Previsão de Preço Cloud AI - Projeção CLD
Previsão de Preço Cloud AI até $0.0169081 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.005664 | $0.0169081 |
| 2027 | $0.005452 | $0.014324 |
| 2028 | $0.00984 | $0.0241033 |
| 2029 | $0.021617 | $0.071111 |
| 2030 | $0.018384 | $0.053155 |
| 2031 | $0.021736 | $0.048525 |
| 2032 | $0.033179 | $0.090011 |
| 2033 | $0.0771011 | $0.239758 |
| 2034 | $0.061985 | $0.138855 |
| 2035 | $0.073286 | $0.1636064 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Cloud AI hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.70, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Cloud AI para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Cloud AI'
'name_with_ticker' => 'Cloud AI <small>CLD</small>'
'name_lang' => 'Cloud AI'
'name_lang_with_ticker' => 'Cloud AI <small>CLD</small>'
'name_with_lang' => 'Cloud AI'
'name_with_lang_with_ticker' => 'Cloud AI <small>CLD</small>'
'image' => '/uploads/coins/cloud-ai.png?1717272355'
'price_for_sd' => 0.01639
'ticker' => 'CLD'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$79.02'
'current_supply' => '0'
'max_supply' => '880K'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01639'
'change_24h_pct' => '0%'
'ath_price' => '$5.97'
'ath_days' => 666
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '11 de mar. de 2024'
'ath_pct' => '-99.73%'
'fdv' => '$14.43K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.808364'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.016534'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.014489'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005664'
'current_year_max_price_prediction' => '$0.0169081'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.018384'
'grand_prediction_max_price' => '$0.053155'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.016705218098967
107 => 0.016767589319354
108 => 0.01690811486364
109 => 0.015707339473577
110 => 0.016246452370802
111 => 0.016563130689875
112 => 0.01513236652345
113 => 0.016534849082562
114 => 0.015686436645521
115 => 0.015398472721661
116 => 0.015786178208776
117 => 0.015635089003391
118 => 0.015505191376858
119 => 0.015432706269327
120 => 0.015717394389571
121 => 0.015704113348486
122 => 0.015238308328184
123 => 0.014630684667843
124 => 0.01483462311282
125 => 0.014760530363827
126 => 0.01449200868332
127 => 0.01467295987455
128 => 0.013876142405674
129 => 0.012505259365441
130 => 0.013410906693102
131 => 0.013376040256142
201 => 0.013358459017559
202 => 0.014039027954043
203 => 0.013973606954197
204 => 0.013854867198872
205 => 0.014489827934596
206 => 0.01425805872463
207 => 0.014972316818053
208 => 0.015442773393698
209 => 0.015323450388439
210 => 0.015765917071747
211 => 0.014839321442695
212 => 0.015147099342102
213 => 0.015210531940608
214 => 0.01448199261768
215 => 0.013984310638847
216 => 0.013951120924849
217 => 0.013088208958354
218 => 0.013549169565673
219 => 0.013954795824269
220 => 0.013760532324271
221 => 0.013699034303628
222 => 0.014013214353797
223 => 0.014037628834465
224 => 0.013480976087898
225 => 0.013596721820809
226 => 0.014079400768176
227 => 0.013584559549762
228 => 0.012623163894239
301 => 0.012384724479335
302 => 0.012352912266076
303 => 0.011706245661986
304 => 0.012400658141181
305 => 0.012097528484915
306 => 0.013055111437008
307 => 0.012508145190393
308 => 0.012484566568709
309 => 0.012448924023802
310 => 0.011892311364201
311 => 0.012014174162073
312 => 0.012419264662431
313 => 0.012563805516629
314 => 0.012548728721348
315 => 0.012417279497982
316 => 0.01247745627931
317 => 0.012283605899673
318 => 0.012215153295976
319 => 0.011999098049338
320 => 0.011681556523564
321 => 0.011725712620318
322 => 0.011096579768501
323 => 0.010753794800224
324 => 0.010658916438838
325 => 0.010532041128753
326 => 0.010673247342714
327 => 0.011094797514178
328 => 0.010586318570534
329 => 0.0097145670873076
330 => 0.0097669608368418
331 => 0.0098846740362013
401 => 0.0096653162679457
402 => 0.0094577125495938
403 => 0.0096382071392787
404 => 0.0092688345437387
405 => 0.0099293109496738
406 => 0.009911446913857
407 => 0.010157631674403
408 => 0.010311576057392
409 => 0.0099567840946878
410 => 0.0098675548755273
411 => 0.009918383894003
412 => 0.0090782934416366
413 => 0.010088978361654
414 => 0.010097718806812
415 => 0.010022877808892
416 => 0.010561036327405
417 => 0.011696718657319
418 => 0.011269429282089
419 => 0.011103969921111
420 => 0.01078943155494
421 => 0.011208535252422
422 => 0.011176354627492
423 => 0.011030821637416
424 => 0.010942802830928
425 => 0.011104980180687
426 => 0.010922707262556
427 => 0.010889966037935
428 => 0.010691589839535
429 => 0.010620778562249
430 => 0.010568352711624
501 => 0.010510637001343
502 => 0.010637943476363
503 => 0.010349450255407
504 => 0.010001555712273
505 => 0.0099726320452826
506 => 0.010052492832838
507 => 0.010017160379281
508 => 0.0099724628870884
509 => 0.0098871232018546
510 => 0.0098618047402396
511 => 0.0099440774577169
512 => 0.0098511963564824
513 => 0.0099882474808494
514 => 0.0099509771584062
515 => 0.0097427881669286
516 => 0.0094833076021108
517 => 0.009480997680805
518 => 0.0094250930187484
519 => 0.0093538900262972
520 => 0.009334082982701
521 => 0.0096230063883758
522 => 0.010221069191373
523 => 0.010103655152714
524 => 0.01018849882872
525 => 0.010605845741793
526 => 0.0107385077754
527 => 0.010644347406218
528 => 0.010515454885324
529 => 0.010521125502103
530 => 0.010961590264417
531 => 0.010989061511358
601 => 0.011058472489816
602 => 0.011147685212676
603 => 0.010659540718688
604 => 0.010498133940334
605 => 0.010421650454243
606 => 0.010186110919916
607 => 0.010440120114054
608 => 0.010292119834388
609 => 0.010312090128524
610 => 0.01029908444827
611 => 0.010306186429129
612 => 0.0099291263330578
613 => 0.010066507214371
614 => 0.0098380848537277
615 => 0.0095322529544398
616 => 0.0095312276986749
617 => 0.0096060796227538
618 => 0.0095615547693556
619 => 0.0094417395336995
620 => 0.0094587587224125
621 => 0.0093096527208549
622 => 0.0094768628906529
623 => 0.009481657880016
624 => 0.0094172728566442
625 => 0.009674883193775
626 => 0.0097804263590875
627 => 0.0097380467574434
628 => 0.0097774528932608
629 => 0.010108534236113
630 => 0.01016251494109
701 => 0.010186489604475
702 => 0.010154366731573
703 => 0.0097835044524336
704 => 0.0097999537715416
705 => 0.0096792595822217
706 => 0.0095772857106866
707 => 0.0095813641307655
708 => 0.0096337919564099
709 => 0.0098627473458502
710 => 0.01034457046527
711 => 0.010362855300444
712 => 0.010385017054081
713 => 0.010294874064434
714 => 0.010267686076205
715 => 0.010303554050495
716 => 0.010484501481093
717 => 0.010949947399339
718 => 0.010785427725743
719 => 0.010651670670208
720 => 0.010769011668555
721 => 0.010750947941609
722 => 0.010598471907489
723 => 0.010594192413049
724 => 0.010301542154036
725 => 0.010193356016602
726 => 0.010102947582571
727 => 0.010004223932781
728 => 0.0099456972439389
729 => 0.010035620837905
730 => 0.01005618742779
731 => 0.0098595679179874
801 => 0.0098327694053354
802 => 0.0099933331413669
803 => 0.0099226750275589
804 => 0.0099953486498473
805 => 0.010012209553601
806 => 0.010009494559757
807 => 0.0099357193739089
808 => 0.0099827414773609
809 => 0.0098715201847332
810 => 0.0097505837338987
811 => 0.0096734338128734
812 => 0.0096061102743268
813 => 0.0096434652863794
814 => 0.0095103014891673
815 => 0.0094676997103815
816 => 0.0099668114467422
817 => 0.010335510652747
818 => 0.010330149620271
819 => 0.010297515713818
820 => 0.010249028348374
821 => 0.010480954328301
822 => 0.010400155954401
823 => 0.010458943522344
824 => 0.010473907425691
825 => 0.010519198654286
826 => 0.010535386375596
827 => 0.010486455838702
828 => 0.010322238980524
829 => 0.0099130261832159
830 => 0.00972253652142
831 => 0.0096596717601711
901 => 0.0096619567748454
902 => 0.0095989258693757
903 => 0.0096174912958836
904 => 0.0095924695716862
905 => 0.0095450844794617
906 => 0.0096405393904623
907 => 0.0096515396797311
908 => 0.0096292593629023
909 => 0.0096345071840747
910 => 0.0094500356767802
911 => 0.0094640606448287
912 => 0.0093859678405276
913 => 0.009371326381144
914 => 0.0091739145721891
915 => 0.0088241709373264
916 => 0.0090179628614765
917 => 0.0087838894683713
918 => 0.0086952423276118
919 => 0.0091148841045088
920 => 0.0090727637091594
921 => 0.009000671901617
922 => 0.0088940330930126
923 => 0.0088544797215856
924 => 0.0086141659578709
925 => 0.0085999669386866
926 => 0.008719072929001
927 => 0.0086641096126578
928 => 0.0085869203002762
929 => 0.0083073484353852
930 => 0.0079930170961844
1001 => 0.0080025047834985
1002 => 0.0081024877341558
1003 => 0.0083932016477299
1004 => 0.0082796146922947
1005 => 0.0081972060528664
1006 => 0.008181773391896
1007 => 0.0083749454544038
1008 => 0.0086483243936506
1009 => 0.0087765876754362
1010 => 0.0086494826586005
1011 => 0.0085034712590797
1012 => 0.0085123582964169
1013 => 0.008571479774358
1014 => 0.008577692605757
1015 => 0.0084826541948833
1016 => 0.0085094069508536
1017 => 0.0084687670682115
1018 => 0.0082193601834524
1019 => 0.0082148492037849
1020 => 0.0081536407320357
1021 => 0.0081517873638369
1022 => 0.0080476564842227
1023 => 0.0080330878543419
1024 => 0.0078263296725753
1025 => 0.0079624185339355
1026 => 0.0078711372707209
1027 => 0.0077335548759834
1028 => 0.0077098356192727
1029 => 0.0077091225897742
1030 => 0.0078503889463091
1031 => 0.0079607677543101
1101 => 0.0078727251473755
1102 => 0.0078526795524107
1103 => 0.0080667140630816
1104 => 0.0080394762206308
1105 => 0.0080158884247337
1106 => 0.0086238463080875
1107 => 0.0081426002038678
1108 => 0.0079327494338607
1109 => 0.0076730192563965
1110 => 0.007757588711852
1111 => 0.0077754087387003
1112 => 0.0071508044817823
1113 => 0.0068974026125402
1114 => 0.0068104446402643
1115 => 0.0067603990978142
1116 => 0.0067832054799411
1117 => 0.0065551140765484
1118 => 0.0067083952719119
1119 => 0.0065108873966602
1120 => 0.006477774558628
1121 => 0.0068309431061087
1122 => 0.00688008444631
1123 => 0.0066704322219939
1124 => 0.0068050628896168
1125 => 0.0067562439380305
1126 => 0.0065142731022994
1127 => 0.0065050315961915
1128 => 0.0063836191365078
1129 => 0.0061936321471876
1130 => 0.0061068029950368
1201 => 0.0060615816187114
1202 => 0.0060802408399303
1203 => 0.0060708061667004
1204 => 0.0060092385420166
1205 => 0.0060743351508788
1206 => 0.0059080402150117
1207 => 0.0058418202316201
1208 => 0.0058119102014141
1209 => 0.0056643138742527
1210 => 0.0058992052671511
1211 => 0.0059454818306358
1212 => 0.0059918495732462
1213 => 0.0063954491160674
1214 => 0.0063752864234685
1215 => 0.0065575473449329
1216 => 0.0065504650206811
1217 => 0.0064984812534483
1218 => 0.0062791702904078
1219 => 0.0063665837314337
1220 => 0.0060975387470208
1221 => 0.0062991255426236
1222 => 0.0062071297475763
1223 => 0.0062680216717787
1224 => 0.0061585325016594
1225 => 0.0062191283291004
1226 => 0.0059564557205854
1227 => 0.0057111757346574
1228 => 0.005809883561164
1229 => 0.0059171902571858
1230 => 0.0061498585153988
1231 => 0.0060112832202786
]
'min_raw' => 0.0056643138742527
'max_raw' => 0.01690811486364
'avg_raw' => 0.011286214368946
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005664'
'max' => '$0.0169081'
'avg' => '$0.011286'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010730236125747
'max_diff' => 0.00051356486364029
'year' => 2026
]
1 => [
'items' => [
101 => 0.0060611201365159
102 => 0.0058941748097201
103 => 0.0055497189149652
104 => 0.0055516684979217
105 => 0.0054986814628932
106 => 0.0054528929283948
107 => 0.0060272002599016
108 => 0.0059557760647733
109 => 0.005841970957604
110 => 0.0059943036159853
111 => 0.0060345827887057
112 => 0.0060357294801272
113 => 0.0061468674554072
114 => 0.0062061818127367
115 => 0.0062166362252992
116 => 0.0063915142306971
117 => 0.0064501310314098
118 => 0.0066915653377854
119 => 0.0062011494039237
120 => 0.0061910496104929
121 => 0.005996447248884
122 => 0.00587302735461
123 => 0.0060048979146353
124 => 0.0061217172286911
125 => 0.0060000771506043
126 => 0.0060159607768403
127 => 0.0058526689103683
128 => 0.0059110380690356
129 => 0.0059613134516546
130 => 0.0059335543404228
131 => 0.0058919976073525
201 => 0.0061121393771284
202 => 0.0060997181157351
203 => 0.0063047191927878
204 => 0.0064645321921181
205 => 0.0067509456569087
206 => 0.0064520582753281
207 => 0.0064411656311736
208 => 0.0065476429750192
209 => 0.0064501147302833
210 => 0.0065117492143958
211 => 0.0067410153886527
212 => 0.0067458594216419
213 => 0.0066647156278897
214 => 0.0066597780206656
215 => 0.0066753625738715
216 => 0.0067666417887733
217 => 0.0067347460263596
218 => 0.0067716566101266
219 => 0.0068178138603222
220 => 0.0070087398173994
221 => 0.007054771419274
222 => 0.006942938491368
223 => 0.0069530357526177
224 => 0.0069112071676984
225 => 0.006870801278777
226 => 0.0069616278162662
227 => 0.0071276150987278
228 => 0.0071265825004583
301 => 0.0071650883236577
302 => 0.0071890771325115
303 => 0.0070860996040298
304 => 0.0070190650195769
305 => 0.0070447703447776
306 => 0.0070858737195626
307 => 0.0070314410743123
308 => 0.006695457572173
309 => 0.0067973735040128
310 => 0.0067804097095202
311 => 0.0067562512032949
312 => 0.0068587284608524
313 => 0.0068488442793661
314 => 0.0065527746695287
315 => 0.006571728085355
316 => 0.0065539272895207
317 => 0.0066114453025613
318 => 0.0064470085688211
319 => 0.0064975882006212
320 => 0.0065293112715317
321 => 0.0065479964040061
322 => 0.0066154999150189
323 => 0.0066075791571241
324 => 0.0066150075495869
325 => 0.0067150974361527
326 => 0.0072213177357009
327 => 0.0072488701896932
328 => 0.0071131918293986
329 => 0.007167392658199
330 => 0.0070633389193205
331 => 0.0071331908913291
401 => 0.0071809818365296
402 => 0.0069650237448387
403 => 0.0069522361082051
404 => 0.0068477529025324
405 => 0.0069038962590297
406 => 0.0068145681419923
407 => 0.0068364861373484
408 => 0.0067752015115563
409 => 0.0068855016363348
410 => 0.0070088343147437
411 => 0.0070399930198649
412 => 0.0069580278813571
413 => 0.0068986797193116
414 => 0.0067944838972597
415 => 0.0069677638714874
416 => 0.0070184362165631
417 => 0.0069674977112306
418 => 0.0069556941465167
419 => 0.0069333264127125
420 => 0.0069604395669824
421 => 0.0070181602440894
422 => 0.0069909402386992
423 => 0.0070089195318142
424 => 0.0069404010066266
425 => 0.0070861336938766
426 => 0.0073175922737109
427 => 0.0073183364508923
428 => 0.0072911162987762
429 => 0.0072799783989967
430 => 0.0073079079269248
501 => 0.0073230585500965
502 => 0.0074133775220164
503 => 0.0075102933773529
504 => 0.0079625573865083
505 => 0.0078355634625011
506 => 0.0082368389967301
507 => 0.0085541958451984
508 => 0.0086493572877209
509 => 0.008561813238292
510 => 0.0082623297742324
511 => 0.0082476356867244
512 => 0.0086951904206865
513 => 0.0085687357090368
514 => 0.0085536943234616
515 => 0.0083936793937637
516 => 0.0084882680354497
517 => 0.0084675801119813
518 => 0.0084349232126986
519 => 0.0086153917519337
520 => 0.0089532127468443
521 => 0.0089005601767223
522 => 0.0088612574756086
523 => 0.0086890444801728
524 => 0.0087927551685902
525 => 0.0087558257788922
526 => 0.0089144978730048
527 => 0.0088205040394697
528 => 0.0085677776902244
529 => 0.0086080251943387
530 => 0.0086019418650585
531 => 0.0087271363505742
601 => 0.0086895560735406
602 => 0.0085946037128258
603 => 0.0089520581114095
604 => 0.0089288470110313
605 => 0.0089617550445713
606 => 0.0089762421786504
607 => 0.0091938183720153
608 => 0.0092829523767752
609 => 0.0093031873563661
610 => 0.0093878577670167
611 => 0.0093010806794162
612 => 0.0096482509008334
613 => 0.0098790988401319
614 => 0.010147240600953
615 => 0.010539067783224
616 => 0.010686398428362
617 => 0.010659784466024
618 => 0.01095686336376
619 => 0.011490707539298
620 => 0.010767689637089
621 => 0.01152902924374
622 => 0.011287997914363
623 => 0.010716516968378
624 => 0.010679720332774
625 => 0.011066733864425
626 => 0.011925092628956
627 => 0.011710083493865
628 => 0.011925444306876
629 => 0.011674214478936
630 => 0.011661738800448
701 => 0.011913242634888
702 => 0.012500895052819
703 => 0.012221723416882
704 => 0.011821462421072
705 => 0.012117008911627
706 => 0.011860979189972
707 => 0.011284072568875
708 => 0.011709919080432
709 => 0.011425167645564
710 => 0.011508273252478
711 => 0.01210677841499
712 => 0.012034764690388
713 => 0.012127957118314
714 => 0.011963474922295
715 => 0.011809822614752
716 => 0.011523019172352
717 => 0.011438110812297
718 => 0.011461576428333
719 => 0.011438099183903
720 => 0.01127763529374
721 => 0.011242983131937
722 => 0.011185228010786
723 => 0.011203128737843
724 => 0.011094532213223
725 => 0.011299476292367
726 => 0.011337515719418
727 => 0.011486656929301
728 => 0.011502141264468
729 => 0.011917497411102
730 => 0.011688726225313
731 => 0.011842205687894
801 => 0.011828477040156
802 => 0.010728902693359
803 => 0.010880414336721
804 => 0.01111611890682
805 => 0.01100993431748
806 => 0.010859814151522
807 => 0.010738584068576
808 => 0.010554908096501
809 => 0.010813428500012
810 => 0.011153355340049
811 => 0.011510762370096
812 => 0.011940163498462
813 => 0.011844326165391
814 => 0.011502735014687
815 => 0.011518058544175
816 => 0.011612782573884
817 => 0.011490106348825
818 => 0.011453926735131
819 => 0.011607812050538
820 => 0.011608871774131
821 => 0.011467717951284
822 => 0.011310851308067
823 => 0.011310194031104
824 => 0.011282281127096
825 => 0.01167918012255
826 => 0.011897434439036
827 => 0.011922456944687
828 => 0.011895750225037
829 => 0.011906028581478
830 => 0.011779031203621
831 => 0.0120693095495
901 => 0.012335697665232
902 => 0.012264299959664
903 => 0.012157264649235
904 => 0.01207200586896
905 => 0.012244215700594
906 => 0.012236547467875
907 => 0.012333370997433
908 => 0.012328978522852
909 => 0.012296420411579
910 => 0.012264301122416
911 => 0.012391650473346
912 => 0.012354975905446
913 => 0.012318244371813
914 => 0.012244573657794
915 => 0.012254586731371
916 => 0.012147569902097
917 => 0.012098059020119
918 => 0.011353534148376
919 => 0.011154572774595
920 => 0.011217170073019
921 => 0.011237778728998
922 => 0.011151190484152
923 => 0.011275335784566
924 => 0.011255987870999
925 => 0.011331259284537
926 => 0.011284232973263
927 => 0.011286162949482
928 => 0.011424457303872
929 => 0.011464604743297
930 => 0.011444185431576
1001 => 0.011458486417573
1002 => 0.011788046603797
1003 => 0.011741193684058
1004 => 0.011716304004259
1005 => 0.011723198615662
1006 => 0.011807408309093
1007 => 0.011830982425575
1008 => 0.011731097237518
1009 => 0.011778203669635
1010 => 0.011978776878893
1011 => 0.012048966150673
1012 => 0.012272976613432
1013 => 0.012177812987383
1014 => 0.012352489941581
1015 => 0.012889387347022
1016 => 0.013318298144963
1017 => 0.012923854049688
1018 => 0.013711494108646
1019 => 0.014324784874801
1020 => 0.014301245753706
1021 => 0.014194304322956
1022 => 0.013496089090868
1023 => 0.012853581024497
1024 => 0.01339106630435
1025 => 0.013392436464863
1026 => 0.013346266002652
1027 => 0.013059505227171
1028 => 0.013336287349255
1029 => 0.013358257308981
1030 => 0.013345959973818
1031 => 0.013126101159603
1101 => 0.012790417386999
1102 => 0.012856009192652
1103 => 0.012963449908349
1104 => 0.012760042219053
1105 => 0.012695041137417
1106 => 0.012815890515141
1107 => 0.013205292390136
1108 => 0.01313167822132
1109 => 0.013129755857874
1110 => 0.013444708489336
1111 => 0.013219270376241
1112 => 0.012856836515375
1113 => 0.012765317185592
1114 => 0.012440485219667
1115 => 0.012664847815543
1116 => 0.012672922225943
1117 => 0.012550041125112
1118 => 0.012866807639472
1119 => 0.012863888580276
1120 => 0.013164611241187
1121 => 0.013739480022574
1122 => 0.013569463036343
1123 => 0.013371751779152
1124 => 0.013393248474747
1125 => 0.013629014167061
1126 => 0.013486464847481
1127 => 0.013537726576691
1128 => 0.013628936576294
1129 => 0.013683965833671
1130 => 0.013385330611463
1201 => 0.013315704455792
1202 => 0.013173273776749
1203 => 0.013136116271182
1204 => 0.013252123087348
1205 => 0.01322155938987
1206 => 0.012672243603015
1207 => 0.012614837046924
1208 => 0.012616597624042
1209 => 0.01247224610922
1210 => 0.012252075400782
1211 => 0.012830670876846
1212 => 0.012784201562679
1213 => 0.012732903036279
1214 => 0.012739186813058
1215 => 0.012990335498797
1216 => 0.012844656577756
1217 => 0.01323196786565
1218 => 0.013152348308502
1219 => 0.013070686810145
1220 => 0.013059398703602
1221 => 0.013027965993766
1222 => 0.012920171536143
1223 => 0.012790003251121
1224 => 0.012704054874366
1225 => 0.011718819087803
1226 => 0.011901673118936
1227 => 0.012112030014085
1228 => 0.012184644371338
1229 => 0.012060432488496
1230 => 0.012925076178358
1231 => 0.01308305491241
]
'min_raw' => 0.0054528929283948
'max_raw' => 0.014324784874801
'avg_raw' => 0.0098888389015978
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005452'
'max' => '$0.014324'
'avg' => '$0.009888'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00021142094585784
'max_diff' => -0.0025833299888396
'year' => 2027
]
2 => [
'items' => [
101 => 0.012604527022269
102 => 0.012515013992189
103 => 0.012930944637708
104 => 0.012680087613007
105 => 0.01279304851587
106 => 0.01254888883019
107 => 0.013045002461534
108 => 0.013041222906881
109 => 0.012848223499054
110 => 0.013011345276947
111 => 0.012982998853808
112 => 0.012765102997707
113 => 0.013051910148826
114 => 0.013052052401595
115 => 0.01286629466773
116 => 0.012649370302173
117 => 0.012610589349136
118 => 0.012581373110511
119 => 0.012785863112156
120 => 0.012969208208207
121 => 0.013310367976854
122 => 0.013396143648448
123 => 0.013730931805089
124 => 0.013531581758349
125 => 0.013619951052054
126 => 0.01371588842097
127 => 0.013761884323608
128 => 0.013686936468535
129 => 0.014207000280102
130 => 0.014250909600142
131 => 0.014265632015337
201 => 0.014090269424183
202 => 0.014246032449253
203 => 0.014173156088152
204 => 0.014362760134101
205 => 0.014392492469492
206 => 0.014367310239175
207 => 0.014376747751721
208 => 0.013932965034092
209 => 0.013909952559042
210 => 0.013596175828853
211 => 0.013724042165725
212 => 0.013485002177735
213 => 0.013560804220311
214 => 0.013594217038411
215 => 0.013576764078396
216 => 0.013731271536563
217 => 0.013599908633333
218 => 0.013253220333648
219 => 0.012906437578968
220 => 0.012902084003966
221 => 0.012810782225883
222 => 0.012744787763083
223 => 0.012757500637898
224 => 0.012802302466911
225 => 0.012742183799336
226 => 0.012755013165157
227 => 0.012968066119401
228 => 0.01301079236995
229 => 0.012865591876359
301 => 0.012282590942261
302 => 0.012139521050687
303 => 0.012242356851551
304 => 0.012193207962212
305 => 0.009840870466368
306 => 0.010393517268301
307 => 0.010065153304705
308 => 0.010216478526429
309 => 0.0098813039490335
310 => 0.010041266825372
311 => 0.010011727523021
312 => 0.010900367226522
313 => 0.010886492339835
314 => 0.01089313351385
315 => 0.010576132974673
316 => 0.011081123441084
317 => 0.011329899903707
318 => 0.011283858001447
319 => 0.011295445756312
320 => 0.011096329735661
321 => 0.010895061392175
322 => 0.010671823824274
323 => 0.011086571632437
324 => 0.011040458756151
325 => 0.011146225103463
326 => 0.011415218703842
327 => 0.011454829033305
328 => 0.011508065717792
329 => 0.011488984156049
330 => 0.011943584371214
331 => 0.011888529285608
401 => 0.012021196201488
402 => 0.011748290290061
403 => 0.011439471346814
404 => 0.011498167731873
405 => 0.011492514797985
406 => 0.011420546461459
407 => 0.011355576665165
408 => 0.011247420259461
409 => 0.011589643131243
410 => 0.011575749507621
411 => 0.01180067112449
412 => 0.011760914043936
413 => 0.011495406529791
414 => 0.011504889182601
415 => 0.011568664579953
416 => 0.011789391958365
417 => 0.011854918872544
418 => 0.011824564195101
419 => 0.01189641146508
420 => 0.011953196617823
421 => 0.011903542805985
422 => 0.012606536070986
423 => 0.012314604254838
424 => 0.01245688979078
425 => 0.012490824052707
426 => 0.012403902154341
427 => 0.012422752401657
428 => 0.012451305389955
429 => 0.012624673543654
430 => 0.01307964174344
501 => 0.013281144062052
502 => 0.013887373729545
503 => 0.013264412099539
504 => 0.013227448134486
505 => 0.013336648403983
506 => 0.013692569394729
507 => 0.01398100992777
508 => 0.014076702293113
509 => 0.014089349618902
510 => 0.014268874857794
511 => 0.014371775376779
512 => 0.01424707577181
513 => 0.014141405913191
514 => 0.013762909595845
515 => 0.013806721575189
516 => 0.01410854266662
517 => 0.014534882735441
518 => 0.014900726867612
519 => 0.014772621003481
520 => 0.015749978318157
521 => 0.015846879303761
522 => 0.015833490720734
523 => 0.016054245586739
524 => 0.015616092133666
525 => 0.015428773043654
526 => 0.014164252936028
527 => 0.014519531507166
528 => 0.015035949775094
529 => 0.014967599880865
530 => 0.014592563130796
531 => 0.014900442368607
601 => 0.014798647864313
602 => 0.014718358315318
603 => 0.015086180304158
604 => 0.014681744918134
605 => 0.015031915222741
606 => 0.014582818185034
607 => 0.014773206180278
608 => 0.014665132746146
609 => 0.014735069503011
610 => 0.014326220651421
611 => 0.014546825567494
612 => 0.014317042761631
613 => 0.014316933814662
614 => 0.014311861346487
615 => 0.014582199798573
616 => 0.01459101552579
617 => 0.01439123500124
618 => 0.014362443506494
619 => 0.014468900752803
620 => 0.014344267198572
621 => 0.014402582454162
622 => 0.014346033508257
623 => 0.014333303149431
624 => 0.014231865484411
625 => 0.014188163349233
626 => 0.014205300082502
627 => 0.014146803577265
628 => 0.01411155731695
629 => 0.014304849978175
630 => 0.014201581506686
701 => 0.014289022603841
702 => 0.014189372437687
703 => 0.013843941546285
704 => 0.013645280587775
705 => 0.012992793655378
706 => 0.013177838139998
707 => 0.013300522824744
708 => 0.013259975537167
709 => 0.013347086800599
710 => 0.013352434724685
711 => 0.01332411396495
712 => 0.01329132215329
713 => 0.013275360912874
714 => 0.01339432292213
715 => 0.013463384372581
716 => 0.013312835874168
717 => 0.013277564467387
718 => 0.013429777311293
719 => 0.013522627058145
720 => 0.014208177421135
721 => 0.014157389635947
722 => 0.014284857010171
723 => 0.01427050613998
724 => 0.014404112255312
725 => 0.014622501787723
726 => 0.014178454805658
727 => 0.014255526007755
728 => 0.014236629928835
729 => 0.014442932363668
730 => 0.014443576417351
731 => 0.014319887802097
801 => 0.014386941407045
802 => 0.014349513924283
803 => 0.014417150444262
804 => 0.014156711334111
805 => 0.01447389805761
806 => 0.014653722490773
807 => 0.014656219353201
808 => 0.014741454707346
809 => 0.014828058763655
810 => 0.014994287708117
811 => 0.014823422728615
812 => 0.014516053263861
813 => 0.014538244346419
814 => 0.014358033741696
815 => 0.014361063114519
816 => 0.014344892084973
817 => 0.014393422561939
818 => 0.0141673610447
819 => 0.014220417230951
820 => 0.014146138259503
821 => 0.014255364539777
822 => 0.014137855117953
823 => 0.014236620816573
824 => 0.014279244817963
825 => 0.014436528300719
826 => 0.014114624219667
827 => 0.01345824000741
828 => 0.013596219926716
829 => 0.013392136787974
830 => 0.013411025459464
831 => 0.013449183581983
901 => 0.013325500622337
902 => 0.013349095433339
903 => 0.013348252460656
904 => 0.013340988177484
905 => 0.013308813462817
906 => 0.013262153760978
907 => 0.013448031652008
908 => 0.013479615927762
909 => 0.0135498238603
910 => 0.013758715045039
911 => 0.01373784188969
912 => 0.013771886872082
913 => 0.013697566866674
914 => 0.013414472951359
915 => 0.013429846312967
916 => 0.01323814024738
917 => 0.013544921505189
918 => 0.013472271654025
919 => 0.013425433822365
920 => 0.013412653686047
921 => 0.013622062671628
922 => 0.013684721122197
923 => 0.013645676580654
924 => 0.013565595086839
925 => 0.013719375228933
926 => 0.013760520307494
927 => 0.013769731173212
928 => 0.014042200100584
929 => 0.0137849591595
930 => 0.013846879610774
1001 => 0.014329965295642
1002 => 0.013891873240734
1003 => 0.014123940372838
1004 => 0.01411258189434
1005 => 0.014231299586401
1006 => 0.014102843578481
1007 => 0.014104435944653
1008 => 0.01420984921257
1009 => 0.014061815289164
1010 => 0.014025160007922
1011 => 0.013974520999418
1012 => 0.014085089421896
1013 => 0.014151370190593
1014 => 0.014685544508424
1015 => 0.015030645479051
1016 => 0.015015663735777
1017 => 0.015152568824653
1018 => 0.015090891828207
1019 => 0.014891720537115
1020 => 0.015231681644658
1021 => 0.015124103725654
1022 => 0.01513297231859
1023 => 0.015132642229118
1024 => 0.01520417214063
1025 => 0.015153486642704
1026 => 0.015053580323531
1027 => 0.01511990280063
1028 => 0.015316856846897
1029 => 0.015928208249798
1030 => 0.01627032859419
1031 => 0.015907612175487
1101 => 0.016157809104142
1102 => 0.01600778010123
1103 => 0.015980515368424
1104 => 0.016137657529028
1105 => 0.016295074746181
1106 => 0.016285047949981
1107 => 0.016170771133792
1108 => 0.016106219059993
1109 => 0.016595028989328
1110 => 0.016955175818602
1111 => 0.0169306162193
1112 => 0.017039014303408
1113 => 0.017357274430973
1114 => 0.017386372148472
1115 => 0.017382706504871
1116 => 0.017310584776017
1117 => 0.017623953202905
1118 => 0.017885370657808
1119 => 0.017293890679584
1120 => 0.017519118512251
1121 => 0.017620230542722
1122 => 0.017768693002042
1123 => 0.018019174056111
1124 => 0.018291262917649
1125 => 0.018329739265973
1126 => 0.018302438455574
1127 => 0.018122988537249
1128 => 0.018420711416239
1129 => 0.018595110496291
1130 => 0.018698961157409
1201 => 0.018962309154904
1202 => 0.0176208549762
1203 => 0.016671307033914
1204 => 0.016523021411087
1205 => 0.016824566056149
1206 => 0.016904080974278
1207 => 0.016872028610484
1208 => 0.015803226072319
1209 => 0.016517394386918
1210 => 0.017285779444448
1211 => 0.017315296243855
1212 => 0.017699965869829
1213 => 0.017825230068186
1214 => 0.018134939536896
1215 => 0.018115567125303
1216 => 0.01819097645238
1217 => 0.018173641153993
1218 => 0.018747312727754
1219 => 0.019380157664665
1220 => 0.019358244256824
1221 => 0.019267265309661
1222 => 0.019402384560413
1223 => 0.020055548355091
1224 => 0.019995415499614
1225 => 0.020053829446606
1226 => 0.020823946371229
1227 => 0.021825207921095
1228 => 0.021360021406166
1229 => 0.022369342289748
1230 => 0.023004656284161
1231 => 0.024103366144806
]
'min_raw' => 0.009840870466368
'max_raw' => 0.024103366144806
'avg_raw' => 0.016972118305587
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00984'
'max' => '$0.0241033'
'avg' => '$0.016972'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0043879775379732
'max_diff' => 0.009778581270005
'year' => 2028
]
3 => [
'items' => [
101 => 0.023965802258993
102 => 0.024393521945036
103 => 0.023719534192938
104 => 0.022171922078723
105 => 0.021927006537627
106 => 0.02241733365315
107 => 0.023622755021243
108 => 0.022379370644539
109 => 0.022630905684559
110 => 0.022558463576111
111 => 0.022554603444011
112 => 0.022701928985977
113 => 0.022488225603372
114 => 0.021617559578133
115 => 0.022016580686633
116 => 0.021862499474074
117 => 0.022033464066924
118 => 0.022956089463372
119 => 0.02254817478296
120 => 0.022118469803443
121 => 0.022657415206926
122 => 0.023343677907292
123 => 0.023300732820836
124 => 0.023217401403457
125 => 0.023687136240131
126 => 0.024463000570921
127 => 0.024672713581858
128 => 0.024827519439139
129 => 0.024848864551391
130 => 0.025068732473506
131 => 0.023886447242445
201 => 0.025762764267376
202 => 0.02608675238537
203 => 0.026025856047119
204 => 0.026385955204765
205 => 0.026280004897752
206 => 0.026126499525983
207 => 0.026697333286139
208 => 0.026042918444029
209 => 0.025114058964192
210 => 0.024604468282795
211 => 0.025275538399566
212 => 0.025685337502758
213 => 0.025956188641849
214 => 0.026038148032886
215 => 0.023978224679398
216 => 0.022868040240455
217 => 0.023579655737527
218 => 0.024447875757033
219 => 0.023881624236399
220 => 0.023903820223952
221 => 0.02309649436381
222 => 0.024519306181735
223 => 0.024312014467595
224 => 0.02538744424725
225 => 0.025130784299472
226 => 0.026007755536837
227 => 0.025776819619532
228 => 0.026735421700811
301 => 0.027117834024149
302 => 0.027759963832758
303 => 0.028232317133909
304 => 0.028509692027024
305 => 0.028493039478849
306 => 0.029592136992994
307 => 0.028944037588445
308 => 0.02812987199103
309 => 0.028115146304032
310 => 0.028536814203749
311 => 0.029420514442617
312 => 0.02964964505724
313 => 0.029777697812241
314 => 0.029581580560408
315 => 0.028878115106473
316 => 0.028574362290115
317 => 0.028833168490219
318 => 0.028516670746962
319 => 0.029063034645405
320 => 0.029813308974999
321 => 0.029658380292844
322 => 0.030176283649081
323 => 0.030712259137765
324 => 0.031478728158748
325 => 0.031679111543099
326 => 0.032010337657533
327 => 0.032351278131396
328 => 0.032460779022998
329 => 0.032669850201196
330 => 0.032668748292887
331 => 0.033298798360501
401 => 0.033993763096105
402 => 0.034256096195325
403 => 0.034859316691851
404 => 0.033826322730919
405 => 0.034609860516465
406 => 0.035316631212251
407 => 0.034473990051999
408 => 0.035635374581196
409 => 0.035680468510711
410 => 0.036361333308405
411 => 0.03567114639803
412 => 0.035261315613803
413 => 0.036444481731705
414 => 0.037016978546774
415 => 0.036844537846942
416 => 0.03553225560677
417 => 0.034768451056556
418 => 0.032769427221754
419 => 0.035137357305481
420 => 0.036290706975796
421 => 0.035529268709752
422 => 0.035913293880926
423 => 0.03800841069427
424 => 0.038806095528024
425 => 0.038640182658841
426 => 0.038668219202575
427 => 0.039098635459864
428 => 0.041007338179249
429 => 0.039863599266411
430 => 0.040737944810196
501 => 0.041201694533932
502 => 0.041632451122392
503 => 0.040574649083154
504 => 0.039198464172304
505 => 0.038762568642725
506 => 0.035453558680502
507 => 0.035281310341667
508 => 0.035184622129419
509 => 0.03457501662802
510 => 0.034096033688919
511 => 0.03371512867225
512 => 0.032715520160645
513 => 0.033052858689496
514 => 0.031459691356507
515 => 0.03247894335777
516 => 0.029936209825949
517 => 0.032053873868984
518 => 0.030901325608729
519 => 0.031675230767804
520 => 0.03167253068561
521 => 0.030247525920899
522 => 0.029425612911704
523 => 0.029949367870496
524 => 0.030510874762041
525 => 0.030601977366058
526 => 0.031329985707776
527 => 0.031533157187463
528 => 0.030917538118843
529 => 0.029883517325267
530 => 0.030123696772111
531 => 0.029420745682879
601 => 0.028188850937624
602 => 0.029073619250485
603 => 0.029375718053013
604 => 0.029509142094398
605 => 0.028297715096506
606 => 0.027917058432409
607 => 0.027714400018462
608 => 0.029727137312288
609 => 0.029837399604741
610 => 0.029273282127033
611 => 0.031823146618088
612 => 0.031246033752335
613 => 0.031890810219466
614 => 0.030101903004752
615 => 0.030170241669437
616 => 0.029323344325482
617 => 0.029797550248396
618 => 0.02946239678645
619 => 0.029759239096019
620 => 0.029937165152447
621 => 0.030783923528882
622 => 0.032063542489476
623 => 0.030657446064346
624 => 0.030044789716245
625 => 0.030424878268897
626 => 0.031437104172092
627 => 0.032970678230324
628 => 0.032062771521796
629 => 0.032465685101785
630 => 0.032553703794635
701 => 0.0318842470003
702 => 0.032995362057234
703 => 0.033590817642927
704 => 0.034201631861677
705 => 0.034731984733191
706 => 0.033957659230616
707 => 0.034786298513572
708 => 0.034118561526034
709 => 0.033519532418831
710 => 0.033520440898718
711 => 0.03314466118935
712 => 0.032416540651161
713 => 0.032282264052545
714 => 0.032980787875808
715 => 0.033540937831612
716 => 0.03358707446491
717 => 0.033897202261987
718 => 0.034080732697727
719 => 0.035879580465507
720 => 0.036603091918557
721 => 0.037487788027976
722 => 0.037832427021335
723 => 0.03886966683143
724 => 0.03803201144428
725 => 0.037850779432171
726 => 0.035334774931438
727 => 0.035746770527484
728 => 0.036406415228415
729 => 0.035345652229594
730 => 0.03601846219836
731 => 0.036151289138259
801 => 0.0353096079088
802 => 0.035759186220353
803 => 0.034565239515548
804 => 0.032089567264961
805 => 0.032998118188157
806 => 0.033667117482564
807 => 0.032712373002428
808 => 0.034423715529358
809 => 0.033423984554406
810 => 0.033107117830896
811 => 0.03187090777134
812 => 0.032454351333361
813 => 0.033243467105103
814 => 0.032755885302722
815 => 0.033767690753438
816 => 0.03520067711031
817 => 0.03622190852403
818 => 0.036300305991294
819 => 0.035643722609463
820 => 0.036695901669107
821 => 0.036703565644866
822 => 0.035516703367311
823 => 0.034789756830785
824 => 0.034624593048178
825 => 0.035037204559398
826 => 0.035538191106306
827 => 0.036328107257959
828 => 0.036805437044761
829 => 0.038050059972583
830 => 0.038386819250716
831 => 0.038756815598351
901 => 0.039251244821438
902 => 0.039844933872806
903 => 0.03854597602715
904 => 0.038597586043919
905 => 0.03738801448334
906 => 0.036095413800753
907 => 0.037076336593887
908 => 0.038358762659218
909 => 0.038064572702876
910 => 0.038031470323032
911 => 0.038087139344095
912 => 0.037865329724359
913 => 0.036862093034941
914 => 0.036358273850109
915 => 0.037008329136525
916 => 0.037353804590622
917 => 0.037889606891301
918 => 0.037823557948328
919 => 0.039203727133912
920 => 0.03974001914528
921 => 0.039602812699543
922 => 0.039628061987616
923 => 0.040598993057553
924 => 0.041678868094527
925 => 0.042690313568715
926 => 0.043719199347652
927 => 0.042478837383048
928 => 0.041849058072312
929 => 0.042498829564925
930 => 0.042154051664748
1001 => 0.044135247746929
1002 => 0.044272421465119
1003 => 0.046253474284273
1004 => 0.048133729309032
1005 => 0.046952774816249
1006 => 0.048066361711585
1007 => 0.049270796730962
1008 => 0.051594347295881
1009 => 0.050811857209111
1010 => 0.050212482065828
1011 => 0.049646075451585
1012 => 0.050824677701306
1013 => 0.052340930666942
1014 => 0.05266751703325
1015 => 0.053196711712262
1016 => 0.052640328214127
1017 => 0.053310430853999
1018 => 0.055676187630765
1019 => 0.05503693926657
1020 => 0.054129103825111
1021 => 0.055996641590671
1022 => 0.056672496248159
1023 => 0.061415998182236
1024 => 0.0674048653183
1025 => 0.064925434998948
1026 => 0.06338637258901
1027 => 0.063748088762393
1028 => 0.065935020304538
1029 => 0.066637393306137
1030 => 0.064728101365298
1031 => 0.065402495556594
1101 => 0.069118473855613
1102 => 0.071111976990179
1103 => 0.068404531970248
1104 => 0.060934798539083
1105 => 0.05404736317645
1106 => 0.055874221179877
1107 => 0.055667112176292
1108 => 0.059659467280854
1109 => 0.055021693404497
1110 => 0.055099781622341
1111 => 0.059174694402488
1112 => 0.058087577534436
1113 => 0.0563265874356
1114 => 0.054060220353
1115 => 0.049870631187232
1116 => 0.046159795227774
1117 => 0.053437599098754
1118 => 0.053123766962009
1119 => 0.052669291520687
1120 => 0.053680677435971
1121 => 0.058591680353691
1122 => 0.058478465841072
1123 => 0.057758252874344
1124 => 0.058304528061942
1125 => 0.056230822754012
1126 => 0.056765263829258
1127 => 0.0540462721715
1128 => 0.055275369955928
1129 => 0.056322809141749
1130 => 0.056533098065904
1201 => 0.057006889749645
1202 => 0.052958391686588
1203 => 0.054776048459242
1204 => 0.055843751521769
1205 => 0.051019830241902
1206 => 0.055748398108156
1207 => 0.052887916342405
1208 => 0.051917025868115
1209 => 0.053224201986653
1210 => 0.052714794181988
1211 => 0.052276835264968
1212 => 0.052032446664181
1213 => 0.052992292537871
1214 => 0.0529475145806
1215 => 0.051377020433186
1216 => 0.049328374839415
1217 => 0.050015967545184
1218 => 0.049766158668962
1219 => 0.048860819075548
1220 => 0.04947090865039
1221 => 0.046784382922055
1222 => 0.042162355039911
1223 => 0.045215808235398
1224 => 0.045098253608889
1225 => 0.045038977235526
1226 => 0.047333562920687
1227 => 0.047112991452157
1228 => 0.046712652076934
1229 => 0.048853466528972
1230 => 0.04807204045596
1231 => 0.050480211485844
]
'min_raw' => 0.021617559578133
'max_raw' => 0.071111976990179
'avg_raw' => 0.046364768284156
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.021617'
'max' => '$0.071111'
'avg' => '$0.046364'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.011776689111765
'max_diff' => 0.047008610845373
'year' => 2029
]
4 => [
'items' => [
101 => 0.052066388676861
102 => 0.051664082833762
103 => 0.053155890148574
104 => 0.050031808292382
105 => 0.0510695029686
106 => 0.051283370403186
107 => 0.048827049210944
108 => 0.047149079672262
109 => 0.047037178234285
110 => 0.044127810292658
111 => 0.045681971163478
112 => 0.047049568414253
113 => 0.046394595460965
114 => 0.046187250590715
115 => 0.047246530565209
116 => 0.047328845691346
117 => 0.045452052092043
118 => 0.045842296911662
119 => 0.047469682682276
120 => 0.045801290965684
121 => 0.042559878390586
122 => 0.041755963255927
123 => 0.041648706157868
124 => 0.039468424553359
125 => 0.041809684709295
126 => 0.040787661909357
127 => 0.044016219688646
128 => 0.042172084800219
129 => 0.042092587831005
130 => 0.041972416502367
131 => 0.040095758059067
201 => 0.040506626990284
202 => 0.041872417894754
203 => 0.042359747476204
204 => 0.042308915008286
205 => 0.041865724774217
206 => 0.042068614993873
207 => 0.041415034904724
208 => 0.041184242172153
209 => 0.040455796823615
210 => 0.039385183399429
211 => 0.039534058762516
212 => 0.037412893427961
213 => 0.036257169974931
214 => 0.035937280955322
215 => 0.035509511989219
216 => 0.035985598598293
217 => 0.037406884433079
218 => 0.035692512173717
219 => 0.032753341184272
220 => 0.032929990368842
221 => 0.033326868638955
222 => 0.032587288608211
223 => 0.031887338177359
224 => 0.032495888288212
225 => 0.031250522793578
226 => 0.033477365109178
227 => 0.033417135265194
228 => 0.034247164373445
301 => 0.034766198608746
302 => 0.033569992735706
303 => 0.033269150193521
304 => 0.033440523778081
305 => 0.030608100164685
306 => 0.034015694936291
307 => 0.03404516395738
308 => 0.03379283230766
309 => 0.035607271325855
310 => 0.039436303591968
311 => 0.03799566763099
312 => 0.037437809843447
313 => 0.036377321781536
314 => 0.037790359158482
315 => 0.037681859934749
316 => 0.037191185297922
317 => 0.036894423746571
318 => 0.037441216004142
319 => 0.036826670134776
320 => 0.036716280810047
321 => 0.036047441606959
322 => 0.035808696441701
323 => 0.035631939026063
324 => 0.03543734647927
325 => 0.035866569148053
326 => 0.034893894111646
327 => 0.033720943370249
328 => 0.033623425207605
329 => 0.03389268142855
330 => 0.03377355559455
331 => 0.033622854878943
401 => 0.033335126171951
402 => 0.033249763210937
403 => 0.03352715142201
404 => 0.033213996304446
405 => 0.033676073738853
406 => 0.033550414244605
407 => 0.032848490524547
408 => 0.03197363368391
409 => 0.031965845622954
410 => 0.031777359151691
411 => 0.031537293291407
412 => 0.031470512461039
413 => 0.03244463789526
414 => 0.034461048390975
415 => 0.034065178762053
416 => 0.034351235139301
417 => 0.035758349394958
418 => 0.03620562870343
419 => 0.035888160444668
420 => 0.035453590311485
421 => 0.035472709191864
422 => 0.036957766890276
423 => 0.037050388117317
424 => 0.03728441207731
425 => 0.037585199001064
426 => 0.035939385758423
427 => 0.035395191536141
428 => 0.035137322122879
429 => 0.034343184138051
430 => 0.035199593870442
501 => 0.034700600594499
502 => 0.034767931835461
503 => 0.034724082276455
504 => 0.034748027100767
505 => 0.033476742661367
506 => 0.033939931894341
507 => 0.033169789957493
508 => 0.032138656356542
509 => 0.03213519963515
510 => 0.032387568123176
511 => 0.032237449471318
512 => 0.031833484039071
513 => 0.031890865422059
514 => 0.031388144127559
515 => 0.031951904889274
516 => 0.031968071530687
517 => 0.03175099292917
518 => 0.032619544166586
519 => 0.032975390317226
520 => 0.032832504531433
521 => 0.03296536506959
522 => 0.034081628932379
523 => 0.03426362864802
524 => 0.034344460899481
525 => 0.034236156390744
526 => 0.032985768323848
527 => 0.033041228351675
528 => 0.032634299465784
529 => 0.032290487438315
530 => 0.032304238116357
531 => 0.032481002190911
601 => 0.033252941271564
602 => 0.034877441558504
603 => 0.034939090156899
604 => 0.03501381005657
605 => 0.034709886673394
606 => 0.034618220472873
607 => 0.034739151852414
608 => 0.035349228748022
609 => 0.036918512157785
610 => 0.03636382259186
611 => 0.035912851340505
612 => 0.036308474708919
613 => 0.03624757159235
614 => 0.035733487997778
615 => 0.035719059383487
616 => 0.034732368603036
617 => 0.034367611487366
618 => 0.034062793139914
619 => 0.033729939461982
620 => 0.033532612644347
621 => 0.033835796319669
622 => 0.033905138013378
623 => 0.033242221608544
624 => 0.033151868552125
625 => 0.033693220398358
626 => 0.033454991634462
627 => 0.033700015825918
628 => 0.033756863540114
629 => 0.033747709748815
630 => 0.033498971558908
701 => 0.033657509863675
702 => 0.033282519510358
703 => 0.032874773822856
704 => 0.032614657477684
705 => 0.032387671467095
706 => 0.032513616498274
707 => 0.032064645458774
708 => 0.031921010587236
709 => 0.033603800653245
710 => 0.034846895768047
711 => 0.034828820672758
712 => 0.034718793178724
713 => 0.034555314640851
714 => 0.035337269274731
715 => 0.035064851915964
716 => 0.035263058305699
717 => 0.035313510150583
718 => 0.035466212689922
719 => 0.035520790722509
720 => 0.03535581800115
721 => 0.034802149398549
722 => 0.033422459882099
723 => 0.032780210687791
724 => 0.032568257756162
725 => 0.032575961842671
726 => 0.032363448744203
727 => 0.032426043375871
728 => 0.032341680885779
729 => 0.032181918739022
730 => 0.03250375163591
731 => 0.032540839879195
801 => 0.032465720235445
802 => 0.032483413630919
803 => 0.031861455064686
804 => 0.031908741223654
805 => 0.031645445881687
806 => 0.031596081179141
807 => 0.030930493482397
808 => 0.029751308399137
809 => 0.030404691401529
810 => 0.029615496614192
811 => 0.029316616589976
812 => 0.030731468139237
813 => 0.030589456285565
814 => 0.030346393723146
815 => 0.029986853534653
816 => 0.029853496581359
817 => 0.029043261948823
818 => 0.028995388964299
819 => 0.029396963126359
820 => 0.029211650467892
821 => 0.028951401312011
822 => 0.028008805250447
823 => 0.026949015194418
824 => 0.026981003594607
825 => 0.027318103093335
826 => 0.028298265349947
827 => 0.02791529899931
828 => 0.027637452517889
829 => 0.027585420223954
830 => 0.028236713319542
831 => 0.02915842949992
901 => 0.029590878109517
902 => 0.029162334671066
903 => 0.028670047043392
904 => 0.028700010310247
905 => 0.028899342500855
906 => 0.028920289495683
907 => 0.028599860858053
908 => 0.028690059642624
909 => 0.02855303944091
910 => 0.027712146715912
911 => 0.027696937633017
912 => 0.027490568997075
913 => 0.027484320236795
914 => 0.02713323570599
915 => 0.027084116553197
916 => 0.026387016907976
917 => 0.026845850005473
918 => 0.026538088853491
919 => 0.026074220203937
920 => 0.025994249073911
921 => 0.025991845045175
922 => 0.026468134429134
923 => 0.026840284286712
924 => 0.026543442490493
925 => 0.026475857367531
926 => 0.02719748966367
927 => 0.027105655376162
928 => 0.027026127475448
929 => 0.029075899925439
930 => 0.027453345085532
1001 => 0.02674581856314
1002 => 0.025870120136038
1003 => 0.026155251959557
1004 => 0.026215333424231
1005 => 0.024109436563555
1006 => 0.023255074469451
1007 => 0.022961889594711
1008 => 0.022793157554273
1009 => 0.022870050863904
1010 => 0.022101024772533
1011 => 0.022617823024452
1012 => 0.021951911433481
1013 => 0.021840269188192
1014 => 0.023031001603463
1015 => 0.023196685062891
1016 => 0.022489827951158
1017 => 0.022943744646662
1018 => 0.022779148142958
1019 => 0.021963326576427
1020 => 0.021932168193362
1021 => 0.021522817608791
1022 => 0.02088226320983
1023 => 0.020589512661136
1024 => 0.020437045633599
1025 => 0.020499956500684
1026 => 0.020468146841182
1027 => 0.020260567296046
1028 => 0.020480045057725
1029 => 0.019919370071108
1030 => 0.019696104773771
1031 => 0.01959526101868
1101 => 0.019097629696809
1102 => 0.019889582427559
1103 => 0.020045607092274
1104 => 0.020201939173778
1105 => 0.02156270321082
1106 => 0.021494723285008
1107 => 0.022109228706776
1108 => 0.022085350156089
1109 => 0.021910083255473
1110 => 0.02117066103178
1111 => 0.02146538155121
1112 => 0.020558277602141
1113 => 0.021237941557857
1114 => 0.020927771311913
1115 => 0.0211330726857
1116 => 0.020763922304353
1117 => 0.020968225367236
1118 => 0.020082606328412
1119 => 0.019255627730954
1120 => 0.019588428059581
1121 => 0.019950220077133
1122 => 0.020734677354077
1123 => 0.020267461071561
1124 => 0.020435489714158
1125 => 0.019872621889115
1126 => 0.018711264790806
1127 => 0.01871783794586
1128 => 0.018539188457825
1129 => 0.01838480921691
1130 => 0.020321126481942
1201 => 0.020080314821389
1202 => 0.019696612956949
1203 => 0.020210213150208
1204 => 0.020346017193237
1205 => 0.020349883343424
1206 => 0.020724592786486
1207 => 0.020924575283419
1208 => 0.020959823065277
1209 => 0.021549436470069
1210 => 0.021747067106166
1211 => 0.022561079726516
1212 => 0.020907608165754
1213 => 0.020873556007057
1214 => 0.02021744055819
1215 => 0.019801321767743
1216 => 0.020245932567777
1217 => 0.02063979704118
1218 => 0.020229679025272
1219 => 0.020283231780085
1220 => 0.019732681851601
1221 => 0.019929477545252
1222 => 0.020098984507868
1223 => 0.02000539272627
1224 => 0.019865281299325
1225 => 0.020607504645932
1226 => 0.02056562549592
1227 => 0.021256800939921
1228 => 0.021795621624951
1229 => 0.022761284618242
1230 => 0.021753564943592
1231 => 0.021716839633325
]
'min_raw' => 0.01838480921691
'max_raw' => 0.053155890148574
'avg_raw' => 0.035770349682742
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.018384'
'max' => '$0.053155'
'avg' => '$0.03577'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0032327503612235
'max_diff' => -0.017956086841605
'year' => 2030
]
5 => [
'items' => [
101 => 0.022075835432112
102 => 0.02174701214578
103 => 0.021954817112147
104 => 0.022727804025508
105 => 0.02274413602093
106 => 0.022470554055016
107 => 0.022453906567527
108 => 0.02250645097674
109 => 0.022814205222692
110 => 0.022706666432824
111 => 0.022831113043009
112 => 0.022986735434639
113 => 0.02363045562895
114 => 0.023785654388494
115 => 0.023408601864133
116 => 0.023442645485405
117 => 0.023301617490971
118 => 0.023165386215423
119 => 0.023471614227874
120 => 0.024031251939555
121 => 0.024027770462396
122 => 0.024157595533704
123 => 0.024238475477599
124 => 0.023891279550662
125 => 0.023665267768974
126 => 0.023751935067576
127 => 0.02389051796541
128 => 0.023706994501583
129 => 0.022574202666501
130 => 0.022917819346242
131 => 0.022860624728736
201 => 0.022779172638304
202 => 0.023124681866893
203 => 0.02309135665892
204 => 0.022093137298434
205 => 0.022157040063177
206 => 0.02209702343721
207 => 0.022290949433956
208 => 0.021736539505544
209 => 0.021907072265516
210 => 0.022014028813925
211 => 0.022077027042616
212 => 0.022304619842941
213 => 0.022277914454689
214 => 0.022302959798511
215 => 0.02264041983912
216 => 0.02434717692222
217 => 0.024440071944505
218 => 0.023982622880012
219 => 0.024165364758493
220 => 0.023814540313064
221 => 0.0240500511136
222 => 0.024211181622001
223 => 0.023483063838152
224 => 0.023439949428438
225 => 0.023087677005728
226 => 0.023276968251963
227 => 0.022975792268681
228 => 0.02304969032029
301 => 0.022843064925676
302 => 0.023214949497275
303 => 0.023630774233344
304 => 0.023735827983091
305 => 0.023459476795989
306 => 0.023259380324096
307 => 0.022908076835328
308 => 0.023492302366458
309 => 0.023663147715711
310 => 0.02349140498857
311 => 0.023451608446038
312 => 0.023376194069852
313 => 0.023467607962453
314 => 0.023662217255248
315 => 0.023570443106635
316 => 0.023631061548646
317 => 0.023400046557166
318 => 0.023891394486961
319 => 0.024671773248794
320 => 0.024674282294118
321 => 0.024582507650808
322 => 0.024544955444078
323 => 0.024639121797465
324 => 0.024690203181271
325 => 0.024994719900968
326 => 0.025321478473684
327 => 0.026846318156617
328 => 0.026418149275394
329 => 0.02777107775521
330 => 0.028841068526968
331 => 0.029161911974393
401 => 0.028866751099613
402 => 0.027857021691268
403 => 0.027807479549326
404 => 0.029316441582153
405 => 0.02889009069304
406 => 0.028839377611418
407 => 0.028299876104055
408 => 0.028618788313468
409 => 0.02854903753511
410 => 0.028438932519146
411 => 0.029047394799088
412 => 0.030186381869338
413 => 0.030008860053086
414 => 0.029876348252255
415 => 0.029295720114616
416 => 0.029645387941464
417 => 0.029520877925769
418 => 0.030055851969202
419 => 0.029738945196998
420 => 0.028886860665728
421 => 0.02902255793584
422 => 0.029002047566447
423 => 0.029424149515163
424 => 0.029297444987373
425 => 0.028977306473861
426 => 0.030182488935355
427 => 0.030104231089883
428 => 0.030215182822529
429 => 0.030264027206536
430 => 0.03099760053315
501 => 0.031298122053336
502 => 0.031366345699788
503 => 0.031651817900796
504 => 0.031359242891367
505 => 0.032529751531526
506 => 0.03330807147616
507 => 0.034212130143829
508 => 0.035533202845356
509 => 0.036029938401736
510 => 0.035940207569583
511 => 0.036941829814687
512 => 0.038741722724325
513 => 0.036304017387529
514 => 0.038870927026387
515 => 0.038058273071121
516 => 0.036131485162207
517 => 0.03600742273621
518 => 0.037312265878595
519 => 0.040206282381904
520 => 0.039481364071489
521 => 0.040207468088565
522 => 0.03936042918336
523 => 0.039318366562312
524 => 0.040166329299566
525 => 0.042147640455202
526 => 0.041206393793497
527 => 0.039856885900793
528 => 0.040853341528097
529 => 0.039990119446112
530 => 0.038045038494751
531 => 0.039480809740119
601 => 0.038520750396752
602 => 0.038800946752708
603 => 0.040818848694415
604 => 0.040576049394083
605 => 0.040890254171323
606 => 0.040335690963665
607 => 0.039817641481121
608 => 0.038850663651094
609 => 0.038564389187053
610 => 0.038643505149838
611 => 0.038564349981111
612 => 0.038023334772196
613 => 0.037906502589341
614 => 0.037711777166048
615 => 0.037772130717107
616 => 0.037405989952383
617 => 0.038096973223958
618 => 0.038225225808086
619 => 0.038728065809916
620 => 0.038780272327013
621 => 0.040180674574629
622 => 0.039409356549446
623 => 0.039926823273133
624 => 0.039880536178781
625 => 0.036173244498725
626 => 0.036684076582526
627 => 0.03747877099698
628 => 0.037120762240451
629 => 0.036614621619867
630 => 0.036205885931201
701 => 0.035586609567504
702 => 0.036458229157259
703 => 0.037604316231378
704 => 0.038809338986545
705 => 0.040257094870659
706 => 0.039933972611061
707 => 0.038782274197329
708 => 0.038833938546853
709 => 0.039153307226437
710 => 0.038739695768672
711 => 0.038617713675122
712 => 0.039136548759946
713 => 0.039140121692028
714 => 0.038664211723255
715 => 0.038135324883568
716 => 0.038133108828398
717 => 0.038038998523716
718 => 0.039377171197495
719 => 0.040113030863556
720 => 0.040197395988373
721 => 0.04010735241847
722 => 0.040142006614824
723 => 0.039713826088705
724 => 0.040692519798423
725 => 0.041590665929237
726 => 0.041349943580086
727 => 0.040989066558009
728 => 0.040701610627733
729 => 0.041282228098393
730 => 0.041256374116401
731 => 0.04158282140631
801 => 0.041568011871589
802 => 0.041458239926296
803 => 0.041349947500387
804 => 0.041779314728295
805 => 0.041655663862084
806 => 0.041531820931925
807 => 0.041283434976087
808 => 0.041317194752739
809 => 0.040956380041169
810 => 0.040789450645838
811 => 0.038279233059692
812 => 0.037608420896948
813 => 0.037819472058988
814 => 0.037888955581472
815 => 0.037597017268577
816 => 0.038015581816469
817 => 0.03795034897505
818 => 0.038204131801077
819 => 0.038045579309345
820 => 0.038052086358911
821 => 0.038518355430141
822 => 0.038653715325169
823 => 0.03858487019007
824 => 0.03863308696282
825 => 0.039744222139834
826 => 0.039586254249766
827 => 0.039502336956583
828 => 0.039525582620296
829 => 0.03980950148103
830 => 0.03988898326064
831 => 0.039552213375345
901 => 0.039711036000094
902 => 0.040387282578681
903 => 0.040623930608945
904 => 0.041379197524049
905 => 0.041058346714714
906 => 0.041647282261347
907 => 0.043457469348771
908 => 0.044903572049625
909 => 0.043573676243198
910 => 0.046229259693248
911 => 0.048297012329933
912 => 0.048217648539714
913 => 0.047857088039528
914 => 0.045503006636711
915 => 0.043336745832462
916 => 0.045148914979509
917 => 0.04515353457134
918 => 0.044997867634476
919 => 0.044031033658945
920 => 0.044964223907862
921 => 0.045038297160971
922 => 0.044996835836898
923 => 0.044255566494721
924 => 0.043123785218691
925 => 0.043344932570925
926 => 0.04370717644517
927 => 0.043021373219237
928 => 0.042802217534268
929 => 0.0432096696487
930 => 0.044522565257416
1001 => 0.044274369947675
1002 => 0.044267888565101
1003 => 0.045329773351367
1004 => 0.04456969301348
1005 => 0.043347721947249
1006 => 0.043039158137207
1007 => 0.041943964485048
1008 => 0.04270041864154
1009 => 0.042727642079943
1010 => 0.042313339869206
1011 => 0.0433813402883
1012 => 0.043371498476421
1013 => 0.044385405923466
1014 => 0.04632361615597
1015 => 0.045750392016686
1016 => 0.045083794709307
1017 => 0.045156272319357
1018 => 0.045951172811627
1019 => 0.045470557828188
1020 => 0.045643390327199
1021 => 0.04595091120894
1022 => 0.046136446192208
1023 => 0.045129576690486
1024 => 0.044894827245499
1025 => 0.044414612266915
1026 => 0.04428933314264
1027 => 0.044680458222682
1028 => 0.044577410582744
1029 => 0.04272535405536
1030 => 0.042531803843503
1031 => 0.042537739752175
1101 => 0.042051048541649
1102 => 0.041308727626324
1103 => 0.04325950267012
1104 => 0.043102828133024
1105 => 0.042929871569716
1106 => 0.042951057761845
1107 => 0.043797823090456
1108 => 0.043306656437187
1109 => 0.044612503485533
1110 => 0.044344060589748
1111 => 0.044068733146615
1112 => 0.044030674507295
1113 => 0.043924696931522
1114 => 0.043561260391678
1115 => 0.043122388930666
1116 => 0.042832607977711
1117 => 0.039510816736347
1118 => 0.040127321868774
1119 => 0.040836554827419
1120 => 0.041081379202671
1121 => 0.040662590167472
1122 => 0.043577796735337
1123 => 0.044110433066915
1124 => 0.042497042875556
1125 => 0.04219524344504
1126 => 0.043597582655757
1127 => 0.042751800682698
1128 => 0.043132656253379
1129 => 0.042309454826427
1130 => 0.04398213657205
1201 => 0.043969393539657
1202 => 0.043318682561379
1203 => 0.043868659024343
1204 => 0.043773087079647
1205 => 0.043038435987801
1206 => 0.044005426322035
1207 => 0.044005905937177
1208 => 0.043379610768261
1209 => 0.042648235124608
1210 => 0.042517482433845
1211 => 0.042418977845507
1212 => 0.043108430163089
1213 => 0.043726590955171
1214 => 0.044876834934179
1215 => 0.045166033599624
1216 => 0.046294795243903
1217 => 0.045622672643142
1218 => 0.045920615886615
1219 => 0.046244075424049
1220 => 0.046399153821126
1221 => 0.046146461895055
1222 => 0.047899893345449
1223 => 0.048047936683614
1224 => 0.04809757433433
1225 => 0.047506327114828
1226 => 0.048031493028881
1227 => 0.047785785289363
1228 => 0.048425048568013
1229 => 0.048525293212629
1230 => 0.048440389564946
1231 => 0.048472208797401
]
'min_raw' => 0.021736539505544
'max_raw' => 0.048525293212629
'avg_raw' => 0.035130916359087
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.021736'
'max' => '$0.048525'
'avg' => '$0.03513'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0033517302886346
'max_diff' => -0.0046305969359459
'year' => 2031
]
6 => [
'items' => [
101 => 0.046975964380994
102 => 0.046898376214685
103 => 0.04584045606166
104 => 0.046271566343768
105 => 0.04546562633502
106 => 0.045721198213896
107 => 0.045833851862926
108 => 0.045775007989711
109 => 0.046295940672286
110 => 0.045853041472581
111 => 0.04468415766519
112 => 0.043514955396187
113 => 0.043500277014111
114 => 0.043192446694817
115 => 0.042969941755902
116 => 0.043012804100924
117 => 0.043163856595404
118 => 0.042961162310325
119 => 0.043004417412908
120 => 0.043722740323023
121 => 0.043866794859802
122 => 0.043377241258086
123 => 0.041411612904949
124 => 0.040929242776684
125 => 0.041275960859065
126 => 0.041110251947191
127 => 0.033179181844995
128 => 0.03504246912228
129 => 0.033935367093375
130 => 0.034445570643609
131 => 0.033315506154777
201 => 0.033854832160602
202 => 0.033755238340359
203 => 0.036751349143555
204 => 0.036704568994378
205 => 0.036726960176239
206 => 0.035658170726134
207 => 0.037360781340946
208 => 0.0381995485537
209 => 0.038044315065686
210 => 0.038083383990245
211 => 0.037412050424782
212 => 0.036733460152615
213 => 0.035980799106487
214 => 0.037379150298475
215 => 0.037223677516577
216 => 0.037580276140911
217 => 0.038487206845122
218 => 0.038620755836412
219 => 0.038800247035026
220 => 0.038735912217377
221 => 0.040268628581979
222 => 0.040083006517037
223 => 0.040530302286433
224 => 0.039610180952374
225 => 0.038568976324166
226 => 0.038766875284445
227 => 0.038747816023167
228 => 0.0385051697519
229 => 0.038286119547647
301 => 0.037921462674579
302 => 0.039075290980029
303 => 0.039028447657965
304 => 0.039786786592766
305 => 0.039652742819928
306 => 0.038757565698845
307 => 0.038789537124851
308 => 0.039004560329681
309 => 0.039748758096691
310 => 0.039969686662787
311 => 0.03986734374849
312 => 0.040109581835442
313 => 0.040301036942527
314 => 0.040133625649197
315 => 0.04250381652357
316 => 0.041519548023399
317 => 0.041999273641886
318 => 0.042113685375188
319 => 0.041820622126155
320 => 0.041884177051062
321 => 0.041980445444616
322 => 0.04256496827899
323 => 0.044098925329433
324 => 0.044778304465075
325 => 0.046822250114631
326 => 0.044721891485274
327 => 0.044597264896356
328 => 0.044965441229086
329 => 0.046165453698996
330 => 0.047137951094417
331 => 0.047460584585199
401 => 0.047503225927104
402 => 0.048108507804081
403 => 0.048455444088124
404 => 0.048035010663722
405 => 0.047678737357755
406 => 0.046402610598053
407 => 0.046550325745266
408 => 0.047567936627503
409 => 0.049005371935644
410 => 0.050238840969683
411 => 0.049806923104699
412 => 0.053102151528038
413 => 0.053428859966411
414 => 0.053383719423976
415 => 0.054128009867324
416 => 0.052650744909391
417 => 0.052019185519214
418 => 0.047755767690379
419 => 0.048953614197728
420 => 0.050694754443219
421 => 0.050464308002788
422 => 0.0491998454157
423 => 0.050237881761424
424 => 0.04989467448313
425 => 0.049623972663056
426 => 0.050864110178943
427 => 0.049500528038184
428 => 0.050681151668279
429 => 0.049166989650695
430 => 0.049808896069124
501 => 0.049444518940503
502 => 0.049680315599102
503 => 0.048301853151051
504 => 0.049045638027735
505 => 0.048270909254844
506 => 0.048270541932533
507 => 0.048253439751932
508 => 0.049164904717565
509 => 0.049194627557372
510 => 0.048521053570622
511 => 0.048423981035928
512 => 0.048782909074466
513 => 0.04836269834474
514 => 0.048559312300404
515 => 0.048368653581163
516 => 0.048325732287575
517 => 0.047983728117808
518 => 0.047836383317872
519 => 0.047894161010535
520 => 0.047696935959035
521 => 0.047578100731565
522 => 0.048229800434149
523 => 0.047881623572549
524 => 0.048176437336549
525 => 0.047840459844008
526 => 0.046675815476433
527 => 0.046006016184751
528 => 0.043806110936993
529 => 0.044430001336283
530 => 0.044843641316474
531 => 0.044706933305488
601 => 0.045000635012062
602 => 0.0450186659115
603 => 0.044923180492758
604 => 0.044812620610295
605 => 0.044758806173856
606 => 0.045159894893725
607 => 0.045392740395635
608 => 0.044885155622275
609 => 0.044766235611742
610 => 0.045279431842133
611 => 0.045592481246207
612 => 0.047903862158627
613 => 0.047732627594973
614 => 0.048162392746659
615 => 0.048114007785863
616 => 0.048564470131787
617 => 0.049300785687782
618 => 0.047803650285377
619 => 0.048063501224188
620 => 0.047999791774826
621 => 0.048695354837443
622 => 0.048697526309401
623 => 0.04828050150741
624 => 0.048506577418024
625 => 0.048380388046788
626 => 0.048608429296129
627 => 0.047730340652979
628 => 0.048799757836524
629 => 0.049406048467873
630 => 0.049414466813877
701 => 0.049701843761316
702 => 0.049993835383665
703 => 0.050554287875653
704 => 0.04997820466785
705 => 0.048941887057582
706 => 0.049016705841758
707 => 0.048409113206031
708 => 0.048419326948008
709 => 0.048364805192869
710 => 0.048528429084248
711 => 0.047766246895767
712 => 0.047945129531976
713 => 0.047694692793748
714 => 0.048062956823628
715 => 0.047666765603702
716 => 0.0479997610522
717 => 0.048143470848798
718 => 0.048673763092094
719 => 0.0475884410082
720 => 0.045375395809294
721 => 0.045840604740683
722 => 0.045152524189785
723 => 0.045216208664478
724 => 0.045344861438667
725 => 0.044927855704953
726 => 0.045007407257584
727 => 0.045004565116329
728 => 0.044980073078436
729 => 0.044871593781571
730 => 0.044714277339143
731 => 0.045340977626331
801 => 0.045447466217181
802 => 0.045684177163495
803 => 0.046388468377156
804 => 0.046318093076581
805 => 0.046432878111662
806 => 0.04618230302457
807 => 0.045227832124102
808 => 0.045279664486095
809 => 0.044633314101479
810 => 0.045667648530966
811 => 0.045422704485516
812 => 0.04526478746596
813 => 0.045221698344083
814 => 0.045927735359437
815 => 0.046138992700206
816 => 0.046007351302392
817 => 0.045737350954882
818 => 0.046255831440538
819 => 0.046394554945564
820 => 0.046425610022413
821 => 0.047344258034223
822 => 0.046476952241367
823 => 0.046685721365985
824 => 0.048314478480485
825 => 0.046837420530752
826 => 0.047619851069049
827 => 0.047581555165771
828 => 0.047981820153158
829 => 0.047548721753946
830 => 0.047554090527668
831 => 0.047909498720169
901 => 0.047410392012007
902 => 0.047286806172112
903 => 0.047116073219437
904 => 0.047488862375464
905 => 0.047712332614698
906 => 0.049513338622125
907 => 0.050676870638775
908 => 0.050626358645335
909 => 0.051087943710888
910 => 0.050879995411222
911 => 0.050208475497609
912 => 0.051354678107017
913 => 0.050991971642246
914 => 0.051021872722513
915 => 0.051020759802813
916 => 0.051261927893536
917 => 0.051091038198527
918 => 0.050754197068199
919 => 0.050977807930228
920 => 0.05164185224811
921 => 0.053703066186181
922 => 0.054856548813378
923 => 0.053633625083668
924 => 0.054477181496821
925 => 0.053971348238812
926 => 0.053879423288596
927 => 0.054409239054385
928 => 0.054939982192536
929 => 0.054906176149102
930 => 0.054520883884766
1001 => 0.054303242061072
1002 => 0.055951298865443
1003 => 0.057165559044989
1004 => 0.057082754641248
1005 => 0.057448226349928
1006 => 0.058521262590228
1007 => 0.058619367576313
1008 => 0.058607008602984
1009 => 0.058363845158775
1010 => 0.059420388688714
1011 => 0.060301775889504
1012 => 0.058307559847108
1013 => 0.059066931209848
1014 => 0.059407837479999
1015 => 0.059908389026913
1016 => 0.060752903388737
1017 => 0.061670269982049
1018 => 0.061799995676757
1019 => 0.061707949088416
1020 => 0.061102921159989
1021 => 0.062106714632851
1022 => 0.0626947133074
1023 => 0.063044853061983
1024 => 0.063932749221908
1025 => 0.059409942801065
1026 => 0.056208475618328
1027 => 0.055708520287997
1028 => 0.056725199111997
1029 => 0.056993289210024
1030 => 0.056885222427666
1031 => 0.053281680048833
1101 => 0.055689548383142
1102 => 0.058280212251539
1103 => 0.058379730201535
1104 => 0.059676670702281
1105 => 0.060099007692712
1106 => 0.06114321478969
1107 => 0.061077899351467
1108 => 0.061332147162617
1109 => 0.061273699993792
1110 => 0.063207873757198
1111 => 0.065341554645819
1112 => 0.065267672061335
1113 => 0.06496093018903
1114 => 0.065416494176665
1115 => 0.067618681512861
1116 => 0.067415939392277
1117 => 0.067612886092892
1118 => 0.070209389072106
1119 => 0.073585212293328
1120 => 0.072016803479961
1121 => 0.075419799307489
1122 => 0.07756180479586
1123 => 0.081266181800497
1124 => 0.080802375555075
1125 => 0.082244462339006
1126 => 0.079972065576485
1127 => 0.074754183282581
1128 => 0.073928433436319
1129 => 0.075581605539851
1130 => 0.07964576784221
1201 => 0.075453610605824
1202 => 0.076301678554868
1203 => 0.076057434928491
1204 => 0.07604442022361
1205 => 0.076541138574289
1206 => 0.075820622699542
1207 => 0.072885111407489
1208 => 0.07423043893356
1209 => 0.07371094336781
1210 => 0.07428736242897
1211 => 0.077398058368745
1212 => 0.076022745544041
1213 => 0.074573965204557
1214 => 0.076391057260364
1215 => 0.078704839867982
1216 => 0.078560047510664
1217 => 0.078279089818958
1218 => 0.079862833616641
1219 => 0.082478714377018
1220 => 0.083185776435089
1221 => 0.083707715191108
1222 => 0.083779681727336
1223 => 0.084520981777433
1224 => 0.080534824576394
1225 => 0.086860958426221
1226 => 0.087953306986165
1227 => 0.087747990730105
1228 => 0.088962090181428
1229 => 0.088604871324119
1230 => 0.088087317245798
1231 => 0.090011923122506
]
'min_raw' => 0.033179181844995
'max_raw' => 0.090011923122506
'avg_raw' => 0.06159555248375
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.033179'
'max' => '$0.090011'
'avg' => '$0.061595'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.01144264233945
'max_diff' => 0.041486629909877
'year' => 2032
]
7 => [
'items' => [
101 => 0.087805517792546
102 => 0.084673803205376
103 => 0.082955682644563
104 => 0.085218242395874
105 => 0.086599908683545
106 => 0.087513102209216
107 => 0.087789434018317
108 => 0.080844258612776
109 => 0.077101194266277
110 => 0.079500455598063
111 => 0.082427720011014
112 => 0.080518563474779
113 => 0.080593398796488
114 => 0.077871443293328
115 => 0.082668552675012
116 => 0.081969654188141
117 => 0.085595540774356
118 => 0.084730193840998
119 => 0.087686963595951
120 => 0.086908347027326
121 => 0.090140340871819
122 => 0.091429670719128
123 => 0.093594656200926
124 => 0.095187228334412
125 => 0.096122417152246
126 => 0.096066271923429
127 => 0.099771955928906
128 => 0.097586843537614
129 => 0.094841827382702
130 => 0.094792178700875
131 => 0.096213861464683
201 => 0.099193318518007
202 => 0.099965848382597
203 => 0.10039758718644
204 => 0.099736364179418
205 => 0.097364581287087
206 => 0.09634045745939
207 => 0.097213040632311
208 => 0.096145946393755
209 => 0.097988050423265
210 => 0.10051765270797
211 => 0.09999529983931
212 => 0.10174144716372
213 => 0.10354852594443
214 => 0.10613272976184
215 => 0.1068083363325
216 => 0.10792508830278
217 => 0.10907459291411
218 => 0.10944378281525
219 => 0.11014868088943
220 => 0.11014496572864
221 => 0.11226922352029
222 => 0.11461234564727
223 => 0.1154968200068
224 => 0.11753062002635
225 => 0.11404780876573
226 => 0.11668956111456
227 => 0.11907248786055
228 => 0.11623146435744
301 => 0.1201471533829
302 => 0.12029919071462
303 => 0.12259477391651
304 => 0.12026776056087
305 => 0.11888598745838
306 => 0.1228751146309
307 => 0.12480532761336
308 => 0.12422393175445
309 => 0.11979948056109
310 => 0.11722426019291
311 => 0.11048441176649
312 => 0.11846805336737
313 => 0.12235665230515
314 => 0.11978941002926
315 => 0.12108417770565
316 => 0.12814801031823
317 => 0.1308374604278
318 => 0.13027807360569
319 => 0.13037260077033
320 => 0.13182377923249
321 => 0.13825910371226
322 => 0.13440290811433
323 => 0.13735082516006
324 => 0.1389143897316
325 => 0.14036671564406
326 => 0.13680026221539
327 => 0.1321603587063
328 => 0.13069070649507
329 => 0.11953414837973
330 => 0.11895340107936
331 => 0.11862741002121
401 => 0.11657208251194
402 => 0.11495715809124
403 => 0.11367291023361
404 => 0.11030266034629
405 => 0.11144002074854
406 => 0.10606854585397
407 => 0.10950502513813
408 => 0.10093202150761
409 => 0.10807187367929
410 => 0.10418597675149
411 => 0.10679525202764
412 => 0.10678614851201
413 => 0.10198164545713
414 => 0.099210508362497
415 => 0.10097638477347
416 => 0.10286954446147
417 => 0.1031767032515
418 => 0.10563123420352
419 => 0.10631624103226
420 => 0.10424063836126
421 => 0.10075436506269
422 => 0.10156414683652
423 => 0.099194098160696
424 => 0.095040679018922
425 => 0.098023737158285
426 => 0.099042284362872
427 => 0.099492132833772
428 => 0.095407722131247
429 => 0.094124311611644
430 => 0.093441034619864
501 => 0.10022711893083
502 => 0.1005988759481
503 => 0.098696914486584
504 => 0.10729396064403
505 => 0.10534818432441
506 => 0.1075220932002
507 => 0.10149066762828
508 => 0.10172107620751
509 => 0.098865702683884
510 => 0.10046452106099
511 => 0.099334527764373
512 => 0.10033535233595
513 => 0.1009352424576
514 => 0.10379014744253
515 => 0.10810447210832
516 => 0.10336371984047
517 => 0.10129810618855
518 => 0.10257960128075
519 => 0.10599239158473
520 => 0.11116294359278
521 => 0.10810187273696
522 => 0.10946032400242
523 => 0.10975708517063
524 => 0.10749996484855
525 => 0.11124616683858
526 => 0.11325378691913
527 => 0.11531318970333
528 => 0.11710131143769
529 => 0.11449061894408
530 => 0.11728443414031
531 => 0.11503311226692
601 => 0.11301344380911
602 => 0.11301650681248
603 => 0.11174953928624
604 => 0.10929463005598
605 => 0.10884190712886
606 => 0.11119702896836
607 => 0.11308561365278
608 => 0.1132411665331
609 => 0.11428678405337
610 => 0.11490556973116
611 => 0.12097051057177
612 => 0.12340987994968
613 => 0.1263926946501
614 => 0.12755466907814
615 => 0.13105179551564
616 => 0.12822758189463
617 => 0.12761654551259
618 => 0.11913366067655
619 => 0.12052273259323
620 => 0.12274677075734
621 => 0.11917033424671
622 => 0.1214387600305
623 => 0.12188659533205
624 => 0.11904880830262
625 => 0.12056459296857
626 => 0.11653911829463
627 => 0.10819221645586
628 => 0.11125545932641
629 => 0.11351103715554
630 => 0.11029204948263
701 => 0.1160619602943
702 => 0.11269129751326
703 => 0.11162295923202
704 => 0.1074549907068
705 => 0.10942211141088
706 => 0.11208267032961
707 => 0.11043875424101
708 => 0.1138501269601
709 => 0.1186815405102
710 => 0.12212469352166
711 => 0.12238901605608
712 => 0.12017529934305
713 => 0.12372279450343
714 => 0.12374863413279
715 => 0.11974704509993
716 => 0.11729609409825
717 => 0.11673923287382
718 => 0.11813038139151
719 => 0.11981949251218
720 => 0.12248274996766
721 => 0.12409210066997
722 => 0.12828843376792
723 => 0.12942384118592
724 => 0.13067130970429
725 => 0.13233831234988
726 => 0.13433997643661
727 => 0.12996044936964
728 => 0.13013445614447
729 => 0.12605630117839
730 => 0.12169820773055
731 => 0.12500545741345
801 => 0.12932924642884
802 => 0.12833736445135
803 => 0.12822575746657
804 => 0.12841344945777
805 => 0.12766560283858
806 => 0.12428312029645
807 => 0.12258445873926
808 => 0.12477616552282
809 => 0.12594096013664
810 => 0.1277474550019
811 => 0.12752476637927
812 => 0.13217810314881
813 => 0.13398624910785
814 => 0.1335236479966
815 => 0.13360877773418
816 => 0.13688233962472
817 => 0.14052321370634
818 => 0.14393337273943
819 => 0.14740233297763
820 => 0.14322036601466
821 => 0.14109702109873
822 => 0.14328777105167
823 => 0.1421253282896
824 => 0.14880506920337
825 => 0.14926755997141
826 => 0.15594681786388
827 => 0.16228622895507
828 => 0.15830455843104
829 => 0.16205909439682
830 => 0.16611993115562
831 => 0.17395394411036
901 => 0.1713157241511
902 => 0.16929488900849
903 => 0.16738520956332
904 => 0.17135894933564
905 => 0.17647110207068
906 => 0.17757221080622
907 => 0.1793564276137
908 => 0.17748054180428
909 => 0.17973983963968
910 => 0.18771615378441
911 => 0.18556088329363
912 => 0.18250005271971
913 => 0.18879658668362
914 => 0.191075277848
915 => 0.20706832579947
916 => 0.22726020947806
917 => 0.21890063704807
918 => 0.21371158067906
919 => 0.21493113201184
920 => 0.22230452439286
921 => 0.22467262400587
922 => 0.21823531292482
923 => 0.22050908002548
924 => 0.23303776030194
925 => 0.23975899530207
926 => 0.2306306553896
927 => 0.2054459276063
928 => 0.1822244584158
929 => 0.1883838377215
930 => 0.18768555525603
1001 => 0.20114605922839
1002 => 0.18550948080522
1003 => 0.18577276068363
1004 => 0.19951161362322
1005 => 0.1958463232025
1006 => 0.18990902213588
1007 => 0.18226780728419
1008 => 0.16814231490403
1009 => 0.15563097238443
1010 => 0.18016859625547
1011 => 0.17911048929538
1012 => 0.1775781936145
1013 => 0.18098815184059
1014 => 0.19754594105296
1015 => 0.19716423041928
1016 => 0.19473598211829
1017 => 0.19657778705299
1018 => 0.18958614482583
1019 => 0.1913880502245
1020 => 0.18222078001643
1021 => 0.1863647690095
1022 => 0.18989628335436
1023 => 0.19060528714406
1024 => 0.19220270888487
1025 => 0.17855291500816
1026 => 0.18468127172191
1027 => 0.18828110714187
1028 => 0.17201691975137
1029 => 0.18795961645051
1030 => 0.17831530246482
1031 => 0.17504187744534
1101 => 0.17944911299312
1102 => 0.17773160901397
1103 => 0.17625499994792
1104 => 0.1754310267177
1105 => 0.17866721409515
1106 => 0.17851624208591
1107 => 0.1732212114195
1108 => 0.16631405976824
1109 => 0.16863232658193
1110 => 0.16779007851465
1111 => 0.16473766286666
1112 => 0.16679462246333
1113 => 0.15773681340301
1114 => 0.14215332369868
1115 => 0.15244825433256
1116 => 0.15205191070189
1117 => 0.15185205627055
1118 => 0.15958841211093
1119 => 0.15884474000497
1120 => 0.1574949678506
1121 => 0.16471287324254
1122 => 0.16207824067996
1123 => 0.17019755744034
1124 => 0.17554546458321
1125 => 0.17418906234511
1126 => 0.17921879486166
1127 => 0.16868573476707
1128 => 0.17218439481747
1129 => 0.17290546380493
1130 => 0.16462380541041
1201 => 0.15896641395865
1202 => 0.15858913044781
1203 => 0.14877999330703
1204 => 0.15401995519104
1205 => 0.15863090480462
1206 => 0.15642261776386
1207 => 0.15572354005746
1208 => 0.15929497644803
1209 => 0.15957250764286
1210 => 0.15324476698926
1211 => 0.15456050464463
1212 => 0.1600473493907
1213 => 0.15442225023482
1214 => 0.14349360142968
1215 => 0.14078314542562
1216 => 0.14042152063106
1217 => 0.13307054897905
1218 => 0.14096427105636
1219 => 0.13751844983101
1220 => 0.14840375779459
1221 => 0.14218612826487
1222 => 0.14191809868287
1223 => 0.14151293265827
1224 => 0.13518564769258
1225 => 0.13657092098013
1226 => 0.14117578037102
1227 => 0.14281884607915
1228 => 0.14264746086455
1229 => 0.14115321404784
1230 => 0.14183727258875
1231 => 0.13963368168668
]
'min_raw' => 0.077101194266277
'max_raw' => 0.23975899530207
'avg_raw' => 0.15843009478418
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0771011'
'max' => '$0.239758'
'avg' => '$0.15843'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.043922012421282
'max_diff' => 0.14974707217957
'year' => 2033
]
8 => [
'items' => [
101 => 0.13885554787538
102 => 0.13639954352436
103 => 0.13278989561687
104 => 0.13329183929766
105 => 0.12614018227718
106 => 0.12224357996525
107 => 0.1211650518017
108 => 0.11972279886661
109 => 0.12132795810841
110 => 0.12611992253139
111 => 0.12033979676531
112 => 0.11043017656803
113 => 0.11102576162706
114 => 0.1123638644239
115 => 0.10987031871442
116 => 0.10751038696782
117 => 0.10956215615417
118 => 0.10536331944037
119 => 0.11287127378059
120 => 0.11266820465648
121 => 0.11546670574573
122 => 0.11721666590786
123 => 0.11318357429048
124 => 0.11216926265535
125 => 0.11274706066061
126 => 0.10319734669455
127 => 0.11468629037769
128 => 0.11478564723975
129 => 0.11393489346548
130 => 0.12005240129542
131 => 0.13296225091511
201 => 0.12810504619068
202 => 0.1262241897116
203 => 0.12264868016995
204 => 0.12741283434144
205 => 0.12704702163345
206 => 0.12539267783758
207 => 0.12439212554797
208 => 0.12623567382019
209 => 0.1241636895154
210 => 0.12379150419994
211 => 0.12153646612986
212 => 0.12073152013654
213 => 0.12013557016891
214 => 0.11947948781138
215 => 0.12092664200655
216 => 0.1176472002113
217 => 0.11369251489388
218 => 0.11336372560002
219 => 0.11427154174781
220 => 0.11386990068138
221 => 0.11336180269712
222 => 0.11239170527292
223 => 0.11210389809001
224 => 0.11303913181027
225 => 0.11198330746761
226 => 0.11354123379893
227 => 0.11311756404081
228 => 0.11075097921188
301 => 0.10780133829312
302 => 0.10777508030186
303 => 0.10713958500429
304 => 0.10633018619548
305 => 0.10610502996341
306 => 0.10938936187615
307 => 0.11618783064374
308 => 0.11485312855109
309 => 0.1158175875988
310 => 0.12056177155333
311 => 0.12206980496989
312 => 0.12099943857055
313 => 0.1195342550258
314 => 0.11959871566584
315 => 0.12460569137945
316 => 0.12491797031303
317 => 0.12570699843317
318 => 0.12672112254688
319 => 0.12117214829231
320 => 0.11933735947746
321 => 0.11846793474678
322 => 0.11579044308599
323 => 0.11867788829136
324 => 0.11699549762292
325 => 0.11722250960274
326 => 0.11707466775307
327 => 0.11715539940001
328 => 0.11286917515433
329 => 0.11443084999215
330 => 0.11183426268247
331 => 0.10835772375541
401 => 0.1083460691779
402 => 0.10919694715509
403 => 0.1086908116394
404 => 0.10732881398061
405 => 0.10752227931959
406 => 0.10582731937631
407 => 0.10772807814495
408 => 0.10778258510519
409 => 0.10705068944423
410 => 0.10997907058149
411 => 0.11117883072276
412 => 0.11069708131999
413 => 0.11114502990042
414 => 0.11490859144886
415 => 0.11552221619696
416 => 0.11579474777629
417 => 0.1154295915635
418 => 0.11121382089665
419 => 0.11140080825257
420 => 0.11002881910292
421 => 0.10886963284812
422 => 0.10891599421918
423 => 0.10951196663781
424 => 0.1121146131433
425 => 0.1175917292797
426 => 0.11779958183336
427 => 0.11805150519188
428 => 0.11702680628625
429 => 0.11671774729126
430 => 0.11712547588054
501 => 0.11918239272829
502 => 0.12447334130818
503 => 0.12260316670947
504 => 0.12108268564972
505 => 0.12241655745787
506 => 0.12221121834824
507 => 0.12047794961697
508 => 0.12042930253652
509 => 0.11710260568167
510 => 0.11587280159966
511 => 0.11484508525949
512 => 0.11372284584524
513 => 0.11305754470267
514 => 0.11407974963162
515 => 0.11431353999325
516 => 0.112078471051
517 => 0.11177383941304
518 => 0.11359904495859
519 => 0.11279584004851
520 => 0.11362195621705
521 => 0.11381362225444
522 => 0.11378275960798
523 => 0.11294412143437
524 => 0.11347864439768
525 => 0.11221433824048
526 => 0.11083959518717
527 => 0.10996259476868
528 => 0.10919729558632
529 => 0.10962192805214
530 => 0.10810819084631
531 => 0.10762391584866
601 => 0.11329756004485
602 => 0.11748874201454
603 => 0.11742780056881
604 => 0.1170568351908
605 => 0.11650565588666
606 => 0.11914207052911
607 => 0.11822359638445
608 => 0.11889186306577
609 => 0.11906196498323
610 => 0.11957681225597
611 => 0.11976082590335
612 => 0.11920460885526
613 => 0.11733787650569
614 => 0.11268615697413
615 => 0.11052076897511
616 => 0.10980615486805
617 => 0.10983212973359
618 => 0.10911562698492
619 => 0.1093266691558
620 => 0.10904223513045
621 => 0.10850358589843
622 => 0.10958866797994
623 => 0.10971371358159
624 => 0.109460442458
625 => 0.10952009697616
626 => 0.10742312024634
627 => 0.10758254883272
628 => 0.10669483020458
629 => 0.10652839366342
630 => 0.104284318274
701 => 0.10030861343771
702 => 0.10251153984802
703 => 0.099850714522694
704 => 0.098843019653911
705 => 0.10361329043403
706 => 0.10313448755442
707 => 0.10231498515514
708 => 0.10110277030734
709 => 0.10065314802862
710 => 0.097921385396253
711 => 0.097759978286546
712 => 0.099113913610943
713 => 0.098489119044804
714 => 0.097611670845738
715 => 0.094433642414218
716 => 0.090860486248138
717 => 0.090968337372733
718 => 0.092104891868229
719 => 0.095409577349141
720 => 0.09411837956011
721 => 0.09318160074938
722 => 0.093006170237598
723 => 0.095202050381203
724 => 0.098309680835519
725 => 0.099767711515371
726 => 0.098322847392687
727 => 0.096663065285558
728 => 0.096764088531729
729 => 0.097436150929295
730 => 0.097506775184828
731 => 0.096426427661444
801 => 0.096730539161105
802 => 0.096268565984582
803 => 0.093433437452996
804 => 0.093382158968149
805 => 0.092686372703875
806 => 0.092665304572315
807 => 0.091481598564766
808 => 0.091315989911737
809 => 0.08896566978793
810 => 0.090512657610845
811 => 0.08947501939974
812 => 0.087911053861495
813 => 0.087641425613207
814 => 0.087633320262478
815 => 0.08923916317396
816 => 0.090493892401457
817 => 0.089493069560673
818 => 0.089265201599963
819 => 0.091698235269154
820 => 0.091388609557155
821 => 0.091120475687436
822 => 0.098031426613124
823 => 0.092560869687216
824 => 0.090175394619048
825 => 0.08722291623276
826 => 0.088184258083024
827 => 0.088386826935924
828 => 0.081286648641133
829 => 0.078406107191206
830 => 0.077417613916506
831 => 0.076848722061673
901 => 0.077107973223615
902 => 0.074515148064868
903 => 0.076257569452916
904 => 0.074012402031496
905 => 0.073635992406888
906 => 0.07765062987926
907 => 0.078209243230368
908 => 0.075826025126974
909 => 0.077356436957317
910 => 0.076801488353319
911 => 0.074050888982915
912 => 0.073945836319005
913 => 0.072565682243179
914 => 0.070406008365002
915 => 0.069418979450889
916 => 0.068904926222641
917 => 0.069117034603314
918 => 0.069009786115422
919 => 0.068309917186256
920 => 0.069049901783205
921 => 0.067159546920746
922 => 0.066406792382891
923 => 0.066066790621915
924 => 0.064388991876717
925 => 0.067059115800815
926 => 0.067585163851197
927 => 0.068112248378743
928 => 0.072700159335141
929 => 0.072470960269061
930 => 0.074542808201951
1001 => 0.074462300001163
1002 => 0.073871375408991
1003 => 0.071378361756998
1004 => 0.072372032564987
1005 => 0.069313668268725
1006 => 0.071605202748042
1007 => 0.070559442108449
1008 => 0.071251630023855
1009 => 0.070007013739888
1010 => 0.070695835780382
1011 => 0.067709909359039
1012 => 0.064921693279908
1013 => 0.066043752823252
1014 => 0.06726355986994
1015 => 0.069908412348215
1016 => 0.068333160031714
1017 => 0.068899680331612
1018 => 0.067001932161304
1019 => 0.063086335620993
1020 => 0.063108497472179
1021 => 0.062506168250359
1022 => 0.061985667861201
1023 => 0.068514096709612
1024 => 0.067702183383125
1025 => 0.066408505757956
1026 => 0.06814014466795
1027 => 0.068598017480557
1028 => 0.068611052475839
1029 => 0.0698744115245
1030 => 0.070548666475241
1031 => 0.070667506832697
1101 => 0.072655429592445
1102 => 0.073321755080177
1103 => 0.076066255462234
1104 => 0.070491460653428
1105 => 0.070376651422936
1106 => 0.068164512378561
1107 => 0.066761538824085
1108 => 0.068260575178133
1109 => 0.069588516748951
1110 => 0.068205775224789
1111 => 0.068386332076578
1112 => 0.066530114554525
1113 => 0.067193624975507
1114 => 0.067765129534562
1115 => 0.067449578308537
1116 => 0.066977182850325
1117 => 0.06947964068379
1118 => 0.069338442205614
1119 => 0.071668788471394
1120 => 0.073485460030229
1121 => 0.076741260232546
1122 => 0.073343662992725
1123 => 0.07321984104508
1124 => 0.074430220444975
1125 => 0.073321569777398
1126 => 0.074022198729986
1127 => 0.076628378076603
1128 => 0.076683442539433
1129 => 0.075761041840471
1130 => 0.075704913674112
1201 => 0.075882070818305
1202 => 0.07691968574525
1203 => 0.076557111207089
1204 => 0.076976691641913
1205 => 0.077501383400504
1206 => 0.079671730978731
1207 => 0.080194994432164
1208 => 0.078923735521316
1209 => 0.079038515967283
1210 => 0.078563030237789
1211 => 0.078103716980915
1212 => 0.079136186105052
1213 => 0.081023043722642
1214 => 0.081011305679331
1215 => 0.081449019971341
1216 => 0.081721712349043
1217 => 0.080551117040928
1218 => 0.079789102539328
1219 => 0.080081307387484
1220 => 0.080548549303079
1221 => 0.079929787131586
1222 => 0.076110500370608
1223 => 0.077269027996906
1224 => 0.077076192350783
1225 => 0.076801570941089
1226 => 0.07796647942796
1227 => 0.077854121162588
1228 => 0.074488554895257
1229 => 0.074704007528138
1230 => 0.074501657283464
1231 => 0.075155492320972
]
'min_raw' => 0.061985667861201
'max_raw' => 0.13885554787538
'avg_raw' => 0.10042060786829
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.061985'
'max' => '$0.138855'
'avg' => '$0.10042'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.015115526405075
'max_diff' => -0.10090344742669
'year' => 2034
]
9 => [
'items' => [
101 => 0.073286260539669
102 => 0.073861223646129
103 => 0.074221835116557
104 => 0.074434238042987
105 => 0.075201583059302
106 => 0.075111543978301
107 => 0.075195986103607
108 => 0.076333756191228
109 => 0.082088206858872
110 => 0.082401408912233
111 => 0.080859087453218
112 => 0.081475214455149
113 => 0.080292385343605
114 => 0.081086426450451
115 => 0.081629689209297
116 => 0.079174789265491
117 => 0.079029426022988
118 => 0.077841714954945
119 => 0.078479923607518
120 => 0.077464487752449
121 => 0.077713640192845
122 => 0.077016988248779
123 => 0.078270823046079
124 => 0.079672805175689
125 => 0.08002700122758
126 => 0.079095263906042
127 => 0.078420624680766
128 => 0.077236180441158
129 => 0.079205937608687
130 => 0.079781954631735
131 => 0.079202912036483
201 => 0.079068735214833
202 => 0.078814470380258
203 => 0.079122678701475
204 => 0.079778817519322
205 => 0.079469394569807
206 => 0.079673773879292
207 => 0.078894890706563
208 => 0.080551504556684
209 => 0.083182606036509
210 => 0.083191065457995
211 => 0.082881640840576
212 => 0.082755030953774
213 => 0.083072519388702
214 => 0.083244743840594
215 => 0.084271443221731
216 => 0.085373132563198
217 => 0.090514236015111
218 => 0.089070634738272
219 => 0.093632127566421
220 => 0.097239676157775
221 => 0.098321422241341
222 => 0.097326266744546
223 => 0.093921893547256
224 => 0.093754858756777
225 => 0.098842429602819
226 => 0.097404957813305
227 => 0.09723397511794
228 => 0.095415008119076
301 => 0.09649024289885
302 => 0.096255073279771
303 => 0.095883846531163
304 => 0.097935319589468
305 => 0.10177549401835
306 => 0.10117696682068
307 => 0.1007301940325
308 => 0.098772565728288
309 => 0.099951495219535
310 => 0.099531701008609
311 => 0.10133540334674
312 => 0.10026693003853
313 => 0.097394067550707
314 => 0.097851580370971
315 => 0.097782428228576
316 => 0.09920557441889
317 => 0.098778381257218
318 => 0.097699011907555
319 => 0.10176236871963
320 => 0.10149851692984
321 => 0.10187259844285
322 => 0.10203728069374
323 => 0.10451057438087
324 => 0.10552380366792
325 => 0.10575382445516
326 => 0.10671631391189
327 => 0.10572987684067
328 => 0.10967632844327
329 => 0.11230048847716
330 => 0.11534858539457
331 => 0.11980267424212
401 => 0.12147745285142
402 => 0.12117491908601
403 => 0.12455195841641
404 => 0.13062042302577
405 => 0.12240152928761
406 => 0.13105604435092
407 => 0.12831612480306
408 => 0.12181982484412
409 => 0.12140153971311
410 => 0.1258009094689
411 => 0.13555828816358
412 => 0.13311417546784
413 => 0.13556228585637
414 => 0.13270643504911
415 => 0.13256461798553
416 => 0.13542358355704
417 => 0.142103712449
418 => 0.13893023361332
419 => 0.13438027353344
420 => 0.1377398932512
421 => 0.13482947973355
422 => 0.12827150350482
423 => 0.13311230650092
424 => 0.12987539939556
425 => 0.13082010097235
426 => 0.13762359825423
427 => 0.13680498346145
428 => 0.13786434680499
429 => 0.13599459823201
430 => 0.13424795823255
501 => 0.13098772496638
502 => 0.13002253062382
503 => 0.13028927561605
504 => 0.13002239843825
505 => 0.12819832788892
506 => 0.12780442002746
507 => 0.12714788966753
508 => 0.12735137587868
509 => 0.12611690672728
510 => 0.12844660507031
511 => 0.128879017612
512 => 0.13057437778534
513 => 0.13075039570268
514 => 0.13547194965348
515 => 0.13287139707987
516 => 0.13461607226715
517 => 0.13446001209688
518 => 0.12196061936273
519 => 0.12368292539842
520 => 0.12636229310055
521 => 0.12515524158254
522 => 0.12344875314263
523 => 0.12207067223128
524 => 0.11998273873458
525 => 0.12292146503597
526 => 0.12678557762361
527 => 0.13084839597466
528 => 0.13572960601704
529 => 0.13464017675913
530 => 0.13075714514821
531 => 0.13093133510972
601 => 0.13200810891055
602 => 0.13061358900326
603 => 0.13020231785834
604 => 0.13195160657073
605 => 0.1319636529607
606 => 0.13035908927401
607 => 0.12857591036831
608 => 0.12856843878358
609 => 0.12825113932078
610 => 0.13276288191865
611 => 0.13524388415886
612 => 0.13552832706737
613 => 0.1352247388848
614 => 0.13534157792728
615 => 0.13389793738886
616 => 0.13719767156139
617 => 0.14022583394799
618 => 0.13941422174113
619 => 0.13819749966557
620 => 0.13722832192711
621 => 0.13918591426686
622 => 0.1390987457615
623 => 0.14019938559125
624 => 0.14014945421097
625 => 0.13977935043339
626 => 0.1394142349587
627 => 0.14086187654505
628 => 0.14044497901659
629 => 0.14002743393113
630 => 0.13918998333926
701 => 0.13930380678328
702 => 0.13808729479194
703 => 0.13752448068094
704 => 0.12906110683146
705 => 0.12679941679016
706 => 0.1275109905181
707 => 0.12774525906534
708 => 0.12676096866093
709 => 0.12817218825739
710 => 0.12795225117813
711 => 0.12880789769464
712 => 0.12827332689898
713 => 0.1282952658709
714 => 0.12986732459842
715 => 0.13032369993503
716 => 0.13009158375543
717 => 0.13025414997115
718 => 0.13400041979743
719 => 0.1334678200271
720 => 0.13318488701421
721 => 0.13326326139238
722 => 0.13422051365393
723 => 0.13448849202313
724 => 0.13335304884233
725 => 0.13388853041031
726 => 0.13616854296405
727 => 0.13696641832032
728 => 0.13951285345565
729 => 0.13843108255088
730 => 0.14041671986452
731 => 0.146519892013
801 => 0.1513955282326
802 => 0.14691169167087
803 => 0.15586517667963
804 => 0.16283674906009
805 => 0.16256916850036
806 => 0.16135351360046
807 => 0.15341656379414
808 => 0.14611286424912
809 => 0.15222271905
810 => 0.15223829432639
811 => 0.15171345238043
812 => 0.14845370412974
813 => 0.15160002020722
814 => 0.15184976335171
815 => 0.15170997360286
816 => 0.14921073226193
817 => 0.14539485267135
818 => 0.14614046640943
819 => 0.1473617969225
820 => 0.14504956346502
821 => 0.14431066477218
822 => 0.14568441802339
823 => 0.15011093723162
824 => 0.14927412941638
825 => 0.14925227698252
826 => 0.15283249567784
827 => 0.15026983175154
828 => 0.14614987098645
829 => 0.14510952655766
830 => 0.14141700469542
831 => 0.14396744269798
901 => 0.14405922842124
902 => 0.14266237959208
903 => 0.14626321757046
904 => 0.14623003521458
905 => 0.14964849496105
906 => 0.15618330608145
907 => 0.15425064087462
908 => 0.15200316151246
909 => 0.15224752483497
910 => 0.15492758734284
911 => 0.1533071603707
912 => 0.1538898772079
913 => 0.15492670533111
914 => 0.15555224948084
915 => 0.1521575186584
916 => 0.15136604451494
917 => 0.14974696618711
918 => 0.1493245788729
919 => 0.15064328438775
920 => 0.15029585207514
921 => 0.14405151418661
922 => 0.14339894613409
923 => 0.14341895946461
924 => 0.14177804606863
925 => 0.13927525927542
926 => 0.14585243353434
927 => 0.14532419439385
928 => 0.14474105926522
929 => 0.14481248999115
930 => 0.14766741841583
1001 => 0.14601141575217
1002 => 0.150414170247
1003 => 0.14950909628178
1004 => 0.14858081058451
1005 => 0.14845249322487
1006 => 0.14809518242903
1007 => 0.14686983076062
1008 => 0.14539014498879
1009 => 0.14441312827404
1010 => 0.13321347718373
1011 => 0.13529206728072
1012 => 0.13768329571785
1013 => 0.13850873819211
1014 => 0.13709676172102
1015 => 0.1469255841978
1016 => 0.14872140477719
1017 => 0.14328174710372
1018 => 0.14226420925277
1019 => 0.1469922938099
1020 => 0.14414068083712
1021 => 0.14542476198416
1022 => 0.1426492808991
1023 => 0.14828884418738
1024 => 0.14824588016398
1025 => 0.14605196266952
1026 => 0.14790624671254
1027 => 0.14758401922837
1028 => 0.14510709178052
1029 => 0.14836736720549
1030 => 0.14836898426143
1031 => 0.1462573863729
1101 => 0.14379150232731
1102 => 0.14335066050154
1103 => 0.14301854540459
1104 => 0.14534308202933
1105 => 0.14742725429845
1106 => 0.15130538218114
1107 => 0.1522804356729
1108 => 0.15608613436421
1109 => 0.15382002608964
1110 => 0.15482456253674
1111 => 0.15591512895042
1112 => 0.1564379865934
1113 => 0.15558601812226
1114 => 0.16149783467794
1115 => 0.16199697312862
1116 => 0.1621643299336
1117 => 0.16017089865348
1118 => 0.16194153219863
1119 => 0.16111311140007
1120 => 0.16326843217598
1121 => 0.16360641399416
1122 => 0.16332015541821
1123 => 0.16342743618198
1124 => 0.15838274366762
1125 => 0.15812114974788
1126 => 0.15455429809032
1127 => 0.15600781650561
1128 => 0.15329053349718
1129 => 0.15415221193027
1130 => 0.1545320315732
1201 => 0.15433363534631
1202 => 0.15608999625597
1203 => 0.15459673068193
1204 => 0.15065575731645
1205 => 0.14671371023541
1206 => 0.14666422104543
1207 => 0.1456263496319
1208 => 0.14487615869555
1209 => 0.14502067208435
1210 => 0.14552995611564
1211 => 0.14484655818183
1212 => 0.14499239578016
1213 => 0.14741427162332
1214 => 0.14789996155164
1215 => 0.14624939740391
1216 => 0.13962214417552
1217 => 0.13799579961007
1218 => 0.1391647838319
1219 => 0.13860608466609
1220 => 0.1118659280869
1221 => 0.11814813123283
1222 => 0.11441545944698
1223 => 0.11613564633787
1224 => 0.11232555501519
1225 => 0.11414393029837
1226 => 0.11380814278
1227 => 0.12390973953475
1228 => 0.12375201699572
1229 => 0.12382751042866
1230 => 0.12022401217714
1231 => 0.12596448273746
]
'min_raw' => 0.073286260539669
'max_raw' => 0.16360641399416
'avg_raw' => 0.11844633726691
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.073286'
'max' => '$0.1636064'
'avg' => '$0.118446'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.011300592678467
'max_diff' => 0.024750866118779
'year' => 2035
]
10 => [
'items' => [
101 => 0.12879244495611
102 => 0.12826906441322
103 => 0.12840078802007
104 => 0.1261373400331
105 => 0.12384942555283
106 => 0.12131177628669
107 => 0.12602641496025
108 => 0.12550222762131
109 => 0.12670452478017
110 => 0.1297623049693
111 => 0.13021257471753
112 => 0.13081774182533
113 => 0.13060083249591
114 => 0.13576849273001
115 => 0.13514265497834
116 => 0.13665074389405
117 => 0.13354849057545
118 => 0.13003799647686
119 => 0.13070522663831
120 => 0.13064096700823
121 => 0.12982286816363
122 => 0.1290843251064
123 => 0.12785485899932
124 => 0.13174507168886
125 => 0.13158713615803
126 => 0.13414392882224
127 => 0.13369199088348
128 => 0.13067383872048
129 => 0.13078163261543
130 => 0.13150659836296
131 => 0.13401571309266
201 => 0.13476058917799
202 => 0.13441553289709
203 => 0.13523225551977
204 => 0.13587775978028
205 => 0.13531332091653
206 => 0.14330458493092
207 => 0.13998605496316
208 => 0.14160348337926
209 => 0.14198923052606
210 => 0.14100114732093
211 => 0.14121542718751
212 => 0.14154000279763
213 => 0.1435107623438
214 => 0.14868260563683
215 => 0.15097317982538
216 => 0.15786448528659
217 => 0.15078297952535
218 => 0.15036279227967
219 => 0.15160412449072
220 => 0.15565005031521
221 => 0.15892889318148
222 => 0.1600166745212
223 => 0.16016044278256
224 => 0.16220119289021
225 => 0.16337091279418
226 => 0.16195339215009
227 => 0.16075219182481
228 => 0.15644964135815
229 => 0.15694767329012
301 => 0.16037861942691
302 => 0.16522503292683
303 => 0.16938375989315
304 => 0.16792751865582
305 => 0.17903761135061
306 => 0.18013913166063
307 => 0.1799869371702
308 => 0.18249636436465
309 => 0.17751566241963
310 => 0.17538631584158
311 => 0.16101190496934
312 => 0.16505052809984
313 => 0.17092090400004
314 => 0.17014393773687
315 => 0.16588071384255
316 => 0.16938052585554
317 => 0.1682233785548
318 => 0.16731068846863
319 => 0.17149189868707
320 => 0.16689448629724
321 => 0.17087504129462
322 => 0.16576993833691
323 => 0.16793417064312
324 => 0.16670564771398
325 => 0.16750065261124
326 => 0.16285307022647
327 => 0.16536079286761
328 => 0.16274874071997
329 => 0.16274750226715
330 => 0.16268984107122
331 => 0.1657629088393
401 => 0.16586312146889
402 => 0.16359211974513
403 => 0.16326483291702
404 => 0.16447498385851
405 => 0.16305821404506
406 => 0.16372111172373
407 => 0.16307829254044
408 => 0.16293358040244
409 => 0.16178048946611
410 => 0.16128370618584
411 => 0.16147850771056
412 => 0.16081354967961
413 => 0.16041288841339
414 => 0.16261013946087
415 => 0.16143623686305
416 => 0.16243022205162
417 => 0.16129745047832
418 => 0.15737077068017
419 => 0.15511249560436
420 => 0.14769536146907
421 => 0.14979885150891
422 => 0.15119346758155
423 => 0.15073254697786
424 => 0.15172278278717
425 => 0.1517835752235
426 => 0.15146163946764
427 => 0.15108887910487
428 => 0.15090743997521
429 => 0.15225973859737
430 => 0.15304479346381
501 => 0.15133343596199
502 => 0.15093248884375
503 => 0.15266276576473
504 => 0.15371823368698
505 => 0.16151121580866
506 => 0.16093388652209
507 => 0.16238286973624
508 => 0.16221973646279
509 => 0.16373850171235
510 => 0.1662210410173
511 => 0.16117334448143
512 => 0.16204945006384
513 => 0.16183464920727
514 => 0.16417978863555
515 => 0.16418710990486
516 => 0.16278108166921
517 => 0.16354331238596
518 => 0.16311785611057
519 => 0.16388671310406
520 => 0.16092617593749
521 => 0.16453179063613
522 => 0.16657594182958
523 => 0.16660432487089
524 => 0.1675732363132
525 => 0.16855770645415
526 => 0.17044731116043
527 => 0.16850500640448
528 => 0.16501098922807
529 => 0.1652632459826
530 => 0.16321470499049
531 => 0.16324914133466
601 => 0.16306531743062
602 => 0.16361698680427
603 => 0.16104723634194
604 => 0.1616503516391
605 => 0.16080598669124
606 => 0.16204761457935
607 => 0.16071182822018
608 => 0.16183454562379
609 => 0.16231907323652
610 => 0.16410699055861
611 => 0.160447751378
612 => 0.15298631498
613 => 0.15455479937203
614 => 0.15223488775443
615 => 0.15244960440717
616 => 0.15288336621759
617 => 0.15147740227196
618 => 0.15174561588577
619 => 0.1517360334081
620 => 0.15165345679236
621 => 0.1512877112692
622 => 0.15075730790007
623 => 0.15287027167314
624 => 0.15322930539199
625 => 0.15402739287412
626 => 0.15640195987302
627 => 0.15616468463368
628 => 0.15655169039349
629 => 0.15570685899277
630 => 0.15248879371281
701 => 0.15266355014009
702 => 0.15048433469162
703 => 0.15397166543556
704 => 0.15314581948487
705 => 0.15261339122802
706 => 0.15246811324523
707 => 0.15484856633643
708 => 0.15556083521034
709 => 0.15511699704671
710 => 0.15420667202425
711 => 0.15595476518079
712 => 0.15642248116336
713 => 0.15652718552315
714 => 0.15962447143292
715 => 0.15670028939895
716 => 0.1574041690784
717 => 0.16289563740612
718 => 0.15791563340371
719 => 0.16055365259113
720 => 0.16042453527949
721 => 0.16177405663008
722 => 0.16031383513917
723 => 0.16033193633461
724 => 0.16153021986943
725 => 0.15984744675635
726 => 0.15943076846866
727 => 0.15885513039852
728 => 0.16011201506537
729 => 0.16086546057914
730 => 0.16693767807541
731 => 0.17086060750475
801 => 0.17069030279223
802 => 0.17224656906759
803 => 0.17154545685677
804 => 0.16928138058401
805 => 0.17314588270693
806 => 0.1719229925376
807 => 0.17202380611735
808 => 0.17202005383088
809 => 0.17283316888657
810 => 0.17225700234871
811 => 0.17112131896031
812 => 0.17187523859366
813 => 0.17411411037349
814 => 0.18106363707506
815 => 0.18495268428624
816 => 0.18082951154971
817 => 0.18367362089188
818 => 0.18196816874636
819 => 0.18165823735871
820 => 0.18344454820362
821 => 0.1852339857492
822 => 0.1851200063135
823 => 0.18382096654404
824 => 0.18308717194019
825 => 0.18864371051978
826 => 0.19273767349206
827 => 0.19245849266363
828 => 0.19369070604586
829 => 0.19730852264703
830 => 0.19763929045709
831 => 0.19759762131563
901 => 0.19677777878635
902 => 0.20033998906306
903 => 0.20331164754701
904 => 0.19658800892836
905 => 0.19914828249545
906 => 0.20029767178658
907 => 0.20198531627439
908 => 0.20483265540739
909 => 0.20792562092523
910 => 0.2083630001621
911 => 0.20805265866302
912 => 0.20601276476063
913 => 0.209397124537
914 => 0.211379603121
915 => 0.21256012374956
916 => 0.21555372764367
917 => 0.20030477002354
918 => 0.18951079989764
919 => 0.18782516559566
920 => 0.19125296923303
921 => 0.19215685371598
922 => 0.19179249901428
923 => 0.17964290429275
924 => 0.18776120049387
925 => 0.19649580460055
926 => 0.19683133631708
927 => 0.20120406176484
928 => 0.2026280004147
929 => 0.20614861754637
930 => 0.20592840198623
1001 => 0.20678561623254
1002 => 0.20658855752219
1003 => 0.21310975940521
1004 => 0.22030361349004
1005 => 0.22005451319814
1006 => 0.21902031155963
1007 => 0.2205562773504
1008 => 0.2279811057062
1009 => 0.22729754649164
1010 => 0.22796156604315
1011 => 0.23671585711962
1012 => 0.24809768080241
1013 => 0.24280968098534
1014 => 0.25428311900743
1015 => 0.26150504006153
1016 => 0.273994605764
1017 => 0.27243085062564
1018 => 0.27729294690095
1019 => 0.26963140256244
1020 => 0.25203894810763
1021 => 0.24925487484895
1022 => 0.25482866001679
1023 => 0.26853126696995
1024 => 0.2543971161604
1025 => 0.25725643646082
1026 => 0.25643295202194
1027 => 0.25638907203577
1028 => 0.25806379263486
1029 => 0.25563452305834
1030 => 0.24573724178633
1031 => 0.25027310746824
1101 => 0.2485215918983
1102 => 0.25046502900729
1103 => 0.26095295755009
1104 => 0.25631599434033
1105 => 0.25143133027515
1106 => 0.25755778300662
1107 => 0.26535886261134
1108 => 0.26487068506957
1109 => 0.26392341659614
1110 => 0.26926311938349
1111 => 0.27808274400207
1112 => 0.28046665309634
1113 => 0.28222640605287
1114 => 0.2824690462543
1115 => 0.28496839112912
1116 => 0.27152878382121
1117 => 0.29285778577246
1118 => 0.29654071520765
1119 => 0.29584847711562
1120 => 0.29994189818148
1121 => 0.29873750986383
1122 => 0.2969925401543
1123 => 0.30348148323931
1124 => 0.29604243362306
1125 => 0.28548363924308
1126 => 0.27969087581695
1127 => 0.28731925398537
1128 => 0.29197763833912
1129 => 0.29505653406805
1130 => 0.29598820605531
1201 => 0.27257206227886
1202 => 0.25995205950223
1203 => 0.26804133659343
1204 => 0.27791081293677
1205 => 0.2714739583818
1206 => 0.27172627089378
1207 => 0.26254900787401
1208 => 0.27872279707784
1209 => 0.27636641203382
1210 => 0.28859134181056
1211 => 0.28567376420815
1212 => 0.29564271987204
1213 => 0.29301755974965
1214 => 0.30391445264697
1215 => 0.3082615182453
1216 => 0.31556091795164
1217 => 0.32093038608953
1218 => 0.32408344048165
1219 => 0.32389414292276
1220 => 0.33638811526982
1221 => 0.32902085628291
1222 => 0.31976584266571
1223 => 0.31959844866857
1224 => 0.32439175136547
1225 => 0.3344371988398
1226 => 0.33704183721458
1227 => 0.33849747473478
1228 => 0.33626811520149
1229 => 0.3282714835874
1230 => 0.32481857860028
1231 => 0.32776055368959
]
'min_raw' => 0.12131177628669
'max_raw' => 0.33849747473478
'avg_raw' => 0.22990462551074
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.121311'
'max' => '$0.338497'
'avg' => '$0.2299046'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.048025515747026
'max_diff' => 0.17489106074062
'year' => 2036
]
11 => [
'items' => [
101 => 0.32416277096216
102 => 0.33037355330925
103 => 0.33890228402333
104 => 0.33714113485713
105 => 0.34302839247349
106 => 0.34912108474887
107 => 0.3578339083426
108 => 0.36011176306492
109 => 0.36387697030186
110 => 0.36775260535482
111 => 0.36899735488254
112 => 0.37137396795404
113 => 0.37136144203003
114 => 0.37852352548553
115 => 0.3864235253282
116 => 0.38940559238339
117 => 0.39626269114467
118 => 0.38452014981738
119 => 0.39342700230272
120 => 0.40146120619748
121 => 0.3918824971028
122 => 0.40508451603684
123 => 0.40559712051563
124 => 0.41333683955329
125 => 0.40549115155786
126 => 0.4008324070705
127 => 0.41428202784464
128 => 0.42078987567816
129 => 0.41882965894808
130 => 0.40391231284434
131 => 0.3952297775769
201 => 0.37250590804602
202 => 0.39942331310346
203 => 0.41253399591546
204 => 0.40387835934317
205 => 0.40824375896192
206 => 0.43205996379627
207 => 0.44112763261212
208 => 0.43924162088621
209 => 0.43956032582149
210 => 0.44445307532469
211 => 0.46615022110826
212 => 0.45314878841884
213 => 0.46308789655551
214 => 0.46835956367308
215 => 0.47325618188508
216 => 0.46123163514849
217 => 0.44558787651986
218 => 0.44063284148186
219 => 0.40301772687001
220 => 0.4010596968003
221 => 0.39996059518779
222 => 0.39303091499191
223 => 0.38758608455711
224 => 0.38325615324176
225 => 0.37189312044334
226 => 0.37572781044748
227 => 0.35761750781605
228 => 0.36920383764992
301 => 0.34029935736162
302 => 0.36437186744699
303 => 0.35127029465025
304 => 0.36006764841759
305 => 0.36003695527905
306 => 0.34383823778983
307 => 0.33449515560066
308 => 0.3404489312098
309 => 0.34683185127409
310 => 0.3478674585798
311 => 0.35614308105442
312 => 0.35845262940318
313 => 0.35145459008394
314 => 0.33970037625399
315 => 0.34243061204162
316 => 0.33443982745956
317 => 0.32043628484061
318 => 0.33049387362794
319 => 0.3339279766409
320 => 0.33544467216795
321 => 0.32167379631994
322 => 0.31734668814824
323 => 0.31504297206558
324 => 0.33792272910927
325 => 0.33917613384825
326 => 0.33276353799004
327 => 0.36174907933646
328 => 0.3551887586251
329 => 0.36251824417729
330 => 0.34218287176087
331 => 0.34295971037238
401 => 0.33333261918165
402 => 0.338723146966
403 => 0.33491329567284
404 => 0.33828764559125
405 => 0.34031021701939
406 => 0.34993572849918
407 => 0.36448177532641
408 => 0.34849799806662
409 => 0.34153363742263
410 => 0.34585428759711
411 => 0.35736074838039
412 => 0.37479362547194
413 => 0.36447301136439
414 => 0.36905312464993
415 => 0.37005367564776
416 => 0.36244363689476
417 => 0.37507421845561
418 => 0.38184304972473
419 => 0.38878646999457
420 => 0.39481524726466
421 => 0.38601311524971
422 => 0.39543265824177
423 => 0.38784216936335
424 => 0.38103271614908
425 => 0.38104304327879
426 => 0.37677137380724
427 => 0.36849447594114
428 => 0.36696808898423
429 => 0.37490854669548
430 => 0.38127604181576
501 => 0.38180049921211
502 => 0.38532587168441
503 => 0.38741215079929
504 => 0.40786052228405
505 => 0.41608502645303
506 => 0.42614179446895
507 => 0.43005947237954
508 => 0.44185027832516
509 => 0.43232824492164
510 => 0.43026809309839
511 => 0.40166745461755
512 => 0.40635080756655
513 => 0.41384930751424
514 => 0.40179110211982
515 => 0.40943925802629
516 => 0.41094916601232
517 => 0.40138136891465
518 => 0.40649194274463
519 => 0.39291977383175
520 => 0.36477761152026
521 => 0.37510554872712
522 => 0.38271038685745
523 => 0.37185734517569
524 => 0.39131100231953
525 => 0.3799465774211
526 => 0.37634460031689
527 => 0.36229200343583
528 => 0.36892428822964
529 => 0.37789454837842
530 => 0.37235197051115
531 => 0.383853651808
601 => 0.40014309991071
602 => 0.4117519306821
603 => 0.4126431125613
604 => 0.40517941210655
605 => 0.41714003971799
606 => 0.41722715983242
607 => 0.40373552302612
608 => 0.39547197060402
609 => 0.39359447410705
610 => 0.39828482846134
611 => 0.40397978453463
612 => 0.41295914298849
613 => 0.41838518124259
614 => 0.43253341126095
615 => 0.43636151664238
616 => 0.44056744384753
617 => 0.44618785965353
618 => 0.45293660987367
619 => 0.43817072859857
620 => 0.43875740458868
621 => 0.42500762039285
622 => 0.41031400406109
623 => 0.42146462727176
624 => 0.43604258381447
625 => 0.43269838447636
626 => 0.43232209373503
627 => 0.4329549103876
628 => 0.43043349329801
629 => 0.41902921724986
630 => 0.41330206121302
701 => 0.42069155365387
702 => 0.42461874001771
703 => 0.43070946358139
704 => 0.42995865334259
705 => 0.44564770314666
706 => 0.45174399348829
707 => 0.45018430154393
708 => 0.45047132239777
709 => 0.4615083648645
710 => 0.47378382602841
711 => 0.48528141529818
712 => 0.49697725693634
713 => 0.48287746334507
714 => 0.4757184577138
715 => 0.48310472413341
716 => 0.47918546720194
717 => 0.50170668005732
718 => 0.50326599997184
719 => 0.52578558428719
720 => 0.54715935138468
721 => 0.53373487122156
722 => 0.54639355136352
723 => 0.56008494601438
724 => 0.58649786764461
725 => 0.57760292485733
726 => 0.57078953808381
727 => 0.56435092050487
728 => 0.57774866158488
729 => 0.59498464145019
730 => 0.59869710642901
731 => 0.60471271796548
801 => 0.59838803798886
802 => 0.60600541838005
803 => 0.63289811840748
804 => 0.62563147347164
805 => 0.61531166949128
806 => 0.63654087336057
807 => 0.64422363971442
808 => 0.69814531748176
809 => 0.76622366305643
810 => 0.73803878096199
811 => 0.72054351512552
812 => 0.72465531759035
813 => 0.74951522479678
814 => 0.75749943797748
815 => 0.73579559422902
816 => 0.74346175875823
817 => 0.78570307903485
818 => 0.80836419209944
819 => 0.77758735676419
820 => 0.69267528870124
821 => 0.61438248405426
822 => 0.63514926141758
823 => 0.63279495333271
824 => 0.67817798225791
825 => 0.62545816639316
826 => 0.62634583288481
827 => 0.67266733478672
828 => 0.66030955223088
829 => 0.64029152715562
830 => 0.61452863779059
831 => 0.56690355402049
901 => 0.5247206892016
902 => 0.60745100124503
903 => 0.6038835197544
904 => 0.59871727788485
905 => 0.61021419011979
906 => 0.66603993247721
907 => 0.66475296842558
908 => 0.65656595974392
909 => 0.66277573367198
910 => 0.63920292376222
911 => 0.64527817361887
912 => 0.614370082074
913 => 0.6283418302882
914 => 0.64024857746436
915 => 0.64263903324238
916 => 0.64802485216995
917 => 0.60200361911646
918 => 0.62266580164506
919 => 0.63480289809593
920 => 0.57996705477956
921 => 0.63371896978424
922 => 0.601202491837
923 => 0.5901659108406
924 => 0.60502521319327
925 => 0.59923452861529
926 => 0.59425603805555
927 => 0.59147795478188
928 => 0.60238898646834
929 => 0.60187997379866
930 => 0.58402740821963
1001 => 0.56073946418546
1002 => 0.56855566260403
1003 => 0.56571596444132
1004 => 0.55542453197127
1005 => 0.56235971486379
1006 => 0.53182067922089
1007 => 0.47927985567824
1008 => 0.51398993307946
1009 => 0.51265363285681
1010 => 0.51197980968816
1011 => 0.53806347353911
1012 => 0.53555613111235
1013 => 0.53100528005582
1014 => 0.5553409520228
1015 => 0.54645810439387
1016 => 0.5738329477241
1017 => 0.59186379003524
1018 => 0.58729058518849
1019 => 0.60424867953275
1020 => 0.5687357320291
1021 => 0.58053170865766
1022 => 0.58296284309229
1023 => 0.55504065360825
1024 => 0.5359663633422
1025 => 0.53469432564428
1026 => 0.50162213492205
1027 => 0.51928903225647
1028 => 0.53483517080487
1029 => 0.52738977686928
1030 => 0.52503278757408
1031 => 0.53707413471462
1101 => 0.5380098505146
1102 => 0.51667543111226
1103 => 0.5211115324792
1104 => 0.53961081261985
1105 => 0.52064539808392
1106 => 0.4837986956235
1107 => 0.47466020396779
1108 => 0.4734409607251
1109 => 0.44865664657192
1110 => 0.47527088167762
1111 => 0.46365305483683
1112 => 0.50035363062397
1113 => 0.47939045856349
1114 => 0.47848677811452
1115 => 0.47712073257481
1116 => 0.45578784955604
1117 => 0.46045839516171
1118 => 0.47598400009913
1119 => 0.48152371084926
1120 => 0.48094587363251
1121 => 0.47590791616497
1122 => 0.4782142672951
1123 => 0.47078470671897
1124 => 0.46816117424661
1125 => 0.45988058410438
1126 => 0.44771040416672
1127 => 0.4494027423311
1128 => 0.42529043137379
1129 => 0.41215276462704
1130 => 0.4085164316232
1201 => 0.40365377515766
1202 => 0.40906568161002
1203 => 0.4252221242264
1204 => 0.40573402665054
1205 => 0.37232305028783
1206 => 0.37433110689677
1207 => 0.37884261389968
1208 => 0.37043545044636
1209 => 0.36247877579753
1210 => 0.36939645885927
1211 => 0.35523978772527
1212 => 0.38055337997193
1213 => 0.37986871824218
1214 => 0.38930406004969
1215 => 0.39520417291463
1216 => 0.38160632294516
1217 => 0.37818650045034
1218 => 0.38013458676566
1219 => 0.34793705938933
1220 => 0.38667283514947
1221 => 0.38700782374678
1222 => 0.38413944799912
1223 => 0.40476505275849
1224 => 0.44829151208821
1225 => 0.4319151072406
1226 => 0.42557366830415
1227 => 0.41351858825039
1228 => 0.42958126666219
1229 => 0.42834790357698
1230 => 0.42277016796661
1231 => 0.41939673606586
]
'min_raw' => 0.31504297206558
'max_raw' => 0.80836419209944
'avg_raw' => 0.56170358208251
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.315042'
'max' => '$0.808364'
'avg' => '$0.5617035'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.19373119577888
'max_diff' => 0.46986671736466
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0098888389015978
]
1 => [
'year' => 2028
'avg' => 0.016972118305587
]
2 => [
'year' => 2029
'avg' => 0.046364768284156
]
3 => [
'year' => 2030
'avg' => 0.035770349682742
]
4 => [
'year' => 2031
'avg' => 0.035130916359087
]
5 => [
'year' => 2032
'avg' => 0.06159555248375
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0098888389015978
'min' => '$0.009888'
'max_raw' => 0.06159555248375
'max' => '$0.061595'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.06159555248375
]
1 => [
'year' => 2033
'avg' => 0.15843009478418
]
2 => [
'year' => 2034
'avg' => 0.10042060786829
]
3 => [
'year' => 2035
'avg' => 0.11844633726691
]
4 => [
'year' => 2036
'avg' => 0.22990462551074
]
5 => [
'year' => 2037
'avg' => 0.56170358208251
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.06159555248375
'min' => '$0.061595'
'max_raw' => 0.56170358208251
'max' => '$0.5617035'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.56170358208251
]
]
]
]
'prediction_2025_max_price' => '$0.0169081'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutro'
'overall_action_dir' => 0
'last_updated' => 1767687941
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Cloud AI para 2026
A previsão de preço para Cloud AI em 2026 sugere que o preço médio poderia variar entre $0.005664 na extremidade inferior e $0.0169081 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Cloud AI poderia potencialmente ganhar 3.13% até 2026 se CLD atingir a meta de preço prevista.
Previsão de preço de Cloud AI 2027-2032
A previsão de preço de CLD para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.009888 na extremidade inferior e $0.061595 na extremidade superior. Considerando a volatilidade de preços no mercado, se Cloud AI atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Cloud AI | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.005452 | $0.009888 | $0.014324 |
| 2028 | $0.00984 | $0.016972 | $0.0241033 |
| 2029 | $0.021617 | $0.046364 | $0.071111 |
| 2030 | $0.018384 | $0.03577 | $0.053155 |
| 2031 | $0.021736 | $0.03513 | $0.048525 |
| 2032 | $0.033179 | $0.061595 | $0.090011 |
Previsão de preço de Cloud AI 2032-2037
A previsão de preço de Cloud AI para 2032-2037 é atualmente estimada entre $0.061595 na extremidade inferior e $0.5617035 na extremidade superior. Comparado ao preço atual, Cloud AI poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Cloud AI | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.033179 | $0.061595 | $0.090011 |
| 2033 | $0.0771011 | $0.15843 | $0.239758 |
| 2034 | $0.061985 | $0.10042 | $0.138855 |
| 2035 | $0.073286 | $0.118446 | $0.1636064 |
| 2036 | $0.121311 | $0.2299046 | $0.338497 |
| 2037 | $0.315042 | $0.5617035 | $0.808364 |
Cloud AI Histograma de preços potenciais
Previsão de preço de Cloud AI baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Cloud AI é Neutro, com 0 indicadores técnicos mostrando sinais de alta e 0 indicando sinais de baixa. A previsão de preço de CLD foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Cloud AI
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Cloud AI está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Cloud AI é esperado para alcançar — até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em —, sugerindo que o mercado de CLD está em um estado —.
Médias Móveis e Osciladores Populares de CLD para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Osciladores de Cloud AI
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Estocástico Rápido (14) | — | — |
| Índice de Canal de Commodities (20) | — | — |
| Índice Direcional Médio (14) | — | — |
| Oscilador Impressionante (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Williams Percent Range (14) | — | — |
| Oscilador Ultimate (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Média Móvel de Hull (9) | — | — |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | — | — |
Previsão do preço de Cloud AI com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Cloud AI
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Cloud AI por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.023037 | $0.03237 | $0.045486 | $0.063916 | $0.089813 | $0.1262022 |
| Amazon.com stock | $0.0342082 | $0.071377 | $0.148933 | $0.310758 | $0.648415 | $1.35 |
| Apple stock | $0.023254 | $0.032984 | $0.046786 | $0.066362 | $0.09413 | $0.133516 |
| Netflix stock | $0.025868 | $0.040815 | $0.06440077 | $0.101614 | $0.160331 | $0.252977 |
| Google stock | $0.02123 | $0.027493 | $0.0356044 | $0.0461076 | $0.0597091 | $0.077323 |
| Tesla stock | $0.037165 | $0.08425 | $0.190989 | $0.432959 | $0.981487 | $2.22 |
| Kodak stock | $0.012294 | $0.009219 | $0.006913 | $0.005184 | $0.003887 | $0.002915 |
| Nokia stock | $0.01086 | $0.007194 | $0.004766 | $0.003157 | $0.002091 | $0.001385 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Cloud AI
Você pode fazer perguntas como: 'Devo investir em Cloud AI agora?', 'Devo comprar CLD hoje?', 'Cloud AI será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Cloud AI regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Cloud AI, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Cloud AI para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Cloud AI é de $0.01639 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Cloud AI com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Cloud AI tiver 1% da média anterior do crescimento anual do Bitcoin | $0.01682 | $0.017257 | $0.0177065 | $0.018166 |
| Se Cloud AI tiver 2% da média anterior do crescimento anual do Bitcoin | $0.017246 | $0.018143 | $0.019086 | $0.020078 |
| Se Cloud AI tiver 5% da média anterior do crescimento anual do Bitcoin | $0.018525 | $0.020932 | $0.023653 | $0.026727 |
| Se Cloud AI tiver 10% da média anterior do crescimento anual do Bitcoin | $0.020656 | $0.026025 | $0.032789 | $0.041313 |
| Se Cloud AI tiver 20% da média anterior do crescimento anual do Bitcoin | $0.024917 | $0.037871 | $0.057559 | $0.087481 |
| Se Cloud AI tiver 50% da média anterior do crescimento anual do Bitcoin | $0.0377019 | $0.0867015 | $0.199384 | $0.458516 |
| Se Cloud AI tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0590092 | $0.212393 | $0.764471 | $2.75 |
Perguntas Frequentes sobre Cloud AI
CLD é um bom investimento?
A decisão de adquirir Cloud AI depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Cloud AI experimentou uma queda de 0% nas últimas 24 horas, e Cloud AI registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Cloud AI dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Cloud AI pode subir?
Parece que o valor médio de Cloud AI pode potencialmente subir para $0.0169081 até o final deste ano. Observando as perspectivas de Cloud AI em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.053155. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Cloud AI na próxima semana?
Com base na nossa nova previsão experimental de Cloud AI, o preço de Cloud AI aumentará 0.86% na próxima semana e atingirá $0.016534 até 13 de janeiro de 2026.
Qual será o preço de Cloud AI no próximo mês?
Com base na nossa nova previsão experimental de Cloud AI, o preço de Cloud AI diminuirá -11.62% no próximo mês e atingirá $0.014489 até 5 de fevereiro de 2026.
Até onde o preço de Cloud AI pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Cloud AI em 2026, espera-se que CLD fluctue dentro do intervalo de $0.005664 e $0.0169081. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Cloud AI não considera flutuações repentinas e extremas de preço.
Onde estará Cloud AI em 5 anos?
O futuro de Cloud AI parece seguir uma tendência de alta, com um preço máximo de $0.053155 projetada após um período de cinco anos. Com base na previsão de Cloud AI para 2030, o valor de Cloud AI pode potencialmente atingir seu pico mais alto de aproximadamente $0.053155, enquanto seu pico mais baixo está previsto para cerca de $0.018384.
Quanto será Cloud AI em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Cloud AI, espera-se que o valor de CLD em 2026 aumente 3.13% para $0.0169081 se o melhor cenário ocorrer. O preço ficará entre $0.0169081 e $0.005664 durante 2026.
Quanto será Cloud AI em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Cloud AI, o valor de CLD pode diminuir -12.62% para $0.014324 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.014324 e $0.005452 ao longo do ano.
Quanto será Cloud AI em 2028?
Nosso novo modelo experimental de previsão de preços de Cloud AI sugere que o valor de CLD em 2028 pode aumentar 47.02%, alcançando $0.0241033 no melhor cenário. O preço é esperado para variar entre $0.0241033 e $0.00984 durante o ano.
Quanto será Cloud AI em 2029?
Com base no nosso modelo de previsão experimental, o valor de Cloud AI pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.071111 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.071111 e $0.021617.
Quanto será Cloud AI em 2030?
Usando nossa nova simulação experimental para previsões de preços de Cloud AI, espera-se que o valor de CLD em 2030 aumente 224.23%, alcançando $0.053155 no melhor cenário. O preço está previsto para variar entre $0.053155 e $0.018384 ao longo de 2030.
Quanto será Cloud AI em 2031?
Nossa simulação experimental indica que o preço de Cloud AI poderia aumentar 195.98% em 2031, potencialmente atingindo $0.048525 sob condições ideais. O preço provavelmente oscilará entre $0.048525 e $0.021736 durante o ano.
Quanto será Cloud AI em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Cloud AI, CLD poderia ver um 449.04% aumento em valor, atingindo $0.090011 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.090011 e $0.033179 ao longo do ano.
Quanto será Cloud AI em 2033?
De acordo com nossa previsão experimental de preços de Cloud AI, espera-se que o valor de CLD seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.239758. Ao longo do ano, o preço de CLD poderia variar entre $0.239758 e $0.0771011.
Quanto será Cloud AI em 2034?
Os resultados da nossa nova simulação de previsão de preços de Cloud AI sugerem que CLD pode aumentar 746.96% em 2034, atingindo potencialmente $0.138855 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.138855 e $0.061985.
Quanto será Cloud AI em 2035?
Com base em nossa previsão experimental para o preço de Cloud AI, CLD poderia aumentar 897.93%, com o valor potencialmente atingindo $0.1636064 em 2035. A faixa de preço esperada para o ano está entre $0.1636064 e $0.073286.
Quanto será Cloud AI em 2036?
Nossa recente simulação de previsão de preços de Cloud AI sugere que o valor de CLD pode aumentar 1964.7% em 2036, possivelmente atingindo $0.338497 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.338497 e $0.121311.
Quanto será Cloud AI em 2037?
De acordo com a simulação experimental, o valor de Cloud AI poderia aumentar 4830.69% em 2037, com um pico de $0.808364 sob condições favoráveis. O preço é esperado para cair entre $0.808364 e $0.315042 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de Cloud AI?
Traders de Cloud AI utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Cloud AI
Médias móveis são ferramentas populares para a previsão de preço de Cloud AI. Uma média móvel simples (SMA) calcula o preço médio de fechamento de CLD em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de CLD acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de CLD.
Como ler gráficos de Cloud AI e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Cloud AI em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de CLD dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Cloud AI?
A ação de preço de Cloud AI é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de CLD. A capitalização de mercado de Cloud AI pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de CLD, grandes detentores de Cloud AI, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Cloud AI.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


