169
319 => 0.079320222544599
320 => 0.079440765724761
321 => 0.079623355796655
322 => 0.080732006958398
323 => 0.083641428397609
324 => 0.084929991347934
325 => 0.088806696560562
326 => 0.084822994132571
327 => 0.084586617716694
328 => 0.08528492939077
329 => 0.087560965741506
330 => 0.089405479426553
331 => 0.09001741102843
401 => 0.090098287891508
402 => 0.091246312257074
403 => 0.09190433841403
404 => 0.091106911903056
405 => 0.090431176429042
406 => 0.088010775836497
407 => 0.088290943795617
408 => 0.09022102320475
409 => 0.09294737405126
410 => 0.095286866706026
411 => 0.094467657917877
412 => 0.10071764270017
413 => 0.10133730316244
414 => 0.10125168612257
415 => 0.10266336487346
416 => 0.099861470036332
417 => 0.098663605709306
418 => 0.090577278108447
419 => 0.092849206327272
420 => 0.096151587419
421 => 0.095714504898216
422 => 0.093316227476504
423 => 0.095285047397542
424 => 0.094634093960956
425 => 0.094120659977437
426 => 0.096472800590011
427 => 0.093886525365875
428 => 0.096125787345242
429 => 0.093253910694505
430 => 0.094471399994617
501 => 0.093780294184542
502 => 0.094227524342403
503 => 0.091613025977961
504 => 0.093023745832054
505 => 0.091554335394015
506 => 0.091553638702144
507 => 0.091521201385282
508 => 0.093249956249272
509 => 0.093306330883322
510 => 0.09202877842683
511 => 0.09184466315873
512 => 0.092525433803616
513 => 0.091728429672568
514 => 0.092101342889201
515 => 0.091739724834008
516 => 0.091658316992942
517 => 0.091009645464928
518 => 0.090730179935064
519 => 0.090839765570263
520 => 0.090465693302062
521 => 0.090240301229685
522 => 0.091476365229051
523 => 0.090815986096869
524 => 0.091375152655874
525 => 0.090737911789442
526 => 0.088528957313762
527 => 0.087258564235528
528 => 0.083086054001156
529 => 0.084269372727641
530 => 0.085053914267533
531 => 0.084794623293279
601 => 0.085351680638263
602 => 0.085385879435013
603 => 0.085204774413631
604 => 0.084995077999861
605 => 0.084893009382577
606 => 0.085653745232564
607 => 0.086095377998673
608 => 0.085132653506872
609 => 0.084907100628391
610 => 0.085880468243077
611 => 0.086474221925739
612 => 0.090858165517144
613 => 0.090533388815941
614 => 0.091348514601751
615 => 0.091256743947393
616 => 0.092111125630643
617 => 0.093507678594116
618 => 0.090668095937026
619 => 0.091160949300916
620 => 0.091040113037736
621 => 0.092359371674161
622 => 0.092363490255622
623 => 0.091572528801229
624 => 0.09200132183754
625 => 0.091761981327993
626 => 0.092194501977554
627 => 0.09052905122509
628 => 0.092557390467292
629 => 0.093707328114327
630 => 0.093723294999672
701 => 0.094268356317897
702 => 0.094822170185037
703 => 0.095885167675988
704 => 0.094792523761957
705 => 0.092826963727355
706 => 0.092968870813133
707 => 0.091816463684016
708 => 0.091835835856056
709 => 0.091732425683483
710 => 0.092042767395729
711 => 0.090597153778899
712 => 0.090936436405318
713 => 0.090461438741495
714 => 0.09115991674876
715 => 0.090408469875494
716 => 0.091040054766831
717 => 0.091312625868561
718 => 0.092318419101983
719 => 0.090259913397132
720 => 0.086062480916358
721 => 0.086944832112767
722 => 0.085639765386088
723 => 0.085760554280381
724 => 0.086004567070264
725 => 0.085213641782237
726 => 0.085364525402272
727 => 0.085359134777613
728 => 0.08531268128655
729 => 0.08510693107215
730 => 0.084808552554831
731 => 0.085997200731765
801 => 0.086199175219357
802 => 0.086648139485926
803 => 0.087983952607866
804 => 0.087850473376342
805 => 0.088068183540958
806 => 0.087592923473991
807 => 0.085782600231809
808 => 0.085880909493588
809 => 0.084654991423913
810 => 0.086616790004645
811 => 0.086152210206252
812 => 0.085852692587957
813 => 0.085770966430794
814 => 0.087110090775088
815 => 0.087510777767103
816 => 0.087261096522783
817 => 0.086748993006317
818 => 0.087732383147745
819 => 0.087995496863692
820 => 0.088054398321432
821 => 0.089796777105687
822 => 0.088151777940058
823 => 0.088547745589111
824 => 0.091636972153066
825 => 0.088835469943684
826 => 0.090319488144948
827 => 0.090246853176454
828 => 0.091006026671783
829 => 0.090184578791223
830 => 0.090194761622199
831 => 0.090868856255184
901 => 0.089922211916765
902 => 0.089687809465883
903 => 0.089363984158811
904 => 0.09007104486989
905 => 0.090494895788576
906 => 0.093910822908988
907 => 0.096117667613977
908 => 0.096021862665195
909 => 0.096897340557717
910 => 0.096502929748677
911 => 0.095229273205974
912 => 0.0974032496185
913 => 0.09671531251854
914 => 0.096772025217217
915 => 0.09676991436774
916 => 0.097227332398708
917 => 0.09690320980202
918 => 0.096264330893446
919 => 0.096688448528188
920 => 0.097947926278541
921 => 0.10185738386113
922 => 0.10404516811778
923 => 0.10172567650182
924 => 0.10332563075928
925 => 0.1023662283268
926 => 0.10219187636506
927 => 0.10319676587444
928 => 0.10420341430987
929 => 0.10413929515639
930 => 0.10340852008424
1001 => 0.10299572378871
1002 => 0.10612155563537
1003 => 0.10842461529283
1004 => 0.10826756206409
1005 => 0.10896074393927
1006 => 0.11099594736408
1007 => 0.11118202085925
1008 => 0.11115857987571
1009 => 0.11069737730318
1010 => 0.11270129937947
1011 => 0.11437300643116
1012 => 0.11059062223306
1013 => 0.11203090462065
1014 => 0.11267749378744
1015 => 0.11362687851865
1016 => 0.11522864969556
1017 => 0.1169685980425
1018 => 0.11721464581632
1019 => 0.11704006314633
1020 => 0.1158925204392
1021 => 0.11779639268232
1022 => 0.11891163639105
1023 => 0.1195757384977
1024 => 0.1212597909441
1025 => 0.11268148690201
1026 => 0.10660933693165
1027 => 0.10566108303087
1028 => 0.10758939462635
1029 => 0.10809787501608
1030 => 0.10789290720856
1031 => 0.10105815036119
1101 => 0.10562509945055
1102 => 0.11053875267072
1103 => 0.11072750610239
1104 => 0.11318738364404
1105 => 0.1139884206054
1106 => 0.11596894444995
1107 => 0.11584506214423
1108 => 0.11632728818337
1109 => 0.11621643276796
1110 => 0.1198849361415
1111 => 0.12393184014054
1112 => 0.12379170872342
1113 => 0.12320991839276
1114 => 0.12407397624378
1115 => 0.12825081486337
1116 => 0.12786627849575
1117 => 0.12823982282216
1118 => 0.13316455095097
1119 => 0.13956739805284
1120 => 0.13659263273868
1121 => 0.14304701750474
1122 => 0.14710971058273
1123 => 0.15413571817082
1124 => 0.15325602741697
1125 => 0.15599120061179
1126 => 0.15168119737059
1127 => 0.14178455873342
1128 => 0.14021837778628
1129 => 0.14335391170448
1130 => 0.15106231588144
1201 => 0.14311114662506
1202 => 0.14471965781
1203 => 0.14425640648053
1204 => 0.14423172178587
1205 => 0.14517383618099
1206 => 0.14380725011349
1207 => 0.13823953263034
1208 => 0.14079118474211
1209 => 0.13980586932136
1210 => 0.14089915024081
1211 => 0.14679913645974
1212 => 0.14419061191425
1213 => 0.14144274320489
1214 => 0.1448891803673
1215 => 0.14927767919935
1216 => 0.14900305482933
1217 => 0.14847016876741
1218 => 0.15147401959744
1219 => 0.15643550112292
1220 => 0.15777656964242
1221 => 0.15876651900657
1222 => 0.15890301629855
1223 => 0.16030902323859
1224 => 0.15274856956264
1225 => 0.16474720371259
1226 => 0.16681903637471
1227 => 0.1664296177029
1228 => 0.1687323725108
1229 => 0.16805484363106
1230 => 0.16707321058535
1231 => 0.17072356676586
]
'min_raw' => 0.062930199360826
'max_raw' => 0.17072356676586
'avg_raw' => 0.11682688306334
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.06293'
'max' => '$0.170723'
'avg' => '$0.116826'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.02170299939885
'max_diff' => 0.078686747106491
'year' => 2032
]
7 => [
'items' => [
101 => 0.16653872797346
102 => 0.1605988761642
103 => 0.15734015598469
104 => 0.16163150159052
105 => 0.16425207660468
106 => 0.16598410998917
107 => 0.16650822224479
108 => 0.15333546605965
109 => 0.14623608107041
110 => 0.1507867054539
111 => 0.15633878126907
112 => 0.15271772750115
113 => 0.15285966595329
114 => 0.14769699487643
115 => 0.1567955631038
116 => 0.15546997824408
117 => 0.16234711484125
118 => 0.16070583099986
119 => 0.16631386892595
120 => 0.16483708459419
121 => 0.17096713378941
122 => 0.17341257637784
123 => 0.17751885508656
124 => 0.18053945042025
125 => 0.18231320177498
126 => 0.18220671239682
127 => 0.18923519894366
128 => 0.18509074598361
129 => 0.17988433629321
130 => 0.17979016876792
131 => 0.18248664212197
201 => 0.18813771053073
202 => 0.18960295034942
203 => 0.19042181951637
204 => 0.18916769288214
205 => 0.18466918622962
206 => 0.182726753865
207 => 0.18438176251734
208 => 0.18235782915205
209 => 0.18585170595594
210 => 0.19064954505951
211 => 0.18965881025733
212 => 0.19297068816174
213 => 0.19639813337308
214 => 0.20129953396149
215 => 0.20258094157364
216 => 0.20469905962896
217 => 0.20687929887341
218 => 0.20757953295964
219 => 0.20891649710012
220 => 0.20890945063915
221 => 0.21293848206455
222 => 0.21738262849548
223 => 0.21906019089093
224 => 0.22291765311793
225 => 0.21631188423579
226 => 0.2213224358145
227 => 0.22584207876074
228 => 0.22045357411722
301 => 0.22788037240775
302 => 0.22816873815589
303 => 0.23252271858913
304 => 0.22810912529831
305 => 0.22548834769092
306 => 0.23305443444422
307 => 0.23671542549464
308 => 0.23561270519612
309 => 0.22722094927636
310 => 0.22233658739172
311 => 0.20955327021657
312 => 0.22469566160874
313 => 0.23207107874626
314 => 0.22720184872775
315 => 0.22965760512289
316 => 0.24305541573309
317 => 0.24815643456946
318 => 0.24709545831031
319 => 0.24727474583295
320 => 0.25002716300702
321 => 0.26223289654064
322 => 0.25491893808061
323 => 0.26051018527451
324 => 0.26347576262542
325 => 0.26623035614236
326 => 0.25946594506297
327 => 0.25066554563762
328 => 0.24787808972398
329 => 0.22671769976444
330 => 0.22561620957213
331 => 0.22499790974862
401 => 0.22109961682162
402 => 0.2180366264133
403 => 0.21560082271906
404 => 0.20920854643282
405 => 0.21136575203219
406 => 0.20117779780366
407 => 0.20769568988014
408 => 0.19143546893467
409 => 0.20497746411313
410 => 0.19760717181646
411 => 0.2025561248703
412 => 0.20253885843932
413 => 0.1934262668002
414 => 0.1881703141177
415 => 0.19151961173173
416 => 0.19511032464154
417 => 0.19569290573055
418 => 0.20034835874533
419 => 0.20164759561312
420 => 0.19771084724813
421 => 0.19109851199737
422 => 0.19263440666481
423 => 0.18813918926128
424 => 0.18026149366764
425 => 0.18591939217436
426 => 0.1878512474848
427 => 0.18870446484525
428 => 0.18095765598836
429 => 0.17852344045412
430 => 0.17722748452874
501 => 0.1900984962542
502 => 0.19080359933119
503 => 0.18719619229779
504 => 0.20350201415711
505 => 0.19981150447916
506 => 0.20393470798625
507 => 0.19249504032223
508 => 0.19293205103255
509 => 0.18751632903159
510 => 0.19054877147345
511 => 0.18840553889573
512 => 0.19030378009133
513 => 0.19144157803723
514 => 0.1968564113715
515 => 0.20503929281185
516 => 0.19604761584014
517 => 0.19212981342038
518 => 0.19456039600704
519 => 0.20103335773375
520 => 0.21084022609452
521 => 0.20503436264332
522 => 0.20761090625301
523 => 0.20817376640928
524 => 0.20389273764511
525 => 0.21099807373145
526 => 0.21480588106377
527 => 0.21871190347202
528 => 0.22210339328484
529 => 0.21715175222689
530 => 0.22245071794876
531 => 0.2181806869703
601 => 0.21435002775493
602 => 0.21435583728374
603 => 0.21195280880094
604 => 0.20729663831443
605 => 0.20643796903825
606 => 0.21090487505093
607 => 0.21448691065552
608 => 0.21478194426471
609 => 0.21676514322705
610 => 0.21793877994438
611 => 0.22944201525604
612 => 0.23406871165814
613 => 0.23972614843975
614 => 0.24193003890186
615 => 0.24856295905433
616 => 0.24320633733177
617 => 0.24204739852737
618 => 0.22595810384912
619 => 0.22859272495134
620 => 0.23281100753913
621 => 0.2260276617753
622 => 0.23033013335148
623 => 0.23117953237943
624 => 0.22579716628193
625 => 0.22867212057291
626 => 0.22103709434059
627 => 0.20520571551959
628 => 0.21101569858172
629 => 0.2152938017346
630 => 0.20918842104913
701 => 0.22013207961697
702 => 0.2137390202046
703 => 0.21171272729185
704 => 0.20380743621363
705 => 0.2075384293
706 => 0.21258465087198
707 => 0.20946667262672
708 => 0.21593694565242
709 => 0.2251005778156
710 => 0.23163112779881
711 => 0.23213246233636
712 => 0.22793375621002
713 => 0.23466220957326
714 => 0.23471121901039
715 => 0.22712149613012
716 => 0.22247283312571
717 => 0.22141664711023
718 => 0.22405520685435
719 => 0.22725890548871
720 => 0.23231024531396
721 => 0.23536266417741
722 => 0.24332175369541
723 => 0.24547525511401
724 => 0.24784130027221
725 => 0.25100306626486
726 => 0.25479957699921
727 => 0.24649302764794
728 => 0.24682306233901
729 => 0.2390881185951
730 => 0.2308222219016
731 => 0.2370950071334
801 => 0.24529583939033
802 => 0.24341455940947
803 => 0.24320287698056
804 => 0.24355886811018
805 => 0.24214044444148
806 => 0.23572496675717
807 => 0.23250315402712
808 => 0.23666011442097
809 => 0.23886935386528
810 => 0.24229569157747
811 => 0.24187332313323
812 => 0.25069920111804
813 => 0.25412867042224
814 => 0.25325126541896
815 => 0.25341272905549
816 => 0.25962161941794
817 => 0.26652718245668
818 => 0.27299515351175
819 => 0.2795746514748
820 => 0.27164280987817
821 => 0.26761550988338
822 => 0.27177065547836
823 => 0.26956587673776
824 => 0.28223518936113
825 => 0.28311238507895
826 => 0.29578078156682
827 => 0.3078045983584
828 => 0.30025265446066
829 => 0.3073737974092
830 => 0.31507589410336
831 => 0.32993448824653
901 => 0.32493063647075
902 => 0.32109776443086
903 => 0.31747571887347
904 => 0.32501262069486
905 => 0.33470872448314
906 => 0.33679717237101
907 => 0.34018125579785
908 => 0.33662330586056
909 => 0.3409084646647
910 => 0.35603695823749
911 => 0.35194910573121
912 => 0.34614369801722
913 => 0.35808619073697
914 => 0.36240813242699
915 => 0.39274178262593
916 => 0.43103926902269
917 => 0.41518385817958
918 => 0.40534189301835
919 => 0.40765498828577
920 => 0.42163993386614
921 => 0.42613145452657
922 => 0.41392195305151
923 => 0.41823455538187
924 => 0.44199741822789
925 => 0.45474543174087
926 => 0.43743191710362
927 => 0.38966461688339
928 => 0.34562098457092
929 => 0.3573033391708
930 => 0.35597892270484
1001 => 0.38150915435538
1002 => 0.35185161180088
1003 => 0.35235096875649
1004 => 0.37840913856058
1005 => 0.37145726560698
1006 => 0.36019612175076
1007 => 0.3457032033834
1008 => 0.31891170334864
1009 => 0.29518172463161
1010 => 0.34172167758343
1011 => 0.33971479018473
1012 => 0.33680851982737
1013 => 0.34327611001638
1014 => 0.37468089211669
1015 => 0.37395691024192
1016 => 0.36935130693342
1017 => 0.37284461645099
1018 => 0.35958372770242
1019 => 0.36300136067775
1020 => 0.34561400783453
1021 => 0.35347381747967
1022 => 0.36017196039368
1023 => 0.36151671175137
1024 => 0.36454650522494
1025 => 0.33865725171929
1026 => 0.35028076647478
1027 => 0.35710849241758
1028 => 0.3262605782132
1029 => 0.35649872833737
1030 => 0.33820657741414
1031 => 0.33199794665192
1101 => 0.34035705004835
1102 => 0.33709949932527
1103 => 0.33429884850335
1104 => 0.33273603722344
1105 => 0.3388740401972
1106 => 0.33858769502198
1107 => 0.32854473082186
1108 => 0.31544409342639
1109 => 0.31984109735007
1110 => 0.31824362460246
1111 => 0.31245417728705
1112 => 0.31635556575711
1113 => 0.29917582538252
1114 => 0.26961897499325
1115 => 0.28914513571122
1116 => 0.28839339976395
1117 => 0.28801434041083
1118 => 0.30268771052693
1119 => 0.30127720456252
1120 => 0.29871712242538
1121 => 0.31240715937097
1122 => 0.30741011172885
1123 => 0.32280983510936
1124 => 0.33295308891942
1125 => 0.3303804316533
1126 => 0.33992021088827
1127 => 0.31994239543977
1128 => 0.32657822436093
1129 => 0.32794585950471
1130 => 0.31223822644011
1201 => 0.30150798078232
1202 => 0.3007923957307
1203 => 0.28218762847903
1204 => 0.29212614497244
1205 => 0.30087162820288
1206 => 0.29668322041241
1207 => 0.29535729563107
1208 => 0.30213115778093
1209 => 0.30265754488418
1210 => 0.29065586314608
1211 => 0.29315139282326
1212 => 0.30355816642441
1213 => 0.29288916882954
1214 => 0.27216104927358
1215 => 0.26702018903503
1216 => 0.26633430351435
1217 => 0.25239188282063
1218 => 0.26736372589815
1219 => 0.26082811517437
1220 => 0.28147403114216
1221 => 0.26968119466762
1222 => 0.26917282905725
1223 => 0.26840435987615
1224 => 0.25640354243092
1225 => 0.25903095875969
1226 => 0.26776489080332
1227 => 0.27088125615128
1228 => 0.27055619371386
1229 => 0.26772208977153
1230 => 0.26901952804337
1231 => 0.26484002731232
]
'min_raw' => 0.14623608107041
'max_raw' => 0.45474543174087
'avg_raw' => 0.30049075640564
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.146236'
'max' => '$0.454745'
'avg' => '$0.30049'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.083305881709584
'max_diff' => 0.28402186497501
'year' => 2033
]
8 => [
'items' => [
101 => 0.2633641586154
102 => 0.25870591103826
103 => 0.25185957397359
104 => 0.25281159913346
105 => 0.23924721396682
106 => 0.23185661701163
107 => 0.22981099718093
108 => 0.22707550885099
109 => 0.23011997786666
110 => 0.23920878776792
111 => 0.22824575472841
112 => 0.20945040354953
113 => 0.2105800361811
114 => 0.2131179853133
115 => 0.20838853389566
116 => 0.20391250504163
117 => 0.20780404897851
118 => 0.19984021090928
119 => 0.21408037709628
120 => 0.21369522050853
121 => 0.21900307385707
122 => 0.22232218348403
123 => 0.21467271036839
124 => 0.21274888856618
125 => 0.21384478489755
126 => 0.19573205967934
127 => 0.21752287778338
128 => 0.21771132568323
129 => 0.2160977203547
130 => 0.22770065827907
131 => 0.25218647634659
201 => 0.24297392664984
202 => 0.23940654895647
203 => 0.23262496135364
204 => 0.24166102418359
205 => 0.24096719554279
206 => 0.23782943930238
207 => 0.23593171453779
208 => 0.23942833060397
209 => 0.23549844511186
210 => 0.23479252969144
211 => 0.23051545028728
212 => 0.22898872753471
213 => 0.22785840278929
214 => 0.226614026308
215 => 0.22935881074643
216 => 0.22313876810248
217 => 0.21563800643218
218 => 0.21501439925866
219 => 0.21673623349285
220 => 0.21597445001971
221 => 0.21501075213247
222 => 0.21317079041824
223 => 0.21262491308219
224 => 0.21439874960232
225 => 0.21239619159218
226 => 0.21535107502112
227 => 0.21454751022961
228 => 0.21005886262569
301 => 0.20446434580102
302 => 0.20441454286638
303 => 0.20320921339335
304 => 0.20167404508695
305 => 0.201246996384
306 => 0.20747631400254
307 => 0.22037081504514
308 => 0.21783931595122
309 => 0.21966858348504
310 => 0.22866676925881
311 => 0.23152702193141
312 => 0.2294968823332
313 => 0.22671790203761
314 => 0.22684016306705
315 => 0.23633677999162
316 => 0.23692907234042
317 => 0.23842560402508
318 => 0.24034907015967
319 => 0.22982445693322
320 => 0.22634445473055
321 => 0.22469543662375
322 => 0.21961709910513
323 => 0.22509365073521
324 => 0.22190269862969
325 => 0.22233326708717
326 => 0.22205285881438
327 => 0.22220598069245
328 => 0.21407639667962
329 => 0.21703838981554
330 => 0.21211350173906
331 => 0.20551962944928
401 => 0.20549752447725
402 => 0.20711136537864
403 => 0.2061513896609
404 => 0.20356811968767
405 => 0.20393506099467
406 => 0.20072026903151
407 => 0.20432539494469
408 => 0.20442877705612
409 => 0.20304060720701
410 => 0.20859480108777
411 => 0.21087035885251
412 => 0.20995663572035
413 => 0.21080624960176
414 => 0.2179445111676
415 => 0.21910835926702
416 => 0.2196252637133
417 => 0.21893268023201
418 => 0.21093672391929
419 => 0.21129137858319
420 => 0.20868915797655
421 => 0.2064905557792
422 => 0.20657848833694
423 => 0.20770885566466
424 => 0.21264523607999
425 => 0.22303355764851
426 => 0.22342778685827
427 => 0.22390560416098
428 => 0.22196208105913
429 => 0.2213758958946
430 => 0.22214922543384
501 => 0.22605053282298
502 => 0.23608575462247
503 => 0.2325386370086
504 => 0.22965477517436
505 => 0.23218469948656
506 => 0.2317952374689
507 => 0.22850778609911
508 => 0.22841551828836
509 => 0.22210584804796
510 => 0.21977330662432
511 => 0.21782406042303
512 => 0.21569553445759
513 => 0.21443367291643
514 => 0.21637246574946
515 => 0.21681589060949
516 => 0.21257668619578
517 => 0.21199889829859
518 => 0.21546072413241
519 => 0.21393730365282
520 => 0.21550417939509
521 => 0.21586770800771
522 => 0.2158091715283
523 => 0.21421854558388
524 => 0.21523236312771
525 => 0.21283438240301
526 => 0.21022693852996
527 => 0.20856355178844
528 => 0.20711202624024
529 => 0.20791741697754
530 => 0.20504634605759
531 => 0.20412783268706
601 => 0.21488890455548
602 => 0.22283822404569
603 => 0.22272263779203
604 => 0.22201903619922
605 => 0.22097362695268
606 => 0.22597405462515
607 => 0.22423200561077
608 => 0.22549949182179
609 => 0.22582212025873
610 => 0.22679861936786
611 => 0.22714763386644
612 => 0.22609266964558
613 => 0.22255208086732
614 => 0.21372927026098
615 => 0.20962222810701
616 => 0.208266835788
617 => 0.20831610172454
618 => 0.20695712726196
619 => 0.20735740614615
620 => 0.20681792660131
621 => 0.20579628285749
622 => 0.20785433335528
623 => 0.20809150450308
624 => 0.20761113092503
625 => 0.20772427629244
626 => 0.20374698823637
627 => 0.20404937280905
628 => 0.20236565708316
629 => 0.20204998068205
630 => 0.19779369394488
701 => 0.19025306503136
702 => 0.19443130543601
703 => 0.1893845785767
704 => 0.18747330664469
705 => 0.19652097070706
706 => 0.19561283617834
707 => 0.19405850462175
708 => 0.19175932429848
709 => 0.19090653595159
710 => 0.18572526391588
711 => 0.18541912672299
712 => 0.18798710505001
713 => 0.18680207141083
714 => 0.18513783537409
715 => 0.17911014114992
716 => 0.17233301714097
717 => 0.17253757591532
718 => 0.17469325296969
719 => 0.18096117473793
720 => 0.17851218926693
721 => 0.17673542220885
722 => 0.17640268714829
723 => 0.18056756305919
724 => 0.1864617350416
725 => 0.18922714866107
726 => 0.18648670775103
727 => 0.18333863678939
728 => 0.18353024528207
729 => 0.18480493074175
730 => 0.18493888216048
731 => 0.18288981159137
801 => 0.18346661295407
802 => 0.18259039894031
803 => 0.17721307515518
804 => 0.17711581641958
805 => 0.17579613444165
806 => 0.17575617499583
807 => 0.17351106674128
808 => 0.17319696057676
809 => 0.16873916186901
810 => 0.17167329847791
811 => 0.16970523368975
812 => 0.16673889583443
813 => 0.16622749807009
814 => 0.16621212483577
815 => 0.16925789055217
816 => 0.17163770693218
817 => 0.16973946901934
818 => 0.16930727704238
819 => 0.17392195664988
820 => 0.17333469660609
821 => 0.17282613319559
822 => 0.18593397658842
823 => 0.17555809572522
824 => 0.17103361943429
825 => 0.16543372084952
826 => 0.16725707606586
827 => 0.1676412838006
828 => 0.15417453716182
829 => 0.14871107972764
830 => 0.14683622702228
831 => 0.14575722278382
901 => 0.14624893856457
902 => 0.14133118607417
903 => 0.14463599707984
904 => 0.14037763911042
905 => 0.13966371153895
906 => 0.14727818309759
907 => 0.14833769233188
908 => 0.14381749677469
909 => 0.1467201940756
910 => 0.14566763568378
911 => 0.14045063643558
912 => 0.14025138543794
913 => 0.13763367860159
914 => 0.13353747429061
915 => 0.13166539900466
916 => 0.13069040594164
917 => 0.13109270708168
918 => 0.13088929131466
919 => 0.12956186583911
920 => 0.13096537778909
921 => 0.12737998472807
922 => 0.1259522523217
923 => 0.12530737871688
924 => 0.12212513600771
925 => 0.12718949930776
926 => 0.12818724267704
927 => 0.12918695190897
928 => 0.13788873824248
929 => 0.13745402158825
930 => 0.14138364842689
1001 => 0.14123095035406
1002 => 0.14011015712395
1003 => 0.13538171484764
1004 => 0.1372663876626
1005 => 0.13146565768134
1006 => 0.13581195899459
1007 => 0.13382848858111
1008 => 0.1351413456526
1009 => 0.13278071026251
1010 => 0.13408718335563
1011 => 0.12842384464373
1012 => 0.12313549863989
1013 => 0.12526368344828
1014 => 0.12757726372245
1015 => 0.13259369524616
1016 => 0.1296059500153
1017 => 0.13068045617947
1018 => 0.12708104039966
1019 => 0.11965441752362
1020 => 0.11969645140257
1021 => 0.11855402727086
1022 => 0.11756680602442
1023 => 0.12994912849586
1024 => 0.12840919096099
1025 => 0.12595550204121
1026 => 0.12923986216606
1027 => 0.13010829911287
1028 => 0.13013302229187
1029 => 0.13252920665735
1030 => 0.13380805068275
1031 => 0.13403345248506
1101 => 0.13780390035714
1102 => 0.13906770475045
1103 => 0.14427313618621
1104 => 0.13369954970198
1105 => 0.13348179364648
1106 => 0.12928607984839
1107 => 0.12662509182603
1108 => 0.12946827997486
1109 => 0.13198695654083
1110 => 0.12936434215008
1111 => 0.1297068002231
1112 => 0.12618615467899
1113 => 0.12744461979924
1114 => 0.12852857949436
1115 => 0.12793008066292
1116 => 0.12703409894459
1117 => 0.13178045378503
1118 => 0.13151264584382
1119 => 0.13593256058947
1120 => 0.13937820020484
1121 => 0.14555340237733
1122 => 0.13910925698976
1123 => 0.13887440671868
1124 => 0.14117010578967
1125 => 0.13906735329088
1126 => 0.14039622028557
1127 => 0.14533930136028
1128 => 0.14544374087419
1129 => 0.14369424445359
1130 => 0.1435877874374
1201 => 0.14392379736237
1202 => 0.145891817988
1203 => 0.14520413111024
1204 => 0.14599993977528
1205 => 0.14699511069678
1206 => 0.1511115595718
1207 => 0.1521040214594
1208 => 0.14969285360503
1209 => 0.14991055506558
1210 => 0.14900871210001
1211 => 0.14813754309533
1212 => 0.15009580379384
1213 => 0.15367456371008
1214 => 0.15365230043037
1215 => 0.15448250316979
1216 => 0.15499971259867
1217 => 0.15277947110946
1218 => 0.15133417554052
1219 => 0.1518883938282
1220 => 0.1527746009395
1221 => 0.151601008806
1222 => 0.14435705449733
1223 => 0.14655440748899
1224 => 0.1461886605061
1225 => 0.14566779232612
1226 => 0.14787724775086
1227 => 0.14766414038515
1228 => 0.14128074741438
1229 => 0.1416893915215
1230 => 0.141305598416
1231 => 0.14254571245654
]
'min_raw' => 0.11756680602442
'max_raw' => 0.2633641586154
'avg_raw' => 0.19046548231991
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.117566'
'max' => '$0.263364'
'avg' => '$0.190465'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.028669275045994
'max_diff' => -0.19138127312547
'year' => 2034
]
9 => [
'items' => [
101 => 0.13900038306299
102 => 0.14009090250629
103 => 0.14077486607814
104 => 0.14117772587641
105 => 0.14263313171134
106 => 0.14246235663484
107 => 0.14262251609281
108 => 0.1447804987331
109 => 0.15569483439752
110 => 0.15628887760661
111 => 0.15336359158395
112 => 0.15453218565129
113 => 0.15228874058543
114 => 0.15379478028792
115 => 0.1548251744031
116 => 0.15016902153
117 => 0.14989331437504
118 => 0.14764060981336
119 => 0.1488510856451
120 => 0.14692513156051
121 => 0.14739769332585
122 => 0.14607636943276
123 => 0.14845448936737
124 => 0.15111359697674
125 => 0.1517853925702
126 => 0.15001818758998
127 => 0.14873861471981
128 => 0.1464921062773
129 => 0.1502280998839
130 => 0.15132061826681
131 => 0.15022236134993
201 => 0.1499678712249
202 => 0.14948561289783
203 => 0.15007018460877
204 => 0.15131466817706
205 => 0.15072779270826
206 => 0.15111543429482
207 => 0.14963814430113
208 => 0.15278020610178
209 => 0.15777055641956
210 => 0.15778660121184
211 => 0.15719972257956
212 => 0.1569595844877
213 => 0.1575617575792
214 => 0.1578884117789
215 => 0.15983572913713
216 => 0.16192527824705
217 => 0.17167629220137
218 => 0.16893824650231
219 => 0.177589926173
220 => 0.18443228151251
221 => 0.1864840046989
222 => 0.18459651590846
223 => 0.17813951871652
224 => 0.17782270762955
225 => 0.18747218750821
226 => 0.18474576746831
227 => 0.18442146847996
228 => 0.18097147515571
301 => 0.18301084850033
302 => 0.18256480763406
303 => 0.18186071030559
304 => 0.18575169258314
305 => 0.19303526405633
306 => 0.19190005113733
307 => 0.19105266735431
308 => 0.18733967828683
309 => 0.18957572703158
310 => 0.18877951290227
311 => 0.19220055409178
312 => 0.19017400507645
313 => 0.184725112155
314 => 0.18559286631253
315 => 0.1854617070173
316 => 0.18816095601911
317 => 0.18735070846824
318 => 0.18530349317898
319 => 0.19301036960086
320 => 0.19250992791392
321 => 0.1932194398091
322 => 0.19353178888774
323 => 0.19822282875534
324 => 0.20014459769257
325 => 0.20058087288662
326 => 0.20240640474204
327 => 0.20053545199103
328 => 0.20802059696175
329 => 0.21299778159696
330 => 0.21877903767433
331 => 0.22722700665851
401 => 0.23040352114464
402 => 0.2298297122346
403 => 0.23623486590307
404 => 0.24774478466674
405 => 0.23215619589791
406 => 0.24857101772354
407 => 0.24337427465178
408 => 0.23105289031404
409 => 0.23025953842227
410 => 0.23860372295
411 => 0.2571103211345
412 => 0.25247462818938
413 => 0.25711790346747
414 => 0.25170127621349
415 => 0.25143229501542
416 => 0.25685482997188
417 => 0.26952487846466
418 => 0.26350581335541
419 => 0.25487600758598
420 => 0.26124812187147
421 => 0.25572800676604
422 => 0.24328964245056
423 => 0.25247108336235
424 => 0.24633171529702
425 => 0.24812350928524
426 => 0.26102754779649
427 => 0.25947489974297
428 => 0.26148417009557
429 => 0.25793786051499
430 => 0.25462504816504
501 => 0.24844143790118
502 => 0.24661077575035
503 => 0.24711670490852
504 => 0.24661052503699
505 => 0.24315085192467
506 => 0.24240373584547
507 => 0.24115850964822
508 => 0.24154445731547
509 => 0.23920306776087
510 => 0.24362175360617
511 => 0.24444190063639
512 => 0.24765745170678
513 => 0.24799130088609
514 => 0.25694656484663
515 => 0.25201415594426
516 => 0.25532324167967
517 => 0.25502724590517
518 => 0.23131993207435
519 => 0.23458659074883
520 => 0.23966848651237
521 => 0.23737909935925
522 => 0.23414244155881
523 => 0.23152866684635
524 => 0.22756853088479
525 => 0.23314234620302
526 => 0.24047132063731
527 => 0.24817717577239
528 => 0.25743525580957
529 => 0.2553689601212
530 => 0.24800410240588
531 => 0.24833448454296
601 => 0.25037677691379
602 => 0.24773182273174
603 => 0.24695177410781
604 => 0.25026961021133
605 => 0.25029245832512
606 => 0.24724911888527
607 => 0.24386700402312
608 => 0.24385283283836
609 => 0.24325101816599
610 => 0.25180833770677
611 => 0.25651399821161
612 => 0.25705349460494
613 => 0.25647768580585
614 => 0.25669929175959
615 => 0.25396117159398
616 => 0.26021970232825
617 => 0.26596314903456
618 => 0.26442378262643
619 => 0.26211605354681
620 => 0.2602778361796
621 => 0.2639907570341
622 => 0.26382542651313
623 => 0.26591298503805
624 => 0.26581828132504
625 => 0.26511631391015
626 => 0.26442380769589
627 => 0.26716951655809
628 => 0.26637879650051
629 => 0.26558684823628
630 => 0.26399847475116
701 => 0.26421436108788
702 => 0.26190703047022
703 => 0.26083955375022
704 => 0.24478726511629
705 => 0.24049756906965
706 => 0.24184719477074
707 => 0.24229152659455
708 => 0.24042464537766
709 => 0.24310127348025
710 => 0.24268412382571
711 => 0.24430700910713
712 => 0.24329310084079
713 => 0.2433347119897
714 => 0.24631640001299
715 => 0.24718199673116
716 => 0.24674174725408
717 => 0.24705008289696
718 => 0.25415554764678
719 => 0.25314537777932
720 => 0.25260874517067
721 => 0.25275739607068
722 => 0.25457299465714
723 => 0.25508126313334
724 => 0.25292769388429
725 => 0.25394332959178
726 => 0.25826777753091
727 => 0.25978108956705
728 => 0.26461085515543
729 => 0.26255908489125
730 => 0.26632519800969
731 => 0.2779009457732
801 => 0.28714845406751
802 => 0.27864406327062
803 => 0.29562593459004
804 => 0.30884875731696
805 => 0.30834124335694
806 => 0.3060355383651
807 => 0.29098170623742
808 => 0.27712894547354
809 => 0.28871736807182
810 => 0.2887469093442
811 => 0.28775145356575
812 => 0.28156876321972
813 => 0.28753630934347
814 => 0.28800999148382
815 => 0.28774485544747
816 => 0.28300460125525
817 => 0.27576710924915
818 => 0.27718129786304
819 => 0.27949776766125
820 => 0.27511220706701
821 => 0.27371075472667
822 => 0.27631632126459
823 => 0.2847119995411
824 => 0.28312484519578
825 => 0.28308339818163
826 => 0.28987391752911
827 => 0.28501337116211
828 => 0.27719913531032
829 => 0.27522593770063
830 => 0.26822241549143
831 => 0.27305977322702
901 => 0.27323386112014
902 => 0.27058448972496
903 => 0.27741411719752
904 => 0.27735118097802
905 => 0.28383489580732
906 => 0.29622932338886
907 => 0.29256368126026
908 => 0.28830093828543
909 => 0.28876441663983
910 => 0.29384763022562
911 => 0.29077420325317
912 => 0.29187942902116
913 => 0.29384595733405
914 => 0.29503241269136
915 => 0.28859370397243
916 => 0.287092532971
917 => 0.28402166394152
918 => 0.28322053153221
919 => 0.28572169028094
920 => 0.28506272331789
921 => 0.27321922970682
922 => 0.27198151872789
923 => 0.27201947755657
924 => 0.26890719445009
925 => 0.26416021567918
926 => 0.27663499246176
927 => 0.27563309330173
928 => 0.27452707416989
929 => 0.27466255520268
930 => 0.28007743299459
1001 => 0.2769365304174
1002 => 0.28528713470266
1003 => 0.28357050150375
1004 => 0.28180984314074
1005 => 0.28156646652401
1006 => 0.28088876326656
1007 => 0.2785646666345
1008 => 0.27575818029474
1009 => 0.27390509491954
1010 => 0.25266297149474
1011 => 0.25660538604264
1012 => 0.2611407746176
1013 => 0.26270637257925
1014 => 0.26002830892977
1015 => 0.27867041291038
1016 => 0.28207650494742
1017 => 0.27175922999333
1018 => 0.26982928910099
1019 => 0.27879693951398
1020 => 0.27338835006427
1021 => 0.2758238375623
1022 => 0.27055964573199
1023 => 0.28125607711771
1024 => 0.28117458823198
1025 => 0.27701343483307
1026 => 0.28053041319148
1027 => 0.27991925165312
1028 => 0.27522131971422
1029 => 0.28140500993972
1030 => 0.28140807697293
1031 => 0.27740305729776
1101 => 0.2727260711287
1102 => 0.27188993646716
1103 => 0.27126002131857
1104 => 0.27566891705025
1105 => 0.27962191917701
1106 => 0.28697747610259
1107 => 0.2888268378774
1108 => 0.29604502000347
1109 => 0.2917469439943
1110 => 0.29365222541976
1111 => 0.29572067792562
1112 => 0.29671237012174
1113 => 0.29509646090529
1114 => 0.30630926886938
1115 => 0.3072559734131
1116 => 0.30757339525765
1117 => 0.30379249950032
1118 => 0.3071508198625
1119 => 0.30557957298092
1120 => 0.30966752086185
1121 => 0.31030856328712
1122 => 0.30976562315866
1123 => 0.30996910014261
1124 => 0.30040094662013
1125 => 0.29990478738396
1126 => 0.29313962099291
1127 => 0.29589647630285
1128 => 0.29074266744043
1129 => 0.29237699332082
1130 => 0.29309738859646
1201 => 0.29272109498654
1202 => 0.29605234476572
1203 => 0.29322010192405
1204 => 0.28574534740104
1205 => 0.27826855638617
1206 => 0.27817469136544
1207 => 0.27620618426755
1208 => 0.27478331418583
1209 => 0.2750574094426
1210 => 0.27602335687825
1211 => 0.27472717156487
1212 => 0.27500377841974
1213 => 0.27959729523246
1214 => 0.28051849226978
1215 => 0.27738790480203
1216 => 0.26481814437739
1217 => 0.26173349364032
1218 => 0.26395067941884
1219 => 0.26289100742176
1220 => 0.21217356079124
1221 => 0.22408887257456
1222 => 0.21700919891867
1223 => 0.22027183825943
1224 => 0.21304532472936
1225 => 0.21649419575993
1226 => 0.21585731521319
1227 => 0.23501678396107
1228 => 0.23471763520955
1229 => 0.2348608218863
1230 => 0.2280261487342
1231 => 0.2389139686471
]
'min_raw' => 0.13900038306299
'max_raw' => 0.31030856328712
'avg_raw' => 0.22465447317505
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.13900038'
'max' => '$0.3103085'
'avg' => '$0.224654'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.021433577038571
'max_diff' => 0.046944404671717
'year' => 2035
]
10 => [
'items' => [
101 => 0.24427770024953
102 => 0.24328501628102
103 => 0.24353485344936
104 => 0.23924182314715
105 => 0.23490238780373
106 => 0.23008928617356
107 => 0.23903143408507
108 => 0.23803721988487
109 => 0.24031758955316
110 => 0.2461172116717
111 => 0.24697122805928
112 => 0.24811903474477
113 => 0.24770762775446
114 => 0.25750901135337
115 => 0.25632199912793
116 => 0.25918235706451
117 => 0.25329838377308
118 => 0.24664010948196
119 => 0.24790562974932
120 => 0.2477837499709
121 => 0.24623208050454
122 => 0.24483130269015
123 => 0.24249940229588
124 => 0.24987788019966
125 => 0.24957832747145
126 => 0.25442773794923
127 => 0.25357055754262
128 => 0.24784609699967
129 => 0.24805054722786
130 => 0.24942557326782
131 => 0.25418455409191
201 => 0.25559734361662
202 => 0.25494288321885
203 => 0.2564919424364
204 => 0.25771625568173
205 => 0.25664569733016
206 => 0.27180254598061
207 => 0.26550836568914
208 => 0.26857610536858
209 => 0.26930774320595
210 => 0.26743366827021
211 => 0.26784008801818
212 => 0.2684557031936
213 => 0.27219359798897
214 => 0.28200291550059
215 => 0.2863473954522
216 => 0.29941797773949
217 => 0.2859866468703
218 => 0.28518968728089
219 => 0.28754409384461
220 => 0.29521790930889
221 => 0.30143681597786
222 => 0.30349998609729
223 => 0.3037726680878
224 => 0.30764331238881
225 => 0.3098618935189
226 => 0.30717331436262
227 => 0.30489502503363
228 => 0.2967344754489
229 => 0.29767908128377
301 => 0.3041864787655
302 => 0.31337856099225
303 => 0.32126632381595
304 => 0.31850430419138
305 => 0.33957656424489
306 => 0.34166579275673
307 => 0.34137712892924
308 => 0.3461367023981
309 => 0.33668991833269
310 => 0.3326512351219
311 => 0.30538761704624
312 => 0.31304758165697
313 => 0.32418179007262
314 => 0.32270813583767
315 => 0.31462217606798
316 => 0.32126018989038
317 => 0.31906545493081
318 => 0.31733437640856
319 => 0.32526478270507
320 => 0.31654497521892
321 => 0.32409480332264
322 => 0.31441207068665
323 => 0.31851692086437
324 => 0.31618680937424
325 => 0.31769467707608
326 => 0.30887971330192
327 => 0.3136360537833
328 => 0.30868183390049
329 => 0.30867948495521
330 => 0.30857012027671
331 => 0.31439873799846
401 => 0.31458880901311
402 => 0.31028145171019
403 => 0.30966069422927
404 => 0.31195595998839
405 => 0.30926880491551
406 => 0.31052610786136
407 => 0.30930688734091
408 => 0.30903241512104
409 => 0.30684537377554
410 => 0.30590313622995
411 => 0.30627261185004
412 => 0.30501140108091
413 => 0.30425147597252
414 => 0.30841895204561
415 => 0.30619243769527
416 => 0.30807770678871
417 => 0.3059292047168
418 => 0.29848156047777
419 => 0.29419834151849
420 => 0.28013043194794
421 => 0.28412007365096
422 => 0.28676521022765
423 => 0.28589099260483
424 => 0.28776915033595
425 => 0.28788445396688
426 => 0.28727384574294
427 => 0.28656683964338
428 => 0.286222708174
429 => 0.28878758220511
430 => 0.29027657790986
501 => 0.28703068507048
502 => 0.28627021779308
503 => 0.28955199466435
504 => 0.29155387666001
505 => 0.30633464855559
506 => 0.30523964123231
507 => 0.30798789472943
508 => 0.30767848356104
509 => 0.31055909105714
510 => 0.3152676668777
511 => 0.30569381569599
512 => 0.30735550522227
513 => 0.30694809732444
514 => 0.31139606992485
515 => 0.31140995600979
516 => 0.30874317424314
517 => 0.31018887990244
518 => 0.30938192666428
519 => 0.3108402002319
520 => 0.30522501674191
521 => 0.31206370411112
522 => 0.31594079917418
523 => 0.31599463264289
524 => 0.31783234493225
525 => 0.31969956705136
526 => 0.32328353730822
527 => 0.3195996120661
528 => 0.31297258917842
529 => 0.31345103882576
530 => 0.30956561773145
531 => 0.309630932362
601 => 0.3092822777453
602 => 0.31032861649551
603 => 0.30545462925685
604 => 0.30659854431977
605 => 0.30499705653292
606 => 0.30735202390059
607 => 0.30481846830303
608 => 0.30694790086002
609 => 0.30786689335981
610 => 0.31125799546853
611 => 0.30431759976435
612 => 0.29016566310004
613 => 0.29314057176252
614 => 0.28874044817668
615 => 0.289147696367
616 => 0.28997040252452
617 => 0.28730374269529
618 => 0.2878124573546
619 => 0.2877942824872
620 => 0.2876376612988
621 => 0.28694396008593
622 => 0.28593795608267
623 => 0.28994556639997
624 => 0.29062653748629
625 => 0.29214025185671
626 => 0.29664403906083
627 => 0.29619400451252
628 => 0.29692802953256
629 => 0.29532565703519
630 => 0.28922202583144
701 => 0.28955348237126
702 => 0.28542021400848
703 => 0.29203455489182
704 => 0.29046819166561
705 => 0.28945834710388
706 => 0.28918280165907
707 => 0.29369775288053
708 => 0.29504869704918
709 => 0.29420687930177
710 => 0.29248028654208
711 => 0.29579585506201
712 => 0.29668296132534
713 => 0.29688155170248
714 => 0.30275610342259
715 => 0.2972098738855
716 => 0.29854490645986
717 => 0.30896044950315
718 => 0.29951498920958
719 => 0.30451846018598
720 => 0.30427356631849
721 => 0.3068331727618
722 => 0.30406360388083
723 => 0.30409793600641
724 => 0.3063706931253
725 => 0.30317901564572
726 => 0.30238871141712
727 => 0.30129691178557
728 => 0.30368081633837
729 => 0.30510985930305
730 => 0.31662689608193
731 => 0.32406742708178
801 => 0.32374441400807
802 => 0.32669614884662
803 => 0.32536636526706
804 => 0.32107214330948
805 => 0.3284018565665
806 => 0.32608242860375
807 => 0.32627363942689
808 => 0.3262665225505
809 => 0.32780873937782
810 => 0.32671593741357
811 => 0.32456191256821
812 => 0.32599185478469
813 => 0.33023827195393
814 => 0.34341928114326
815 => 0.35079554851075
816 => 0.34297522058582
817 => 0.34836957807007
818 => 0.34513488578562
819 => 0.34454704597378
820 => 0.34793510111378
821 => 0.35132908659579
822 => 0.35111290439319
823 => 0.34864904521633
824 => 0.34725727368543
825 => 0.35779623399505
826 => 0.36556116042466
827 => 0.36503164449889
828 => 0.36736875558745
829 => 0.37423058602757
830 => 0.37485794580776
831 => 0.37477891289516
901 => 0.37322393622174
902 => 0.37998029941133
903 => 0.38561657645098
904 => 0.37286400404944
905 => 0.37772001667651
906 => 0.37990003719576
907 => 0.38310095410096
908 => 0.388501437456
909 => 0.39436779478703
910 => 0.39519736203497
911 => 0.39460874437411
912 => 0.39073972401815
913 => 0.39715876220996
914 => 0.40091888423776
915 => 0.40315795085645
916 => 0.40883585125628
917 => 0.37991350026032
918 => 0.35944082269127
919 => 0.35624371845981
920 => 0.36274515563439
921 => 0.36445953276934
922 => 0.36376846949589
923 => 0.34072460959751
924 => 0.35612239730648
925 => 0.37268912219858
926 => 0.3733255175718
927 => 0.38161916644667
928 => 0.38431991848848
929 => 0.39099739290615
930 => 0.39057971506324
1001 => 0.39220557382212
1002 => 0.39183181704941
1003 => 0.40420043230002
1004 => 0.41784485167858
1005 => 0.4173723888221
1006 => 0.41541084210299
1007 => 0.41832407347429
1008 => 0.43240657649781
1009 => 0.43111008528692
1010 => 0.43236951606344
1011 => 0.44897358078326
1012 => 0.4705612268197
1013 => 0.46053159787155
1014 => 0.48229300674105
1015 => 0.49599066010168
1016 => 0.5196793352251
1017 => 0.51671339643046
1018 => 0.52593522382048
1019 => 0.51140374697796
1020 => 0.47803653885151
1021 => 0.47275605044095
1022 => 0.48332772196214
1023 => 0.50931714482837
1024 => 0.48250922254758
1025 => 0.48793243031027
1026 => 0.48637054610978
1027 => 0.48628731993832
1028 => 0.48946372439779
1029 => 0.48485618405921
1030 => 0.46608423583917
1031 => 0.47468730908463
1101 => 0.47136524935104
1102 => 0.47505132230141
1103 => 0.49494353776243
1104 => 0.48614871513593
1105 => 0.47688408393228
1106 => 0.4885039874479
1107 => 0.50330011765535
1108 => 0.50237420241817
1109 => 0.50057753985549
1110 => 0.51070523265109
1111 => 0.52743321401385
1112 => 0.53195472015773
1113 => 0.53529240355502
1114 => 0.53575261370488
1115 => 0.54049306426749
1116 => 0.515002466845
1117 => 0.55545669959946
1118 => 0.56244202807052
1119 => 0.56112907583017
1120 => 0.5688929744382
1121 => 0.56660863851662
1122 => 0.56329899416757
1123 => 0.5756064248899
1124 => 0.5614969487252
1125 => 0.54147032364306
1126 => 0.53048332104127
1127 => 0.54495189236353
1128 => 0.55378734398647
1129 => 0.55962701546898
1130 => 0.56139409653116
1201 => 0.51698122936049
1202 => 0.49304515720603
1203 => 0.50838790502941
1204 => 0.52710711627383
1205 => 0.51489848068138
1206 => 0.5153770360826
1207 => 0.49797073010078
1208 => 0.52864718812111
1209 => 0.52417788621717
1210 => 0.54736463240086
1211 => 0.54183092933886
1212 => 0.56073882074736
1213 => 0.55575973926706
1214 => 0.5764276281151
1215 => 0.58467260853734
1216 => 0.59851721389501
1217 => 0.6087013619538
1218 => 0.61468168848562
1219 => 0.61432265211229
1220 => 0.63801968521825
1221 => 0.62404637270694
1222 => 0.60649259893585
1223 => 0.60617510654978
1224 => 0.61526645472472
1225 => 0.63431942640985
1226 => 0.63925958475833
1227 => 0.64202045932634
1228 => 0.6377920838187
1229 => 0.62262505456401
1230 => 0.61607600823042
1231 => 0.62165598545078
]
'min_raw' => 0.23008928617356
'max_raw' => 0.64202045932634
'avg_raw' => 0.43605487274995
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.230089'
'max' => '$0.64202'
'avg' => '$0.436054'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.091088903110573
'max_diff' => 0.33171189603923
'year' => 2036
]
11 => [
'items' => [
101 => 0.61483215280319
102 => 0.62661200238221
103 => 0.6427882518943
104 => 0.63944792033788
105 => 0.6506141479205
106 => 0.66217001874712
107 => 0.67869543303583
108 => 0.68301578826521
109 => 0.69015717117099
110 => 0.69750800000312
111 => 0.69986888811361
112 => 0.70437655605708
113 => 0.70435279842197
114 => 0.71793695917069
115 => 0.73292070914297
116 => 0.73857672788289
117 => 0.75158243110065
118 => 0.72931062011443
119 => 0.7462040445876
120 => 0.76144233633225
121 => 0.74327461671326
122 => 0.76831458567227
123 => 0.76928683092516
124 => 0.78396657994104
125 => 0.76908584201382
126 => 0.76024970733363
127 => 0.78575929706969
128 => 0.79810258399842
129 => 0.79438468552248
130 => 0.76609129454533
131 => 0.74962332743601
201 => 0.70652348107727
202 => 0.757577110864
203 => 0.78244384467831
204 => 0.76602689571212
205 => 0.77430664985377
206 => 0.81947830373135
207 => 0.83667674487994
208 => 0.83309958934721
209 => 0.83370406974725
210 => 0.84298403641724
211 => 0.88413651920296
212 => 0.85947699761067
213 => 0.87832827789333
214 => 0.8883269289819
215 => 0.89761423334385
216 => 0.8748075491136
217 => 0.84513638802677
218 => 0.83573828579996
219 => 0.76439455368013
220 => 0.76068080259317
221 => 0.75859616156988
222 => 0.74545279479638
223 => 0.73512570878357
224 => 0.72691322656606
225 => 0.70536122077252
226 => 0.71263439006207
227 => 0.67828499108036
228 => 0.70026051928091
301 => 0.64543804911086
302 => 0.69109583132697
303 => 0.66624637627136
304 => 0.68293211701725
305 => 0.68287390203968
306 => 0.65215016310758
307 => 0.63442935167961
308 => 0.64572174242581
309 => 0.65782808169683
310 => 0.65979229451293
311 => 0.67548847938559
312 => 0.67986894719519
313 => 0.66659592522763
314 => 0.64430197527117
315 => 0.64948035137519
316 => 0.63432441205314
317 => 0.60776421135604
318 => 0.62684021119331
319 => 0.63335359625027
320 => 0.63623027815078
321 => 0.61011137122483
322 => 0.60190424359964
323 => 0.59753483771646
324 => 0.64093035237422
325 => 0.643307656627
326 => 0.6311450319528
327 => 0.68612124878761
328 => 0.67367843774526
329 => 0.68758010624228
330 => 0.64901046802092
331 => 0.65048388014189
401 => 0.63222439530202
402 => 0.64244848671313
403 => 0.63522242844161
404 => 0.64162248116355
405 => 0.64545864637668
406 => 0.66371513501475
407 => 0.69130429110142
408 => 0.66098822441247
409 => 0.64777908002202
410 => 0.65597395891081
411 => 0.67779800130015
412 => 0.71086254267219
413 => 0.69128766869403
414 => 0.69997466536262
415 => 0.70187238767713
416 => 0.68743860030686
417 => 0.71139473700067
418 => 0.72423302527419
419 => 0.73740245253339
420 => 0.74883709722357
421 => 0.73214229368415
422 => 0.75000812657742
423 => 0.73561141900949
424 => 0.7226960840168
425 => 0.72271567124876
426 => 0.71461369294491
427 => 0.69891508906622
428 => 0.6960200256512
429 => 0.71108051114236
430 => 0.72315759427299
501 => 0.72415232068495
502 => 0.730838814449
503 => 0.73479581258221
504 => 0.7735797735657
505 => 0.78917900351101
506 => 0.80825344660983
507 => 0.81568401717353
508 => 0.83804737056328
509 => 0.8199871464383
510 => 0.81607970334472
511 => 0.76183352301834
512 => 0.77071633200785
513 => 0.78493856626365
514 => 0.76206804242284
515 => 0.7765741257309
516 => 0.77943793385677
517 => 0.76129091077424
518 => 0.7709840198892
519 => 0.74524199588643
520 => 0.69186539687984
521 => 0.71145416041388
522 => 0.72587808388143
523 => 0.70529336663629
524 => 0.74219067555964
525 => 0.72063602940168
526 => 0.71380424137509
527 => 0.68715100057506
528 => 0.69973030425535
529 => 0.71674399260122
530 => 0.70623151125704
531 => 0.72804648850323
601 => 0.75894231412576
602 => 0.7809605193426
603 => 0.782650803738
604 => 0.76849457288876
605 => 0.79118002316853
606 => 0.79134526190755
607 => 0.76575598131918
608 => 0.75008268944051
609 => 0.74652168454879
610 => 0.75541777294445
611 => 0.76621926656528
612 => 0.78325021145939
613 => 0.79354165477059
614 => 0.82037628076643
615 => 0.82763696115189
616 => 0.83561424759475
617 => 0.84627436238645
618 => 0.85907456339122
619 => 0.83106845230864
620 => 0.83218118731187
621 => 0.80610228444277
622 => 0.77823323663416
623 => 0.79938236999504
624 => 0.82703204851309
625 => 0.82068918171087
626 => 0.81997547962261
627 => 0.82117572857062
628 => 0.8163934141404
629 => 0.79476318321341
630 => 0.78390061665428
701 => 0.79791609885184
702 => 0.80536470388249
703 => 0.81691684069842
704 => 0.81549279599983
705 => 0.84524985982874
706 => 0.85681255502575
707 => 0.85385432279873
708 => 0.85439870872233
709 => 0.87533241607021
710 => 0.89861500398633
711 => 0.92042221997784
712 => 0.94260545672613
713 => 0.9158626989996
714 => 0.90228437589006
715 => 0.91629373936654
716 => 0.90886017390985
717 => 0.95157564596271
718 => 0.95453317256921
719 => 0.99724555580725
720 => 1.0377846935961
721 => 1.012322787485
722 => 1.0363322181184
723 => 1.0623003748659
724 => 1.1123971624135
725 => 1.0955263267937
726 => 1.0826035311087
727 => 1.0703915516288
728 => 1.0958027423293
729 => 1.1284938332118
730 => 1.1355351810765
731 => 1.1469448546193
801 => 1.1349489779976
802 => 1.149396690086
803 => 1.2004034624043
804 => 1.1866209822747
805 => 1.1670476448463
806 => 1.2073125928492
807 => 1.2218843210054
808 => 1.324156340479
809 => 1.4532789897108
810 => 1.3998213650638
811 => 1.3666384923786
812 => 1.3744372545679
813 => 1.4215884749898
814 => 1.4367319504844
815 => 1.3955667638211
816 => 1.4101070036742
817 => 1.4902251548296
818 => 1.5332059724265
819 => 1.474832249036
820 => 1.3137814613371
821 => 1.1652852799674
822 => 1.2046731541369
823 => 1.2002077915541
824 => 1.2862847500277
825 => 1.1862922746817
826 => 1.1879758915216
827 => 1.2758328303394
828 => 1.252394105312
829 => 1.2144263725728
830 => 1.165562486434
831 => 1.075233073544
901 => 0.99522579352536
902 => 1.1521384942182
903 => 1.1453721332371
904 => 1.1355734398179
905 => 1.1573793716929
906 => 1.263262787156
907 => 1.2608218317184
908 => 1.2452937186108
909 => 1.2570716555444
910 => 1.2123616432829
911 => 1.2238844314707
912 => 1.1652617574136
913 => 1.1917616543865
914 => 1.2143449108705
915 => 1.2188788339605
916 => 1.2290939941901
917 => 1.1418065684658
918 => 1.1809960599919
919 => 1.2040162147046
920 => 1.100010318232
921 => 1.2019603525358
922 => 1.140287088581
923 => 1.1193542564934
924 => 1.1475375572084
925 => 1.1365544975106
926 => 1.1271119077293
927 => 1.1218427803871
928 => 1.1425374859548
929 => 1.1415720532046
930 => 1.1077114982265
1001 => 1.0635417845904
1002 => 1.0783665903081
1003 => 1.0729805994075
1004 => 1.0534610735773
1005 => 1.0666148771904
1006 => 1.0086921830663
1007 => 0.90903919838546
1008 => 0.97487301251908
1009 => 0.97233848228834
1010 => 0.97106045721421
1011 => 1.0205327490227
1012 => 1.0157771296852
1013 => 1.0071456340207
1014 => 1.0533025493906
1015 => 1.0364546543824
1016 => 1.0883758969342
1017 => 1.1225745853342
1018 => 1.1139006917443
1019 => 1.1460647234811
1020 => 1.0787081238899
1021 => 1.1010812843964
1022 => 1.1056923617689
1023 => 1.0527329802196
1024 => 1.0165552078226
1025 => 1.0141425628605
1026 => 0.95141529112811
1027 => 0.9849236933707
1028 => 1.0144097006723
1029 => 1.0002881913814
1030 => 0.99581774340803
1031 => 1.0186562925822
1101 => 1.020431043452
1102 => 0.97996653554133
1103 => 0.98838038808028
1104 => 1.0234675518543
1105 => 0.98749628157756
1106 => 0.91760997930355
1107 => 0.90027721008587
1108 => 0.89796469916591
1109 => 0.85095685436831
1110 => 0.90143546860486
1111 => 0.87940020074785
1112 => 0.9490093478851
1113 => 0.90924897636164
1114 => 0.90753498621331
1115 => 0.90494403871643
1116 => 0.86448244482951
1117 => 0.87334096242231
1118 => 0.90278802409109
1119 => 0.91329506743941
1120 => 0.91219909673651
1121 => 0.90264371742413
1122 => 0.90701812114188
1123 => 0.89292664262372
1124 => 0.88795064827019
1125 => 0.8722450413354
1126 => 0.84916213792589
1127 => 0.85237195722066
1128 => 0.80663868559621
1129 => 0.78172077196678
1130 => 0.77482382188697
1201 => 0.76560093199687
1202 => 0.77586557184123
1203 => 0.80650912898378
1204 => 0.76954649767656
1205 => 0.70617665892744
1206 => 0.70998529421321
1207 => 0.71854216690638
1208 => 0.70259649125204
1209 => 0.68750524746433
1210 => 0.70062585954643
1211 => 0.67377522347861
1212 => 0.72178693799474
1213 => 0.72048835566836
1214 => 0.73838415381546
1215 => 0.7495747636556
1216 => 0.72378403097705
1217 => 0.71729773145395
1218 => 0.72099262244819
1219 => 0.65992430478491
1220 => 0.73339356940902
1221 => 0.73402893466037
1222 => 0.72858855163691
1223 => 0.76770866694019
1224 => 0.85026431210006
1225 => 0.81920355759778
1226 => 0.80717589463823
1227 => 0.78431129855994
1228 => 0.81477701526888
1229 => 0.81243772356485
1230 => 0.80185855932919
1231 => 0.79546024779046
]
'min_raw' => 0.59753483771646
'max_raw' => 1.5332059724265
'avg_raw' => 1.0653704050715
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.597534'
'max' => '$1.53'
'avg' => '$1.06'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.3674455515429
'max_diff' => 0.89118551310016
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.018755935768154
]
1 => [
'year' => 2028
'avg' => 0.032190630665211
]
2 => [
'year' => 2029
'avg' => 0.087939001180664
]
3 => [
'year' => 2030
'avg' => 0.067844808448193
]
4 => [
'year' => 2031
'avg' => 0.066632009810674
]
5 => [
'year' => 2032
'avg' => 0.11682688306334
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.018755935768154
'min' => '$0.018755'
'max_raw' => 0.11682688306334
'max' => '$0.116826'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.11682688306334
]
1 => [
'year' => 2033
'avg' => 0.30049075640564
]
2 => [
'year' => 2034
'avg' => 0.19046548231991
]
3 => [
'year' => 2035
'avg' => 0.22465447317505
]
4 => [
'year' => 2036
'avg' => 0.43605487274995
]
5 => [
'year' => 2037
'avg' => 1.0653704050715
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.11682688306334
'min' => '$0.116826'
'max_raw' => 1.0653704050715
'max' => '$1.06'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.0653704050715
]
]
]
]
'prediction_2025_max_price' => '$0.032069'
'last_price' => 0.03109517
'sma_50day_nextmonth' => '$0.028834'
'sma_200day_nextmonth' => '$0.054262'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.030391'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.030013'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.029241'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.029092'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.029138'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0398041'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.058796'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.030421'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.030076'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.029624'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.029353'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.032225'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.040853'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.05904'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.04851'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0303065'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.030257'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.033472'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.043992'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.037859'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.018929'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.009464'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '56.38'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 82.91
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.029313'
'vwma_10_action' => 'BUY'
'hma_9' => '0.030793'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 128.94
'cci_20_action' => 'SELL'
'adx_14' => 10.32
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001313'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 65.71
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0108063'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 9
'buy_signals' => 22
'sell_pct' => 29.03
'buy_pct' => 70.97
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767712598
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Cudis para 2026
A previsão de preço para Cudis em 2026 sugere que o preço médio poderia variar entre $0.010743 na extremidade inferior e $0.032069 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Cudis poderia potencialmente ganhar 3.13% até 2026 se CUDIS atingir a meta de preço prevista.
Previsão de preço de Cudis 2027-2032
A previsão de preço de CUDIS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.018755 na extremidade inferior e $0.116826 na extremidade superior. Considerando a volatilidade de preços no mercado, se Cudis atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Cudis | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.010342 | $0.018755 | $0.027169 |
| 2028 | $0.018664 | $0.03219 | $0.045716 |
| 2029 | $0.0410015 | $0.087939 | $0.134876 |
| 2030 | $0.03487 | $0.067844 | $0.100819 |
| 2031 | $0.041227 | $0.066632 | $0.092036 |
| 2032 | $0.06293 | $0.116826 | $0.170723 |
Previsão de preço de Cudis 2032-2037
A previsão de preço de Cudis para 2032-2037 é atualmente estimada entre $0.116826 na extremidade inferior e $1.06 na extremidade superior. Comparado ao preço atual, Cudis poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Cudis | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.06293 | $0.116826 | $0.170723 |
| 2033 | $0.146236 | $0.30049 | $0.454745 |
| 2034 | $0.117566 | $0.190465 | $0.263364 |
| 2035 | $0.13900038 | $0.224654 | $0.3103085 |
| 2036 | $0.230089 | $0.436054 | $0.64202 |
| 2037 | $0.597534 | $1.06 | $1.53 |
Cudis Histograma de preços potenciais
Previsão de preço de Cudis baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Cudis é Altista, com 22 indicadores técnicos mostrando sinais de alta e 9 indicando sinais de baixa. A previsão de preço de CUDIS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Cudis
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Cudis está projetado para aumentar no próximo mês, alcançando $0.054262 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Cudis é esperado para alcançar $0.028834 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 56.38, sugerindo que o mercado de CUDIS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de CUDIS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.030391 | BUY |
| SMA 5 | $0.030013 | BUY |
| SMA 10 | $0.029241 | BUY |
| SMA 21 | $0.029092 | BUY |
| SMA 50 | $0.029138 | BUY |
| SMA 100 | $0.0398041 | SELL |
| SMA 200 | $0.058796 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.030421 | BUY |
| EMA 5 | $0.030076 | BUY |
| EMA 10 | $0.029624 | BUY |
| EMA 21 | $0.029353 | BUY |
| EMA 50 | $0.032225 | SELL |
| EMA 100 | $0.040853 | SELL |
| EMA 200 | $0.05904 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.04851 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.043992 | SELL |
| EMA 50 | $0.037859 | SELL |
| EMA 100 | $0.018929 | BUY |
| EMA 200 | $0.009464 | BUY |
Osciladores de Cudis
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 56.38 | NEUTRAL |
| Stoch RSI (14) | 82.91 | NEUTRAL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 128.94 | SELL |
| Índice Direcional Médio (14) | 10.32 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.001313 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 65.71 | NEUTRAL |
| VWMA (10) | 0.029313 | BUY |
| Média Móvel de Hull (9) | 0.030793 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0108063 | NEUTRAL |
Previsão do preço de Cudis com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Cudis
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Cudis por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.043693 | $0.061397 | $0.086273 | $0.121228 | $0.170346 | $0.239364 |
| Amazon.com stock | $0.064881 | $0.135379 | $0.282478 | $0.5894079 | $1.22 | $2.56 |
| Apple stock | $0.0441061 | $0.062561 | $0.088738 | $0.125868 | $0.178534 | $0.253237 |
| Netflix stock | $0.049063 | $0.077414 | $0.122147 | $0.192729 | $0.304097 | $0.479817 |
| Google stock | $0.040268 | $0.052147 | $0.06753 | $0.087451 | $0.113248 | $0.146656 |
| Tesla stock | $0.07049 | $0.159796 | $0.362246 | $0.821185 | $1.86 | $4.22 |
| Kodak stock | $0.023318 | $0.017486 | $0.013112 | $0.009833 | $0.007373 | $0.005529 |
| Nokia stock | $0.020599 | $0.013646 | $0.00904 | $0.005988 | $0.003967 | $0.002628 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Cudis
Você pode fazer perguntas como: 'Devo investir em Cudis agora?', 'Devo comprar CUDIS hoje?', 'Cudis será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Cudis regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Cudis, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Cudis para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Cudis é de $0.03109 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Cudis
com base no histórico de preços de 4 horas
Previsão de longo prazo para Cudis
com base no histórico de preços de 1 mês
Previsão do preço de Cudis com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Cudis tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0319034 | $0.032732 | $0.033583 | $0.034456 |
| Se Cudis tiver 2% da média anterior do crescimento anual do Bitcoin | $0.032711 | $0.034412 | $0.0362012 | $0.038083 |
| Se Cudis tiver 5% da média anterior do crescimento anual do Bitcoin | $0.035136 | $0.039703 | $0.044863 | $0.050693 |
| Se Cudis tiver 10% da média anterior do crescimento anual do Bitcoin | $0.039177 | $0.049361 | $0.062191 | $0.078357 |
| Se Cudis tiver 20% da média anterior do crescimento anual do Bitcoin | $0.04726 | $0.071829 | $0.109171 | $0.165925 |
| Se Cudis tiver 50% da média anterior do crescimento anual do Bitcoin | $0.0715083 | $0.164444 | $0.378167 | $0.869656 |
| Se Cudis tiver 100% da média anterior do crescimento anual do Bitcoin | $0.111921 | $0.402841 | $1.44 | $5.21 |
Perguntas Frequentes sobre Cudis
CUDIS é um bom investimento?
A decisão de adquirir Cudis depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Cudis experimentou uma escalada de 3.9045% nas últimas 24 horas, e Cudis registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Cudis dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Cudis pode subir?
Parece que o valor médio de Cudis pode potencialmente subir para $0.032069 até o final deste ano. Observando as perspectivas de Cudis em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.100819. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Cudis na próxima semana?
Com base na nossa nova previsão experimental de Cudis, o preço de Cudis aumentará 0.86% na próxima semana e atingirá $0.031361 até 13 de janeiro de 2026.
Qual será o preço de Cudis no próximo mês?
Com base na nossa nova previsão experimental de Cudis, o preço de Cudis diminuirá -11.62% no próximo mês e atingirá $0.027482 até 5 de fevereiro de 2026.
Até onde o preço de Cudis pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Cudis em 2026, espera-se que CUDIS fluctue dentro do intervalo de $0.010743 e $0.032069. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Cudis não considera flutuações repentinas e extremas de preço.
Onde estará Cudis em 5 anos?
O futuro de Cudis parece seguir uma tendência de alta, com um preço máximo de $0.100819 projetada após um período de cinco anos. Com base na previsão de Cudis para 2030, o valor de Cudis pode potencialmente atingir seu pico mais alto de aproximadamente $0.100819, enquanto seu pico mais baixo está previsto para cerca de $0.03487.
Quanto será Cudis em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Cudis, espera-se que o valor de CUDIS em 2026 aumente 3.13% para $0.032069 se o melhor cenário ocorrer. O preço ficará entre $0.032069 e $0.010743 durante 2026.
Quanto será Cudis em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Cudis, o valor de CUDIS pode diminuir -12.62% para $0.027169 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.027169 e $0.010342 ao longo do ano.
Quanto será Cudis em 2028?
Nosso novo modelo experimental de previsão de preços de Cudis sugere que o valor de CUDIS em 2028 pode aumentar 47.02%, alcançando $0.045716 no melhor cenário. O preço é esperado para variar entre $0.045716 e $0.018664 durante o ano.
Quanto será Cudis em 2029?
Com base no nosso modelo de previsão experimental, o valor de Cudis pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.134876 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.134876 e $0.0410015.
Quanto será Cudis em 2030?
Usando nossa nova simulação experimental para previsões de preços de Cudis, espera-se que o valor de CUDIS em 2030 aumente 224.23%, alcançando $0.100819 no melhor cenário. O preço está previsto para variar entre $0.100819 e $0.03487 ao longo de 2030.
Quanto será Cudis em 2031?
Nossa simulação experimental indica que o preço de Cudis poderia aumentar 195.98% em 2031, potencialmente atingindo $0.092036 sob condições ideais. O preço provavelmente oscilará entre $0.092036 e $0.041227 durante o ano.
Quanto será Cudis em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Cudis, CUDIS poderia ver um 449.04% aumento em valor, atingindo $0.170723 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.170723 e $0.06293 ao longo do ano.
Quanto será Cudis em 2033?
De acordo com nossa previsão experimental de preços de Cudis, espera-se que o valor de CUDIS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.454745. Ao longo do ano, o preço de CUDIS poderia variar entre $0.454745 e $0.146236.
Quanto será Cudis em 2034?
Os resultados da nossa nova simulação de previsão de preços de Cudis sugerem que CUDIS pode aumentar 746.96% em 2034, atingindo potencialmente $0.263364 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.263364 e $0.117566.
Quanto será Cudis em 2035?
Com base em nossa previsão experimental para o preço de Cudis, CUDIS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.3103085 em 2035. A faixa de preço esperada para o ano está entre $0.3103085 e $0.13900038.
Quanto será Cudis em 2036?
Nossa recente simulação de previsão de preços de Cudis sugere que o valor de CUDIS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.64202 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.64202 e $0.230089.
Quanto será Cudis em 2037?
De acordo com a simulação experimental, o valor de Cudis poderia aumentar 4830.69% em 2037, com um pico de $1.53 sob condições favoráveis. O preço é esperado para cair entre $1.53 e $0.597534 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Cudis?
Traders de Cudis utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Cudis
Médias móveis são ferramentas populares para a previsão de preço de Cudis. Uma média móvel simples (SMA) calcula o preço médio de fechamento de CUDIS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de CUDIS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de CUDIS.
Como ler gráficos de Cudis e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Cudis em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de CUDIS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Cudis?
A ação de preço de Cudis é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de CUDIS. A capitalização de mercado de Cudis pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de CUDIS, grandes detentores de Cudis, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Cudis.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


