Previsão de Preço Crypticorn - Projeção AIC
Previsão de Preço Crypticorn até $0.001996 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000668 | $0.001996 |
| 2027 | $0.000643 | $0.001691 |
| 2028 | $0.001161 | $0.002845 |
| 2029 | $0.002552 | $0.008395 |
| 2030 | $0.00217 | $0.006275 |
| 2031 | $0.002566 | $0.005728 |
| 2032 | $0.003916 | $0.010626 |
| 2033 | $0.0091021 | $0.0283047 |
| 2034 | $0.007317 | $0.016392 |
| 2035 | $0.008651 | $0.019314 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Crypticorn hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.93, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Crypticorn para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Crypticorn'
'name_with_ticker' => 'Crypticorn <small>AIC</small>'
'name_lang' => 'Crypticorn'
'name_lang_with_ticker' => 'Crypticorn <small>AIC</small>'
'name_with_lang' => 'Crypticorn'
'name_with_lang_with_ticker' => 'Crypticorn <small>AIC</small>'
'image' => '/uploads/coins/crypticorn.jpg?1752741393'
'price_for_sd' => 0.001935
'ticker' => 'AIC'
'marketcap' => '$193.55K'
'low24h' => '$0.001907'
'high24h' => '$0.001936'
'volume24h' => '$43.56'
'current_supply' => '100M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001935'
'change_24h_pct' => '0.9328%'
'ath_price' => '$0.03223'
'ath_days' => 172
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 de jul. de 2025'
'ath_pct' => '-93.99%'
'fdv' => '$193.55K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.095431'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001952'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00171'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000668'
'current_year_max_price_prediction' => '$0.001996'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00217'
'grand_prediction_max_price' => '$0.006275'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.001972135948948
107 => 0.0019794991886961
108 => 0.0019960889438247
109 => 0.0018543313026298
110 => 0.0019179763217407
111 => 0.0019553618077364
112 => 0.0017864528219119
113 => 0.0019520230201705
114 => 0.0018518636174789
115 => 0.0018178680118617
116 => 0.0018636386162448
117 => 0.0018458017672033
118 => 0.0018304666918124
119 => 0.0018219094562542
120 => 0.0018555183365959
121 => 0.0018539504421567
122 => 0.001798959790715
123 => 0.0017272267276151
124 => 0.001751302698149
125 => 0.0017425556723406
126 => 0.0017108553224223
127 => 0.0017322175307524
128 => 0.0016381491764328
129 => 0.0014763094620734
130 => 0.0015832257346637
131 => 0.0015791095744715
201 => 0.0015770340198496
202 => 0.0016573786437525
203 => 0.0016496553620301
204 => 0.0016356375300773
205 => 0.0017105978739455
206 => 0.0016832363400747
207 => 0.0017675581402764
208 => 0.0018230979314813
209 => 0.0018090112439077
210 => 0.0018612466859831
211 => 0.0017518573598835
212 => 0.0017881921060757
213 => 0.0017956806469082
214 => 0.001709672874938
215 => 0.0016509189864353
216 => 0.0016470007719155
217 => 0.0015451296260364
218 => 0.0015995483698899
219 => 0.0016474346124803
220 => 0.001624500818402
221 => 0.0016172406643245
222 => 0.0016543312169715
223 => 0.0016572134705712
224 => 0.0015914977830489
225 => 0.0016051621554299
226 => 0.0016621448597719
227 => 0.0016037263374831
228 => 0.0014902286912873
301 => 0.001462079705803
302 => 0.0014583241122507
303 => 0.0013819818310931
304 => 0.0014639607556127
305 => 0.0014281747581613
306 => 0.0015412222953281
307 => 0.0014766501483845
308 => 0.0014738665721885
309 => 0.0014696587885064
310 => 0.0014039478334542
311 => 0.0014183343564615
312 => 0.0014661573500674
313 => 0.0014832211329506
314 => 0.0014814412405964
315 => 0.001465922991309
316 => 0.0014730271663665
317 => 0.0014501421432477
318 => 0.0014420609652739
319 => 0.0014165545446854
320 => 0.0013790671527488
321 => 0.0013842800045211
322 => 0.0013100076719851
323 => 0.0012695401632885
324 => 0.0012583392902344
325 => 0.0012433610146698
326 => 0.0012600311263151
327 => 0.0013097972677989
328 => 0.0012497687426936
329 => 0.001146854046912
330 => 0.0011530393954865
331 => 0.0011669360372872
401 => 0.0011410397372272
402 => 0.0011165310625322
403 => 0.0011378393667279
404 => 0.0010942330534247
405 => 0.0011722056519182
406 => 0.0011700967116446
407 => 0.0011991600745699
408 => 0.0012173339918473
409 => 0.0011754489963985
410 => 0.0011649150333122
411 => 0.0011709156574281
412 => 0.0010717387073479
413 => 0.0011910552018718
414 => 0.0011920870558711
415 => 0.0011832516954718
416 => 0.0012467840453223
417 => 0.0013808571197437
418 => 0.0013304134360694
419 => 0.0013108801170824
420 => 0.0012737472634092
421 => 0.001323224586198
422 => 0.0013194254997743
423 => 0.0013022445902055
424 => 0.0012918535224906
425 => 0.0013109993833629
426 => 0.0012894811384507
427 => 0.0012856158703827
428 => 0.0012621965513434
429 => 0.0012538369199575
430 => 0.0012476477816859
501 => 0.0012408341485811
502 => 0.0012558633253588
503 => 0.0012218052335276
504 => 0.001180734513535
505 => 0.001177319927559
506 => 0.0011867478996523
507 => 0.001182576723831
508 => 0.001177299957574
509 => 0.0011672251737475
510 => 0.0011642362005998
511 => 0.001173948913286
512 => 0.0011629838269497
513 => 0.0011791634091381
514 => 0.0011747634580399
515 => 0.0011501856888761
516 => 0.0011195526886423
517 => 0.0011192799906854
518 => 0.0011126801610332
519 => 0.0011042742856801
520 => 0.0011019359634573
521 => 0.0011360448407822
522 => 0.001206649196052
523 => 0.0011927878716935
524 => 0.0012028040991082
525 => 0.0012520740245637
526 => 0.0012677354522677
527 => 0.0012566193418446
528 => 0.0012414029242858
529 => 0.0012420723694337
530 => 0.0012940714745552
531 => 0.0012973145949583
601 => 0.0013055089139464
602 => 0.0013160409295605
603 => 0.0012584129896454
604 => 0.0012393580986461
605 => 0.0012303288341655
606 => 0.0012025221943305
607 => 0.0012325092714315
608 => 0.0012150370857794
609 => 0.0012173946805587
610 => 0.0012158592938658
611 => 0.0012166977188225
612 => 0.0011721838569878
613 => 0.0011884023686607
614 => 0.0011614359473725
615 => 0.0011253309363904
616 => 0.0011252098997336
617 => 0.0011340465500215
618 => 0.0011287901646521
619 => 0.001114645366777
620 => 0.0011166545685536
621 => 0.0010990518468092
622 => 0.0011187918576809
623 => 0.0011193579305596
624 => 0.0011117569511283
625 => 0.0011421691614728
626 => 0.0011546290688649
627 => 0.0011496259413745
628 => 0.0011542780361029
629 => 0.0011933638723007
630 => 0.0011997365690356
701 => 0.0012025668999685
702 => 0.0011987746314654
703 => 0.0011549924534377
704 => 0.0011569343792094
705 => 0.0011426858163845
706 => 0.001130647282274
707 => 0.0011311287605046
708 => 0.0011373181319373
709 => 0.0011643474799857
710 => 0.0012212291494864
711 => 0.0012233877672639
712 => 0.0012260040749817
713 => 0.0012153622366427
714 => 0.0012121525563709
715 => 0.0012163869531381
716 => 0.0012377487175065
717 => 0.0012926969751243
718 => 0.0012732745910114
719 => 0.0012574838904002
720 => 0.0012713365919786
721 => 0.0012692040771517
722 => 0.0012512035059254
723 => 0.0012506982898438
724 => 0.0012161494385299
725 => 0.0012033775148384
726 => 0.0011927043394398
727 => 0.0011810495105349
728 => 0.0011741401372867
729 => 0.00118475607485
730 => 0.0011871840653748
731 => 0.0011639721323579
801 => 0.0011608084316587
802 => 0.0011797637972247
803 => 0.0011714222475664
804 => 0.0011800017382504
805 => 0.0011819922536826
806 => 0.0011816717348526
807 => 0.0011729621989884
808 => 0.0011785133974261
809 => 0.001165383158229
810 => 0.0011511059952003
811 => 0.0011419980546867
812 => 0.0011340501685956
813 => 0.0011384601177328
814 => 0.0011227394542835
815 => 0.0011177100976517
816 => 0.0011766327763014
817 => 0.0012201595925455
818 => 0.0012195266953988
819 => 0.0012156740967861
820 => 0.0012099499167189
821 => 0.0012373299580808
822 => 0.0012277912991515
823 => 0.0012347314705042
824 => 0.0012364980353916
825 => 0.0012418448952502
826 => 0.0012437559380715
827 => 0.0012379794393609
828 => 0.0012185928041481
829 => 0.0011702831524236
830 => 0.0011477948791365
831 => 0.00114037337438
901 => 0.0011406431319824
902 => 0.0011332020130557
903 => 0.0011353937560672
904 => 0.0011324398142807
905 => 0.0011268457631724
906 => 0.0011381147008405
907 => 0.0011394133409293
908 => 0.0011367830362238
909 => 0.0011374025682004
910 => 0.0011156247686567
911 => 0.0011172804874571
912 => 0.0011080612347779
913 => 0.0011063327360403
914 => 0.0010830272680793
915 => 0.0010417382534048
916 => 0.0010646163755561
917 => 0.0010369828211481
918 => 0.0010265175753771
919 => 0.0010760584211773
920 => 0.0010710858943081
921 => 0.0010625750898136
922 => 0.0010499858361591
923 => 0.0010453163595183
924 => 0.0010169460976252
925 => 0.0010152698312031
926 => 0.0010293308990588
927 => 0.0010228422000552
928 => 0.0010137296091916
929 => 0.00098072472881236
930 => 0.00094361631572571
1001 => 0.00094473638546163
1002 => 0.00095653988123792
1003 => 0.00099086013712577
1004 => 0.00097745061940393
1005 => 0.00096772186044025
1006 => 0.00096589995633178
1007 => 0.00098870490066397
1008 => 0.0010209786746776
1009 => 0.0010361208073597
1010 => 0.0010211154137451
1011 => 0.0010038780255084
1012 => 0.00100492718546
1013 => 0.0010119067765861
1014 => 0.0010126402329273
1015 => 0.0010014204652173
1016 => 0.0010045787641075
1017 => 0.00099978101929243
1018 => 0.00097033726821808
1019 => 0.00096980472412829
1020 => 0.00096257875277002
1021 => 0.00096235995322908
1022 => 0.00095006677334563
1023 => 0.0009483468725012
1024 => 0.00092393801769994
1025 => 0.00094000399984695
1026 => 0.00092922778252465
1027 => 0.00091298548116727
1028 => 0.00091018530229116
1029 => 0.00091010112553283
1030 => 0.00092677833731474
1031 => 0.00093980911691733
1101 => 0.00092941523943867
1102 => 0.00092704875501363
1103 => 0.00095231661744494
1104 => 0.00094910105162888
1105 => 0.00094631639237034
1106 => 0.0010180889121965
1107 => 0.00096127536227453
1108 => 0.0009365014117045
1109 => 0.00090583894342846
1110 => 0.00091582279771272
1111 => 0.00091792654250375
1112 => 0.00084418883362522
1113 => 0.00081427345431665
1114 => 0.00080400762347523
1115 => 0.00079809949268846
1116 => 0.00080079190207763
1117 => 0.00077386455197589
1118 => 0.00079196017658152
1119 => 0.00076864336750566
1120 => 0.00076473422858464
1121 => 0.00080642757161064
1122 => 0.00081222895672373
1123 => 0.00078747844548221
1124 => 0.00080337228044306
1125 => 0.00079760895494542
1126 => 0.00076904306727397
1127 => 0.00076795206048137
1128 => 0.00075361870218733
1129 => 0.00073118977194224
1130 => 0.00072093914897169
1201 => 0.00071560053552864
1202 => 0.00071780335148275
1203 => 0.00071668954032907
1204 => 0.00070942116914044
1205 => 0.00071710615485755
1206 => 0.00069747419200567
1207 => 0.00068965658621258
1208 => 0.00068612555504292
1209 => 0.00066870105803826
1210 => 0.00069643118148166
1211 => 0.00070189436513491
1212 => 0.00070736831294761
1213 => 0.00075501529143428
1214 => 0.00075263498303805
1215 => 0.00077415181168277
1216 => 0.00077331570728854
1217 => 0.00076717875920956
1218 => 0.00074128798474326
1219 => 0.00075160758598685
1220 => 0.0007198454573812
1221 => 0.00074364380374736
1222 => 0.00073278323230855
1223 => 0.00073997183361914
1224 => 0.00072704608029264
1225 => 0.0007341997258748
1226 => 0.00070318988864984
1227 => 0.00067423333896935
1228 => 0.00068588629985516
1229 => 0.00069855440101576
1230 => 0.00072602207210407
1231 => 0.00070966255380724
]
'min_raw' => 0.00066870105803826
'max_raw' => 0.0019960889438247
'avg_raw' => 0.0013323950009315
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000668'
'max' => '$0.001996'
'avg' => '$0.001332'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0012667589419617
'max_diff' => 6.0628943824699E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00071554605520866
102 => 0.00069583731040015
103 => 0.00065517254033557
104 => 0.00065540269851795
105 => 0.00064914730957369
106 => 0.0006437417402241
107 => 0.00071154164127891
108 => 0.00070310965182492
109 => 0.00068967438018148
110 => 0.00070765802517269
111 => 0.00071241318634719
112 => 0.00071254855910086
113 => 0.00072566896226139
114 => 0.00073267132378012
115 => 0.00073390552034777
116 => 0.00075455075820593
117 => 0.00076147076961871
118 => 0.0007899733172713
119 => 0.00073207722232804
120 => 0.00073088489035226
121 => 0.00070791109193757
122 => 0.00069334074578159
123 => 0.00070890873600435
124 => 0.00072269985009912
125 => 0.00070833962029508
126 => 0.00071021476314649
127 => 0.00069093732790844
128 => 0.00069782810391841
129 => 0.00070376336850596
130 => 0.00070048626425944
131 => 0.00069558028058876
201 => 0.00072156913601514
202 => 0.00072010274294084
203 => 0.00074430416259508
204 => 0.00076317089987568
205 => 0.00079698346591523
206 => 0.00076169829056403
207 => 0.00076041235852836
208 => 0.00077298255044699
209 => 0.00076146884518782
210 => 0.00076874510947202
211 => 0.00079581114724843
212 => 0.00079638300997654
213 => 0.00078680357247716
214 => 0.00078622066283475
215 => 0.00078806049859407
216 => 0.00079883647410262
217 => 0.00079507101714765
218 => 0.00079942849926565
219 => 0.00080487759737834
220 => 0.00082741737754216
221 => 0.00083285164223159
222 => 0.00081964919637948
223 => 0.00082084122941841
224 => 0.00081590315225447
225 => 0.00081113303158804
226 => 0.000821855566226
227 => 0.00084145120902883
228 => 0.00084132930555197
301 => 0.00084587511379736
302 => 0.00084870711467473
303 => 0.00083655009375772
304 => 0.00082863632016679
305 => 0.00083167096452805
306 => 0.00083652342694766
307 => 0.00083009737636522
308 => 0.00079043281533424
309 => 0.00080246450936907
310 => 0.00080046184716189
311 => 0.00079760981264683
312 => 0.00080970777403719
313 => 0.00080854089614792
314 => 0.00077358837308044
315 => 0.00077582592020404
316 => 0.00077372444573202
317 => 0.00078051473967235
318 => 0.0007611021470312
319 => 0.00076707332978181
320 => 0.00077081839962663
321 => 0.00077302427453621
322 => 0.00078099340729221
323 => 0.00078005832154268
324 => 0.0007809352810491
325 => 0.00079275140115319
326 => 0.00085251328183693
327 => 0.00085576598914539
328 => 0.00083974846873673
329 => 0.00084614715220837
330 => 0.00083386307918108
331 => 0.00084210945970044
401 => 0.00084775142381643
402 => 0.00082225647286357
403 => 0.000820746827329
404 => 0.00080841205356264
405 => 0.00081504006230739
406 => 0.00080449442382379
407 => 0.00080708195463689
408 => 0.00079984699290659
409 => 0.00081286848355463
410 => 0.00082742853343421
411 => 0.00083110697702759
412 => 0.00082143057560295
413 => 0.00081442422326559
414 => 0.00080212337659711
415 => 0.00082257995874903
416 => 0.0008285620867733
417 => 0.00082254853717719
418 => 0.00082115506633712
419 => 0.00081851444161313
420 => 0.00082171528735535
421 => 0.00082852950681935
422 => 0.00082531604675901
423 => 0.00082743859374274
424 => 0.00081934963340168
425 => 0.00083655411823749
426 => 0.00086387898064152
427 => 0.00086396683454222
428 => 0.00086075335716012
429 => 0.0008594384714507
430 => 0.00086273569425485
501 => 0.00086452430236693
502 => 0.00087518691630827
503 => 0.00088662832588461
504 => 0.00094002039209929
505 => 0.00092502811355801
506 => 0.00097240073101191
507 => 0.0010098663208534
508 => 0.0010211006130752
509 => 0.0010107655928455
510 => 0.00097541004692632
511 => 0.00097367533517099
512 => 0.0010265114475007
513 => 0.0010115828257203
514 => 0.001009807113662
515 => 0.00099091653747458
516 => 0.0010020832076447
517 => 0.00099964089307333
518 => 0.0009957855800403
519 => 0.0010170908088479
520 => 0.0010569722952449
521 => 0.0010507563915837
522 => 0.0010461165078481
523 => 0.0010257858879686
524 => 0.0010380294621444
525 => 0.0010336697598906
526 => 0.0010524018075083
527 => 0.0010413053574653
528 => 0.0010114697267276
529 => 0.0010162211492621
530 => 0.0010155029813045
531 => 0.0010302828269811
601 => 0.0010258462841673
602 => 0.0010146366751162
603 => 0.0010568359846601
604 => 0.0010540957962232
605 => 0.0010579807569324
606 => 0.001059691036783
607 => 0.0010853770128671
608 => 0.0010958997354092
609 => 0.0010982885776525
610 => 0.0011082843502109
611 => 0.0010980398737253
612 => 0.0011390250838557
613 => 0.0011662778570392
614 => 0.0011979333555066
615 => 0.0012441905469634
616 => 0.0012615836788541
617 => 0.001258441765258
618 => 0.0012935134398945
619 => 0.0013565364596168
620 => 0.0012711805194409
621 => 0.0013610605317065
622 => 0.0013326055575379
623 => 0.0012651393256672
624 => 0.0012607952957093
625 => 0.0013064842112312
626 => 0.0014078178284637
627 => 0.0013824349066633
628 => 0.0014078593458305
629 => 0.0013782003870434
630 => 0.0013767275697542
701 => 0.0014064188764023
702 => 0.0014757942327743
703 => 0.0014428366014583
704 => 0.0013955837554241
705 => 0.0014304745216
706 => 0.0014002489109504
707 => 0.0013321421505412
708 => 0.0013824154968214
709 => 0.0013487991418663
710 => 0.0013586101813859
711 => 0.0014292667594461
712 => 0.0014207651730398
713 => 0.0014317670130752
714 => 0.0014123490533809
715 => 0.0013942096170952
716 => 0.0013603510122157
717 => 0.00135032714852
718 => 0.0013530973838246
719 => 0.0013503257757289
720 => 0.0013313821974755
721 => 0.0013272913335553
722 => 0.0013204730477968
723 => 0.0013225863196577
724 => 0.0013097659476719
725 => 0.0013339606384332
726 => 0.0013384513862414
727 => 0.0013560582645077
728 => 0.0013578862690179
729 => 0.0014069211743715
730 => 0.0013799135725008
731 => 0.0013980326035598
801 => 0.001396411866879
802 => 0.0012666015234873
803 => 0.0012844882434803
804 => 0.0013123143666275
805 => 0.0012997787358671
806 => 0.0012820562868578
807 => 0.0012677444590651
808 => 0.0012460605764997
809 => 0.0012765802248084
810 => 0.0013167103169316
811 => 0.0013589040343789
812 => 0.00140959702125
813 => 0.0013982829367118
814 => 0.0013579563642507
815 => 0.0013597653848327
816 => 0.0013709480382474
817 => 0.0013564654860241
818 => 0.0013521942986405
819 => 0.0013703612426894
820 => 0.0013704863484487
821 => 0.001353822421841
822 => 0.0013353035168828
823 => 0.0013352259219949
824 => 0.001331930661729
825 => 0.0013787866065242
826 => 0.0014045526384912
827 => 0.0014075066725322
828 => 0.0014043538084638
829 => 0.001405567220711
830 => 0.0013905745344252
831 => 0.0014248433693316
901 => 0.0014562918410783
902 => 0.0014478629788516
903 => 0.0014352269161404
904 => 0.0014251616835556
905 => 0.0014454919299323
906 => 0.0014445866560639
907 => 0.0014560171661126
908 => 0.001455498612151
909 => 0.0014516549615448
910 => 0.0014478631161204
911 => 0.0014628973546174
912 => 0.0014585677353728
913 => 0.0014542313910335
914 => 0.0014455341886002
915 => 0.0014467162828561
916 => 0.0014340824019393
917 => 0.0014282373905401
918 => 0.0013403424432398
919 => 0.0013168540412709
920 => 0.0013242439706808
921 => 0.001326676927322
922 => 0.0013164547446839
923 => 0.0013311107287236
924 => 0.0013288266091356
925 => 0.0013377127822875
926 => 0.0013321610870949
927 => 0.0013323889306022
928 => 0.0013487152824171
929 => 0.0013534548918063
930 => 0.0013510442882176
1001 => 0.0013527325923404
1002 => 0.0013916388482627
1003 => 0.0013861076228226
1004 => 0.0013831692695489
1005 => 0.0013839832134868
1006 => 0.0013939245960345
1007 => 0.0013967076403685
1008 => 0.0013849156859643
1009 => 0.0013904768398298
1010 => 0.0014141555271735
1011 => 0.0014224417276461
1012 => 0.001448887301953
1013 => 0.0014376527519548
1014 => 0.0014582742546963
1015 => 0.0015216577237355
1016 => 0.0015722928246064
1017 => 0.0015257266932614
1018 => 0.0016187116076696
1019 => 0.0016911137014302
1020 => 0.0016883347884796
1021 => 0.0016757098087419
1022 => 0.0015932819499048
1023 => 0.0015174306052727
1024 => 0.0015808834758756
1025 => 0.001581045230292
1026 => 0.0015755945724336
1027 => 0.001541741004601
1028 => 0.0015744165416549
1029 => 0.0015770102071262
1030 => 0.0015755584441736
1031 => 0.0015496029930902
1101 => 0.0015099738166549
1102 => 0.0015177172628715
1103 => 0.0015304011857363
1104 => 0.0015063878736098
1105 => 0.0014987141653674
1106 => 0.0015129810489727
1107 => 0.0015589519205719
1108 => 0.0015502613935872
1109 => 0.0015500344488065
1110 => 0.0015872162086041
1111 => 0.001560602092915
1112 => 0.0015178149325263
1113 => 0.0015070106102348
1114 => 0.0014686625447637
1115 => 0.0014951496901757
1116 => 0.001496102915385
1117 => 0.0014815961765349
1118 => 0.0015189920744328
1119 => 0.0015186474646502
1120 => 0.0015541493040594
1121 => 0.0016220154871278
1122 => 0.0016019441173024
1123 => 0.0015786032979543
1124 => 0.0015811410921882
1125 => 0.0016089744311237
1126 => 0.00159214575903
1127 => 0.0015981974668485
1128 => 0.0016089652711391
1129 => 0.0016154617548172
1130 => 0.0015802063481621
1201 => 0.0015719866264098
1202 => 0.0015551719604349
1203 => 0.0015507853279426
1204 => 0.0015644805225297
1205 => 0.0015608723226144
1206 => 0.0014960228004972
1207 => 0.0014892456646166
1208 => 0.0014894535096986
1209 => 0.0014724120792916
1210 => 0.0014464198075091
1211 => 0.0015147259458357
1212 => 0.0015092400069843
1213 => 0.0015031839550702
1214 => 0.0015039257868743
1215 => 0.0015335751664121
1216 => 0.0015163770289506
1217 => 0.0015621010961112
1218 => 0.0015527016024943
1219 => 0.0015430610473336
1220 => 0.0015417284289519
1221 => 0.0015380176377086
1222 => 0.0015252919538105
1223 => 0.0015099249258086
1224 => 0.0014997782828525
1225 => 0.0013834661879514
1226 => 0.0014050530362087
1227 => 0.0014298867374256
1228 => 0.0014384592315709
1229 => 0.0014237953871369
1230 => 0.0015258709717659
1231 => 0.0015445211647025
]
'min_raw' => 0.0006437417402241
'max_raw' => 0.0016911137014302
'avg_raw' => 0.0011674277208271
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000643'
'max' => '$0.001691'
'avg' => '$0.001167'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.4959317814153E-5
'max_diff' => -0.00030497524239454
'year' => 2027
]
2 => [
'items' => [
101 => 0.0014880285137757
102 => 0.0014774610453671
103 => 0.0015265637732355
104 => 0.0014969488257665
105 => 0.0015102844347984
106 => 0.0014814601422595
107 => 0.0015400288793655
108 => 0.0015395826837182
109 => 0.0015167981221491
110 => 0.0015360554775653
111 => 0.0015327090381615
112 => 0.0015069853242659
113 => 0.0015408443669785
114 => 0.0015408611606413
115 => 0.0015189315155101
116 => 0.0014933224910134
117 => 0.0014887442022916
118 => 0.0014852950767462
119 => 0.0015094361613495
120 => 0.0015310809823177
121 => 0.0015713566279332
122 => 0.0015814828821666
123 => 0.0016210063265828
124 => 0.0015974720397946
125 => 0.0016079044843078
126 => 0.0016192303785862
127 => 0.0016246604287993
128 => 0.0016158124533696
129 => 0.0016772086310467
130 => 0.0016823923495729
131 => 0.0016841304055558
201 => 0.0016634279598848
202 => 0.0016818165771084
203 => 0.0016732131520764
204 => 0.0016955968739092
205 => 0.0016991069273023
206 => 0.0016961340369521
207 => 0.0016972481833015
208 => 0.0016448573766821
209 => 0.0016421406369753
210 => 0.0016050976983029
211 => 0.0016201929696195
212 => 0.0015919730834283
213 => 0.0016009219000365
214 => 0.00160486645313
215 => 0.0016028060424454
216 => 0.0016210464336109
217 => 0.0016055383748545
218 => 0.0015646100580353
219 => 0.0015236705903236
220 => 0.001523156628655
221 => 0.0015123779894482
222 => 0.0015045870075078
223 => 0.0015060878270295
224 => 0.0015113769107787
225 => 0.0015042795963453
226 => 0.0015057941682226
227 => 0.0015309461529261
228 => 0.0015359902040827
229 => 0.0015188485474148
301 => 0.0014500223223638
302 => 0.0014331321940988
303 => 0.0014452724833499
304 => 0.0014394702070226
305 => 0.0011617648031106
306 => 0.0012270075684972
307 => 0.0011882425327395
308 => 0.0012061072447102
309 => 0.0011665381813588
310 => 0.0011854226123824
311 => 0.0011819353475213
312 => 0.0012868437835893
313 => 0.0012852057826569
314 => 0.0012859898070222
315 => 0.0012485662813045
316 => 0.0013081829739322
317 => 0.0013375523004675
318 => 0.0013321168197651
319 => 0.0013334848131551
320 => 0.0013099781543368
321 => 0.0012862174028625
322 => 0.0012598630727242
323 => 0.0013088261606276
324 => 0.0013033823010805
325 => 0.0013158685562427
326 => 0.0013476246187018
327 => 0.0013523008195285
328 => 0.0013585856808609
329 => 0.0013563330054601
330 => 0.0014100008726747
331 => 0.001403501339843
401 => 0.0014191633439242
402 => 0.0013869454132502
403 => 0.0013504877665385
404 => 0.0013574171732881
405 => 0.0013567498156954
406 => 0.0013482535875822
407 => 0.0013405835727336
408 => 0.001327815159024
409 => 0.0013682163093708
410 => 0.0013665760964479
411 => 0.001393129237131
412 => 0.0013884357115918
413 => 0.0013570911993406
414 => 0.0013582106747277
415 => 0.0013657396847072
416 => 0.0013917976742111
417 => 0.0013995334596591
418 => 0.0013959499356219
419 => 0.0014044318712135
420 => 0.0014111356472688
421 => 0.0014052737622729
422 => 0.0014882656921934
423 => 0.0014538016567133
424 => 0.0014705991878071
425 => 0.0014746052999962
426 => 0.0014643437278633
427 => 0.0014665690954196
428 => 0.001469939920891
429 => 0.0014904069130779
430 => 0.0015441182227483
501 => 0.0015679065961761
502 => 0.0016394750913312
503 => 0.0015659313029131
504 => 0.0015615675188628
505 => 0.0015744591660017
506 => 0.0016164774489524
507 => 0.0016505293207073
508 => 0.001661826291068
509 => 0.0016633193721938
510 => 0.0016845132395988
511 => 0.0016966611691532
512 => 0.0016819397466418
513 => 0.0016694648824606
514 => 0.0016247814674006
515 => 0.0016299536943627
516 => 0.0016655852090809
517 => 0.0017159168223059
518 => 0.0017591065825649
519 => 0.0017439830338373
520 => 0.0018593650350672
521 => 0.0018708046891959
522 => 0.0018692240988836
523 => 0.0018952853334377
524 => 0.001843559090126
525 => 0.0018214451189615
526 => 0.0016721620896923
527 => 0.0017141045317413
528 => 0.0017750703344528
529 => 0.0017670012818539
530 => 0.0017227262863043
531 => 0.0017590729960105
601 => 0.0017470556371149
602 => 0.0017375770475533
603 => 0.0017810003038501
604 => 0.0017332546498227
605 => 0.0017745940350304
606 => 0.0017215758459004
607 => 0.001744052116934
608 => 0.0017312934984404
609 => 0.0017395498882432
610 => 0.0016912832021617
611 => 0.0017173267343637
612 => 0.0016901997055989
613 => 0.0016901868438552
614 => 0.0016895880131917
615 => 0.0017215028422339
616 => 0.0017225435836631
617 => 0.0016989584767804
618 => 0.0016955594944099
619 => 0.0017081273137122
620 => 0.0016934136888264
621 => 0.001700298101304
622 => 0.001693622210667
623 => 0.0016921193270689
624 => 0.0016801440948643
625 => 0.0016749848355647
626 => 0.0016770079140738
627 => 0.0016701021041538
628 => 0.0016659411038829
629 => 0.001688760285507
630 => 0.0016765689172884
701 => 0.0016868917834786
702 => 0.0016751275746053
703 => 0.0016343477012283
704 => 0.0016108947648099
705 => 0.0015338653642972
706 => 0.0015557108067279
707 => 0.0015701943576603
708 => 0.0015654075441635
709 => 0.0015756914718054
710 => 0.00157632282144
711 => 0.0015729794117314
712 => 0.0015691081716062
713 => 0.0015672238660062
714 => 0.0015812679361658
715 => 0.0015894209915951
716 => 0.0015716479757612
717 => 0.0015674840068223
718 => 0.0015854535071054
719 => 0.0015964148918974
720 => 0.0016773475985319
721 => 0.0016713518422152
722 => 0.0016864000139623
723 => 0.0016847058207566
724 => 0.0017004787021093
725 => 0.001726260697004
726 => 0.001673838692624
727 => 0.0016829373399678
728 => 0.0016807065617575
729 => 0.0017050616133157
730 => 0.0017051376471282
731 => 0.0016905355770941
801 => 0.0016984515961511
802 => 0.0016940330914781
803 => 0.001702017926619
804 => 0.0016712717652341
805 => 0.0017087172709578
806 => 0.0017299464597681
807 => 0.0017302412270753
808 => 0.0017403036940861
809 => 0.0017505277433479
810 => 0.0017701519155788
811 => 0.0017499804358354
812 => 0.001713693907431
813 => 0.001716313677577
814 => 0.0016950388992502
815 => 0.0016953965321175
816 => 0.0016934874598438
817 => 0.0016992167294454
818 => 0.0016725290177269
819 => 0.0016787925703246
820 => 0.0016700235600085
821 => 0.0016829182778519
822 => 0.0016690456930257
823 => 0.0016807054860087
824 => 0.001685737466132
825 => 0.0017043055811175
826 => 0.001666303167345
827 => 0.0015888136731256
828 => 0.0016051029042798
829 => 0.0015810098519112
830 => 0.0015832397556367
831 => 0.0015877445160486
901 => 0.0015731431136877
902 => 0.0015759286011151
903 => 0.001575829083903
904 => 0.0015749714983328
905 => 0.0015711731096458
906 => 0.0015656646945614
907 => 0.001587608524857
908 => 0.0015913372092279
909 => 0.0015996256126979
910 => 0.0016242862793471
911 => 0.0016218220972103
912 => 0.0016258412805134
913 => 0.0016170674259295
914 => 0.0015836467495868
915 => 0.0015854616531039
916 => 0.0015628297771634
917 => 0.0015990468647468
918 => 0.0015904701803648
919 => 0.0015849407361492
920 => 0.001583431976065
921 => 0.0016081537717369
922 => 0.0016155509204686
923 => 0.0016109415137831
924 => 0.0016014874861935
925 => 0.001619642013998
926 => 0.0016244993997604
927 => 0.0016255867892991
928 => 0.0016577531317832
929 => 0.0016273845305205
930 => 0.0016346945546824
1001 => 0.0016917252764549
1002 => 0.0016400062815089
1003 => 0.001667402986603
1004 => 0.0016660620604542
1005 => 0.0016800772877264
1006 => 0.0016649124027441
1007 => 0.0016651003896684
1008 => 0.0016775449620124
1009 => 0.0016600688045457
1010 => 0.0016557414621892
1011 => 0.0016497632697167
1012 => 0.0016628164342726
1013 => 0.00167064121608
1014 => 0.0017337032107788
1015 => 0.0017744441353306
1016 => 0.0017726754643492
1017 => 0.0017888378063053
1018 => 0.001781556523224
1019 => 0.0017580433394491
1020 => 0.0017981774770256
1021 => 0.0017854773566127
1022 => 0.0017865243391089
1023 => 0.0017864853703681
1024 => 0.0017949298401789
1025 => 0.0017889461593937
1026 => 0.0017771517103538
1027 => 0.0017849814160503
1028 => 0.0018082328427981
1029 => 0.0018804059848641
1030 => 0.0019207950313312
1031 => 0.0018779745135528
1101 => 0.0019075115333268
1102 => 0.0018897998465786
1103 => 0.0018865811062195
1104 => 0.0019051325374061
1105 => 0.0019237164404173
1106 => 0.0019225327261359
1107 => 0.0019090417668438
1108 => 0.0019014210662601
1109 => 0.0019591275642018
1110 => 0.0020016447288807
1111 => 0.0019987453432883
1112 => 0.0020115422883625
1113 => 0.002049114514895
1114 => 0.0020525496484186
1115 => 0.0020521169005503
1116 => 0.0020436025636928
1117 => 0.0020805973000842
1118 => 0.0021114589600423
1119 => 0.0020416317407131
1120 => 0.0020682210317283
1121 => 0.0020801578211184
1122 => 0.002097684569429
1123 => 0.002127255131653
1124 => 0.0021593766054325
1125 => 0.002163918934019
1126 => 0.0021606959345164
1127 => 0.0021395109590873
1128 => 0.0021746586589857
1129 => 0.0021952473572712
1130 => 0.0022075074559363
1201 => 0.0022385970262649
1202 => 0.0020802315386659
1203 => 0.0019681325752679
1204 => 0.0019506267034047
1205 => 0.001986225582223
1206 => 0.0019956127226717
1207 => 0.0019918287781273
1208 => 0.001865651203231
1209 => 0.0019499624045859
1210 => 0.0020406741681566
1211 => 0.0020441587764307
1212 => 0.0020895709819677
1213 => 0.0021043590575998
1214 => 0.0021409218353709
1215 => 0.0021386348236664
1216 => 0.0021475372782128
1217 => 0.0021454907580816
1218 => 0.0022132156047015
1219 => 0.0022879261677602
1220 => 0.0022853391785265
1221 => 0.0022745986511516
1222 => 0.0022905501658355
1223 => 0.0023676594733826
1224 => 0.0023605604839951
1225 => 0.0023674565474946
1226 => 0.0024583727667828
1227 => 0.0025765767845389
1228 => 0.0025216591508019
1229 => 0.0026408146138878
1230 => 0.0027158166617408
1231 => 0.0028455249481459
]
'min_raw' => 0.0011617648031106
'max_raw' => 0.0028455249481459
'avg_raw' => 0.0020036448756283
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001161'
'max' => '$0.002845'
'avg' => '$0.0020036'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00051802306288648
'max_diff' => 0.0011544112467158
'year' => 2028
]
3 => [
'items' => [
101 => 0.0028292848318612
102 => 0.0028797793159154
103 => 0.0028002116342971
104 => 0.0026175081540198
105 => 0.0025885946289051
106 => 0.0026464802383918
107 => 0.0027887863609197
108 => 0.0026419985121689
109 => 0.0026716935027943
110 => 0.0026631413434965
111 => 0.0026626856352718
112 => 0.0026800781647072
113 => 0.0026548493936279
114 => 0.0025520628416818
115 => 0.0025991693127137
116 => 0.0025809792420098
117 => 0.0026011624816154
118 => 0.002710083101566
119 => 0.0026619266991426
120 => 0.002611197841098
121 => 0.0026748230867207
122 => 0.0027558398884049
123 => 0.0027507700025567
124 => 0.0027409323049633
125 => 0.0027963868912122
126 => 0.0028879816210262
127 => 0.0029127393084375
128 => 0.0029310149271359
129 => 0.0029335348261853
130 => 0.0029594913525026
131 => 0.0028199165686074
201 => 0.0030414253351837
202 => 0.0030796737801153
203 => 0.0030724846577037
204 => 0.0031149961945045
205 => 0.0031024882219642
206 => 0.0030843661321939
207 => 0.0031517559604863
208 => 0.0030744989604278
209 => 0.0029648423752305
210 => 0.0029046826038299
211 => 0.0029839058437605
212 => 0.0030322847118761
213 => 0.0030642600662265
214 => 0.0030739357891329
215 => 0.0028307513617628
216 => 0.0026996884430369
217 => 0.0027836982713007
218 => 0.0028861960598313
219 => 0.0028193471882169
220 => 0.0028219675374225
221 => 0.0027266586140748
222 => 0.0028946287847182
223 => 0.002870156943707
224 => 0.0029971168981632
225 => 0.0029668168861149
226 => 0.003070347800417
227 => 0.0030430846409825
228 => 0.0031562524915324
301 => 0.0032013982110139
302 => 0.0032772049003937
303 => 0.0033329686096902
304 => 0.0033657141263789
305 => 0.0033637482083822
306 => 0.0034935022592544
307 => 0.0034169908287163
308 => 0.0033208744396009
309 => 0.0033191359973651
310 => 0.0033689160372678
311 => 0.0034732413444167
312 => 0.003500291378689
313 => 0.0035154086576136
314 => 0.0034922560187043
315 => 0.0034092083444788
316 => 0.0033733487798095
317 => 0.0034039021678594
318 => 0.003366537999757
319 => 0.0034310390364357
320 => 0.0035196127364735
321 => 0.003501322617674
322 => 0.0035624637426127
323 => 0.0036257383746903
324 => 0.0037162239404028
325 => 0.0037398802179509
326 => 0.0037789831451701
327 => 0.0038192329019212
328 => 0.0038321600390283
329 => 0.0038568419548208
330 => 0.0038567118689412
331 => 0.0039310924834664
401 => 0.0040131366046636
402 => 0.0040441063610898
403 => 0.0041153196083094
404 => 0.0039933694180556
405 => 0.004085870038226
406 => 0.0041693079130603
407 => 0.004069829838943
408 => 0.0042069371886951
409 => 0.0042122607563941
410 => 0.0042926403082174
411 => 0.0042111602335856
412 => 0.0041627776253628
413 => 0.0043024564024292
414 => 0.0043700425628114
415 => 0.0043496850612699
416 => 0.004194763469365
417 => 0.0041045924579768
418 => 0.0038685975284845
419 => 0.0041481437166903
420 => 0.0042843025104913
421 => 0.0041944108509826
422 => 0.0042397469753532
423 => 0.0044870861696316
424 => 0.0045812569207859
425 => 0.004561670062849
426 => 0.0045649799194132
427 => 0.004615792747416
428 => 0.0048411248099161
429 => 0.0047061006149097
430 => 0.004809321552732
501 => 0.0048640695659622
502 => 0.0049149225717903
503 => 0.004790043661734
504 => 0.0046275780345863
505 => 0.0045761183506256
506 => 0.0041854728970155
507 => 0.0041651381046678
508 => 0.0041537235695159
509 => 0.0040817565400006
510 => 0.00402521016823
511 => 0.0039802423939659
512 => 0.0038622335257827
513 => 0.0039020580546079
514 => 0.0037139765490889
515 => 0.0038343044311207
516 => 0.0035341218069255
517 => 0.0037841228163301
518 => 0.0036480586330623
519 => 0.0037394220726921
520 => 0.0037391033142582
521 => 0.0035708742550947
522 => 0.0034738432446201
523 => 0.0035356751809979
524 => 0.0036019639250202
525 => 0.0036127190507157
526 => 0.0036986641376538
527 => 0.0037226495640348
528 => 0.003649972602328
529 => 0.0035279011892587
530 => 0.0035562555943622
531 => 0.0034732686435057
601 => 0.0033278372041766
602 => 0.0034322886028921
603 => 0.0034679529028173
604 => 0.0034837042894147
605 => 0.0033406891717482
606 => 0.0032957507167681
607 => 0.0032718258604069
608 => 0.0035094397334749
609 => 0.0035224567578246
610 => 0.0034558598208299
611 => 0.0037568842910263
612 => 0.0036887531823865
613 => 0.003764872323264
614 => 0.0035536827292959
615 => 0.00356175045619
616 => 0.0034617699179421
617 => 0.0035177523386589
618 => 0.0034781857680939
619 => 0.003513229512294
620 => 0.0035342345880769
621 => 0.0036341987205022
622 => 0.0037852642461478
623 => 0.0036192674126279
624 => 0.0035469402151449
625 => 0.0035918116016798
626 => 0.0037113100171043
627 => 0.0038923562334838
628 => 0.0037851732294925
629 => 0.0038327392265784
630 => 0.0038431302808778
701 => 0.003764097501865
702 => 0.0038952702847772
703 => 0.0039655668447857
704 => 0.0040376765695308
705 => 0.0041002874230584
706 => 0.0040088743597408
707 => 0.0041066994410386
708 => 0.004027869693964
709 => 0.0039571512615686
710 => 0.0039572585122393
711 => 0.0039128958065662
712 => 0.0038269374742641
713 => 0.0038110854389501
714 => 0.0038935497285446
715 => 0.0039596782794021
716 => 0.0039651249435852
717 => 0.0040017371071475
718 => 0.0040234038084084
719 => 0.0042357669352175
720 => 0.00432118114158
721 => 0.0044256240163119
722 => 0.0044663104020979
723 => 0.004588761836437
724 => 0.0044898723581889
725 => 0.0044684769975259
726 => 0.004171449871378
727 => 0.004220088046645
728 => 0.0042979624581332
729 => 0.0041727339917406
730 => 0.0042521626300471
731 => 0.0042678435257774
801 => 0.0041684787763718
802 => 0.0042215537823267
803 => 0.004080602302153
804 => 0.0037883366032396
805 => 0.0038955956600487
806 => 0.0039745744288683
807 => 0.0038618619877507
808 => 0.0040638946758801
809 => 0.0039458713502762
810 => 0.0039084636221784
811 => 0.0037625227380512
812 => 0.0038314012175795
813 => 0.0039245603473863
814 => 0.003866998836077
815 => 0.0039864476149482
816 => 0.0041556189416557
817 => 0.0042761805033941
818 => 0.0042854357230855
819 => 0.004207922715885
820 => 0.0043321378046051
821 => 0.0043330425759178
822 => 0.0041929274484079
823 => 0.0041071077129724
824 => 0.0040876092885152
825 => 0.0041363201757006
826 => 0.0041954641852695
827 => 0.0042887178039952
828 => 0.00434506901273
829 => 0.0044920030787387
830 => 0.0045317592240709
831 => 0.0045754391744808
901 => 0.0046338090586263
902 => 0.004703897070274
903 => 0.0045505484909015
904 => 0.0045566413158374
905 => 0.0044138452419813
906 => 0.0042612471580376
907 => 0.0043770500821312
908 => 0.0045284470007661
909 => 0.0044937163803525
910 => 0.0044898084760738
911 => 0.0044963804871084
912 => 0.0044701947335126
913 => 0.004351757540488
914 => 0.0042922791236071
915 => 0.0043690214559459
916 => 0.0044098065901757
917 => 0.0044730607765287
918 => 0.0044652633629268
919 => 0.0046281993539683
920 => 0.0046915113531585
921 => 0.0046753134344925
922 => 0.0046782942413517
923 => 0.0047929175917102
924 => 0.0049204023313988
925 => 0.0050398086132102
926 => 0.0051612738116879
927 => 0.0050148427740556
928 => 0.0049404941237568
929 => 0.005017202952794
930 => 0.0049765001683519
1001 => 0.0052103904409863
1002 => 0.005226584495999
1003 => 0.0054604578557045
1004 => 0.0056824315231866
1005 => 0.0055430138397124
1006 => 0.0056744784357182
1007 => 0.0058166681147643
1008 => 0.0060909750750881
1009 => 0.0059985981410863
1010 => 0.005927838857372
1011 => 0.0058609716761683
1012 => 0.006000111665387
1013 => 0.0061791130387013
1014 => 0.0062176682200593
1015 => 0.0062801423430722
1016 => 0.0062144584416965
1017 => 0.0062935674660592
1018 => 0.0065728570843262
1019 => 0.0064973905641128
1020 => 0.0063902159735613
1021 => 0.006610688303923
1022 => 0.0066904763832165
1023 => 0.0072504709090393
1024 => 0.0079574871301108
1025 => 0.0076647777720684
1026 => 0.0074830836278595
1027 => 0.0075257860615913
1028 => 0.0077839644515172
1029 => 0.0078668831561888
1030 => 0.0076414815330997
1031 => 0.0077210971969323
1101 => 0.0081597873322894
1102 => 0.0083951305150439
1103 => 0.008075502862057
1104 => 0.0071936628440826
1105 => 0.0063805660743047
1106 => 0.0065962359518745
1107 => 0.0065717856807736
1108 => 0.0070431035035059
1109 => 0.0064955907125642
1110 => 0.0065048094237888
1111 => 0.0069858735999609
1112 => 0.0068575339252861
1113 => 0.0066496400888165
1114 => 0.00638208392938
1115 => 0.0058874816227124
1116 => 0.0054493985666912
1117 => 0.0063085803240512
1118 => 0.0062715308443532
1119 => 0.0062178777073252
1120 => 0.0063372769579052
1121 => 0.006917045826653
1122 => 0.0069036802776997
1123 => 0.0068186554744216
1124 => 0.0068831460383338
1125 => 0.0066383345811554
1126 => 0.0067014280679235
1127 => 0.0063804372756221
1128 => 0.006525538519502
1129 => 0.0066491940420133
1130 => 0.0066740197189087
1201 => 0.0067299532365846
1202 => 0.0062520074520937
1203 => 0.0064665910775791
1204 => 0.0065926388537852
1205 => 0.006023150415229
1206 => 0.0065813818983998
1207 => 0.0062436874793191
1208 => 0.0061290689214832
1209 => 0.0062833877097626
1210 => 0.0062232495278901
1211 => 0.0061715462505488
1212 => 0.0061426949334172
1213 => 0.0062560096199864
1214 => 0.0062507233544176
1215 => 0.0060653185337575
1216 => 0.0058234655032736
1217 => 0.0059046393188591
1218 => 0.0058751481106483
1219 => 0.0057682681676508
1220 => 0.0058402923444976
1221 => 0.0055231343202662
1222 => 0.0049774804240156
1223 => 0.0053379561017096
1224 => 0.0053240781802405
1225 => 0.0053170803029221
1226 => 0.0055879678118932
1227 => 0.0055619282283437
1228 => 0.0055146661292212
1229 => 0.0057674001621371
1230 => 0.0056751488403703
1231 => 0.0059594456769104
]
'min_raw' => 0.0025520628416818
'max_raw' => 0.0083951305150439
'avg_raw' => 0.0054735966783628
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002552'
'max' => '$0.008395'
'avg' => '$0.005473'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0013902980385712
'max_diff' => 0.0055496055668979
'year' => 2029
]
4 => [
'items' => [
101 => 0.0061467019606222
102 => 0.0060992077099667
103 => 0.0062753231498858
104 => 0.0059065093996221
105 => 0.0060290145332204
106 => 0.0060542626714702
107 => 0.0057642814634018
108 => 0.0055661886262494
109 => 0.005552978092435
110 => 0.0052095124116873
111 => 0.0053929890059846
112 => 0.0055544408161889
113 => 0.0054771179282676
114 => 0.0054526398119073
115 => 0.0055776931997364
116 => 0.0055874109189806
117 => 0.0053658458903761
118 => 0.0054119162758749
119 => 0.0056040374419693
120 => 0.0054070753154215
121 => 0.0050244100771198
122 => 0.0049295038072601
123 => 0.0049168415613913
124 => 0.0046594482304207
125 => 0.0049358458980242
126 => 0.0048151909091183
127 => 0.0051963385734032
128 => 0.0049786290716996
129 => 0.0049692440502116
130 => 0.0049550572137492
131 => 0.0047335081409982
201 => 0.0047820133077526
202 => 0.0049432518695896
203 => 0.0050007836049355
204 => 0.0049947825735953
205 => 0.0049424617126732
206 => 0.0049664139348772
207 => 0.0048892554816508
208 => 0.0048620092259022
209 => 0.0047760125480867
210 => 0.0046496211888865
211 => 0.0046671966825865
212 => 0.0044167823279127
213 => 0.0042803432969907
214 => 0.004242578771469
215 => 0.0041920784696533
216 => 0.0042482829149353
217 => 0.0044160729355088
218 => 0.0042136825720585
219 => 0.0038666984899562
220 => 0.0038875528245227
221 => 0.003934406322586
222 => 0.0038470951389119
223 => 0.0037644624310366
224 => 0.0038363048663307
225 => 0.0036892831365336
226 => 0.0039521731962274
227 => 0.0039450627568535
228 => 0.0040430519140951
301 => 0.0041043265450582
302 => 0.0039631083585856
303 => 0.0039275923665824
304 => 0.0039478238897393
305 => 0.0036134418782304
306 => 0.0040157257699293
307 => 0.0040192047377299
308 => 0.0039894157032785
309 => 0.0042036194564864
310 => 0.0046556561875812
311 => 0.004485581786208
312 => 0.0044197238374703
313 => 0.004294527828778
314 => 0.004461344076957
315 => 0.0044485351918357
316 => 0.0043906085556918
317 => 0.0043555743454098
318 => 0.0044201259520619
319 => 0.0043475756869847
320 => 0.0043345436658288
321 => 0.0042555837966034
322 => 0.0042273987157351
323 => 0.0042065316039405
324 => 0.0041835589642148
325 => 0.0042342308830246
326 => 0.0041194016485556
327 => 0.0039809288486346
328 => 0.0039694163336177
329 => 0.0040012033997702
330 => 0.0039871399892665
331 => 0.0039693490034188
401 => 0.0039353811663488
402 => 0.0039253036346982
403 => 0.0039580507236395
404 => 0.0039210811694986
405 => 0.0039756317604692
406 => 0.0039607970181471
407 => 0.0038779313534462
408 => 0.0037746500544303
409 => 0.0037737306342292
410 => 0.0037514788477715
411 => 0.0037231378521391
412 => 0.0037152540355084
413 => 0.0038302544968151
414 => 0.0040683020100458
415 => 0.0040215675872044
416 => 0.0040553379972437
417 => 0.0042214549908333
418 => 0.0042742585877832
419 => 0.0042367798453899
420 => 0.0041854766312138
421 => 0.0041877337122694
422 => 0.0043630523256481
423 => 0.0043739867325144
424 => 0.004401614451092
425 => 0.0044371238770566
426 => 0.0042428272541788
427 => 0.0041785823588046
428 => 0.0041481395632053
429 => 0.0040543875356038
430 => 0.0041554910596806
501 => 0.0040965823658856
502 => 0.0041045311612861
503 => 0.0040993544978537
504 => 0.0041021813061322
505 => 0.003952099713098
506 => 0.0040067815575434
507 => 0.0039158623854348
508 => 0.0037941318201374
509 => 0.0037937237365983
510 => 0.0038235171199992
511 => 0.0038057948497371
512 => 0.003758104676143
513 => 0.0037648788402108
514 => 0.0037055300348668
515 => 0.0037720848597244
516 => 0.0037739934139567
517 => 0.0037483661811207
518 => 0.0038509030716098
519 => 0.0038929125193054
520 => 0.0038760441256642
521 => 0.0038917289878398
522 => 0.0040235096134668
523 => 0.0040449956054358
524 => 0.0040545382637834
525 => 0.0040417523657575
526 => 0.0038941376957632
527 => 0.0039006850340835
528 => 0.0038526450097164
529 => 0.0038120562514593
530 => 0.0038136795889296
531 => 0.003834547486843
601 => 0.0039256788209168
602 => 0.0041174593409897
603 => 0.0041247372715367
604 => 0.0041335583356719
605 => 0.0040976786347224
606 => 0.0040868569735935
607 => 0.0041011335379302
608 => 0.0041731562179289
609 => 0.0043584181048523
610 => 0.0042929341807882
611 => 0.004239694731206
612 => 0.0042864000817421
613 => 0.0042792101591157
614 => 0.0042185199764666
615 => 0.0042168166051746
616 => 0.0041003327408458
617 => 0.0040572713084127
618 => 0.0040212859523792
619 => 0.0039819908830122
620 => 0.0039586954487088
621 => 0.0039944878233844
622 => 0.0040026739629556
623 => 0.0039244133101837
624 => 0.003913746672394
625 => 0.003977656010821
626 => 0.0039495318937596
627 => 0.0039784582456018
628 => 0.0039851694073548
629 => 0.0039840887557414
630 => 0.003954723947495
701 => 0.0039734402006001
702 => 0.003929170682423
703 => 0.003881034230472
704 => 0.0038503261731342
705 => 0.0038235293202743
706 => 0.0038383977716832
707 => 0.0037853944572824
708 => 0.0037684376302596
709 => 0.0039670995551771
710 => 0.0041138532550893
711 => 0.0041117193981718
712 => 0.0040987300929695
713 => 0.0040794306202233
714 => 0.0041717443412885
715 => 0.0041395840867405
716 => 0.0041629833590034
717 => 0.0041689394558586
718 => 0.0041869667671779
719 => 0.0041934099814748
720 => 0.0041739341127695
721 => 0.0041085707186178
722 => 0.0039456913549568
723 => 0.0038698705714882
724 => 0.0038448484500485
725 => 0.003845757956639
726 => 0.0038206697046552
727 => 0.003828059319241
728 => 0.0038180998982704
729 => 0.0037992391643947
730 => 0.0038372331745146
731 => 0.0038416116302422
801 => 0.0038327433742856
802 => 0.0038348321695989
803 => 0.0037614067979601
804 => 0.0037669891694943
805 => 0.0037359058154185
806 => 0.0037300780612447
807 => 0.0036515020488785
808 => 0.0035122932531965
809 => 0.0035894284393291
810 => 0.0034962599813295
811 => 0.0034609756745525
812 => 0.0036280060949991
813 => 0.003611240873489
814 => 0.0035825461019303
815 => 0.0035401005542805
816 => 0.0035243570877735
817 => 0.0034287047690525
818 => 0.0034230531197772
819 => 0.0034704609917651
820 => 0.003448583890048
821 => 0.0034178601537307
822 => 0.0033065818952049
823 => 0.0031814682896566
824 => 0.003185244682972
825 => 0.0032250409930755
826 => 0.0033407541319651
827 => 0.0032955430067433
828 => 0.003262741816657
829 => 0.003256599139754
830 => 0.0033334876017604
831 => 0.0034423008841301
901 => 0.0034933536416581
902 => 0.0034427619094432
903 => 0.003384644851527
904 => 0.0033881821675539
905 => 0.0034117143463349
906 => 0.0034141872455977
907 => 0.0033763590154244
908 => 0.0033870074406381
909 => 0.0033708315090261
910 => 0.0032715598465819
911 => 0.0032697643370021
912 => 0.0032454014700665
913 => 0.0032446637721381
914 => 0.0032032164578787
915 => 0.003197417692102
916 => 0.0031151215339678
917 => 0.0031692891144675
918 => 0.0031329563453939
919 => 0.0030781942923662
920 => 0.0030687532937832
921 => 0.0030684694859654
922 => 0.0031246978698538
923 => 0.003168632053064
924 => 0.0031335883694673
925 => 0.0031256096020056
926 => 0.0032108019643386
927 => 0.0031999604596861
928 => 0.0031905717865773
929 => 0.0034325578481685
930 => 0.0032410069980112
1001 => 0.0031574798940023
1002 => 0.0030540992414245
1003 => 0.0030877605031943
1004 => 0.003094853425636
1005 => 0.0028462415919496
1006 => 0.0027453798019857
1007 => 0.0027107678365664
1008 => 0.0026908481611263
1009 => 0.0026999258073599
1010 => 0.0026091383664844
1011 => 0.0026701490282384
1012 => 0.0025915347785115
1013 => 0.0025783548437119
1014 => 0.0027189268606603
1015 => 0.0027384866356089
1016 => 0.0026550385589326
1017 => 0.0027086257331752
1018 => 0.0026891942788774
1019 => 0.0025928823941865
1020 => 0.0025892039886136
1021 => 0.0025408780704021
1022 => 0.0024652573661429
1023 => 0.0024306966751221
1024 => 0.0024126971671687
1025 => 0.0024201241149537
1026 => 0.0024163688228853
1027 => 0.0023918630019613
1028 => 0.0024177734678551
1029 => 0.0023515829344402
1030 => 0.0023252253307009
1031 => 0.0023133202125837
1101 => 0.0022545723043929
1102 => 0.0023480663516378
1103 => 0.002366485856752
1104 => 0.0023849416539813
1105 => 0.002545586768555
1106 => 0.0025375613926093
1107 => 0.0026101068826419
1108 => 0.0026072878983019
1109 => 0.0025865967493855
1110 => 0.0024993041956363
1111 => 0.0025340974517206
1112 => 0.0024270092175656
1113 => 0.0025072470038866
1114 => 0.0024706298290198
1115 => 0.0024948667002306
1116 => 0.002451286620443
1117 => 0.0024754056359748
1118 => 0.0023708538047332
1119 => 0.0022732247758037
1120 => 0.0023125135470139
1121 => 0.0023552249345354
1122 => 0.0024478341053413
1123 => 0.0023926768472184
1124 => 0.0024125134829662
1125 => 0.0023460640738237
1126 => 0.0022089599624274
1127 => 0.0022097359568084
1128 => 0.0021886454762455
1129 => 0.0021704202217786
1130 => 0.0023990123218228
1201 => 0.002370583280676
1202 => 0.0023252853243094
1203 => 0.0023859184389753
1204 => 0.0024019507968699
1205 => 0.0024024072155603
1206 => 0.0024466435708533
1207 => 0.002470252521603
1208 => 0.0024744137014997
1209 => 0.0025440205623429
1210 => 0.0025673518639609
1211 => 0.0026634501933559
1212 => 0.0024682494670784
1213 => 0.0024642294365761
1214 => 0.0023867716712416
1215 => 0.0023376467319077
1216 => 0.002390135297866
1217 => 0.0024366330019014
1218 => 0.0023882164845179
1219 => 0.0023945386595597
1220 => 0.0023295434407471
1221 => 0.0023527761731633
1222 => 0.0023727873321072
1223 => 0.0023617383463399
1224 => 0.0023451974798694
1225 => 0.0024328207204233
1226 => 0.002427876673793
1227 => 0.0025094734498465
1228 => 0.0025730839718216
1229 => 0.0026870853989419
1230 => 0.002568118966713
1231 => 0.0025637833570739
]
'min_raw' => 0.0021704202217786
'max_raw' => 0.0062753231498858
'avg_raw' => 0.0042228716858322
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00217'
'max' => '$0.006275'
'avg' => '$0.004222'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00038164261990319
'max_diff' => -0.0021198073651581
'year' => 2030
]
5 => [
'items' => [
101 => 0.0026061646367503
102 => 0.0025673453756078
103 => 0.0025918778086545
104 => 0.0026831328447081
105 => 0.0026850609198221
106 => 0.002652763177478
107 => 0.0026507978569211
108 => 0.0026570009916369
109 => 0.0026933329454186
110 => 0.0026806374443991
111 => 0.0026953289995896
112 => 0.0027137010143204
113 => 0.0027896954568199
114 => 0.0028080174596286
115 => 0.0027635044916728
116 => 0.0027675235142887
117 => 0.0027508744423649
118 => 0.0027347916474989
119 => 0.0027709434216542
120 => 0.0028370114994881
121 => 0.0028366004934048
122 => 0.0028519270032823
123 => 0.0028614752919644
124 => 0.0028204870471665
125 => 0.0027938052069827
126 => 0.0028040367223188
127 => 0.0028203971381546
128 => 0.0027987312599634
129 => 0.0026649994231562
130 => 0.0027055651196207
131 => 0.0026988130041678
201 => 0.0026891971706776
202 => 0.0027299862921579
203 => 0.0027260520818854
204 => 0.0026082072100562
205 => 0.0026157512564039
206 => 0.0026086659885012
207 => 0.0026315599386042
208 => 0.0025661090271707
209 => 0.002586241286709
210 => 0.0025988680511633
211 => 0.0026063053124302
212 => 0.0026331737999041
213 => 0.002630021093014
214 => 0.0026329778232172
215 => 0.0026728166971233
216 => 0.0028743080502898
217 => 0.0028852747800771
218 => 0.0028312705917117
219 => 0.0028528441997782
220 => 0.00281142758992
221 => 0.002839230837585
222 => 0.0028582531135114
223 => 0.0027722951063732
224 => 0.0027672052310533
225 => 0.0027256176801136
226 => 0.0027479644743493
227 => 0.0027124091179289
228 => 0.0027211331587209
301 => 0.0026967399801183
302 => 0.0027406428449696
303 => 0.0027897330696888
304 => 0.0028021351990846
305 => 0.0027695105360967
306 => 0.0027458881300234
307 => 0.0027044149666629
308 => 0.0027733857616211
309 => 0.0027935549239138
310 => 0.0027732798215978
311 => 0.0027685816373715
312 => 0.0027596785867521
313 => 0.0027704704616479
314 => 0.0027934450783244
315 => 0.0027826106733743
316 => 0.0027897669887215
317 => 0.0027624944941784
318 => 0.0028205006159811
319 => 0.0029126282973372
320 => 0.0029129245028972
321 => 0.0029020900395456
322 => 0.002897656810574
323 => 0.0029087736274629
324 => 0.0029148040445894
325 => 0.0029507537919326
326 => 0.0029893293031329
327 => 0.0031693443820907
328 => 0.0031187968682613
329 => 0.0032785169554577
330 => 0.0034048348073723
331 => 0.0034427120079513
401 => 0.0034078667656786
402 => 0.0032886630741668
403 => 0.00328281437237
404 => 0.0034609550139891
405 => 0.0034106221233734
406 => 0.0034046351861926
407 => 0.0033409442896789
408 => 0.0033785934977895
409 => 0.0033703590636951
410 => 0.0033573606066349
411 => 0.0034291926730434
412 => 0.0035636558888672
413 => 0.0035426985356931
414 => 0.0035270548437321
415 => 0.0034585087393697
416 => 0.0034997888045226
417 => 0.0034850897639892
418 => 0.0035482461703622
419 => 0.0035108337143125
420 => 0.0034102408022232
421 => 0.003426260555032
422 => 0.0034238392016223
423 => 0.0034736704832166
424 => 0.0034587123693704
425 => 0.0034209183898246
426 => 0.0035631963082136
427 => 0.0035539575715848
428 => 0.0035670559878552
429 => 0.0035728223157794
430 => 0.0036594243774846
501 => 0.0036949024712084
502 => 0.0037029566196151
503 => 0.0037366580646784
504 => 0.0037021180969606
505 => 0.0038403025944115
506 => 0.0039321872219273
507 => 0.0040389159451266
508 => 0.0041948752956972
509 => 0.0042535174542164
510 => 0.0042429242731655
511 => 0.0043611708728287
512 => 0.0045736573839491
513 => 0.0042858738722848
514 => 0.0045889106088603
515 => 0.0044929726767879
516 => 0.0042655055656938
517 => 0.0042508593654005
518 => 0.0044049027339808
519 => 0.0047465560993672
520 => 0.0046609758063383
521 => 0.0047466960780683
522 => 0.0046466988277949
523 => 0.0046417331214759
524 => 0.0047418394348206
525 => 0.0049757432924615
526 => 0.0048646243374513
527 => 0.0047053080679585
528 => 0.0048229447221163
529 => 0.0047210369655264
530 => 0.0044914102677445
531 => 0.0046609103647011
601 => 0.004547570476951
602 => 0.0045806490816763
603 => 0.004818872667691
604 => 0.0047902089755603
605 => 0.0048273024473638
606 => 0.0047618334405357
607 => 0.0047006750646435
608 => 0.00458651841436
609 => 0.0045527222580659
610 => 0.0045620622998073
611 => 0.0045527176296051
612 => 0.0044888480329252
613 => 0.0044750553996033
614 => 0.0044520670731309
615 => 0.0044591921167541
616 => 0.004415967337514
617 => 0.0044975414266352
618 => 0.0045126822964045
619 => 0.0045720451157525
620 => 0.0045782083605858
621 => 0.004743532967493
622 => 0.0046524749521756
623 => 0.0047135645304213
624 => 0.0047081001035456
625 => 0.0042704354677318
626 => 0.0043307417929992
627 => 0.0044245595099478
628 => 0.0043822947556294
629 => 0.0043225422814525
630 => 0.0042742889548297
701 => 0.0042011802308402
702 => 0.0043040793559267
703 => 0.0044393807633136
704 => 0.0045816398275584
705 => 0.0047525547720655
706 => 0.0047144085461208
707 => 0.0045784446915568
708 => 0.0045845439307509
709 => 0.0046222470274866
710 => 0.0045734180915263
711 => 0.0045590174850576
712 => 0.0046202686052941
713 => 0.0046206904080962
714 => 0.0045645068160999
715 => 0.0045020690350848
716 => 0.0045018074185026
717 => 0.0044906972184483
718 => 0.0046486753077031
719 => 0.0047355472834069
720 => 0.0047455070154201
721 => 0.0047348769140874
722 => 0.0047389680181968
723 => 0.0046884191296281
724 => 0.0048039588990888
725 => 0.0049099896172448
726 => 0.0048815711197631
727 => 0.0048389677521106
728 => 0.0048050321177191
729 => 0.0048735769627905
730 => 0.004870524768739
731 => 0.0049090635314209
801 => 0.004907315190535
802 => 0.0048943560541612
803 => 0.0048815715825747
804 => 0.0049322605673242
805 => 0.0049176629537566
806 => 0.004903042666063
807 => 0.0048737194408396
808 => 0.0048777049541547
809 => 0.0048351089425742
810 => 0.0048154020785562
811 => 0.0045190581271039
812 => 0.0044398653399579
813 => 0.0044647810029118
814 => 0.0044729838860912
815 => 0.0044385190836369
816 => 0.004487932757075
817 => 0.0044802316884117
818 => 0.0045101920416061
819 => 0.0044914741136576
820 => 0.0044922423039497
821 => 0.0045472877389633
822 => 0.0045632676629278
823 => 0.0045551401446256
824 => 0.0045608323798494
825 => 0.0046920075380394
826 => 0.0046733586252902
827 => 0.0046634517620788
828 => 0.0046661960308931
829 => 0.0046997140962377
830 => 0.0047090973245157
831 => 0.0046693399269541
901 => 0.0046880897454789
902 => 0.0047679240930513
903 => 0.0047958615964689
904 => 0.0048850246966154
905 => 0.0048471466269255
906 => 0.0049166734631659
907 => 0.0051303752543237
908 => 0.0053010950321398
909 => 0.0051440940691669
910 => 0.0054575992000936
911 => 0.00570170791416
912 => 0.0056923386151298
913 => 0.005649772614496
914 => 0.0053718613334973
915 => 0.0051161232292986
916 => 0.0053300590126743
917 => 0.0053306043789824
918 => 0.0053122271054602
919 => 0.0051980874379317
920 => 0.0053082552924423
921 => 0.0053170000166625
922 => 0.005312105296509
923 => 0.0052245946810295
924 => 0.0050909821458574
925 => 0.0051170897154068
926 => 0.0051598544469088
927 => 0.0050788918885181
928 => 0.0050530194454178
929 => 0.0051011212395749
930 => 0.0052561152427556
1001 => 0.0052268145242734
1002 => 0.0052260493641003
1003 => 0.0053514102632055
1004 => 0.0052616789140215
1005 => 0.0051174190154669
1006 => 0.0050809914885275
1007 => 0.0049516983084154
1008 => 0.0050410015684454
1009 => 0.0050442154337903
1010 => 0.0049953049509291
1011 => 0.00512138783159
1012 => 0.0051202259556483
1013 => 0.0052399228858756
1014 => 0.0054687384603563
1015 => 0.0054010664356518
1016 => 0.0053223712336157
1017 => 0.0053309275840583
1018 => 0.005424769629541
1019 => 0.0053680305866367
1020 => 0.0053884343420637
1021 => 0.0054247387460135
1022 => 0.005446642094304
1023 => 0.0053277760293127
1024 => 0.0053000626635421
1025 => 0.0052433708432451
1026 => 0.0052285810055325
1027 => 0.0052747553102508
1028 => 0.0052625900123198
1029 => 0.0050439453208528
1030 => 0.0050210957340669
1031 => 0.0050217964982719
1101 => 0.0049643401258602
1102 => 0.0048767053668229
1103 => 0.0051070042811733
1104 => 0.0050885080553198
1105 => 0.0050680896534716
1106 => 0.0050705907911922
1107 => 0.0051705557443573
1108 => 0.0051125710231704
1109 => 0.0052667329079547
1110 => 0.0052350418589735
1111 => 0.0052025380541672
1112 => 0.0051980450382529
1113 => 0.0051855338464967
1114 => 0.0051426283147556
1115 => 0.0050908173069555
1116 => 0.0050566071918132
1117 => 0.0046644528432028
1118 => 0.004737234409248
1119 => 0.0048209629667345
1120 => 0.0048498657292577
1121 => 0.0048004255539514
1122 => 0.0051445805142181
1123 => 0.0052074609418185
1124 => 0.005016992025028
1125 => 0.0049813630674911
1126 => 0.0051469163427427
1127 => 0.0050470674797012
1128 => 0.0050920294166149
1129 => 0.004994846301872
1130 => 0.0051923148881635
1201 => 0.0051908105083863
1202 => 0.0051139907682886
1203 => 0.0051789182865803
1204 => 0.0051676355324894
1205 => 0.0050809062351178
1206 => 0.0051950643615864
1207 => 0.0051951209825929
1208 => 0.005121183652954
1209 => 0.0050348410388986
1210 => 0.005019405018827
1211 => 0.0050077760512405
1212 => 0.0050891694034573
1213 => 0.0051621464285445
1214 => 0.005297938579693
1215 => 0.0053320799528336
1216 => 0.0054653360051215
1217 => 0.0053859885141035
1218 => 0.0054211622291498
1219 => 0.0054593482724582
1220 => 0.0054776560658656
1221 => 0.0054478244989587
1222 => 0.0056548259985411
1223 => 0.005672303267468
1224 => 0.0056781632445613
1225 => 0.0056083635035829
1226 => 0.0056703620104045
1227 => 0.0056413549622374
1228 => 0.0057168232431782
1229 => 0.005728657633257
1230 => 0.0057186343258809
1231 => 0.005722390748085
]
'min_raw' => 0.0025661090271707
'max_raw' => 0.005728657633257
'avg_raw' => 0.0041473833302139
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002566'
'max' => '$0.005728'
'avg' => '$0.004147'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00039568880539208
'max_diff' => -0.00054666551662877
'year' => 2031
]
6 => [
'items' => [
101 => 0.0055457514857583
102 => 0.0055365918081603
103 => 0.0054116989541707
104 => 0.0054625937153328
105 => 0.0053674483987897
106 => 0.0053976199587709
107 => 0.0054109192949254
108 => 0.005403972476449
109 => 0.0054654712287671
110 => 0.0054131847259316
111 => 0.0052751920482519
112 => 0.0051371617745595
113 => 0.0051354289169103
114 => 0.0050990879822838
115 => 0.005072820142723
116 => 0.0050778802605241
117 => 0.0050957127756566
118 => 0.0050717836845257
119 => 0.0050768901693542
120 => 0.0051616918418375
121 => 0.0051786982124762
122 => 0.0051209039202281
123 => 0.0048888514971751
124 => 0.0048319052504985
125 => 0.0048728370833165
126 => 0.0048532743035771
127 => 0.0039169711455157
128 => 0.0041369416841212
129 => 0.0040062426595755
130 => 0.0040664747832591
131 => 0.0039330649235462
201 => 0.0039967351012111
202 => 0.003984977544259
203 => 0.0043386836609352
204 => 0.0043331610264301
205 => 0.0043358044193164
206 => 0.0042096283895322
207 => 0.0044106302310309
208 => 0.0045096509659457
209 => 0.0044913248632645
210 => 0.004495937148489
211 => 0.0044166828071005
212 => 0.0043365717745824
213 => 0.0042477163105204
214 => 0.0044127987798804
215 => 0.0043944444273392
216 => 0.0044365427083809
217 => 0.0045436104900995
218 => 0.0045593766276685
219 => 0.0045805664764456
220 => 0.0045729714240552
221 => 0.00475391638534
222 => 0.0047320027566151
223 => 0.0047848082968609
224 => 0.0046761832942094
225 => 0.0045532637929294
226 => 0.0045766267715815
227 => 0.0045743767288641
228 => 0.0045457311025927
229 => 0.0045198711120274
301 => 0.0044768215137434
302 => 0.0046130368128559
303 => 0.0046075067204703
304 => 0.0046970324881643
305 => 0.0046812079391175
306 => 0.0045755277276587
307 => 0.0045793021170855
308 => 0.0046046866998902
309 => 0.0046925430308134
310 => 0.0047186247715465
311 => 0.0047065426700612
312 => 0.0047351401080984
313 => 0.0047577423571116
314 => 0.0047379786025841
315 => 0.0050177916886226
316 => 0.0049015937867991
317 => 0.0049582278356481
318 => 0.0049717347225914
319 => 0.0049371371157054
320 => 0.0049446400977916
321 => 0.0049560050712118
322 => 0.0050250109643298
323 => 0.0052061023948875
324 => 0.0052863065567505
325 => 0.0055276047349188
326 => 0.0052796467176036
327 => 0.0052649339150084
328 => 0.0053083990034034
329 => 0.0054500665779944
330 => 0.0055648748410417
331 => 0.0056029633653421
401 => 0.0056079973926014
402 => 0.0056794539962662
403 => 0.0057204115889001
404 => 0.005670777285086
405 => 0.0056287174095319
406 => 0.0054780641559608
407 => 0.0054955026802768
408 => 0.0056156368198619
409 => 0.0057853333678913
410 => 0.0059309506600171
411 => 0.0058799605595896
412 => 0.0062689790324502
413 => 0.0063075486250363
414 => 0.0063022195544452
415 => 0.0063900868262814
416 => 0.0062156881855452
417 => 0.006141129387816
418 => 0.0056378112320266
419 => 0.0057792231037226
420 => 0.0059847735640608
421 => 0.0059575681898604
422 => 0.0058082919511832
423 => 0.0059308374206041
424 => 0.0058903200560624
425 => 0.0058583623295814
426 => 0.0060047668699011
427 => 0.0058437890638526
428 => 0.0059831676873039
429 => 0.0058044131610403
430 => 0.0058801934780733
501 => 0.0058371769050439
502 => 0.0058650138997068
503 => 0.0057022793977105
504 => 0.005790086984831
505 => 0.0056986263134017
506 => 0.0056985829491349
507 => 0.0056965639497439
508 => 0.0058041670240817
509 => 0.0058076759564728
510 => 0.0057281571219579
511 => 0.0057166972155867
512 => 0.0057590704958213
513 => 0.0057094624822462
514 => 0.0057326737595689
515 => 0.0057101655281906
516 => 0.0057050984512115
517 => 0.0056647231197498
518 => 0.0056473283168132
519 => 0.0056541492672535
520 => 0.0056308658469598
521 => 0.0056168367440347
522 => 0.0056937732080647
523 => 0.0056526691589416
524 => 0.0056874734230215
525 => 0.0056478095714541
526 => 0.005510317381204
527 => 0.0054312441686376
528 => 0.0051715341667879
529 => 0.0052451876011432
530 => 0.0052940199043208
531 => 0.0052778808284119
601 => 0.0053125538084575
602 => 0.00531468244783
603 => 0.005303409908568
604 => 0.0052903577522043
605 => 0.005284004684316
606 => 0.0053313552473847
607 => 0.0053588438429927
608 => 0.0052989208792366
609 => 0.0052848817672399
610 => 0.0053454671920348
611 => 0.0053824242661607
612 => 0.0056552945371198
613 => 0.0056350794260878
614 => 0.0056858153877629
615 => 0.0056801032970851
616 => 0.0057332826677932
617 => 0.0058202084636221
618 => 0.0056434640158673
619 => 0.0056741407406343
620 => 0.0056666195161505
621 => 0.0057487342728942
622 => 0.0057489906262016
623 => 0.0056997587275974
624 => 0.0057264481385271
625 => 0.0057115508415319
626 => 0.0057384722706927
627 => 0.0056348094409554
628 => 0.0057610595778645
629 => 0.0058326352701129
630 => 0.0058336290986692
701 => 0.0058675554087351
702 => 0.0059020265046414
703 => 0.0059681907714339
704 => 0.0059001812191513
705 => 0.0057778386551913
706 => 0.0057866713931452
707 => 0.0057149419926589
708 => 0.00571614777684
709 => 0.005709711206382
710 => 0.0057290278388489
711 => 0.0056390483555133
712 => 0.0056601663604038
713 => 0.0056306010298903
714 => 0.0056740764713798
715 => 0.005627304083085
716 => 0.0056666158891883
717 => 0.0056835815614954
718 => 0.0057461852575536
719 => 0.0056180574662757
720 => 0.0053567962263713
721 => 0.0054117165064856
722 => 0.0053304850983017
723 => 0.0053380033743989
724 => 0.00535319148864
725 => 0.0053039618411428
726 => 0.0053133533064808
727 => 0.0053130177772522
728 => 0.0053101263676277
729 => 0.0052973198349745
730 => 0.005278747828932
731 => 0.0053527329848431
801 => 0.0053653045045277
802 => 0.0053932494355049
803 => 0.0054763945948654
804 => 0.0054680864327474
805 => 0.0054816373898642
806 => 0.0054520557265636
807 => 0.0053393755829171
808 => 0.0053454946568377
809 => 0.0052691897069971
810 => 0.0053912981463806
811 => 0.005362381256182
812 => 0.0053437383489554
813 => 0.0053386514589933
814 => 0.0054220027191217
815 => 0.005446942722523
816 => 0.0054314017860647
817 => 0.0053995268719871
818 => 0.0054607361299885
819 => 0.0054771131452184
820 => 0.0054807793549673
821 => 0.0055892304244348
822 => 0.0054868405650095
823 => 0.0055114868218408
824 => 0.0057037698820547
825 => 0.0055293956796892
826 => 0.005621765583691
827 => 0.0056172445575599
828 => 0.0056644978748201
829 => 0.0056133684063236
830 => 0.0056140022173637
831 => 0.0056559599618738
901 => 0.0055970378768285
902 => 0.0055824479399481
903 => 0.005562292046643
904 => 0.0056063017022861
905 => 0.0056326835004586
906 => 0.0058453014184335
907 => 0.0059826622900003
908 => 0.005976699092302
909 => 0.0060311915566256
910 => 0.0060066422023541
911 => 0.0059273658616188
912 => 0.0060626809085341
913 => 0.006019861565868
914 => 0.0060233915404519
915 => 0.0060232601546216
916 => 0.0060517312741626
917 => 0.006031556876628
918 => 0.0059917910682279
919 => 0.0060181894676365
920 => 0.0060965832762794
921 => 0.0063399200637227
922 => 0.0064760945537597
923 => 0.0063317221884368
924 => 0.0064313083128135
925 => 0.0063715921243518
926 => 0.0063607399165056
927 => 0.0064232873619709
928 => 0.0064859442884597
929 => 0.0064819533131157
930 => 0.0064364676019536
1001 => 0.0064107738778754
1002 => 0.0066053353646249
1003 => 0.0067486849537935
1004 => 0.0067389094728401
1005 => 0.0067820552666119
1006 => 0.0069087326515753
1007 => 0.0069203144440836
1008 => 0.006918855404432
1009 => 0.006890148723265
1010 => 0.0070148790598985
1011 => 0.0071189313011397
1012 => 0.0068835039559905
1013 => 0.0069731516070531
1014 => 0.007013397325882
1015 => 0.0070724899814895
1016 => 0.0071721891965784
1017 => 0.0072804889880758
1018 => 0.0072958037660403
1019 => 0.0072849371981949
1020 => 0.0072135105744477
1021 => 0.0073320134985893
1022 => 0.0074014297323159
1023 => 0.0074427655109379
1024 => 0.0075475861679054
1025 => 0.0070136458697402
1026 => 0.0066356963881442
1027 => 0.0065766741189363
1028 => 0.0066966982243066
1029 => 0.0067283476237185
1030 => 0.0067155897905005
1031 => 0.0062901732873007
1101 => 0.0065744343890889
1102 => 0.0068802754332607
1103 => 0.0068920240333442
1104 => 0.0070451344548913
1105 => 0.0070949934843552
1106 => 0.0072182674423423
1107 => 0.0072105566227063
1108 => 0.0072405718697591
1109 => 0.0072336718842533
1110 => 0.00746201093303
1111 => 0.0077139028125076
1112 => 0.0077051805976884
1113 => 0.0076689681597641
1114 => 0.0077227498052199
1115 => 0.0079827292192151
1116 => 0.0079587944808596
1117 => 0.0079820450404158
1118 => 0.0082885754213138
1119 => 0.0086871085199194
1120 => 0.0085019498835482
1121 => 0.0089036908465113
1122 => 0.0091565654873233
1123 => 0.0095938860308816
1124 => 0.009539131344979
1125 => 0.0097093770233799
1126 => 0.0094411090295656
1127 => 0.0088251114898612
1128 => 0.0087276275212591
1129 => 0.0089227928950877
1130 => 0.0094025879226867
1201 => 0.0089076824422231
1202 => 0.0090078011763546
1203 => 0.0089789669741894
1204 => 0.0089774305220935
1205 => 0.0090360706493923
1206 => 0.008951010086282
1207 => 0.0086044580500678
1208 => 0.0087632808060208
1209 => 0.0087019517126522
1210 => 0.0087700009141315
1211 => 0.0091372343888896
1212 => 0.0089748717159464
1213 => 0.0088038358292732
1214 => 0.0090183527870631
1215 => 0.0092915065903538
1216 => 0.0092744131162484
1217 => 0.0092412446319661
1218 => 0.00942821364122
1219 => 0.0097370316677277
1220 => 0.0098205039393614
1221 => 0.0098821214637659
1222 => 0.0098906174793447
1223 => 0.0099781317200503
1224 => 0.0095075455913476
1225 => 0.010254377863108
1226 => 0.010383335165616
1227 => 0.010359096537477
1228 => 0.010502427151861
1229 => 0.010460255649163
1230 => 0.010399155758258
1231 => 0.010626365269354
]
'min_raw' => 0.0039169711455157
'max_raw' => 0.010626365269354
'avg_raw' => 0.0072716682074348
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.003916'
'max' => '$0.010626'
'avg' => '$0.007271'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.001350862118345
'max_diff' => 0.0048977076360968
'year' => 2032
]
7 => [
'items' => [
101 => 0.010365887899745
102 => 0.0099961730667738
103 => 0.0097933401972757
104 => 0.010060446881892
105 => 0.010223559613448
106 => 0.010331366753089
107 => 0.010363989128405
108 => 0.0095440758529319
109 => 0.0091021880719268
110 => 0.0093854330732974
111 => 0.0097310115234951
112 => 0.009505625885608
113 => 0.0095144605759018
114 => 0.0091931198865785
115 => 0.0097594430442054
116 => 0.0096769345236666
117 => 0.010104988874177
118 => 0.010002830268077
119 => 0.010351891973944
120 => 0.010259972328457
121 => 0.010641525637713
122 => 0.010793737582919
123 => 0.011049325128817
124 => 0.011237336368008
125 => 0.011347740163743
126 => 0.011341111933961
127 => 0.011778586775615
128 => 0.011520623145698
129 => 0.011196560029164
130 => 0.011190698749792
131 => 0.011358535629855
201 => 0.011710275686668
202 => 0.01180147676579
203 => 0.011852445727139
204 => 0.011774384988591
205 => 0.011494383956736
206 => 0.011373480930819
207 => 0.011476493811798
208 => 0.011350517910358
209 => 0.011567987658839
210 => 0.011866620072534
211 => 0.011804953660027
212 => 0.012011095231495
213 => 0.012224430071238
214 => 0.012529508473538
215 => 0.01260926726492
216 => 0.012741105514119
217 => 0.012876810379153
218 => 0.012920395124454
219 => 0.013003611926784
220 => 0.013003173333159
221 => 0.01325395276812
222 => 0.013530570250874
223 => 0.013634986946904
224 => 0.013875087381855
225 => 0.013463923801124
226 => 0.013775796100215
227 => 0.014057112720666
228 => 0.013721715448442
301 => 0.014183982450661
302 => 0.014201931230837
303 => 0.014472936501731
304 => 0.014198220741352
305 => 0.014035095399763
306 => 0.014506032148704
307 => 0.014733903607147
308 => 0.014665266869385
309 => 0.014142937905997
310 => 0.013838920045563
311 => 0.01304324666414
312 => 0.013985756154967
313 => 0.014444825034571
314 => 0.014141749028502
315 => 0.014294602937084
316 => 0.015128524299265
317 => 0.015446027561574
318 => 0.015379989102529
319 => 0.015391148515022
320 => 0.015562467512272
321 => 0.016322190293173
322 => 0.015866946792621
323 => 0.016214963391144
324 => 0.016399550140134
325 => 0.016571004599727
326 => 0.016149966635705
327 => 0.015602202430789
328 => 0.015428702513515
329 => 0.014111614092674
330 => 0.014043053920544
331 => 0.014004569018341
401 => 0.013761927153753
402 => 0.013571277113387
403 => 0.013419665122906
404 => 0.01302178998471
405 => 0.013156061164104
406 => 0.012521931236815
407 => 0.01292762509211
408 => 0.011915538416554
409 => 0.012758434274275
410 => 0.01229968438069
411 => 0.012607722596193
412 => 0.012606647879878
413 => 0.012039451861531
414 => 0.011712305035227
415 => 0.011920775725693
416 => 0.012144272854296
417 => 0.012180534511477
418 => 0.012470304372584
419 => 0.012551172912236
420 => 0.012306137461698
421 => 0.011894565169781
422 => 0.011990164026229
423 => 0.011710367727452
424 => 0.011220035476055
425 => 0.011572200659388
426 => 0.011692445336588
427 => 0.011745552236228
428 => 0.011263366782019
429 => 0.011111853643551
430 => 0.011031189319949
501 => 0.011832321082668
502 => 0.011876208889083
503 => 0.011651672666356
504 => 0.01266659768448
505 => 0.012436888894939
506 => 0.012693529892876
507 => 0.011981489432026
508 => 0.01200869033652
509 => 0.011671598971399
510 => 0.011860347611414
511 => 0.011726946156304
512 => 0.011845098586551
513 => 0.01191591866608
514 => 0.012252954717825
515 => 0.012762282684597
516 => 0.012202612770856
517 => 0.011958756574819
518 => 0.012110043587341
519 => 0.012512940838058
520 => 0.013123350796825
521 => 0.01276197581559
522 => 0.012922347895717
523 => 0.012957382060767
524 => 0.012690917528433
525 => 0.013133175724213
526 => 0.01337018548423
527 => 0.013613308455749
528 => 0.013824405319768
529 => 0.013516199794536
530 => 0.01384602388606
531 => 0.013580243890081
601 => 0.013341811757857
602 => 0.013342173360981
603 => 0.013192601401499
604 => 0.012902786882723
605 => 0.012849340638909
606 => 0.013127374748749
607 => 0.013350331774913
608 => 0.01336869558348
609 => 0.013492136049111
610 => 0.013565186845132
611 => 0.014281183953889
612 => 0.01456916391407
613 => 0.014921300358197
614 => 0.015058477348507
615 => 0.015471330908668
616 => 0.015137918128512
617 => 0.01506578217626
618 => 0.014064334482681
619 => 0.014228321486402
620 => 0.014490880501753
621 => 0.014068663984137
622 => 0.014336463183718
623 => 0.014389332418478
624 => 0.014054317228432
625 => 0.014233263316587
626 => 0.013758035560264
627 => 0.012772641351038
628 => 0.013134272749658
629 => 0.013400555182855
630 => 0.013020537318295
701 => 0.013701704631796
702 => 0.013303780749396
703 => 0.013177657982391
704 => 0.012685608102288
705 => 0.01291783670496
706 => 0.013231929215266
707 => 0.013037856561071
708 => 0.013440586458682
709 => 0.014010959397841
710 => 0.014417441120582
711 => 0.01444864573995
712 => 0.014187305224388
713 => 0.014606105068429
714 => 0.014609155568079
715 => 0.014136747633153
716 => 0.01384740040339
717 => 0.013781660103996
718 => 0.013945892261027
719 => 0.014145300418592
720 => 0.014459711504885
721 => 0.01464970353945
722 => 0.015145102001607
723 => 0.01527914262128
724 => 0.015426412623724
725 => 0.015623210763376
726 => 0.015859517388035
727 => 0.015342491946224
728 => 0.015363034330883
729 => 0.014881587398174
730 => 0.0143670923041
731 => 0.014757529947783
801 => 0.015267975229156
802 => 0.015150878517617
803 => 0.0151377027455
804 => 0.015159860739547
805 => 0.015071573643067
806 => 0.014672254377764
807 => 0.0144717187426
808 => 0.014730460874059
809 => 0.014867970801642
810 => 0.015081236707197
811 => 0.01505494718284
812 => 0.015604297252464
813 => 0.015817758078037
814 => 0.015763145664351
815 => 0.015773195662791
816 => 0.016159656291271
817 => 0.016589479991831
818 => 0.016992066607639
819 => 0.017401595004736
820 => 0.01690789253787
821 => 0.016657220872531
822 => 0.016915850045269
823 => 0.016778617765745
824 => 0.017567195149629
825 => 0.017621794536737
826 => 0.018410314897501
827 => 0.019158714615123
828 => 0.018688658161458
829 => 0.019131900225457
830 => 0.019611302655727
831 => 0.020536147723959
901 => 0.02022469244142
902 => 0.019986122576122
903 => 0.019760675206177
904 => 0.020229795394271
905 => 0.020833311021877
906 => 0.020963302507663
907 => 0.021173938375205
908 => 0.020952480515813
909 => 0.021219202114667
910 => 0.022160846562033
911 => 0.021906405920229
912 => 0.021545059305494
913 => 0.022288397160195
914 => 0.022557408240159
915 => 0.02444546888154
916 => 0.026829223433178
917 => 0.025842333396224
918 => 0.025229738903543
919 => 0.025373713140259
920 => 0.026244179607333
921 => 0.026523745809333
922 => 0.025763788500049
923 => 0.026032218269249
924 => 0.027511292688973
925 => 0.028304768660766
926 => 0.02722712171303
927 => 0.024253936524326
928 => 0.021512523996416
929 => 0.022239670046232
930 => 0.022157234250152
1001 => 0.023746315195854
1002 => 0.021900337595071
1003 => 0.021931419123595
1004 => 0.023553360580388
1005 => 0.023120654406831
1006 => 0.02241972582249
1007 => 0.021517641550775
1008 => 0.019850055341815
1009 => 0.018373027732458
1010 => 0.021269819013552
1011 => 0.021144904106038
1012 => 0.020964008808605
1013 => 0.021366571718125
1014 => 0.023321302937278
1015 => 0.023276240055829
1016 => 0.022989572995335
1017 => 0.023207007434153
1018 => 0.022381608514085
1019 => 0.022594332609771
1020 => 0.021512089742665
1021 => 0.022001308717051
1022 => 0.022418221944551
1023 => 0.022501923447477
1024 => 0.022690507207475
1025 => 0.021079079625955
1026 => 0.02180256330103
1027 => 0.022227542178883
1028 => 0.020307472147878
1029 => 0.022189588567866
1030 => 0.021051028256864
1031 => 0.020664583786708
1101 => 0.021184880355585
1102 => 0.020982120276689
1103 => 0.020807799067325
1104 => 0.020710524837281
1105 => 0.021092573214428
1106 => 0.021074750200987
1107 => 0.02044964490358
1108 => 0.019634220525665
1109 => 0.019907903712286
1110 => 0.019808472044793
1111 => 0.019448118854858
1112 => 0.019690953395664
1113 => 0.018621632973702
1114 => 0.016781922766154
1115 => 0.017997291681108
1116 => 0.017950501299949
1117 => 0.017926907467994
1118 => 0.018840223617252
1119 => 0.018752429343289
1120 => 0.018593081876363
1121 => 0.019445192313666
1122 => 0.019134160541548
1123 => 0.020092687174914
1124 => 0.020724034809264
1125 => 0.020563904627236
1126 => 0.021157690128911
1127 => 0.019914208820143
1128 => 0.020327243431105
1129 => 0.020412369291983
1130 => 0.019434677403139
1201 => 0.01876679357228
1202 => 0.018722253335194
1203 => 0.017564234812545
1204 => 0.018182838960146
1205 => 0.018727185010455
1206 => 0.018466485495317
1207 => 0.018383955817
1208 => 0.018805582045015
1209 => 0.018838346013916
1210 => 0.0180913240508
1211 => 0.01824665357204
1212 => 0.018894403496999
1213 => 0.018230331935887
1214 => 0.016940149368119
1215 => 0.016620166253143
1216 => 0.016577474607146
1217 => 0.01570965502115
1218 => 0.016641549054944
1219 => 0.016234752335986
1220 => 0.017519818297003
1221 => 0.016785795512017
1222 => 0.016754153256829
1223 => 0.016706321347203
1224 => 0.01595935318036
1225 => 0.016122891736595
1226 => 0.016666518805146
1227 => 0.016860491067602
1228 => 0.01684025817146
1229 => 0.016663854735935
1230 => 0.016744611325386
1231 => 0.016484466213303
]
'min_raw' => 0.0091021880719268
'max_raw' => 0.028304768660766
'avg_raw' => 0.018703478366346
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0091021'
'max' => '$0.0283047'
'avg' => '$0.0187034'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0051852169264111
'max_diff' => 0.017678403391412
'year' => 2033
]
8 => [
'items' => [
101 => 0.016392603559773
102 => 0.016102659756422
103 => 0.015676522464516
104 => 0.015735779468607
105 => 0.014891489988452
106 => 0.01443147626983
107 => 0.014304150535399
108 => 0.014133885242008
109 => 0.014323382453346
110 => 0.014889098222435
111 => 0.014206724981618
112 => 0.013036843923155
113 => 0.013107155768149
114 => 0.013265125608076
115 => 0.012970749856447
116 => 0.012692147912614
117 => 0.012934369699086
118 => 0.012438675672346
119 => 0.013325027863002
120 => 0.013301054520218
121 => 0.013631431805242
122 => 0.013838023501592
123 => 0.013361896526361
124 => 0.013242151879675
125 => 0.013310363872518
126 => 0.012182971574909
127 => 0.013539299802337
128 => 0.01355102938517
129 => 0.013450593575713
130 => 0.014172796484882
131 => 0.015696869883965
201 => 0.01512345216552
202 => 0.014901407493295
203 => 0.014479300409083
204 => 0.015041733036557
205 => 0.014998546986083
206 => 0.014803243288015
207 => 0.014685123002039
208 => 0.014902763250716
209 => 0.01465815496671
210 => 0.014614216597517
211 => 0.014347997885621
212 => 0.014252969917654
213 => 0.014182614993343
214 => 0.01410516113461
215 => 0.014276005046677
216 => 0.013888850265544
217 => 0.013421979552748
218 => 0.01338316430459
219 => 0.013490336617426
220 => 0.013442920847036
221 => 0.013382937296124
222 => 0.013268412361884
223 => 0.013234435260333
224 => 0.013344844357027
225 => 0.01322019892411
226 => 0.013404120050168
227 => 0.0133541036807
228 => 0.013074716306665
301 => 0.012726496196163
302 => 0.012723396306763
303 => 0.012648372855151
304 => 0.012552819209671
305 => 0.01252623837147
306 => 0.012913970455841
307 => 0.013716564266645
308 => 0.013558995897142
309 => 0.013672855192364
310 => 0.01423293023417
311 => 0.014410961247916
312 => 0.014284599051255
313 => 0.014111626682784
314 => 0.014119236589147
315 => 0.014710335534508
316 => 0.014747201650674
317 => 0.014840350432764
318 => 0.014960072941593
319 => 0.014304988312203
320 => 0.014088382162014
321 => 0.013985742151202
322 => 0.013669650644586
323 => 0.014010528234834
324 => 0.01381191346083
325 => 0.01383871337949
326 => 0.013821259897305
327 => 0.013830790678778
328 => 0.0133247801095
329 => 0.013509143765812
330 => 0.013202603429274
331 => 0.012792180329418
401 => 0.012790804447274
402 => 0.012891254919518
403 => 0.012831503048
404 => 0.012670712298106
405 => 0.012693551865217
406 => 0.012493453224399
407 => 0.012717847463116
408 => 0.012724282286961
409 => 0.012637878282218
410 => 0.012983588567399
411 => 0.013125226353311
412 => 0.013068353386436
413 => 0.013121235994343
414 => 0.013565543574274
415 => 0.013637985096301
416 => 0.013670158835168
417 => 0.01362705028729
418 => 0.013129357121277
419 => 0.013151431929545
420 => 0.012989461633344
421 => 0.012852613801063
422 => 0.012858086996682
423 => 0.012928444571447
424 => 0.013235700226864
425 => 0.013882301639978
426 => 0.013906839690946
427 => 0.013936580524545
428 => 0.013815609607753
429 => 0.013779123621713
430 => 0.013827258055132
501 => 0.01407008754921
502 => 0.014694710935544
503 => 0.01447392731362
504 => 0.014294426792295
505 => 0.01445189714249
506 => 0.014427655816371
507 => 0.014223034628316
508 => 0.01421729159308
509 => 0.013824558111851
510 => 0.01367937348595
511 => 0.013558046345666
512 => 0.013425560275801
513 => 0.013347018092612
514 => 0.013467694582774
515 => 0.013495294723877
516 => 0.013231433469072
517 => 0.013195470155043
518 => 0.013410944951557
519 => 0.013316122527321
520 => 0.013413649742131
521 => 0.01343627689254
522 => 0.013432633400176
523 => 0.013333627898988
524 => 0.013396731053059
525 => 0.013247473281726
526 => 0.013085177873193
527 => 0.012981643513911
528 => 0.012891296053597
529 => 0.012941426075604
530 => 0.012762721700529
531 => 0.012705550574334
601 => 0.013375353124326
602 => 0.013870143469596
603 => 0.013862949022017
604 => 0.013819154672643
605 => 0.013754085152834
606 => 0.014065327308543
607 => 0.013956896764977
608 => 0.014035789045096
609 => 0.014055870441485
610 => 0.014116650780225
611 => 0.014138374527078
612 => 0.014072710275976
613 => 0.013852333029067
614 => 0.01330317388261
615 => 0.013047538817508
616 => 0.012963174988085
617 => 0.012966241453055
618 => 0.012881654659885
619 => 0.012906569261388
620 => 0.012872990378241
621 => 0.012809400097165
622 => 0.012937499554941
623 => 0.01295226182412
624 => 0.012922361880001
625 => 0.012929404399235
626 => 0.012681845632359
627 => 0.012700666987735
628 => 0.012595867289298
629 => 0.01257621860922
630 => 0.012311294097526
701 => 0.011841941923636
702 => 0.012102008589089
703 => 0.011787884628129
704 => 0.011668921124359
705 => 0.012232075848586
706 => 0.012175550733755
707 => 0.012078804308039
708 => 0.011935696180685
709 => 0.011882615984182
710 => 0.011560117513383
711 => 0.011541062583266
712 => 0.011700901533585
713 => 0.011627141357735
714 => 0.011523554135679
715 => 0.011148371717859
716 => 0.0107265424616
717 => 0.010739274835322
718 => 0.010873450873326
719 => 0.011263585799926
720 => 0.0111111533347
721 => 0.011000561832218
722 => 0.010979851368172
723 => 0.011239086186007
724 => 0.011605957764618
725 => 0.011778085701013
726 => 0.011607512143648
727 => 0.011411566425281
728 => 0.011423492733233
729 => 0.011502833116957
730 => 0.011511170669474
731 => 0.011383630150362
801 => 0.011419532059419
802 => 0.011364993776622
803 => 0.011030292435765
804 => 0.011024238749859
805 => 0.010942097643024
806 => 0.010939610442954
807 => 0.010799867929169
808 => 0.010780316985496
809 => 0.010502849742612
810 => 0.010685479522127
811 => 0.010562981054522
812 => 0.010378346969375
813 => 0.010346515983503
814 => 0.010345559105631
815 => 0.010535137027651
816 => 0.01068326419373
817 => 0.010565111967813
818 => 0.010538210996256
819 => 0.010825442993802
820 => 0.010788890103937
821 => 0.010757235537054
822 => 0.011573108438636
823 => 0.010927281373677
824 => 0.010645663910835
825 => 0.010297108822862
826 => 0.010410600117074
827 => 0.010434514400298
828 => 0.0095963022455003
829 => 0.0092562396786916
830 => 0.0091395430207503
831 => 0.0090723824442565
901 => 0.0091029883623142
902 => 0.0087968921668256
903 => 0.0090025938725577
904 => 0.0087375404409319
905 => 0.0086931033705613
906 => 0.0091670517401278
907 => 0.0092329988869867
908 => 0.0089516478703139
909 => 0.00913232076961
910 => 0.009066806264784
911 => 0.0087420840212676
912 => 0.0087296820200604
913 => 0.0085667478128027
914 => 0.0083117873287237
915 => 0.0081952635459965
916 => 0.0081345769482464
917 => 0.0081596174212363
918 => 0.0081469561918415
919 => 0.0080643331056546
920 => 0.0081516920504266
921 => 0.0079285260457425
922 => 0.0078396595445066
923 => 0.0077995206075855
924 => 0.0076014479334724
925 => 0.0079166696413043
926 => 0.0079787722888057
927 => 0.008040997297707
928 => 0.0085826235173757
929 => 0.0085555654020609
930 => 0.0088001575866704
1001 => 0.0087906531841527
1002 => 0.0087208915309713
1003 => 0.0084265785914343
1004 => 0.00854388648351
1005 => 0.0081828310253949
1006 => 0.0084533583239994
1007 => 0.0083299009624064
1008 => 0.0084116172658579
1009 => 0.0082646839841901
1010 => 0.0083460029289916
1011 => 0.0079934991303846
1012 => 0.0076643360431076
1013 => 0.0077968008782974
1014 => 0.0079408053033401
1015 => 0.0082530435884777
1016 => 0.0080670770417596
1017 => 0.0081339576441331
1018 => 0.0079099188218596
1019 => 0.0074476627379835
1020 => 0.0074502790572174
1021 => 0.0073791710295092
1022 => 0.0073177233116274
1023 => 0.0080884375367172
1024 => 0.0079925870396384
1025 => 0.0078398618171462
1026 => 0.008044290596511
1027 => 0.0080983448104961
1028 => 0.008099883657977
1029 => 0.0082490296183311
1030 => 0.0083286288441079
1031 => 0.0083426585526539
1101 => 0.0085773429437828
1102 => 0.0086560060561272
1103 => 0.0089800082830536
1104 => 0.0083218754059296
1105 => 0.0083083215924216
1106 => 0.0080471673286678
1107 => 0.0078815391659096
1108 => 0.0080585080306729
1109 => 0.0082152782861942
1110 => 0.0080520386175022
1111 => 0.0080733542720559
1112 => 0.0078542183540079
1113 => 0.0079325491334068
1114 => 0.0080000181529206
1115 => 0.0079627657259907
1116 => 0.0079069970398389
1117 => 0.0082024249130259
1118 => 0.0081857557146295
1119 => 0.0084608649419986
1120 => 0.0086753322579825
1121 => 0.009059696028844
1122 => 0.0086585923966135
1123 => 0.0086439745860124
1124 => 0.008786866029408
1125 => 0.0086559841801917
1126 => 0.0087386969910085
1127 => 0.0090463697162863
1128 => 0.0090528703561471
1129 => 0.0089439762628775
1130 => 0.0089373500474058
1201 => 0.008958264349189
1202 => 0.00908076006798
1203 => 0.0090379562999212
1204 => 0.0090874899039777
1205 => 0.0091494324343358
1206 => 0.0094056530029854
1207 => 0.0094674269146562
1208 => 0.0093173483353972
1209 => 0.0093308987507457
1210 => 0.0092747652423537
1211 => 0.0092205409765979
1212 => 0.009342429207199
1213 => 0.0095651823443416
1214 => 0.0095637966086364
1215 => 0.0096154710067512
1216 => 0.0096476637286829
1217 => 0.0095094689996392
1218 => 0.0094195093125928
1219 => 0.00945400558089
1220 => 0.0095091658651282
1221 => 0.0094361178441433
1222 => 0.0089852316194892
1223 => 0.0091220016973257
1224 => 0.0090992364686586
1225 => 0.0090668160146902
1226 => 0.0092043393855665
1227 => 0.0091910749209551
1228 => 0.0087937527079166
1229 => 0.0088191879868866
1230 => 0.008795299511475
1231 => 0.0088724880626519
]
'min_raw' => 0.0073177233116274
'max_raw' => 0.016392603559773
'avg_raw' => 0.0118551634357
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.007317'
'max' => '$0.016392'
'avg' => '$0.011855'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0017844647602994
'max_diff' => -0.011912165100992
'year' => 2034
]
9 => [
'items' => [
101 => 0.008651815745117
102 => 0.00871969306374
103 => 0.00876226508167
104 => 0.0087873403272844
105 => 0.0088779293087006
106 => 0.0088672997373055
107 => 0.0088772685596181
108 => 0.0090115881044539
109 => 0.0096909302693318
110 => 0.0097279053644821
111 => 0.0095458264729563
112 => 0.0096185633987735
113 => 0.0094789244070215
114 => 0.0095726649976846
115 => 0.0096367999290634
116 => 0.0093469865066006
117 => 0.0093298256365959
118 => 0.0091896103050525
119 => 0.0092649540820216
120 => 0.0091450767154545
121 => 0.0091744904280778
122 => 0.0090922471233417
123 => 0.0092402686973881
124 => 0.009405779817399
125 => 0.009447594462546
126 => 0.0093375981335009
127 => 0.009257953542161
128 => 0.0091181238763274
129 => 0.009350663726916
130 => 0.0094186654657516
131 => 0.0093503065427311
201 => 0.0093344662865953
202 => 0.0093044490298406
203 => 0.0093408345895165
204 => 0.0094182951136778
205 => 0.0093817661609546
206 => 0.0094058941777856
207 => 0.0093139430583288
208 => 0.0095095147478448
209 => 0.0098201296576864
210 => 0.0098211283354122
211 => 0.0097845991857843
212 => 0.0097696522447881
213 => 0.0098071333690805
214 => 0.0098274653414528
215 => 0.0099486724245515
216 => 0.01007873245382
217 => 0.010685665860777
218 => 0.010515241388787
219 => 0.01105374881407
220 => 0.011479638271031
221 => 0.011607343897285
222 => 0.011489860730145
223 => 0.011087957161677
224 => 0.011068237855226
225 => 0.011668851465827
226 => 0.011499150610986
227 => 0.011478965234286
228 => 0.011264226929934
301 => 0.011391163863663
302 => 0.011363400894204
303 => 0.011319575688702
304 => 0.011561762515753
305 => 0.012015114635825
306 => 0.011944455456402
307 => 0.011891711656748
308 => 0.011660603680154
309 => 0.011799782301899
310 => 0.011750223460487
311 => 0.011963159694013
312 => 0.011837020986387
313 => 0.011497864960105
314 => 0.011551876675163
315 => 0.011543712913089
316 => 0.011711722558093
317 => 0.011661290232919
318 => 0.011533865192189
319 => 0.012013565127564
320 => 0.011982416081992
321 => 0.01202657830695
322 => 0.012046019884139
323 => 0.012338004781541
324 => 0.012457621651532
325 => 0.012484776775208
326 => 0.012598403550198
327 => 0.012481949637534
328 => 0.012947848318423
329 => 0.013257643755273
330 => 0.013617487097101
331 => 0.014143314936284
401 => 0.014341031067996
402 => 0.01430531541849
403 => 0.014703992084969
404 => 0.015420405192546
405 => 0.014450122990566
406 => 0.01547183250528
407 => 0.015148371069125
408 => 0.014381449822825
409 => 0.014332069135971
410 => 0.014851437108104
411 => 0.016003345282981
412 => 0.015714805350008
413 => 0.016003817230944
414 => 0.015666669520063
415 => 0.015649927294513
416 => 0.015987442719155
417 => 0.016776065905837
418 => 0.016401420590942
419 => 0.015864274665241
420 => 0.016260894857863
421 => 0.015917305741548
422 => 0.015143103297952
423 => 0.01571458470896
424 => 0.015332451364272
425 => 0.015443978189578
426 => 0.016247165642066
427 => 0.016150524002812
428 => 0.016275587232781
429 => 0.01605485390536
430 => 0.015848654171098
501 => 0.015463767054505
502 => 0.015349820953987
503 => 0.015381311556819
504 => 0.015349805348808
505 => 0.015134464544369
506 => 0.015087961718153
507 => 0.015010454970458
508 => 0.015034477552488
509 => 0.014888742191422
510 => 0.015163774928216
511 => 0.015214823427745
512 => 0.015414969317756
513 => 0.015435749128015
514 => 0.015993152582798
515 => 0.015686144126688
516 => 0.015892111904882
517 => 0.015873688208156
518 => 0.014398071331741
519 => 0.014601398317833
520 => 0.014917711300669
521 => 0.014775212730654
522 => 0.014573753092182
523 => 0.014411063632533
524 => 0.014164572465315
525 => 0.014511504049731
526 => 0.014967682191179
527 => 0.015447318558491
528 => 0.016023570226797
529 => 0.01589495756274
530 => 0.015436545934384
531 => 0.015457109945162
601 => 0.015584228568153
602 => 0.015419598401435
603 => 0.015371045751308
604 => 0.015577558179602
605 => 0.015578980317198
606 => 0.01538955341417
607 => 0.015179040076211
608 => 0.015178158017638
609 => 0.015140699202466
610 => 0.015673333360067
611 => 0.01596622829136
612 => 0.015999808223208
613 => 0.015963968094395
614 => 0.015977761537532
615 => 0.015807332430512
616 => 0.016196882829977
617 => 0.016554372799069
618 => 0.016458557850693
619 => 0.01631491762218
620 => 0.016200501261519
621 => 0.016431604992326
622 => 0.016421314306984
623 => 0.016551250436056
624 => 0.016545355782694
625 => 0.016501663149632
626 => 0.016458559411095
627 => 0.01662946086217
628 => 0.016580243988854
629 => 0.016530950668139
630 => 0.016432085367016
701 => 0.016445522803417
702 => 0.016301907376415
703 => 0.016235464308489
704 => 0.015236319986094
705 => 0.014969315975167
706 => 0.015053320872372
707 => 0.015080977465719
708 => 0.014964776977988
709 => 0.015131378627937
710 => 0.015105413937268
711 => 0.015206427359828
712 => 0.015143318558905
713 => 0.015145908566108
714 => 0.015331498093406
715 => 0.015385375522735
716 => 0.015357973027334
717 => 0.01537716479581
718 => 0.015819431000005
719 => 0.015756554888646
720 => 0.015723153207653
721 => 0.015732405701559
722 => 0.015845414199025
723 => 0.015877050408281
724 => 0.015743005566629
725 => 0.015806221888856
726 => 0.016075388965552
727 => 0.016169582208859
728 => 0.016470201826172
729 => 0.01634249326965
730 => 0.016576907852243
731 => 0.017297418361314
801 => 0.017873012011495
802 => 0.017343672303375
803 => 0.018400676740524
804 => 0.019223706313125
805 => 0.019192117067301
806 => 0.019048602824301
807 => 0.018111605537268
808 => 0.017249366663897
809 => 0.017970666094068
810 => 0.017972504834652
811 => 0.017910544573912
812 => 0.017525714715862
813 => 0.017897153329019
814 => 0.017926636777264
815 => 0.017910133886528
816 => 0.017615085736643
817 => 0.017164601745781
818 => 0.017252625239289
819 => 0.017396809517286
820 => 0.017123838599047
821 => 0.017036607850778
822 => 0.017198786408138
823 => 0.017721359511198
824 => 0.017622570093124
825 => 0.017619990302179
826 => 0.018042653325931
827 => 0.017740117817314
828 => 0.017253735497433
829 => 0.017130917547068
830 => 0.016694996563358
831 => 0.016996088739504
901 => 0.017006924510899
902 => 0.016842019403112
903 => 0.017267116638086
904 => 0.017263199292229
905 => 0.017666765849463
906 => 0.018438233534218
907 => 0.018210072578216
908 => 0.017944746210228
909 => 0.017973594543131
910 => 0.018289989551318
911 => 0.018098689906773
912 => 0.01816748259274
913 => 0.018289885425349
914 => 0.018363734093353
915 => 0.017962968856272
916 => 0.017869531308691
917 => 0.017678390878463
918 => 0.017628525908021
919 => 0.017784205800166
920 => 0.017743189648838
921 => 0.017006013806272
922 => 0.016928974829116
923 => 0.016931337504559
924 => 0.016737619333497
925 => 0.016442152624939
926 => 0.017218621493628
927 => 0.017156260176798
928 => 0.017087418109399
929 => 0.017095850869848
930 => 0.017432889688775
1001 => 0.017237390152929
1002 => 0.017757157710719
1003 => 0.01765030912648
1004 => 0.017540720279232
1005 => 0.017525571762385
1006 => 0.017483389405875
1007 => 0.017338730410042
1008 => 0.017164045979914
1009 => 0.017048704188238
1010 => 0.015726528422556
1011 => 0.015971916553924
1012 => 0.016254213231231
1013 => 0.016351660913004
1014 => 0.016184969910157
1015 => 0.017345312386828
1016 => 0.017557318138654
1017 => 0.01691513888758
1018 => 0.01679501336971
1019 => 0.017353187795781
1020 => 0.017016540382811
1021 => 0.017168132692258
1022 => 0.016840473035794
1023 => 0.017506252161292
1024 => 0.017501180039841
1025 => 0.017242176922719
1026 => 0.017461084583734
1027 => 0.017423043990579
1028 => 0.017130630109245
1029 => 0.0175155222029
1030 => 0.017515713104576
1031 => 0.017266428235559
1101 => 0.016975318084022
1102 => 0.016923274464643
1103 => 0.016884066588516
1104 => 0.017158489958218
1105 => 0.017404537093392
1106 => 0.017862369811695
1107 => 0.017977479834913
1108 => 0.018426761918842
1109 => 0.01815923631301
1110 => 0.018277826949039
1111 => 0.018406573860117
1112 => 0.0184682998638
1113 => 0.0183677206532
1114 => 0.019065640661425
1115 => 0.019124566493836
1116 => 0.019144323815737
1117 => 0.018908989115766
1118 => 0.019118021410112
1119 => 0.019020222122009
1120 => 0.019274668700228
1121 => 0.01931456917263
1122 => 0.019280774892006
1123 => 0.019293439931732
1124 => 0.018697888326238
1125 => 0.018667005833708
1126 => 0.018245920856742
1127 => 0.018417516097359
1128 => 0.0180967270198
1129 => 0.018198452540787
1130 => 0.018243292181162
1201 => 0.018219870497658
1202 => 0.018427217834804
1203 => 0.018250930239967
1204 => 0.017785678292829
1205 => 0.017320299588109
1206 => 0.01731445713756
1207 => 0.017191931139224
1208 => 0.017103367284183
1209 => 0.017120427824635
1210 => 0.017180551394431
1211 => 0.017099872793008
1212 => 0.01711708966313
1213 => 0.017403004422571
1214 => 0.017460342588527
1215 => 0.017265485097143
1216 => 0.016483104151438
1217 => 0.016291105904907
1218 => 0.016429110437023
1219 => 0.016363153159302
1220 => 0.013206341691298
1221 => 0.013947987720059
1222 => 0.013507326833689
1223 => 0.013710403643961
1224 => 0.01326060298756
1225 => 0.013475271436867
1226 => 0.013435630012717
1227 => 0.014628174880063
1228 => 0.014609554932251
1229 => 0.014618467315923
1230 => 0.014193056022176
1231 => 0.01487074776429
]
'min_raw' => 0.008651815745117
'max_raw' => 0.01931456917263
'avg_raw' => 0.013983192458873
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.008651'
'max' => '$0.019314'
'avg' => '$0.013983'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0013340924334896
'max_diff' => 0.0029219656128562
'year' => 2035
]
10 => [
'items' => [
101 => 0.015204603085462
102 => 0.015142815350785
103 => 0.015158365992438
104 => 0.014891154447086
105 => 0.014621054507777
106 => 0.014321472107002
107 => 0.014878059178139
108 => 0.014816176197087
109 => 0.014958113490827
110 => 0.015319099992125
111 => 0.015372256625695
112 => 0.015443699680275
113 => 0.015418092430871
114 => 0.016028161001017
115 => 0.01595427767181
116 => 0.016132315237514
117 => 0.015766078457119
118 => 0.015351646776588
119 => 0.015430416690264
120 => 0.01542283051415
121 => 0.015326249785202
122 => 0.015239061021524
123 => 0.015093916295283
124 => 0.015553175686489
125 => 0.015534530593912
126 => 0.015836372970182
127 => 0.015783019398236
128 => 0.015426711186946
129 => 0.015439436804418
130 => 0.015525022697639
131 => 0.015821236451279
201 => 0.01590917286113
202 => 0.015868437212427
203 => 0.015964855471379
204 => 0.016041060531965
205 => 0.015974425653715
206 => 0.016917835009219
207 => 0.016526065670543
208 => 0.0167170113203
209 => 0.016762550732651
210 => 0.016645902485507
211 => 0.016671199313452
212 => 0.016709517114815
213 => 0.0169421753013
214 => 0.017552737702825
215 => 0.017823151634222
216 => 0.018636705288817
217 => 0.017800697521563
218 => 0.017751092280398
219 => 0.017897637860558
220 => 0.018375279979205
221 => 0.018762364053726
222 => 0.018890782172661
223 => 0.01890775474703
224 => 0.019148675675227
225 => 0.01928676705836
226 => 0.019119421537694
227 => 0.018977613730737
228 => 0.018469675768048
229 => 0.018528470970298
301 => 0.018933511609407
302 => 0.019505655368922
303 => 0.019996614235999
304 => 0.019824697552393
305 => 0.021136300494045
306 => 0.021266340568292
307 => 0.02124837323473
308 => 0.021544623876423
309 => 0.020956626683057
310 => 0.020705246490983
311 => 0.019008274188188
312 => 0.019485054186673
313 => 0.020178081914778
314 => 0.020086357096243
315 => 0.019583061835408
316 => 0.019996232441412
317 => 0.019859625318028
318 => 0.01975187761198
319 => 0.020245490741306
320 => 0.019702742829102
321 => 0.020172667589173
322 => 0.019569984223633
323 => 0.019825482853323
324 => 0.019680449474033
325 => 0.019774303845056
326 => 0.019225633109815
327 => 0.019521682520322
328 => 0.019213316481018
329 => 0.019213170275365
330 => 0.019206363077956
331 => 0.019569154355692
401 => 0.019580984966235
402 => 0.01931288166384
403 => 0.019274243789404
404 => 0.019417108262123
405 => 0.019249851380834
406 => 0.019328109822887
407 => 0.019252221749321
408 => 0.019235137745514
409 => 0.019099009496575
410 => 0.019040361704008
411 => 0.019063359014641
412 => 0.018984857337524
413 => 0.018937557237532
414 => 0.019196953897541
415 => 0.019058368726129
416 => 0.019175713732431
417 => 0.01904198428763
418 => 0.018578419768803
419 => 0.01831181891192
420 => 0.017436188508311
421 => 0.017684516204558
422 => 0.017849157724084
423 => 0.017794743702863
424 => 0.017911646075877
425 => 0.017918822932138
426 => 0.017880816778993
427 => 0.01783681052254
428 => 0.017815390710597
429 => 0.017975036439894
430 => 0.018067716159179
501 => 0.017865681703188
502 => 0.017818347856911
503 => 0.018022615846547
504 => 0.018147219202223
505 => 0.019067220371955
506 => 0.018999063713737
507 => 0.019170123550796
508 => 0.019150864838271
509 => 0.019330162799478
510 => 0.01962323918908
511 => 0.019027332943572
512 => 0.019130761662904
513 => 0.019105403329442
514 => 0.019382258964873
515 => 0.019383123277947
516 => 0.019217134494541
517 => 0.019307119706886
518 => 0.01925689242997
519 => 0.01934765990798
520 => 0.018998153440013
521 => 0.019423814591105
522 => 0.019665137034776
523 => 0.01966848779714
524 => 0.019782872720187
525 => 0.01989909442673
526 => 0.020122171871663
527 => 0.019892872917867
528 => 0.019480386421791
529 => 0.019510166614484
530 => 0.019268325932758
531 => 0.019272391318309
601 => 0.019250689971623
602 => 0.019315817346629
603 => 0.019012445236397
604 => 0.019083646064297
605 => 0.018983964488285
606 => 0.019130544974626
607 => 0.018972848601946
608 => 0.019105391100886
609 => 0.019162592049575
610 => 0.019373664781685
611 => 0.018941672987795
612 => 0.01806081247678
613 => 0.018245980035597
614 => 0.017972102671509
615 => 0.01799745106428
616 => 0.018048658851844
617 => 0.017882677658203
618 => 0.017914341639281
619 => 0.017913210379061
620 => 0.01790346178964
621 => 0.017860283670677
622 => 0.017797666855649
623 => 0.018047112974281
624 => 0.018089498730614
625 => 0.018183717016456
626 => 0.018464046726249
627 => 0.018436035177611
628 => 0.018481723175628
629 => 0.018381986532485
630 => 0.018002077561104
701 => 0.018022708446047
702 => 0.017765440980218
703 => 0.018177138108939
704 => 0.018079642794721
705 => 0.0180167869314
706 => 0.017999636126738
707 => 0.01828066071966
708 => 0.018364747682383
709 => 0.01831235033008
710 => 0.018204881831832
711 => 0.018411253118678
712 => 0.018466469368932
713 => 0.018478830251067
714 => 0.018844480603589
715 => 0.018499266043904
716 => 0.018582362619558
717 => 0.019230658381844
718 => 0.018642743584151
719 => 0.018954175164553
720 => 0.018938932209304
721 => 0.019098250067568
722 => 0.018925863494787
723 => 0.01892800043296
724 => 0.019069463897972
725 => 0.018870803974433
726 => 0.018821612983604
727 => 0.018753655982086
728 => 0.018902037608743
729 => 0.0189909856832
730 => 0.019707841838161
731 => 0.020170963606878
801 => 0.020150858269502
802 => 0.020334583417511
803 => 0.020251813555603
804 => 0.019984527837917
805 => 0.020440751965987
806 => 0.020296383562637
807 => 0.020308285118402
808 => 0.020307842141902
809 => 0.020403834509224
810 => 0.020335815119405
811 => 0.020201741920024
812 => 0.020290745966707
813 => 0.020555056165828
814 => 0.021375483133925
815 => 0.021834604934484
816 => 0.021347843425041
817 => 0.021683604996258
818 => 0.021482267697608
819 => 0.021445678721178
820 => 0.021656561800488
821 => 0.021867814002711
822 => 0.021854358150698
823 => 0.021700999899804
824 => 0.021614371715196
825 => 0.022270349351621
826 => 0.022753662499852
827 => 0.022720703783315
828 => 0.02286617283936
829 => 0.023293274487096
830 => 0.023332323309153
831 => 0.023327404055101
901 => 0.02323061747531
902 => 0.023651154513664
903 => 0.024001973909704
904 => 0.023208214178521
905 => 0.023510467493078
906 => 0.023646158743976
907 => 0.023845393758074
908 => 0.024181536622523
909 => 0.024546676930806
910 => 0.024598311773957
911 => 0.024561674381787
912 => 0.024320854532976
913 => 0.024720395415329
914 => 0.024954437093825
915 => 0.025093803557421
916 => 0.025447213720732
917 => 0.023646996726946
918 => 0.022372713662155
919 => 0.022173715960718
920 => 0.022578385611789
921 => 0.022685093771597
922 => 0.022642079846179
923 => 0.021207758404009
924 => 0.022166164555164
925 => 0.023197328988729
926 => 0.023236940214172
927 => 0.023753162690246
928 => 0.02392126588913
929 => 0.024336892645196
930 => 0.024310895078442
1001 => 0.024412093579478
1002 => 0.024388829796603
1003 => 0.025158690841677
1004 => 0.026007961899865
1005 => 0.025978554343637
1006 => 0.025856461580903
1007 => 0.026037790153472
1008 => 0.02691432889894
1009 => 0.026833631257504
1010 => 0.02691202214235
1011 => 0.027945510722815
1012 => 0.029289192889457
1013 => 0.028664917619568
1014 => 0.030019415324857
1015 => 0.030871999831498
1016 => 0.03234645657685
1017 => 0.032161847330479
1018 => 0.032735842521382
1019 => 0.031831358250363
1020 => 0.029754479537675
1021 => 0.02942580553142
1022 => 0.030083819215294
1023 => 0.031701481649063
1024 => 0.030032873268483
1025 => 0.030370430570674
1026 => 0.030273214044935
1027 => 0.030268033789422
1028 => 0.030465743072732
1029 => 0.030178955445467
1030 => 0.029010531059881
1031 => 0.029546013070227
1101 => 0.029339237750074
1102 => 0.029568670383905
1103 => 0.030806823683474
1104 => 0.030259406595847
1105 => 0.029682747162584
1106 => 0.030406006062868
1107 => 0.031326963181652
1108 => 0.031269331340278
1109 => 0.03115750147977
1110 => 0.031787880548229
1111 => 0.032829082085586
1112 => 0.033110514677246
1113 => 0.033318262462775
1114 => 0.033346907372471
1115 => 0.03364196774506
1116 => 0.032055353756864
1117 => 0.034573350903268
1118 => 0.035008139452184
1119 => 0.034926417225127
1120 => 0.035409666398548
1121 => 0.035267482232879
1122 => 0.035061479684837
1123 => 0.035827532414758
1124 => 0.034949314777172
1125 => 0.033702795405145
1126 => 0.033018930224293
1127 => 0.033919499060269
1128 => 0.034469445022878
1129 => 0.034832924321031
1130 => 0.034942912937031
1201 => 0.032178518084257
1202 => 0.030688662578979
1203 => 0.031643642876634
1204 => 0.032808784748993
1205 => 0.032048881334934
1206 => 0.032078668110077
1207 => 0.030995245540733
1208 => 0.032904643606093
1209 => 0.032626460368535
1210 => 0.034069675497081
1211 => 0.033725240624128
1212 => 0.034902126536169
1213 => 0.034592213033787
1214 => 0.035878646655144
1215 => 0.036391839855504
1216 => 0.037253571111051
1217 => 0.037887464130509
1218 => 0.038259698235976
1219 => 0.038237350696499
1220 => 0.039712327668654
1221 => 0.038842585279944
1222 => 0.037749983857183
1223 => 0.037730222144559
1224 => 0.038296095903689
1225 => 0.039482012062941
1226 => 0.039789502868656
1227 => 0.039961348280384
1228 => 0.039698161050341
1229 => 0.038754118022396
1230 => 0.038346485029336
1231 => 0.038693800149687
]
'min_raw' => 0.014321472107002
'max_raw' => 0.039961348280384
'avg_raw' => 0.027141410193693
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.014321'
'max' => '$0.039961'
'avg' => '$0.027141'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0056696563618848
'max_diff' => 0.020646779107754
'year' => 2036
]
11 => [
'items' => [
101 => 0.038269063602626
102 => 0.039002278042881
103 => 0.040009138075506
104 => 0.039801225460325
105 => 0.040496246160874
106 => 0.041215519467631
107 => 0.04224411260088
108 => 0.042513024934605
109 => 0.042957526796432
110 => 0.043415065223507
111 => 0.043562014235277
112 => 0.043842585494346
113 => 0.043841106745317
114 => 0.044686627119147
115 => 0.045619262275068
116 => 0.045971310455875
117 => 0.04678082583559
118 => 0.04539455911663
119 => 0.046446058347245
120 => 0.047394536973993
121 => 0.046263721654001
122 => 0.047822287126433
123 => 0.047882802691942
124 => 0.048796515883743
125 => 0.047870292517586
126 => 0.047320304039371
127 => 0.048908100168177
128 => 0.049676384699796
129 => 0.049444971146366
130 => 0.047683902578461
131 => 0.046658885136157
201 => 0.043976216778548
202 => 0.047153953330785
203 => 0.048701736109533
204 => 0.047679894194981
205 => 0.048195251819687
206 => 0.051006875914808
207 => 0.052077360331052
208 => 0.051854707055724
209 => 0.05189233179407
210 => 0.052469945754408
211 => 0.055031404152367
212 => 0.053496518906169
213 => 0.054669881165834
214 => 0.055292228277488
215 => 0.055870298958574
216 => 0.054450740066943
217 => 0.052603914806392
218 => 0.052018947721925
219 => 0.047578292154882
220 => 0.047347136747828
221 => 0.047217382213123
222 => 0.04639929822595
223 => 0.045756508304095
224 => 0.045245337892976
225 => 0.043903874085794
226 => 0.044356578741635
227 => 0.042218565418243
228 => 0.043586390576009
301 => 0.040174069687739
302 => 0.043015951921153
303 => 0.041469244626036
304 => 0.042507816976148
305 => 0.042504193495058
306 => 0.040591852518837
307 => 0.039488854153292
308 => 0.040191727641156
309 => 0.040945263814314
310 => 0.041067522523208
311 => 0.042044501841014
312 => 0.042317155768513
313 => 0.041491001639195
314 => 0.040103356921938
315 => 0.04042567514095
316 => 0.039482322384871
317 => 0.037829132965382
318 => 0.039016482468377
319 => 0.039421895792772
320 => 0.039600949412712
321 => 0.037975227488732
322 => 0.037464390364078
323 => 0.03719242496525
324 => 0.039893496636493
325 => 0.040041467439969
326 => 0.039284427888426
327 => 0.042706318446834
328 => 0.041931839225141
329 => 0.042797122267789
330 => 0.040396428140955
331 => 0.040488137889563
401 => 0.03935161081709
402 => 0.039987990034908
403 => 0.039538217715214
404 => 0.039936576882931
405 => 0.040175351725564
406 => 0.041311692305128
407 => 0.043028927105243
408 => 0.04114196091616
409 => 0.040319782725723
410 => 0.040829857450964
411 => 0.042188253661144
412 => 0.044246293454588
413 => 0.043027892474958
414 => 0.043568598139928
415 => 0.043686718273403
416 => 0.04278831449868
417 => 0.044279418883232
418 => 0.045078513836624
419 => 0.045898219909403
420 => 0.046609947724754
421 => 0.045570811278212
422 => 0.04668283623037
423 => 0.04578674041776
424 => 0.044982849837166
425 => 0.044984069007345
426 => 0.044479776703171
427 => 0.043502646818914
428 => 0.043322449076395
429 => 0.044259860489445
430 => 0.04501157566952
501 => 0.045073490532224
502 => 0.045489678680434
503 => 0.045735974539465
504 => 0.048150008780961
505 => 0.049120953322829
506 => 0.050308205929585
507 => 0.050770707729807
508 => 0.052162672332404
509 => 0.05103854786597
510 => 0.050795336466582
511 => 0.047418885648834
512 => 0.047971779281088
513 => 0.048857015332627
514 => 0.047433482865271
515 => 0.048336386563802
516 => 0.048514638880007
517 => 0.047385111776752
518 => 0.047988441006585
519 => 0.046386177446798
520 => 0.043063852072365
521 => 0.044283117581111
522 => 0.04518090739588
523 => 0.043899650633518
524 => 0.046196253788567
525 => 0.0448546256369
526 => 0.04442939392233
527 => 0.04277041339774
528 => 0.04355338834533
529 => 0.044612373173067
530 => 0.043958043669726
531 => 0.045315875637228
601 => 0.047238927823769
602 => 0.048609409331636
603 => 0.048714617884474
604 => 0.047833490090045
605 => 0.049245503003899
606 => 0.049255787976447
607 => 0.047663031641377
608 => 0.046687477254652
609 => 0.046465829245404
610 => 0.047019549429157
611 => 0.047691867954619
612 => 0.048751926883538
613 => 0.049392498292895
614 => 0.051062768795674
615 => 0.051514696103318
616 => 0.052011227198621
617 => 0.052674745866463
618 => 0.053471470149903
619 => 0.051728282775276
620 => 0.051797542859377
621 => 0.050174310912196
622 => 0.048439654781625
623 => 0.049756042556789
624 => 0.05147704446109
625 => 0.051082244722705
626 => 0.05103782168711
627 => 0.051112528911058
628 => 0.05081486280127
629 => 0.04946853001872
630 => 0.048792410123813
701 => 0.049664777284825
702 => 0.050128401606307
703 => 0.050847442496637
704 => 0.050758805529792
705 => 0.052610977643927
706 => 0.053330675720703
707 => 0.053146546155046
708 => 0.053180430426453
709 => 0.054483409417194
710 => 0.055932590032965
711 => 0.05728993891586
712 => 0.058670692499032
713 => 0.057006140162789
714 => 0.05616098314176
715 => 0.05703296945456
716 => 0.056570281242892
717 => 0.059229024949373
718 => 0.059413110595015
719 => 0.062071662044063
720 => 0.064594943943627
721 => 0.063010115791802
722 => 0.064504537356746
723 => 0.06612087612121
724 => 0.069239055839376
725 => 0.068188962609183
726 => 0.067384607651914
727 => 0.066624496103909
728 => 0.068206167570996
729 => 0.070240962645585
730 => 0.070679238015627
731 => 0.071389411549171
801 => 0.070642750914537
802 => 0.071542021406983
803 => 0.074716841404792
804 => 0.073858977016473
805 => 0.072640671676477
806 => 0.075146887151794
807 => 0.076053876789645
808 => 0.082419605062246
809 => 0.090456599961523
810 => 0.087129231299469
811 => 0.085063826197416
812 => 0.085549245388462
813 => 0.088484083856232
814 => 0.089426660824962
815 => 0.086864411698187
816 => 0.087769441406212
817 => 0.092756244077988
818 => 0.095431503715612
819 => 0.091798141792414
820 => 0.081773840347537
821 => 0.072530976610378
822 => 0.074982600285051
823 => 0.074704662243083
824 => 0.080062359597604
825 => 0.073838517234526
826 => 0.073943310777987
827 => 0.079411799639899
828 => 0.077952900565174
829 => 0.075589670905796
830 => 0.072548230802198
831 => 0.066925847471538
901 => 0.061945945763814
902 => 0.07171267981553
903 => 0.071291520483567
904 => 0.070681619358568
905 => 0.072038888314059
906 => 0.078629401094409
907 => 0.078477468443414
908 => 0.077510950434502
909 => 0.078244045825763
910 => 0.075461155739244
911 => 0.076178369879769
912 => 0.072529512493539
913 => 0.07417894842186
914 => 0.075584600476327
915 => 0.075866805937296
916 => 0.076502629250626
917 => 0.07106958865325
918 => 0.073508864375781
919 => 0.074941710333541
920 => 0.068468060168998
921 => 0.07481374708416
922 => 0.070975011503874
923 => 0.069672086992052
924 => 0.071426303199969
925 => 0.070742683437712
926 => 0.070154947309624
927 => 0.069826980451562
928 => 0.071115083228878
929 => 0.071054991694701
930 => 0.068947405541035
1001 => 0.06619814531978
1002 => 0.067120887291423
1003 => 0.066785646482373
1004 => 0.06557069054345
1005 => 0.066389424151945
1006 => 0.062784135691731
1007 => 0.056581424282521
1008 => 0.060679125433634
1009 => 0.060521368396757
1010 => 0.060441820145052
1011 => 0.063521129307972
1012 => 0.063225124783707
1013 => 0.062687873673681
1014 => 0.065560823505497
1015 => 0.064512158170256
1016 => 0.067743897636842
1017 => 0.069872530265339
1018 => 0.0693326401767
1019 => 0.071334629452376
1020 => 0.067142145402773
1021 => 0.068534720430786
1022 => 0.068821728214034
1023 => 0.065525371750529
1024 => 0.063273554784626
1025 => 0.063123384265593
1026 => 0.059219043966211
1027 => 0.061304711039407
1028 => 0.063140011753052
1029 => 0.062261045136305
1030 => 0.061982790563824
1031 => 0.063404332828578
1101 => 0.063514798837235
1102 => 0.060996162133181
1103 => 0.061519866458805
1104 => 0.063703800555258
1105 => 0.061464836922972
1106 => 0.057114896318072
1107 => 0.056036050905423
1108 => 0.05589211304031
1109 => 0.052966198716896
1110 => 0.056108144514596
1111 => 0.054736600974988
1112 => 0.059069290582996
1113 => 0.056594481515582
1114 => 0.056487797443024
1115 => 0.056326528820202
1116 => 0.053808073494042
1117 => 0.054359455154285
1118 => 0.056192331770733
1119 => 0.056846322796314
1120 => 0.056778106174355
1121 => 0.05618334967539
1122 => 0.05645562615497
1123 => 0.055578528746828
1124 => 0.055268807396809
1125 => 0.054291241620579
1126 => 0.052854489988961
1127 => 0.053054279115447
1128 => 0.050207698186697
1129 => 0.048656729817229
1130 => 0.048227442213995
1201 => 0.047653380889786
1202 => 0.048292283968083
1203 => 0.05019963418058
1204 => 0.047898965157388
1205 => 0.043954629490294
1206 => 0.044191690784707
1207 => 0.044724297129124
1208 => 0.043731788729847
1209 => 0.042792462824847
1210 => 0.043609130489325
1211 => 0.041937863469918
1212 => 0.044926261763846
1213 => 0.044845433964885
1214 => 0.04595932404755
1215 => 0.046655862375567
1216 => 0.045050567036451
1217 => 0.044646839599843
1218 => 0.044876821096124
1219 => 0.041075739252719
1220 => 0.045648694567304
1221 => 0.04568824167476
1222 => 0.045349615330971
1223 => 0.047784572861832
1224 => 0.052923092734247
1225 => 0.050989774861761
1226 => 0.050241135746693
1227 => 0.048817972241696
1228 => 0.050714253113017
1229 => 0.050568648328689
1230 => 0.049910168274985
1231 => 0.049511917483922
]
'min_raw' => 0.03719242496525
'max_raw' => 0.095431503715612
'avg_raw' => 0.066311964340431
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.037192'
'max' => '$0.095431'
'avg' => '$0.066311'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.022870952858248
'max_diff' => 0.055470155435228
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0011674277208271
]
1 => [
'year' => 2028
'avg' => 0.0020036448756283
]
2 => [
'year' => 2029
'avg' => 0.0054735966783628
]
3 => [
'year' => 2030
'avg' => 0.0042228716858322
]
4 => [
'year' => 2031
'avg' => 0.0041473833302139
]
5 => [
'year' => 2032
'avg' => 0.0072716682074348
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0011674277208271
'min' => '$0.001167'
'max_raw' => 0.0072716682074348
'max' => '$0.007271'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0072716682074348
]
1 => [
'year' => 2033
'avg' => 0.018703478366346
]
2 => [
'year' => 2034
'avg' => 0.0118551634357
]
3 => [
'year' => 2035
'avg' => 0.013983192458873
]
4 => [
'year' => 2036
'avg' => 0.027141410193693
]
5 => [
'year' => 2037
'avg' => 0.066311964340431
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0072716682074348
'min' => '$0.007271'
'max_raw' => 0.066311964340431
'max' => '$0.066311'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.066311964340431
]
]
]
]
'prediction_2025_max_price' => '$0.001996'
'last_price' => 0.00193546
'sma_50day_nextmonth' => '$0.001831'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001861'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001842'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001846'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00192'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0023031'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.004449'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.001879'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001863'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001868'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001971'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.002791'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00557'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.007252'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.005049'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00189'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001948'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002698'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.006422'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.004396'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.002198'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.001099'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '39.16'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 188.72
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001832'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001850'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 78.32
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 25.23
'cci_20_action' => 'NEUTRAL'
'adx_14' => 42.75
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000213'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -21.68
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 65.33
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002688'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 13
'buy_signals' => 17
'sell_pct' => 43.33
'buy_pct' => 56.67
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767707506
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Crypticorn para 2026
A previsão de preço para Crypticorn em 2026 sugere que o preço médio poderia variar entre $0.000668 na extremidade inferior e $0.001996 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Crypticorn poderia potencialmente ganhar 3.13% até 2026 se AIC atingir a meta de preço prevista.
Previsão de preço de Crypticorn 2027-2032
A previsão de preço de AIC para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.001167 na extremidade inferior e $0.007271 na extremidade superior. Considerando a volatilidade de preços no mercado, se Crypticorn atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Crypticorn | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000643 | $0.001167 | $0.001691 |
| 2028 | $0.001161 | $0.0020036 | $0.002845 |
| 2029 | $0.002552 | $0.005473 | $0.008395 |
| 2030 | $0.00217 | $0.004222 | $0.006275 |
| 2031 | $0.002566 | $0.004147 | $0.005728 |
| 2032 | $0.003916 | $0.007271 | $0.010626 |
Previsão de preço de Crypticorn 2032-2037
A previsão de preço de Crypticorn para 2032-2037 é atualmente estimada entre $0.007271 na extremidade inferior e $0.066311 na extremidade superior. Comparado ao preço atual, Crypticorn poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Crypticorn | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.003916 | $0.007271 | $0.010626 |
| 2033 | $0.0091021 | $0.0187034 | $0.0283047 |
| 2034 | $0.007317 | $0.011855 | $0.016392 |
| 2035 | $0.008651 | $0.013983 | $0.019314 |
| 2036 | $0.014321 | $0.027141 | $0.039961 |
| 2037 | $0.037192 | $0.066311 | $0.095431 |
Crypticorn Histograma de preços potenciais
Previsão de preço de Crypticorn baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Crypticorn é Altista, com 17 indicadores técnicos mostrando sinais de alta e 13 indicando sinais de baixa. A previsão de preço de AIC foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Crypticorn
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Crypticorn está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Crypticorn é esperado para alcançar $0.001831 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 39.16, sugerindo que o mercado de AIC está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de AIC para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001861 | BUY |
| SMA 5 | $0.001842 | BUY |
| SMA 10 | $0.001846 | BUY |
| SMA 21 | $0.00192 | BUY |
| SMA 50 | $0.0023031 | SELL |
| SMA 100 | $0.004449 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.001879 | BUY |
| EMA 5 | $0.001863 | BUY |
| EMA 10 | $0.001868 | BUY |
| EMA 21 | $0.001971 | SELL |
| EMA 50 | $0.002791 | SELL |
| EMA 100 | $0.00557 | SELL |
| EMA 200 | $0.007252 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.005049 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.006422 | SELL |
| EMA 50 | $0.004396 | SELL |
| EMA 100 | $0.002198 | SELL |
| EMA 200 | $0.001099 | BUY |
Osciladores de Crypticorn
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 39.16 | NEUTRAL |
| Stoch RSI (14) | 188.72 | SELL |
| Estocástico Rápido (14) | 78.32 | NEUTRAL |
| Índice de Canal de Commodities (20) | 25.23 | NEUTRAL |
| Índice Direcional Médio (14) | 42.75 | SELL |
| Oscilador Impressionante (5, 34) | -0.000213 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -21.68 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 65.33 | NEUTRAL |
| VWMA (10) | 0.001832 | BUY |
| Média Móvel de Hull (9) | 0.001850 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002688 | SELL |
Previsão do preço de Crypticorn com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Crypticorn
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Crypticorn por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.002719 | $0.003821 | $0.005369 | $0.007545 | $0.0106028 | $0.014898 |
| Amazon.com stock | $0.004038 | $0.008426 | $0.017582 | $0.036686 | $0.076548 | $0.159723 |
| Apple stock | $0.002745 | $0.003894 | $0.005523 | $0.007834 | $0.011112 | $0.015762 |
| Netflix stock | $0.003053 | $0.004818 | $0.0076028 | $0.011996 | $0.018927 | $0.029865 |
| Google stock | $0.0025064 | $0.003245 | $0.0042032 | $0.005443 | $0.007048 | $0.009128 |
| Tesla stock | $0.004387 | $0.009946 | $0.022547 | $0.051113 | $0.115869 | $0.262667 |
| Kodak stock | $0.001451 | $0.001088 | $0.000816 | $0.000612 | $0.000458 | $0.000344 |
| Nokia stock | $0.001282 | $0.000849 | $0.000562 | $0.000372 | $0.000246 | $0.000163 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Crypticorn
Você pode fazer perguntas como: 'Devo investir em Crypticorn agora?', 'Devo comprar AIC hoje?', 'Crypticorn será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Crypticorn regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Crypticorn, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Crypticorn para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Crypticorn é de $0.001935 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Crypticorn com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Crypticorn tiver 1% da média anterior do crescimento anual do Bitcoin | $0.001985 | $0.002037 | $0.00209 | $0.002144 |
| Se Crypticorn tiver 2% da média anterior do crescimento anual do Bitcoin | $0.002036 | $0.002141 | $0.002253 | $0.00237 |
| Se Crypticorn tiver 5% da média anterior do crescimento anual do Bitcoin | $0.002187 | $0.002471 | $0.002792 | $0.003155 |
| Se Crypticorn tiver 10% da média anterior do crescimento anual do Bitcoin | $0.002438 | $0.003072 | $0.003871 | $0.004877 |
| Se Crypticorn tiver 20% da média anterior do crescimento anual do Bitcoin | $0.002941 | $0.00447 | $0.006795 | $0.010327 |
| Se Crypticorn tiver 50% da média anterior do crescimento anual do Bitcoin | $0.00445 | $0.010235 | $0.023538 | $0.05413 |
| Se Crypticorn tiver 100% da média anterior do crescimento anual do Bitcoin | $0.006966 | $0.025074 | $0.090249 | $0.324837 |
Perguntas Frequentes sobre Crypticorn
AIC é um bom investimento?
A decisão de adquirir Crypticorn depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Crypticorn experimentou uma escalada de 0.9328% nas últimas 24 horas, e Crypticorn registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Crypticorn dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Crypticorn pode subir?
Parece que o valor médio de Crypticorn pode potencialmente subir para $0.001996 até o final deste ano. Observando as perspectivas de Crypticorn em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.006275. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Crypticorn na próxima semana?
Com base na nossa nova previsão experimental de Crypticorn, o preço de Crypticorn aumentará 0.86% na próxima semana e atingirá $0.001952 até 13 de janeiro de 2026.
Qual será o preço de Crypticorn no próximo mês?
Com base na nossa nova previsão experimental de Crypticorn, o preço de Crypticorn diminuirá -11.62% no próximo mês e atingirá $0.00171 até 5 de fevereiro de 2026.
Até onde o preço de Crypticorn pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Crypticorn em 2026, espera-se que AIC fluctue dentro do intervalo de $0.000668 e $0.001996. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Crypticorn não considera flutuações repentinas e extremas de preço.
Onde estará Crypticorn em 5 anos?
O futuro de Crypticorn parece seguir uma tendência de alta, com um preço máximo de $0.006275 projetada após um período de cinco anos. Com base na previsão de Crypticorn para 2030, o valor de Crypticorn pode potencialmente atingir seu pico mais alto de aproximadamente $0.006275, enquanto seu pico mais baixo está previsto para cerca de $0.00217.
Quanto será Crypticorn em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Crypticorn, espera-se que o valor de AIC em 2026 aumente 3.13% para $0.001996 se o melhor cenário ocorrer. O preço ficará entre $0.001996 e $0.000668 durante 2026.
Quanto será Crypticorn em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Crypticorn, o valor de AIC pode diminuir -12.62% para $0.001691 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.001691 e $0.000643 ao longo do ano.
Quanto será Crypticorn em 2028?
Nosso novo modelo experimental de previsão de preços de Crypticorn sugere que o valor de AIC em 2028 pode aumentar 47.02%, alcançando $0.002845 no melhor cenário. O preço é esperado para variar entre $0.002845 e $0.001161 durante o ano.
Quanto será Crypticorn em 2029?
Com base no nosso modelo de previsão experimental, o valor de Crypticorn pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.008395 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.008395 e $0.002552.
Quanto será Crypticorn em 2030?
Usando nossa nova simulação experimental para previsões de preços de Crypticorn, espera-se que o valor de AIC em 2030 aumente 224.23%, alcançando $0.006275 no melhor cenário. O preço está previsto para variar entre $0.006275 e $0.00217 ao longo de 2030.
Quanto será Crypticorn em 2031?
Nossa simulação experimental indica que o preço de Crypticorn poderia aumentar 195.98% em 2031, potencialmente atingindo $0.005728 sob condições ideais. O preço provavelmente oscilará entre $0.005728 e $0.002566 durante o ano.
Quanto será Crypticorn em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Crypticorn, AIC poderia ver um 449.04% aumento em valor, atingindo $0.010626 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.010626 e $0.003916 ao longo do ano.
Quanto será Crypticorn em 2033?
De acordo com nossa previsão experimental de preços de Crypticorn, espera-se que o valor de AIC seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.0283047. Ao longo do ano, o preço de AIC poderia variar entre $0.0283047 e $0.0091021.
Quanto será Crypticorn em 2034?
Os resultados da nossa nova simulação de previsão de preços de Crypticorn sugerem que AIC pode aumentar 746.96% em 2034, atingindo potencialmente $0.016392 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.016392 e $0.007317.
Quanto será Crypticorn em 2035?
Com base em nossa previsão experimental para o preço de Crypticorn, AIC poderia aumentar 897.93%, com o valor potencialmente atingindo $0.019314 em 2035. A faixa de preço esperada para o ano está entre $0.019314 e $0.008651.
Quanto será Crypticorn em 2036?
Nossa recente simulação de previsão de preços de Crypticorn sugere que o valor de AIC pode aumentar 1964.7% em 2036, possivelmente atingindo $0.039961 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.039961 e $0.014321.
Quanto será Crypticorn em 2037?
De acordo com a simulação experimental, o valor de Crypticorn poderia aumentar 4830.69% em 2037, com um pico de $0.095431 sob condições favoráveis. O preço é esperado para cair entre $0.095431 e $0.037192 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Crypticorn?
Traders de Crypticorn utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Crypticorn
Médias móveis são ferramentas populares para a previsão de preço de Crypticorn. Uma média móvel simples (SMA) calcula o preço médio de fechamento de AIC em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de AIC acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de AIC.
Como ler gráficos de Crypticorn e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Crypticorn em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de AIC dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Crypticorn?
A ação de preço de Crypticorn é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de AIC. A capitalização de mercado de Crypticorn pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de AIC, grandes detentores de Crypticorn, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Crypticorn.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


