Previsão de Preço Clams - Projeção CLAM
Previsão de Preço Clams até $0.093232 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.031233 | $0.093232 |
| 2027 | $0.030067 | $0.078988 |
| 2028 | $0.054263 | $0.132908 |
| 2029 | $0.1192011 | $0.392117 |
| 2030 | $0.101375 | $0.2931062 |
| 2031 | $0.119857 | $0.267572 |
| 2032 | $0.182952 | $0.496333 |
| 2033 | $0.425142 | $1.32 |
| 2034 | $0.341794 | $0.765661 |
| 2035 | $0.4041069 | $0.90214 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Clams hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.49, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Clams para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Clams'
'name_with_ticker' => 'Clams <small>CLAM</small>'
'name_lang' => 'Clams'
'name_lang_with_ticker' => 'Clams <small>CLAM</small>'
'name_with_lang' => 'Clams'
'name_with_lang_with_ticker' => 'Clams <small>CLAM</small>'
'image' => '/uploads/coins/clams.png?1717140039'
'price_for_sd' => 0.0904
'ticker' => 'CLAM'
'marketcap' => '$0'
'low24h' => '$0.08879'
'high24h' => '$0.09045'
'volume24h' => '$0'
'current_supply' => '0'
'max_supply' => '17.42M'
'algo' => 'Proof of Stake'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0904'
'change_24h_pct' => '1.6051%'
'ath_price' => '$20.54'
'ath_days' => 2417
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26 de mai. de 2019'
'ath_pct' => '-99.56%'
'fdv' => '$1.57M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$4.45'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.091174'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.079898'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.031233'
'current_year_max_price_prediction' => '$0.093232'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.101375'
'grand_prediction_max_price' => '$0.2931062'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.092114051399074
107 => 0.092457971829597
108 => 0.093232842120579
109 => 0.086611660323148
110 => 0.08958437656251
111 => 0.091330568847292
112 => 0.083441208577629
113 => 0.091174621560988
114 => 0.086496400278855
115 => 0.084908541711173
116 => 0.087046384088098
117 => 0.08621326483469
118 => 0.085496997823015
119 => 0.08509730852347
120 => 0.086667104020031
121 => 0.086593871183805
122 => 0.084025381067256
123 => 0.080674890415269
124 => 0.081799425054182
125 => 0.081390871077296
126 => 0.079910218760551
127 => 0.080907999647395
128 => 0.076514277587084
129 => 0.068955107148119
130 => 0.073948926683752
131 => 0.07375667006386
201 => 0.073659725557967
202 => 0.077412442919961
203 => 0.077051705735525
204 => 0.076396964213426
205 => 0.079898193919043
206 => 0.078620197978308
207 => 0.08255868033394
208 => 0.085152819538427
209 => 0.084494861924557
210 => 0.08693466238494
211 => 0.081825332061022
212 => 0.083522446643875
213 => 0.083872219607301
214 => 0.079854989287957
215 => 0.077110726800211
216 => 0.076927715779161
217 => 0.072169542808075
218 => 0.074711320402599
219 => 0.076947979499877
220 => 0.075876793364038
221 => 0.075537687834207
222 => 0.077270104443097
223 => 0.077404728050753
224 => 0.074335295529435
225 => 0.074973527746903
226 => 0.077635062191025
227 => 0.074906463907705
228 => 0.069605243157215
301 => 0.068290467115982
302 => 0.068115051755951
303 => 0.064549274855925
304 => 0.068378326737904
305 => 0.066706842979209
306 => 0.071987040145474
307 => 0.068971019842369
308 => 0.068841005235145
309 => 0.068644469087331
310 => 0.06557525760909
311 => 0.06624721986426
312 => 0.068480924743185
313 => 0.069277935808472
314 => 0.069194801024644
315 => 0.068469978370685
316 => 0.068801798469975
317 => 0.067732890316376
318 => 0.067355436599941
319 => 0.066164088844048
320 => 0.064413136761103
321 => 0.06465661738745
322 => 0.061187523149601
323 => 0.059297376490054
324 => 0.058774208806424
325 => 0.058074607115191
326 => 0.058853230679018
327 => 0.061177695641493
328 => 0.058373897733996
329 => 0.053566982885148
330 => 0.053855886658148
331 => 0.054504967659779
401 => 0.05329540950734
402 => 0.052150664226577
403 => 0.05314592737208
404 => 0.051109174182184
405 => 0.054751099552075
406 => 0.054652595677197
407 => 0.056010080239938
408 => 0.056858943195408
409 => 0.054902588905696
410 => 0.054410571092378
411 => 0.054690846799806
412 => 0.050058513677862
413 => 0.055631519796022
414 => 0.055679715384356
415 => 0.05526703549665
416 => 0.058234489207311
417 => 0.064496742108826
418 => 0.062140630668737
419 => 0.061228273105289
420 => 0.059493880710245
421 => 0.061804855598611
422 => 0.061627408784008
423 => 0.060824926993671
424 => 0.060339583502979
425 => 0.061233843766022
426 => 0.060228774760048
427 => 0.060048236749126
428 => 0.05895437283023
429 => 0.058563913178821
430 => 0.058274832397564
501 => 0.057956582861892
502 => 0.058658562034742
503 => 0.057067784876013
504 => 0.055149463568393
505 => 0.054989975908189
506 => 0.055430335360311
507 => 0.055235509083653
508 => 0.054989043154931
509 => 0.054518472576
510 => 0.05437886433738
511 => 0.054832523384605
512 => 0.054320368770254
513 => 0.055076080802234
514 => 0.054870568944989
515 => 0.053722596416401
516 => 0.052291797611915
517 => 0.052279060501353
518 => 0.051970797245906
519 => 0.051578177642405
520 => 0.05146895985063
521 => 0.05306210908598
522 => 0.05635988032421
523 => 0.055712448921168
524 => 0.056180284461305
525 => 0.058481572284926
526 => 0.059213082481916
527 => 0.058693873870861
528 => 0.057983149100657
529 => 0.058014417383556
530 => 0.060443179074363
531 => 0.060594657961839
601 => 0.06097739624155
602 => 0.061469323092803
603 => 0.058777651140781
604 => 0.057887639876674
605 => 0.057465903163795
606 => 0.056167117320777
607 => 0.05756774650299
608 => 0.056751659859436
609 => 0.056861777829141
610 => 0.05679006335691
611 => 0.056829224308059
612 => 0.054750081559711
613 => 0.055507611900683
614 => 0.054248070783391
615 => 0.052561686617462
616 => 0.052556033266415
617 => 0.052968773401928
618 => 0.052723259418802
619 => 0.052062587602952
620 => 0.05215643291611
621 => 0.051334249224163
622 => 0.052256260902429
623 => 0.052282700898245
624 => 0.051927676179797
625 => 0.053348162383259
626 => 0.053930136739823
627 => 0.053696451864775
628 => 0.053913740786034
629 => 0.055739352618942
630 => 0.056037007004735
701 => 0.056169205420959
702 => 0.055992077056152
703 => 0.053947109619017
704 => 0.054037812620727
705 => 0.053372294176566
706 => 0.052810001221856
707 => 0.052832489991207
708 => 0.053121581662895
709 => 0.05438406194816
710 => 0.057040877281223
711 => 0.057141701481006
712 => 0.057263903352392
713 => 0.056766846927724
714 => 0.056616929953855
715 => 0.056814709139243
716 => 0.057812469289627
717 => 0.060378979285655
718 => 0.05947180324162
719 => 0.058734254996783
720 => 0.059381283649084
721 => 0.05928167865964
722 => 0.058440912309818
723 => 0.058417314798638
724 => 0.056803615364067
725 => 0.056207067425265
726 => 0.055708547316762
727 => 0.055164176372475
728 => 0.054841455029221
729 => 0.055337301686686
730 => 0.055450707683933
731 => 0.054366530301471
801 => 0.054218760930414
802 => 0.055104123584527
803 => 0.054714508490099
804 => 0.055115237276708
805 => 0.055208209792589
806 => 0.055193239076193
807 => 0.054786436170602
808 => 0.055045720211589
809 => 0.054432436158362
810 => 0.053765581862764
811 => 0.053340170368663
812 => 0.052968942417414
813 => 0.053174921260662
814 => 0.052440644294733
815 => 0.052205734315257
816 => 0.054957880612578
817 => 0.056990920672967
818 => 0.056961359465317
819 => 0.056781413216271
820 => 0.056514049590953
821 => 0.05779290997513
822 => 0.057347380588903
823 => 0.057671540442609
824 => 0.057754052730324
825 => 0.058003792574124
826 => 0.058093053102418
827 => 0.057823245790491
828 => 0.056917739497478
829 => 0.054661303908244
830 => 0.053610927050324
831 => 0.0532642851918
901 => 0.053276884964991
902 => 0.052929326972526
903 => 0.053031698377764
904 => 0.052893726375534
905 => 0.052632440782322
906 => 0.053158787611565
907 => 0.053219444180375
908 => 0.053096588541054
909 => 0.053125525491553
910 => 0.0521083332703
911 => 0.052185668185657
912 => 0.051755057549706
913 => 0.051674323246554
914 => 0.050585777056429
915 => 0.048657259693328
916 => 0.049725845518196
917 => 0.04843514410766
918 => 0.047946335926172
919 => 0.050260277832066
920 => 0.050028022243472
921 => 0.049630501634877
922 => 0.049042485804211
923 => 0.048824385012767
924 => 0.047499273646272
925 => 0.047420978997545
926 => 0.048077739971797
927 => 0.047774667379945
928 => 0.047349038678419
929 => 0.04580745466678
930 => 0.044074203836773
1001 => 0.044126519784504
1002 => 0.044677834625252
1003 => 0.04628085687966
1004 => 0.045654528352296
1005 => 0.045200119819402
1006 => 0.045115022760661
1007 => 0.046180190613561
1008 => 0.047687626284979
1009 => 0.048394881375037
1010 => 0.047694013060446
1011 => 0.046888893278075
1012 => 0.046937897188662
1013 => 0.047263898251659
1014 => 0.047298156353974
1015 => 0.046774106143301
1016 => 0.046921623207963
1017 => 0.046697531297498
1018 => 0.04532227965661
1019 => 0.045297405715397
1020 => 0.044959896783794
1021 => 0.04494967714748
1022 => 0.044375490259276
1023 => 0.04429515754445
1024 => 0.043155074627268
1025 => 0.043905480655846
1026 => 0.043402147689961
1027 => 0.042643506186128
1028 => 0.042512716104917
1029 => 0.042508784397143
1030 => 0.043287739592443
1031 => 0.043896378110859
1101 => 0.043410903382398
1102 => 0.043300370197259
1103 => 0.044480575436144
1104 => 0.044330383561687
1105 => 0.04420031836704
1106 => 0.047552651954303
1107 => 0.044899018334132
1108 => 0.043741882611626
1109 => 0.042309707420911
1110 => 0.042776030884662
1111 => 0.042874292090191
1112 => 0.039430168925503
1113 => 0.038032888586527
1114 => 0.037553394629589
1115 => 0.037277439078322
1116 => 0.037403195488266
1117 => 0.036145479298551
1118 => 0.036990685378745
1119 => 0.035901609470555
1120 => 0.035719022350387
1121 => 0.037666424984848
1122 => 0.037937394684872
1123 => 0.036781353760882
1124 => 0.037523719180109
1125 => 0.037254527159446
1126 => 0.035920278551163
1127 => 0.035869320068395
1128 => 0.035199841017865
1129 => 0.034152235940474
1130 => 0.03367345230911
1201 => 0.033424097636905
1202 => 0.033526986234483
1203 => 0.033474962611105
1204 => 0.033135473278427
1205 => 0.033494421742262
1206 => 0.032577456744911
1207 => 0.032212313894477
1208 => 0.032047387340185
1209 => 0.0312335281265
1210 => 0.032528740060308
1211 => 0.032783913127918
1212 => 0.033039588965298
1213 => 0.035265072572386
1214 => 0.035153893700527
1215 => 0.036158896555823
1216 => 0.036119843992948
1217 => 0.035833200898651
1218 => 0.034623900834311
1219 => 0.035105906286256
1220 => 0.033622368425448
1221 => 0.034733935861534
1222 => 0.03422666290387
1223 => 0.034562426364277
1224 => 0.033958693387895
1225 => 0.034292824144549
1226 => 0.032844424128545
1227 => 0.03149192857314
1228 => 0.032036212266441
1229 => 0.032627910887451
1230 => 0.033910864259804
1231 => 0.033146747815366
]
'min_raw' => 0.0312335281265
'max_raw' => 0.093232842120579
'avg_raw' => 0.06223318512354
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.031233'
'max' => '$0.093232'
'avg' => '$0.062233'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0591674718735
'max_diff' => 0.0028318421205794
'year' => 2026
]
1 => [
'items' => [
101 => 0.033421552983228
102 => 0.032501001672721
103 => 0.030601641376663
104 => 0.030612391549668
105 => 0.030320216347933
106 => 0.030067734315356
107 => 0.033234515780876
108 => 0.032840676446232
109 => 0.032213145010895
110 => 0.033053120774202
111 => 0.033275223698228
112 => 0.033281546656235
113 => 0.033894371290232
114 => 0.03422143590725
115 => 0.034279082463579
116 => 0.035243375266125
117 => 0.035566593494209
118 => 0.03689788363213
119 => 0.03419368675957
120 => 0.034137995604525
121 => 0.033064940955767
122 => 0.032384392733201
123 => 0.0331115386748
124 => 0.033755690713737
125 => 0.033084956555183
126 => 0.03317254027632
127 => 0.032272134469455
128 => 0.032593987177378
129 => 0.032871210087683
130 => 0.032718143891022
131 => 0.032488996386133
201 => 0.033702877592358
202 => 0.033634385657464
203 => 0.034764779743708
204 => 0.035646002769193
205 => 0.037225311968319
206 => 0.03557722048778
207 => 0.035517157483659
208 => 0.036104282983352
209 => 0.035566503608354
210 => 0.03590636160984
211 => 0.037170555590095
212 => 0.037197266016807
213 => 0.03674983195494
214 => 0.036722605551612
215 => 0.036808540157586
216 => 0.037311861828894
217 => 0.037135985771426
218 => 0.037339513997765
219 => 0.037594029161336
220 => 0.03864681179006
221 => 0.038900634117666
222 => 0.038283977453371
223 => 0.038339654645745
224 => 0.038109008125694
225 => 0.037886206477318
226 => 0.0383870320453
227 => 0.039302300614539
228 => 0.039296606776272
301 => 0.039508931294057
302 => 0.039641207709645
303 => 0.039073380501685
304 => 0.038703745868888
305 => 0.038845487307565
306 => 0.039072134954737
307 => 0.038771988530268
308 => 0.036919345757097
309 => 0.037481319227198
310 => 0.037387779362675
311 => 0.037254567220757
312 => 0.037819635890556
313 => 0.03776513363886
314 => 0.036132579601152
315 => 0.036237090413837
316 => 0.036138935249822
317 => 0.036456094665413
318 => 0.035549375959083
319 => 0.035828276526307
320 => 0.036003200347539
321 => 0.036106231822072
322 => 0.036478452157432
323 => 0.036434776397228
324 => 0.036475737210854
325 => 0.037027641705667
326 => 0.039818985249677
327 => 0.039970911920025
328 => 0.039222769430662
329 => 0.039521637598705
330 => 0.038947876071347
331 => 0.03933304602853
401 => 0.039596569530979
402 => 0.038405757496068
403 => 0.038335245335667
404 => 0.037759115690387
405 => 0.038068695128109
406 => 0.037576131983143
407 => 0.037696989749791
408 => 0.037359060898054
409 => 0.037967265550216
410 => 0.038647332856781
411 => 0.038819144715091
412 => 0.038367181685533
413 => 0.038039930666318
414 => 0.037465385679764
415 => 0.038420866796974
416 => 0.038700278593406
417 => 0.038419399165757
418 => 0.038354313265034
419 => 0.038230975600771
420 => 0.038380479933562
421 => 0.038698756856756
422 => 0.038548663337429
423 => 0.038647802751252
424 => 0.03826998553788
425 => 0.039073568476118
426 => 0.040349851574806
427 => 0.040353955033662
428 => 0.040203860705275
429 => 0.040142445339927
430 => 0.040296451229337
501 => 0.040379993106689
502 => 0.040878019913191
503 => 0.04141242251883
504 => 0.043906246301224
505 => 0.043205990562325
506 => 0.045418659380306
507 => 0.047168593136242
508 => 0.047693321754318
509 => 0.047210596116078
510 => 0.045559217783982
511 => 0.045478193284693
512 => 0.047946049706792
513 => 0.047248767232564
514 => 0.047165827700989
515 => 0.046283491213582
516 => 0.04680506135714
517 => 0.046690986315771
518 => 0.046510913282229
519 => 0.047506032783246
520 => 0.049368807654219
521 => 0.049078476721585
522 => 0.048861758148439
523 => 0.04791216044674
524 => 0.048484030363488
525 => 0.048280398439581
526 => 0.049155330412698
527 => 0.04863704009394
528 => 0.047243484632026
529 => 0.047465412932554
530 => 0.047431868916387
531 => 0.048122202392152
601 => 0.047914981417858
602 => 0.047391405695378
603 => 0.049362440892219
604 => 0.04923445283001
605 => 0.049415910640078
606 => 0.049495793979839
607 => 0.05069552837062
608 => 0.051187021163305
609 => 0.051298598632037
610 => 0.05176547877167
611 => 0.051286982228844
612 => 0.0532013095624
613 => 0.054474225535118
614 => 0.055952782941086
615 => 0.058113352709971
616 => 0.05892574692946
617 => 0.058778995185168
618 => 0.060417114525695
619 => 0.063360778567274
620 => 0.059373993850547
621 => 0.06357208783793
622 => 0.062243019750851
623 => 0.059091823225299
624 => 0.05888892331922
625 => 0.061022950192467
626 => 0.065756016404856
627 => 0.064570437000645
628 => 0.065757955588039
629 => 0.064372652077081
630 => 0.064303860081507
701 => 0.065690674488567
702 => 0.068931041941982
703 => 0.067391664828222
704 => 0.065184590264894
705 => 0.066814259776572
706 => 0.065402489226763
707 => 0.062221375048347
708 => 0.064569530410419
709 => 0.062999385791416
710 => 0.06345763746472
711 => 0.066757847912478
712 => 0.06636075786013
713 => 0.066874629157417
714 => 0.065967659768059
715 => 0.065120407342453
716 => 0.063538947772268
717 => 0.06307075555855
718 => 0.063200147042631
719 => 0.063070691438557
720 => 0.062185879343402
721 => 0.061994804255697
722 => 0.061676337404997
723 => 0.061775043598617
724 => 0.061176232748538
725 => 0.062306312543272
726 => 0.062516065311404
727 => 0.063338443145177
728 => 0.063423825140013
729 => 0.065714135701257
730 => 0.064452671131229
731 => 0.065298970474415
801 => 0.065223269495482
802 => 0.059160119209271
803 => 0.059995567823083
804 => 0.061295263687957
805 => 0.060709752462527
806 => 0.059881976578296
807 => 0.059213503169245
808 => 0.058200697599616
809 => 0.05962620198966
810 => 0.061500588677077
811 => 0.063471362679615
812 => 0.065839118513437
813 => 0.065310662975045
814 => 0.063427099131278
815 => 0.063511594429366
816 => 0.064033911114466
817 => 0.063357463549786
818 => 0.063157965957137
819 => 0.06400650320873
820 => 0.064012346618434
821 => 0.06323401194385
822 => 0.062369035386793
823 => 0.062365411103436
824 => 0.06221149687979
825 => 0.064400033075545
826 => 0.065603506697243
827 => 0.065741483008476
828 => 0.065594219792159
829 => 0.065650895559452
830 => 0.064950620775717
831 => 0.066551241271298
901 => 0.068020128923003
902 => 0.067626435654139
903 => 0.067036233477315
904 => 0.066566109015486
905 => 0.067515689271702
906 => 0.067473405957671
907 => 0.068007299470795
908 => 0.067983078977122
909 => 0.067803550669409
910 => 0.06762644206566
911 => 0.068328657660074
912 => 0.06812643084612
913 => 0.067923889918068
914 => 0.067517663079394
915 => 0.067572876053483
916 => 0.066982775783386
917 => 0.066709768397288
918 => 0.062604392346687
919 => 0.061507301718934
920 => 0.061852468763764
921 => 0.06196610671718
922 => 0.061488651470022
923 => 0.062173199646257
924 => 0.062066513538107
925 => 0.062481566775634
926 => 0.062222259532344
927 => 0.062232901592058
928 => 0.062995468904441
929 => 0.063216845439419
930 => 0.063104251547002
1001 => 0.063183108449758
1002 => 0.065000332490363
1003 => 0.064741981343342
1004 => 0.064604737445617
1005 => 0.064642754943228
1006 => 0.065107094647326
1007 => 0.065237084412465
1008 => 0.064686308643351
1009 => 0.064946057680062
1010 => 0.066052036111316
1011 => 0.066439065969298
1012 => 0.067674279491102
1013 => 0.06714953883287
1014 => 0.068112723021299
1015 => 0.071073222842843
1016 => 0.073438274951298
1017 => 0.071263275292451
1018 => 0.075606392302058
1019 => 0.07898813187717
1020 => 0.078858335079695
1021 => 0.078268650563729
1022 => 0.074418629965662
1023 => 0.070875783610748
1024 => 0.073839525023836
1025 => 0.073847080210197
1026 => 0.0735924921944
1027 => 0.072011267893385
1028 => 0.073537469016227
1029 => 0.07365861331901
1030 => 0.073590804724322
1031 => 0.07237848376011
1101 => 0.070527493722125
1102 => 0.070889172744903
1103 => 0.071481610362266
1104 => 0.070360002357164
1105 => 0.070001580638908
1106 => 0.070667954805667
1107 => 0.072815151215537
1108 => 0.072409236172113
1109 => 0.072398636089898
1110 => 0.074135312780433
1111 => 0.072892227068297
1112 => 0.070893734675637
1113 => 0.070389088989614
1114 => 0.0685979367743
1115 => 0.069835091989283
1116 => 0.069879615003005
1117 => 0.069202037735179
1118 => 0.070948716336579
1119 => 0.070932620385771
1120 => 0.072590831758999
1121 => 0.075760709108863
1122 => 0.074823220396317
1123 => 0.073733023022109
1124 => 0.073851557704579
1125 => 0.075151590602758
1126 => 0.074365561035655
1127 => 0.074648222748378
1128 => 0.075151162760402
1129 => 0.075454598956954
1130 => 0.073807897905513
1201 => 0.073423973119606
1202 => 0.072638597746929
1203 => 0.072433707971923
1204 => 0.073073379825574
1205 => 0.072904848892077
1206 => 0.069875873016103
1207 => 0.069559328184001
1208 => 0.06956903616208
1209 => 0.068773069130873
1210 => 0.067559028354307
1211 => 0.070749455028515
1212 => 0.070493219116584
1213 => 0.070210354500896
1214 => 0.070245003802314
1215 => 0.071629859887996
1216 => 0.070826573421392
1217 => 0.072962242148921
1218 => 0.072523212862619
1219 => 0.072072924131733
1220 => 0.072010680512994
1221 => 0.071837357768433
1222 => 0.071242969586777
1223 => 0.070525210140236
1224 => 0.070051283182371
1225 => 0.064618605838918
1226 => 0.065626879153433
1227 => 0.066786805694777
1228 => 0.067187207688735
1229 => 0.066502292371095
1230 => 0.071270014218125
1231 => 0.072141122942489
]
'min_raw' => 0.030067734315356
'max_raw' => 0.07898813187717
'avg_raw' => 0.054527933096263
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.030067'
'max' => '$0.078988'
'avg' => '$0.054527'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0011657938111442
'max_diff' => -0.014244710243409
'year' => 2027
]
2 => [
'items' => [
101 => 0.069502477795376
102 => 0.069008895023523
103 => 0.071302373422476
104 => 0.069919125581576
105 => 0.070542001999635
106 => 0.069195683878975
107 => 0.071931298359831
108 => 0.071910457560894
109 => 0.070846241741186
110 => 0.071745709664568
111 => 0.071589404978062
112 => 0.070387907938659
113 => 0.071969387959051
114 => 0.071970172353411
115 => 0.070945887764989
116 => 0.06974974761044
117 => 0.069535906002377
118 => 0.069374805076278
119 => 0.070502381047482
120 => 0.071513362137424
121 => 0.073394547302339
122 => 0.073867521948656
123 => 0.075713573480936
124 => 0.074614339676081
125 => 0.075101615784312
126 => 0.075630622929211
127 => 0.075884248408069
128 => 0.075470979300564
129 => 0.078338657195319
130 => 0.078580777073017
131 => 0.07866195777368
201 => 0.077694992922376
202 => 0.078553884031276
203 => 0.078152037324905
204 => 0.07919753081865
205 => 0.079361477548
206 => 0.079222620500815
207 => 0.079274659780434
208 => 0.076827602590306
209 => 0.076700709765743
210 => 0.074970517098921
211 => 0.075675583399589
212 => 0.074357495745196
213 => 0.074775474918212
214 => 0.074959716155025
215 => 0.074863478988512
216 => 0.075715446790356
217 => 0.074991100113266
218 => 0.073079430138804
219 => 0.071167239331137
220 => 0.071143233333184
221 => 0.070639787246496
222 => 0.070275887936571
223 => 0.070345987853684
224 => 0.070593029104867
225 => 0.070261529449956
226 => 0.07033227170879
227 => 0.071507064558645
228 => 0.071742660886445
229 => 0.070942012511156
301 => 0.06772729375136
302 => 0.066938393704195
303 => 0.06750543941353
304 => 0.067234428086889
305 => 0.054263430898081
306 => 0.057310774286071
307 => 0.055500146322931
308 => 0.056334566991333
309 => 0.054486384700805
310 => 0.055368434161378
311 => 0.055205551833299
312 => 0.06010558982374
313 => 0.060029082470301
314 => 0.060065702491713
315 => 0.058317733456754
316 => 0.061102295591975
317 => 0.0624740710294
318 => 0.062220191904554
319 => 0.062284087810667
320 => 0.061186144446384
321 => 0.060076332983464
322 => 0.058845381272327
323 => 0.06113233740139
324 => 0.060878066919481
325 => 0.061461271921348
326 => 0.062944526446046
327 => 0.063162941309144
328 => 0.063456493100092
329 => 0.063351275679476
330 => 0.065857981508616
331 => 0.06555440289293
401 => 0.066285940011205
402 => 0.064781112657058
403 => 0.063078257666316
404 => 0.063401914729532
405 => 0.063370743951658
406 => 0.062973904173176
407 => 0.062615654965067
408 => 0.062019270969655
409 => 0.063906318179363
410 => 0.063829707508802
411 => 0.065069945215027
412 => 0.064850721153425
413 => 0.063386689216822
414 => 0.063438977403851
415 => 0.063790640590463
416 => 0.065007750894547
417 => 0.065369072099988
418 => 0.065201693721467
419 => 0.065597865928293
420 => 0.065910984287327
421 => 0.065637188773333
422 => 0.069513555867845
423 => 0.067903817990833
424 => 0.068688393031604
425 => 0.068875509555844
426 => 0.068396214513641
427 => 0.068500156446026
428 => 0.068657600151108
429 => 0.069613567497729
430 => 0.072122302426643
501 => 0.073233404049122
502 => 0.076576208101141
503 => 0.073141142526657
504 => 0.072937319951181
505 => 0.073539459903961
506 => 0.075502039754241
507 => 0.077092526387141
508 => 0.077620182560649
509 => 0.077689921034632
510 => 0.078679839094053
511 => 0.079247241664834
512 => 0.078559637004209
513 => 0.077976964049539
514 => 0.07588990184994
515 => 0.076131484982426
516 => 0.077795753198784
517 => 0.080146630079298
518 => 0.082163927009832
519 => 0.081457539934655
520 => 0.086846774686693
521 => 0.087381095299308
522 => 0.087307269467299
523 => 0.088524531340403
524 => 0.08610851441336
525 => 0.085075620368925
526 => 0.078102944555958
527 => 0.080061982047651
528 => 0.082909558092066
529 => 0.082532670724725
530 => 0.080464684885346
531 => 0.082162358257131
601 => 0.081601054349264
602 => 0.081158330668609
603 => 0.083186533675899
604 => 0.080956441155396
605 => 0.082887311213242
606 => 0.080410950391762
607 => 0.081460766651313
608 => 0.080864840168493
609 => 0.08125047763688
610 => 0.078996048876555
611 => 0.080212483912462
612 => 0.078945441179795
613 => 0.078944840436565
614 => 0.078916870398016
615 => 0.080407540554072
616 => 0.080456151254344
617 => 0.079354543756741
618 => 0.079195784905993
619 => 0.07978279958609
620 => 0.079095559135085
621 => 0.07941711461667
622 => 0.079105298723048
623 => 0.079035102397546
624 => 0.078475766133027
625 => 0.078234788691001
626 => 0.078329282155243
627 => 0.078006727247066
628 => 0.077812376247568
629 => 0.078878209092472
630 => 0.078308777599014
701 => 0.078790935549302
702 => 0.078241455711764
703 => 0.076336719197888
704 => 0.075241285086534
705 => 0.07164341438099
706 => 0.072663766049937
707 => 0.07334026026208
708 => 0.073116678929002
709 => 0.073597018146943
710 => 0.073626507073771
711 => 0.07347034389754
712 => 0.073289526945206
713 => 0.073201515252614
714 => 0.073857482302564
715 => 0.074238293253896
716 => 0.073408155506593
717 => 0.073213665847262
718 => 0.074052980942946
719 => 0.074564962666457
720 => 0.07834514805518
721 => 0.078065099711746
722 => 0.078767966097055
723 => 0.078688834128433
724 => 0.079425550075633
725 => 0.080629769289915
726 => 0.078181254922291
727 => 0.078606232353254
728 => 0.078502037701344
729 => 0.079639607589593
730 => 0.079643158958614
731 => 0.078961128984779
801 => 0.079330868498267
802 => 0.079124490045111
803 => 0.079497443803685
804 => 0.078061359495382
805 => 0.079810355167174
806 => 0.080801923010289
807 => 0.080815690930752
808 => 0.08128568621882
809 => 0.081763228651788
810 => 0.082679829766689
811 => 0.081737665144179
812 => 0.080042802706161
813 => 0.080165166299814
814 => 0.07917146907253
815 => 0.079188173302447
816 => 0.079099004814017
817 => 0.079366606160084
818 => 0.078120082942314
819 => 0.07841263945001
820 => 0.078003058626027
821 => 0.078605342004532
822 => 0.07795738465027
823 => 0.078501987455528
824 => 0.078737019972408
825 => 0.079604295019585
826 => 0.077829287420642
827 => 0.074209926768948
828 => 0.07497076025844
829 => 0.0738454277653
830 => 0.073949581571983
831 => 0.074159988837439
901 => 0.073477990049125
902 => 0.073608093925684
903 => 0.073603445699686
904 => 0.073563389799214
905 => 0.073385975574331
906 => 0.073128689847915
907 => 0.074153636993584
908 => 0.074327795486039
909 => 0.074714928241093
910 => 0.075866772725481
911 => 0.075751676299127
912 => 0.075939403345815
913 => 0.075529596256938
914 => 0.073968591347481
915 => 0.074053361424286
916 => 0.072996277208183
917 => 0.074687896221038
918 => 0.074287298510514
919 => 0.074029030560497
920 => 0.073958559757499
921 => 0.075113259441571
922 => 0.075458763684746
923 => 0.075243468626327
924 => 0.074801892180349
925 => 0.075649849496983
926 => 0.075876727102467
927 => 0.075927516631411
928 => 0.077429934416798
929 => 0.076011485095835
930 => 0.076352919945564
1001 => 0.079016697176279
1002 => 0.076601018804152
1003 => 0.077880657513924
1004 => 0.077818025857999
1005 => 0.078472645721305
1006 => 0.077764327922285
1007 => 0.077773108370315
1008 => 0.078354366461141
1009 => 0.077538094303026
1010 => 0.077335973837415
1011 => 0.077056745861788
1012 => 0.077666429931218
1013 => 0.078031907957203
1014 => 0.080977392432607
1015 => 0.082880309734129
1016 => 0.082797699075482
1017 => 0.083552605854838
1018 => 0.083212513436585
1019 => 0.082114265306198
1020 => 0.083988840947676
1021 => 0.083395646779136
1022 => 0.08344454898566
1023 => 0.083442728843091
1024 => 0.083837151107235
1025 => 0.083557666784819
1026 => 0.08300677449686
1027 => 0.083372482506674
1028 => 0.084458504552816
1029 => 0.087829550307266
1030 => 0.089716032171872
1031 => 0.08771598173028
1101 => 0.089095589743147
1102 => 0.088268316540025
1103 => 0.088117976389771
1104 => 0.088984472174083
1105 => 0.089852484644561
1106 => 0.089797196002712
1107 => 0.089167063522079
1108 => 0.088811117672789
1109 => 0.09150645889422
1110 => 0.09349234039223
1111 => 0.093356916587584
1112 => 0.09395463321911
1113 => 0.09570954773595
1114 => 0.095869995126065
1115 => 0.095849782442751
1116 => 0.095452096845397
1117 => 0.097180038091673
1118 => 0.09862151707955
1119 => 0.095360044119852
1120 => 0.096601970327089
1121 => 0.097159511013881
1122 => 0.097978146156959
1123 => 0.099359320862513
1124 => 0.10085964293124
1125 => 0.10107180492195
1126 => 0.10092126583666
1127 => 0.099931763101509
1128 => 0.10157343341168
1129 => 0.10253508537747
1130 => 0.10310772711608
1201 => 0.10455985128671
1202 => 0.097162954195353
1203 => 0.091927062784452
1204 => 0.091109402733451
1205 => 0.092772146600055
1206 => 0.093210598897544
1207 => 0.093033859326198
1208 => 0.087140387516809
1209 => 0.091078374824057
1210 => 0.095315318051278
1211 => 0.09547807629613
1212 => 0.097599178665982
1213 => 0.09828989654453
1214 => 0.099997661971504
1215 => 0.099890840779072
1216 => 0.10030665448406
1217 => 0.10021106611417
1218 => 0.1033743419552
1219 => 0.10686390495887
1220 => 0.10674307248818
1221 => 0.10624140651977
1222 => 0.10698646602962
1223 => 0.1105880690137
1224 => 0.11025649112544
1225 => 0.11057859080015
1226 => 0.11482508369583
1227 => 0.12034612851679
1228 => 0.11778104889362
1229 => 0.12334653359412
1230 => 0.12684971119942
1231 => 0.13290809463246
]
'min_raw' => 0.054263430898081
'max_raw' => 0.13290809463246
'avg_raw' => 0.09358576276527
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.054263'
'max' => '$0.132908'
'avg' => '$0.093585'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.024195696582725
'max_diff' => 0.053919962755289
'year' => 2028
]
3 => [
'items' => [
101 => 0.13214955518848
102 => 0.13450803940049
103 => 0.13079161127178
104 => 0.12225794107424
105 => 0.1209074550999
106 => 0.12361116222028
107 => 0.13025796235184
108 => 0.12340183083018
109 => 0.12478881730757
110 => 0.12438936510877
111 => 0.12436807999866
112 => 0.12518044607881
113 => 0.12400206670939
114 => 0.11920113717198
115 => 0.12140137488692
116 => 0.12055175744109
117 => 0.12149447134041
118 => 0.12658190945029
119 => 0.12433263179254
120 => 0.12196320049657
121 => 0.12493499316061
122 => 0.12871910644069
123 => 0.12848230343232
124 => 0.12802280662012
125 => 0.13061296609203
126 => 0.13489115069409
127 => 0.13604752680089
128 => 0.13690114000186
129 => 0.13701883884036
130 => 0.13823121002634
131 => 0.13171198460246
201 => 0.14205816277574
202 => 0.14384466193887
203 => 0.143508874139
204 => 0.14549449277144
205 => 0.14491027339949
206 => 0.14406383119076
207 => 0.14721145907636
208 => 0.14360295770599
209 => 0.13848114430844
210 => 0.13567121618056
211 => 0.13937155620979
212 => 0.14163122474156
213 => 0.14312472189916
214 => 0.14357665323665
215 => 0.13221805351426
216 => 0.12609639824072
217 => 0.13002030908614
218 => 0.13480775113141
219 => 0.13168539012018
220 => 0.1318077807604
221 => 0.12735611450042
222 => 0.13520162481648
223 => 0.13405859995456
224 => 0.13998861496019
225 => 0.13857336928775
226 => 0.14340906632299
227 => 0.14213566523176
228 => 0.14742148196657
301 => 0.14953013736986
302 => 0.153070897978
303 => 0.15567549589483
304 => 0.15720496560961
305 => 0.15711314198483
306 => 0.16317366297359
307 => 0.15959998548499
308 => 0.15511060430821
309 => 0.15502940556653
310 => 0.15735451969302
311 => 0.16222732103821
312 => 0.16349076753065
313 => 0.16419686175737
314 => 0.16311545386982
315 => 0.15923648308373
316 => 0.15756156316512
317 => 0.15898864346287
318 => 0.15724344688913
319 => 0.16025614579109
320 => 0.16439322486124
321 => 0.16353893439304
322 => 0.16639469934586
323 => 0.16935011563679
324 => 0.17357649366887
325 => 0.17468142538878
326 => 0.17650783550501
327 => 0.17838781145907
328 => 0.17899160906875
329 => 0.18014444605301
330 => 0.18013837003304
331 => 0.18361252187999
401 => 0.1874446189527
402 => 0.1888911468844
403 => 0.19221735810132
404 => 0.18652133795668
405 => 0.19084183466755
406 => 0.19473903084981
407 => 0.19009263289879
408 => 0.19649661000239
409 => 0.1967452619216
410 => 0.2004996106885
411 => 0.19669385896705
412 => 0.19443401574325
413 => 0.20095809845515
414 => 0.20411489657276
415 => 0.20316404328886
416 => 0.19592800284897
417 => 0.19171631694458
418 => 0.18069352255925
419 => 0.19375049865795
420 => 0.20011017083842
421 => 0.19591153283441
422 => 0.19802908162344
423 => 0.20958174119892
424 => 0.21398024598595
425 => 0.21306538773811
426 => 0.21321998372215
427 => 0.21559333706672
428 => 0.22611809282611
429 => 0.21981141521316
430 => 0.22463263394156
501 => 0.2271897909709
502 => 0.22956502093167
503 => 0.22373220684717
504 => 0.21614380142428
505 => 0.21374023488726
506 => 0.19549406103102
507 => 0.19454426844268
508 => 0.19401112108119
509 => 0.19064970238217
510 => 0.18800854805481
511 => 0.18590820407392
512 => 0.18039627425226
513 => 0.18225638876268
514 => 0.17347152305611
515 => 0.17909176881865
516 => 0.16507091103297
517 => 0.17674789802892
518 => 0.17039264489447
519 => 0.17466002645027
520 => 0.17464513795803
521 => 0.16678753553926
522 => 0.16225543444809
523 => 0.1651434656554
524 => 0.16823966436183
525 => 0.16874201218509
526 => 0.17275631462704
527 => 0.17387662015144
528 => 0.17048204211043
529 => 0.1647803599197
530 => 0.16610473065108
531 => 0.16222859611749
601 => 0.15543581944074
602 => 0.16031451024048
603 => 0.16198030978041
604 => 0.16271602175575
605 => 0.15603610604983
606 => 0.15393713150701
607 => 0.15281965507251
608 => 0.16391806668485
609 => 0.16452606272622
610 => 0.16141546901659
611 => 0.17547564754274
612 => 0.17229339611303
613 => 0.17584875063054
614 => 0.1659845578886
615 => 0.16636138333524
616 => 0.16169151641051
617 => 0.16430632984774
618 => 0.16245826398967
619 => 0.1640950787621
620 => 0.16507617878785
621 => 0.16974527943338
622 => 0.17680121165821
623 => 0.16904787149772
624 => 0.16566963015992
625 => 0.16776547208594
626 => 0.17334697532176
627 => 0.18180323843591
628 => 0.17679696047418
629 => 0.17901866162148
630 => 0.17950400448556
701 => 0.17581256045906
702 => 0.18193934724259
703 => 0.18522274205381
704 => 0.1885908257273
705 => 0.19151523840943
706 => 0.18724553904236
707 => 0.19181472940248
708 => 0.1881327685429
709 => 0.18482966901774
710 => 0.18483467845626
711 => 0.18276259587354
712 => 0.17874767477031
713 => 0.17800726171893
714 => 0.18185898391605
715 => 0.18494770035869
716 => 0.18520210183886
717 => 0.18691217396549
718 => 0.18792417703488
719 => 0.1978431828664
720 => 0.20183268906615
721 => 0.20671098172972
722 => 0.2086113516477
723 => 0.21433078378047
724 => 0.20971187782369
725 => 0.20871254846566
726 => 0.19483907692355
727 => 0.19711085711136
728 => 0.20074819638624
729 => 0.19489905530847
730 => 0.19860898903562
731 => 0.1993414085405
801 => 0.19470030373285
802 => 0.19717931834092
803 => 0.1905957905185
804 => 0.17694471457404
805 => 0.18195454479248
806 => 0.18564346612388
807 => 0.18037892054326
808 => 0.18981541473047
809 => 0.18430280963508
810 => 0.18255557847155
811 => 0.17573900676974
812 => 0.17895616621909
813 => 0.18330742043962
814 => 0.18061885121893
815 => 0.18619803604256
816 => 0.19409964966706
817 => 0.19973081008511
818 => 0.20016310065961
819 => 0.19654264176925
820 => 0.20234445024651
821 => 0.20238671008729
822 => 0.19584224642386
823 => 0.19183379886973
824 => 0.19092307115159
825 => 0.1931982475502
826 => 0.19596073171884
827 => 0.20031639930506
828 => 0.2029484380043
829 => 0.20981139900647
830 => 0.21166831947714
831 => 0.2137085120913
901 => 0.21643483859593
902 => 0.21970849258049
903 => 0.21254592403149
904 => 0.21283050623264
905 => 0.20616082157232
906 => 0.19903330698323
907 => 0.20444220209911
908 => 0.21151361294796
909 => 0.20989142348602
910 => 0.20970889403323
911 => 0.21001585794337
912 => 0.20879278006483
913 => 0.20326084414953
914 => 0.20048274056462
915 => 0.20406720295897
916 => 0.2059721851955
917 => 0.20892664651244
918 => 0.20856244679402
919 => 0.21617282186048
920 => 0.21912998348552
921 => 0.21837341499775
922 => 0.21851264180734
923 => 0.22386644167701
924 => 0.22982096822501
925 => 0.23539816810619
926 => 0.24107153537164
927 => 0.23423206969785
928 => 0.2307594108283
929 => 0.23434230835849
930 => 0.23244117249604
1001 => 0.24336566307524
1002 => 0.24412205110041
1003 => 0.2550457517146
1004 => 0.26541364436754
1005 => 0.25890175675232
1006 => 0.26504217347161
1007 => 0.27168353478904
1008 => 0.28449579829242
1009 => 0.28018107868535
1010 => 0.27687607108661
1011 => 0.27375285487548
1012 => 0.28025177201422
1013 => 0.28861252509049
1014 => 0.29041335122482
1015 => 0.29333137753096
1016 => 0.29026342966933
1017 => 0.29395843494529
1018 => 0.30700342723703
1019 => 0.30347855516847
1020 => 0.29847267017965
1021 => 0.3087704387396
1022 => 0.31249716114988
1023 => 0.33865325072493
1024 => 0.37167639426759
1025 => 0.35800459599927
1026 => 0.34951806962796
1027 => 0.35151260462831
1028 => 0.36357153874614
1029 => 0.36744448565335
1030 => 0.3569164808747
1031 => 0.36063515014512
1101 => 0.38112538343665
1102 => 0.39211773619216
1103 => 0.37718864468024
1104 => 0.33599987329519
1105 => 0.29802194500698
1106 => 0.30809540175742
1107 => 0.30695338437767
1108 => 0.32896758384076
1109 => 0.30339448813538
1110 => 0.3038250734812
1111 => 0.32629450327574
1112 => 0.32030004463011
1113 => 0.31058978933644
1114 => 0.29809284061664
1115 => 0.27499107508025
1116 => 0.25452919710428
1117 => 0.29465965190423
1118 => 0.29292915372076
1119 => 0.29042313590563
1120 => 0.29600000737374
1121 => 0.32307971220034
1122 => 0.32245543735563
1123 => 0.31848411930145
1124 => 0.32149632904396
1125 => 0.31006173440475
1126 => 0.31300868980416
1127 => 0.29801592910911
1128 => 0.30479328309627
1129 => 0.31056895548967
1130 => 0.31172850723294
1201 => 0.3143410365187
1202 => 0.29201725981251
1203 => 0.30203998016194
1204 => 0.30792738936534
1205 => 0.28132786039862
1206 => 0.30740160220167
1207 => 0.29162865252598
1208 => 0.28627507650429
1209 => 0.29348296133748
1210 => 0.29067404160809
1211 => 0.28825909737006
1212 => 0.28691151699123
1213 => 0.29220419210751
1214 => 0.29195728248722
1215 => 0.28329743873302
1216 => 0.27200102557606
1217 => 0.27579247262366
1218 => 0.27441500436626
1219 => 0.26942288170451
1220 => 0.27278696962734
1221 => 0.25797322894112
1222 => 0.23248695804172
1223 => 0.24932396926346
1224 => 0.24867576264656
1225 => 0.2483489074765
1226 => 0.26100145606882
1227 => 0.25978520546563
1228 => 0.25757769871128
1229 => 0.26938233911181
1230 => 0.2650734865708
1231 => 0.27835235480887
]
'min_raw' => 0.11920113717198
'max_raw' => 0.39211773619216
'avg_raw' => 0.25565943668207
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.1192011'
'max' => '$0.392117'
'avg' => '$0.255659'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.064937706273896
'max_diff' => 0.2592096415597
'year' => 2029
]
4 => [
'items' => [
101 => 0.28709867625381
102 => 0.28488032622152
103 => 0.29310628381513
104 => 0.27587981990599
105 => 0.28160176021083
106 => 0.28278104417739
107 => 0.26923667168166
108 => 0.25998419910593
109 => 0.25936716467104
110 => 0.243324652294
111 => 0.25189443291518
112 => 0.2594354852202
113 => 0.2558239063754
114 => 0.25468058840598
115 => 0.26052155195632
116 => 0.26097544484865
117 => 0.25062663880209
118 => 0.25277848328323
119 => 0.26175203248399
120 => 0.25255237286713
121 => 0.23467893698744
122 => 0.23024607776969
123 => 0.22965465263624
124 => 0.21763238686321
125 => 0.23054230261916
126 => 0.22490677842745
127 => 0.24270933182511
128 => 0.23254060880138
129 => 0.23210225547579
130 => 0.23143962013172
131 => 0.22109155934733
201 => 0.22335712700554
202 => 0.23088821895713
203 => 0.23357539740928
204 => 0.23329510268132
205 => 0.230851312498
206 => 0.23197006712969
207 => 0.22836616866105
208 => 0.22709355710311
209 => 0.22307684496687
210 => 0.21717338777165
211 => 0.21799429970266
212 => 0.20629800627532
213 => 0.19992524484684
214 => 0.19816134847508
215 => 0.19580259252846
216 => 0.19842777623566
217 => 0.20626487214561
218 => 0.19681167174556
219 => 0.18060482272459
220 => 0.18157888196588
221 => 0.18376730388027
222 => 0.17968919412066
223 => 0.17582960548301
224 => 0.17918520466512
225 => 0.17231814908382
226 => 0.18459715473952
227 => 0.18426504204805
228 => 0.18884189602788
301 => 0.19170389674796
302 => 0.1851079116719
303 => 0.18344903926271
304 => 0.18439400837853
305 => 0.16877577383873
306 => 0.18756555306097
307 => 0.18772804785194
308 => 0.18633666879815
309 => 0.19634164616465
310 => 0.21745526903864
311 => 0.20951147481993
312 => 0.206435397596
313 => 0.2005877725447
314 => 0.20837938572794
315 => 0.20778111140356
316 => 0.20507548801995
317 => 0.20343911855548
318 => 0.20645417946759
319 => 0.20306551914227
320 => 0.20245682263369
321 => 0.19876878405999
322 => 0.19745232208424
323 => 0.19647766604726
324 => 0.19540466551827
325 => 0.19777143731015
326 => 0.19240802105498
327 => 0.18594026683342
328 => 0.18540254305197
329 => 0.18688724568972
330 => 0.18623037529563
331 => 0.18539939820924
401 => 0.18381283664819
402 => 0.18334213772455
403 => 0.18487168087572
404 => 0.18314491583595
405 => 0.1856928517139
406 => 0.18499995413882
407 => 0.1811294846098
408 => 0.17630544654529
409 => 0.17626250248776
410 => 0.17522317139977
411 => 0.17389942699473
412 => 0.17353119158442
413 => 0.17890260546153
414 => 0.19002127143426
415 => 0.18783841125669
416 => 0.18941575144349
417 => 0.19717470401162
418 => 0.19964104171318
419 => 0.19789049363102
420 => 0.19549423544706
421 => 0.19559965864594
422 => 0.20378839825722
423 => 0.20429911990226
424 => 0.20558954873424
425 => 0.20724811445847
426 => 0.1981729545457
427 => 0.19517221943016
428 => 0.19375030465797
429 => 0.1893713575099
430 => 0.19409367658654
501 => 0.19134218349045
502 => 0.1917134539135
503 => 0.19147166356343
504 => 0.19160369744436
505 => 0.18459372250719
506 => 0.18714778894086
507 => 0.18290115812556
508 => 0.17721539617054
509 => 0.17719633550278
510 => 0.17858791768626
511 => 0.17776015015091
512 => 0.17553264899714
513 => 0.17584905502253
514 => 0.17307700530209
515 => 0.17618563204817
516 => 0.17627477634004
517 => 0.17507778571476
518 => 0.17986705412491
519 => 0.18182922130022
520 => 0.18104133642864
521 => 0.18177394119729
522 => 0.18792911895209
523 => 0.18893268149535
524 => 0.18937839768545
525 => 0.1887811970368
526 => 0.18188644654743
527 => 0.18219225805038
528 => 0.17994841615087
529 => 0.17805260619603
530 => 0.17812842865201
531 => 0.17910312140684
601 => 0.18335966183217
602 => 0.19231730022052
603 => 0.19265723604941
604 => 0.19306924819065
605 => 0.19139338775151
606 => 0.19088793220724
607 => 0.19155475853928
608 => 0.19491877654769
609 => 0.2035719441873
610 => 0.20051333681783
611 => 0.19802664141638
612 => 0.20020814369172
613 => 0.19987231851561
614 => 0.19703761606675
615 => 0.19695805541028
616 => 0.19151735510173
617 => 0.18950605207641
618 => 0.18782525672503
619 => 0.1859898720796
620 => 0.18490179453914
621 => 0.18657357616369
622 => 0.18695593240116
623 => 0.18330055266134
624 => 0.1828023379099
625 => 0.18578739991228
626 => 0.18447378541936
627 => 0.1858248705014
628 => 0.18613833382983
629 => 0.18608785901428
630 => 0.18471629461601
701 => 0.18559048886283
702 => 0.18352275885925
703 => 0.18127441304336
704 => 0.17984010848972
705 => 0.17858848753377
706 => 0.17928295958477
707 => 0.17680729352856
708 => 0.17601527813186
709 => 0.185294331522
710 => 0.19214886802793
711 => 0.19204920035244
712 => 0.19144249901033
713 => 0.19054106388084
714 => 0.19485283095327
715 => 0.19335069752174
716 => 0.19444362510063
717 => 0.19472182103948
718 => 0.19556383635913
719 => 0.19586478446225
720 => 0.19495511027274
721 => 0.19190213258542
722 => 0.18429440245701
723 => 0.18075298354557
724 => 0.17958425631779
725 => 0.17962673733279
726 => 0.17845492129547
727 => 0.17880007363557
728 => 0.17833489139716
729 => 0.17745394877727
730 => 0.17922856386042
731 => 0.17943307171707
801 => 0.17901885535159
802 => 0.17911641830051
803 => 0.17568688370847
804 => 0.17594762377494
805 => 0.17449578995156
806 => 0.1742235886118
807 => 0.17055347913192
808 => 0.16405134819744
809 => 0.16765415991226
810 => 0.16330246999275
811 => 0.16165441908137
812 => 0.16945603577135
813 => 0.16867296983884
814 => 0.16733270135296
815 => 0.16535016492591
816 => 0.16461482288025
817 => 0.16014711739179
818 => 0.15988314151725
819 => 0.16209745699553
820 => 0.16107562659224
821 => 0.1596405897086
822 => 0.1544430315834
823 => 0.14859925539832
824 => 0.14877564226868
825 => 0.15063443874584
826 => 0.15603914019601
827 => 0.15392742983715
828 => 0.1523953597427
829 => 0.15210844906787
830 => 0.15569973685157
831 => 0.16078216146355
901 => 0.16316672137865
902 => 0.16080369492295
903 => 0.15808917736502
904 => 0.15825439747091
905 => 0.15935353281547
906 => 0.15946903639924
907 => 0.15770216452594
908 => 0.15819952860877
909 => 0.15744398708703
910 => 0.15280723016278
911 => 0.15272336593333
912 => 0.15158543100632
913 => 0.15155097478897
914 => 0.14961506360694
915 => 0.14934421625025
916 => 0.14550034709693
917 => 0.14803039341395
918 => 0.14633337117789
919 => 0.14377555838105
920 => 0.14333459049078
921 => 0.14332133446352
922 => 0.14594763628939
923 => 0.14799970354801
924 => 0.14636289160624
925 => 0.14599022125537
926 => 0.14996936561757
927 => 0.14946298322677
928 => 0.14902445934216
929 => 0.16032708608407
930 => 0.15138017506288
1001 => 0.14747881118582
1002 => 0.14265013253904
1003 => 0.14422237465474
1004 => 0.14455366916956
1005 => 0.13294156745882
1006 => 0.12823053924096
1007 => 0.12661389188795
1008 => 0.12568348848025
1009 => 0.12610748499641
1010 => 0.12186700705184
1011 => 0.12471667836162
1012 => 0.1210447829003
1013 => 0.12042917767683
1014 => 0.12699498162223
1015 => 0.12790857488436
1016 => 0.12401090219693
1017 => 0.12651383903815
1018 => 0.1256062393461
1019 => 0.12110772700901
1020 => 0.12093591692655
1021 => 0.11867872156615
1022 => 0.11514664790628
1023 => 0.11353239546553
1024 => 0.1126916787788
1025 => 0.11303857486899
1026 => 0.11286317359059
1027 => 0.11171856160308
1028 => 0.11292878140988
1029 => 0.10983716990086
1030 => 0.10860606528716
1031 => 0.10805000389457
1101 => 0.10530602073379
1102 => 0.10967291819743
1103 => 0.1105332520105
1104 => 0.11139528094694
1105 => 0.11889865430654
1106 => 0.11852380697781
1107 => 0.1219122442715
1108 => 0.1217805758292
1109 => 0.120814138624
1110 => 0.11673689902644
1111 => 0.11836201406022
1112 => 0.1133601625852
1113 => 0.11710788980312
1114 => 0.11539758360969
1115 => 0.11652963355871
1116 => 0.11449410567755
1117 => 0.11562065085187
1118 => 0.11073726907385
1119 => 0.10617723588058
1120 => 0.10801232635322
1121 => 0.11000727956503
1122 => 0.11433284643287
1123 => 0.11175657449154
1124 => 0.11268309930127
1125 => 0.10957939628705
1126 => 0.10317557043979
1127 => 0.10321181539863
1128 => 0.10222672630696
1129 => 0.1013754655064
1130 => 0.11205249031502
1201 => 0.11072463350128
1202 => 0.10860886745419
1203 => 0.11144090438542
1204 => 0.11218973990051
1205 => 0.11221105819488
1206 => 0.11427723923445
1207 => 0.11537996042565
1208 => 0.11557431981507
1209 => 0.11882550032362
1210 => 0.11991525314598
1211 => 0.1244037907937
1212 => 0.11528640223686
1213 => 0.1150986356194
1214 => 0.11148075695282
1215 => 0.10918624110609
1216 => 0.11163786441589
1217 => 0.11380966798843
1218 => 0.1115482409437
1219 => 0.11184353557441
1220 => 0.10880775453224
1221 => 0.10989290340804
1222 => 0.11082757980522
1223 => 0.11031150643644
1224 => 0.10953891962514
1225 => 0.1136316048624
1226 => 0.11340067952196
1227 => 0.11721188210532
1228 => 0.12018298706077
1229 => 0.12550773828947
1230 => 0.11995108279676
1231 => 0.1197485761849
]
'min_raw' => 0.1013754655064
'max_raw' => 0.29310628381513
'avg_raw' => 0.19724087466076
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.101375'
'max' => '$0.2931062'
'avg' => '$0.19724'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.017825671665582
'max_diff' => -0.099011452377034
'year' => 2030
]
5 => [
'items' => [
101 => 0.12172811079891
102 => 0.11991495008955
103 => 0.12106080506969
104 => 0.12532312333732
105 => 0.12541317940585
106 => 0.12390462422741
107 => 0.12381282850771
108 => 0.12410256303151
109 => 0.12579954718712
110 => 0.12520656878009
111 => 0.12589277840508
112 => 0.12675089404874
113 => 0.13030042418442
114 => 0.13115620388325
115 => 0.12907710288599
116 => 0.12926482242734
117 => 0.12848718158176
118 => 0.12773599026874
119 => 0.12942455863772
120 => 0.13251045052092
121 => 0.13249125334767
122 => 0.13320712028341
123 => 0.13365309945381
124 => 0.13173863037774
125 => 0.1304923814062
126 => 0.13097027256277
127 => 0.13173443092924
128 => 0.13072246630359
129 => 0.12447615184646
130 => 0.12637088463664
131 => 0.12605550845265
201 => 0.1256063744156
202 => 0.12751154288767
203 => 0.12732778474085
204 => 0.12182351482143
205 => 0.12217588032311
206 => 0.12184494333466
207 => 0.12291426844769
208 => 0.11985720302422
209 => 0.12079753575883
210 => 0.1213873036349
211 => 0.12173468144472
212 => 0.12298964829298
213 => 0.12284239241811
214 => 0.12298049466104
215 => 0.12484127919804
216 => 0.13425248884206
217 => 0.13476472021832
218 => 0.13224230558179
219 => 0.13324996047665
220 => 0.13131548342842
221 => 0.13261411083077
222 => 0.1335025987179
223 => 0.12948769280235
224 => 0.12924995613056
225 => 0.12730749480741
226 => 0.12835126349584
227 => 0.12669055246292
228 => 0.1270980328612
301 => 0.12595868214413
302 => 0.12800928659238
303 => 0.13030218099725
304 => 0.13088145667307
305 => 0.12935763176386
306 => 0.12825428210464
307 => 0.12631716356902
308 => 0.12953863486526
309 => 0.13048069124483
310 => 0.12953368664414
311 => 0.1293142449857
312 => 0.12889840343948
313 => 0.12940246773554
314 => 0.13047556060347
315 => 0.12996950982387
316 => 0.13030376527927
317 => 0.12902992816603
318 => 0.13173926414667
319 => 0.13604234172113
320 => 0.13605617681916
321 => 0.13555012331175
322 => 0.1353430571196
323 => 0.13586229872809
324 => 0.13614396600029
325 => 0.13782309814953
326 => 0.13962487384524
327 => 0.1480329748408
328 => 0.14567201372681
329 => 0.15313218113024
330 => 0.15903220496485
331 => 0.16080136413607
401 => 0.15917382094392
402 => 0.1536060836017
403 => 0.1533329038454
404 => 0.16165345407274
405 => 0.15930251752817
406 => 0.15902288110682
407 => 0.15604802203676
408 => 0.15780653219063
409 => 0.15742192022419
410 => 0.1568147914193
411 => 0.160169906294
412 => 0.16645038182628
413 => 0.16547151081665
414 => 0.16474082901648
415 => 0.1615391940664
416 => 0.1634672934174
417 => 0.16278073416882
418 => 0.16573062840199
419 => 0.16398317640642
420 => 0.15928470687164
421 => 0.16003295363141
422 => 0.15991985763893
423 => 0.16224736515002
424 => 0.16154870516748
425 => 0.15978343306425
426 => 0.16642891584368
427 => 0.1659973951561
428 => 0.16660919283173
429 => 0.16687852508901
430 => 0.17092351335031
501 => 0.17258061561578
502 => 0.17295680684169
503 => 0.174530925829
504 => 0.1729176413273
505 => 0.17937192958645
506 => 0.18366365466062
507 => 0.18864871418443
508 => 0.19593322600639
509 => 0.19867226983695
510 => 0.19817748608519
511 => 0.20370051981161
512 => 0.21362528864786
513 => 0.20018356562699
514 => 0.21433773260702
515 => 0.20985668675886
516 => 0.19923220766344
517 => 0.19854811646408
518 => 0.20574313706023
519 => 0.22170100024743
520 => 0.21770373651162
521 => 0.22170753833892
522 => 0.21703689083292
523 => 0.21680495381694
524 => 0.22148069541464
525 => 0.23240582051906
526 => 0.22721570310414
527 => 0.21977439712085
528 => 0.22526894165936
529 => 0.22050905868401
530 => 0.20978371013318
531 => 0.21770067987938
601 => 0.21240682767241
602 => 0.21395185518307
603 => 0.22507874512102
604 => 0.22373992828559
605 => 0.22547248124174
606 => 0.22241457062294
607 => 0.21955799991673
608 => 0.21422599856187
609 => 0.21264745582519
610 => 0.21308370824759
611 => 0.21264723964015
612 => 0.20966403388573
613 => 0.2090198108871
614 => 0.20794607766531
615 => 0.20827887248855
616 => 0.20625993989987
617 => 0.21007008282747
618 => 0.21077727892969
619 => 0.21354998321285
620 => 0.21383785456962
621 => 0.22155979653123
622 => 0.21730668066074
623 => 0.22016003798302
624 => 0.21990480684727
625 => 0.19946247234168
626 => 0.20227924567231
627 => 0.2066612610226
628 => 0.20468716904697
629 => 0.20189626485982
630 => 0.19964246008988
701 => 0.19622771540005
702 => 0.20103390297662
703 => 0.20735352855875
704 => 0.21399813070335
705 => 0.22198118480852
706 => 0.22019946006524
707 => 0.21384889305975
708 => 0.21413377485653
709 => 0.21589480202733
710 => 0.21361411183495
711 => 0.21294149177286
712 => 0.21580239435958
713 => 0.21582209582337
714 => 0.21319788612642
715 => 0.21028155727357
716 => 0.21026933774919
717 => 0.20975040519822
718 => 0.21712920778093
719 => 0.22118680312033
720 => 0.22165199988685
721 => 0.22115549167145
722 => 0.22134657797785
723 => 0.21898555265286
724 => 0.22438215640547
725 => 0.22933461367765
726 => 0.22800724933489
727 => 0.22601734148913
728 => 0.22443228404303
729 => 0.22763386017444
730 => 0.22749129902906
731 => 0.22929135828381
801 => 0.22920969719837
802 => 0.22860440497465
803 => 0.22800727095178
804 => 0.23037483985548
805 => 0.2296930180332
806 => 0.22901013715332
807 => 0.22764051500488
808 => 0.22782666940187
809 => 0.22583710514175
810 => 0.22491664167875
811 => 0.21107507969595
812 => 0.20737616204806
813 => 0.20853991683849
814 => 0.20892305513239
815 => 0.20731328143173
816 => 0.20962128340154
817 => 0.20926158373932
818 => 0.21066096470774
819 => 0.20978669223273
820 => 0.20982257268006
821 => 0.21239362161451
822 => 0.2131400080582
823 => 0.21276038988886
824 => 0.21302626144212
825 => 0.21915315916955
826 => 0.21828211023987
827 => 0.21781938285663
828 => 0.21794756150412
829 => 0.21951311523565
830 => 0.21995138480441
831 => 0.21809440584491
901 => 0.21897016785728
902 => 0.2226990513552
903 => 0.22400394954294
904 => 0.22816855817156
905 => 0.22639935840611
906 => 0.22964680114477
907 => 0.2396283329886
908 => 0.24760227129492
909 => 0.24026910809149
910 => 0.25491223031613
911 => 0.26631400139914
912 => 0.26587638243433
913 => 0.26388821991829
914 => 0.25090760667205
915 => 0.23896265283283
916 => 0.24895511392887
917 => 0.24898058676717
918 => 0.24812222549715
919 => 0.24279101736872
920 => 0.24793671101034
921 => 0.2483451574852
922 => 0.24811653607396
923 => 0.24402911130158
924 => 0.23778836915651
925 => 0.23900779523343
926 => 0.24100524002304
927 => 0.23722366032567
928 => 0.23601521647837
929 => 0.23826194350635
930 => 0.2455013661147
1001 => 0.24413279520571
1002 => 0.24409705628845
1003 => 0.24995238300148
1004 => 0.24576123273354
1005 => 0.2390231761014
1006 => 0.23732172793774
1007 => 0.23128273318956
1008 => 0.23545388837229
1009 => 0.23560400082155
1010 => 0.23331950175614
1011 => 0.23920855060997
1012 => 0.23915428198803
1013 => 0.24474505740549
1014 => 0.25543252020433
1015 => 0.25227171155661
1016 => 0.24859603499431
1017 => 0.24899568295209
1018 => 0.2533788346337
1019 => 0.25072868106938
1020 => 0.25168169476864
1021 => 0.25337739213332
1022 => 0.25440044845524
1023 => 0.24884848089131
1024 => 0.24755405167085
1025 => 0.24490610376871
1026 => 0.24421530358734
1027 => 0.24637200190238
1028 => 0.24580378809364
1029 => 0.23559138445145
1030 => 0.23452413144957
1031 => 0.23455686257545
1101 => 0.23187320415709
1102 => 0.22777998091728
1103 => 0.23853672719785
1104 => 0.23767280993095
1105 => 0.23671911213018
1106 => 0.23683593466905
1107 => 0.24150507364949
1108 => 0.23879673724367
1109 => 0.24599729346616
1110 => 0.24451707557535
1111 => 0.24299889568101
1112 => 0.24278903697472
1113 => 0.24220466724042
1114 => 0.24020064598711
1115 => 0.23778066990074
1116 => 0.23618279207377
1117 => 0.2178661411129
1118 => 0.22126560498818
1119 => 0.22517637830581
1120 => 0.22652636158361
1121 => 0.22421712177093
1122 => 0.2402918288499
1123 => 0.24322883273296
1124 => 0.23433245639515
1125 => 0.232668307619
1126 => 0.24040093016662
1127 => 0.23573721349574
1128 => 0.23783728482707
1129 => 0.23329807928634
1130 => 0.24252139450305
1201 => 0.24245112829437
1202 => 0.23886305035705
1203 => 0.24189566925958
1204 => 0.24136867709618
1205 => 0.23731774594199
1206 => 0.24264981624615
1207 => 0.2426524608865
1208 => 0.23919901388336
1209 => 0.23516614384047
1210 => 0.23444516192894
1211 => 0.23390199890889
1212 => 0.23770370002064
1213 => 0.24111229334983
1214 => 0.24745484047349
1215 => 0.24904950751558
1216 => 0.25527359914387
1217 => 0.25156745562475
1218 => 0.25321034104418
1219 => 0.25499392556731
1220 => 0.25584904157684
1221 => 0.25445567592736
1222 => 0.2641242521644
1223 => 0.26494057623633
1224 => 0.26521428263647
1225 => 0.26195409312897
1226 => 0.26484990446849
1227 => 0.26349505024192
1228 => 0.26702000455011
1229 => 0.2675727623945
1230 => 0.26710459616523
1231 => 0.26728005022973
]
'min_raw' => 0.11985720302422
'max_raw' => 0.2675727623945
'avg_raw' => 0.19371498270936
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.119857'
'max' => '$0.267572'
'avg' => '$0.193714'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.018481737517825
'max_diff' => -0.025533521420622
'year' => 2031
]
6 => [
'items' => [
101 => 0.25902962606514
102 => 0.25860179804775
103 => 0.25276833267336
104 => 0.25514551293222
105 => 0.2507014883795
106 => 0.25211073434369
107 => 0.25273191653692
108 => 0.25240744621096
109 => 0.25527991513737
110 => 0.25283772974329
111 => 0.24639240095586
112 => 0.23994531614291
113 => 0.23986437824476
114 => 0.23816697461401
115 => 0.23694006268396
116 => 0.23717640944873
117 => 0.23800932627496
118 => 0.23689165204386
119 => 0.23713016450859
120 => 0.24109106062329
121 => 0.24188539009128
122 => 0.2391859481945
123 => 0.22834729945136
124 => 0.2256874678631
125 => 0.22759930206199
126 => 0.22668556845281
127 => 0.18295294582464
128 => 0.19322727681597
129 => 0.18712261822424
130 => 0.18993592576514
131 => 0.18370465013666
201 => 0.18667854147571
202 => 0.18612937233451
203 => 0.20265019252901
204 => 0.20239224264532
205 => 0.20251570960424
206 => 0.19662230996357
207 => 0.20601065561439
208 => 0.21063569227597
209 => 0.20977972108128
210 => 0.20999515058981
211 => 0.20629335788117
212 => 0.20255155104938
213 => 0.19840131141297
214 => 0.20611194367229
215 => 0.20525465298993
216 => 0.2072209693718
217 => 0.21222186555934
218 => 0.21295826651951
219 => 0.21394799687783
220 => 0.21359324899818
221 => 0.22204478271373
222 => 0.22102124621576
223 => 0.22348767468432
224 => 0.21841404419612
225 => 0.2126727497053
226 => 0.21376398209094
227 => 0.21365888763707
228 => 0.21232091461745
229 => 0.21111305240015
301 => 0.20910230212142
302 => 0.21546461353838
303 => 0.21520631531379
304 => 0.21938786333096
305 => 0.21864873410154
306 => 0.21371264821183
307 => 0.21388894148504
308 => 0.21507459847105
309 => 0.21917817083719
310 => 0.22039639050798
311 => 0.21983206261881
312 => 0.22116778487399
313 => 0.22222348528269
314 => 0.22130036459147
315 => 0.23436980688992
316 => 0.22894246324927
317 => 0.23158771277651
318 => 0.23221858920204
319 => 0.23060261250394
320 => 0.23095305998597
321 => 0.23148389243003
322 => 0.23470700308267
323 => 0.24316537804978
324 => 0.24691153474461
325 => 0.25818203199312
326 => 0.24660046858012
327 => 0.24591326653647
328 => 0.24794342342734
329 => 0.2545603984155
330 => 0.25992283514256
331 => 0.26170186477132
401 => 0.26193699290534
402 => 0.26527457075654
403 => 0.26718760813871
404 => 0.26486930101839
405 => 0.2629047784708
406 => 0.25586810255082
407 => 0.25668261694879
408 => 0.26229381343574
409 => 0.27021995897138
410 => 0.27702141641584
411 => 0.27463978307351
412 => 0.29280996430437
413 => 0.29461146355487
414 => 0.29436255460789
415 => 0.29846663799958
416 => 0.29032086824914
417 => 0.28683839386396
418 => 0.26332953054387
419 => 0.26993456222274
420 => 0.27953536366789
421 => 0.27826466159547
422 => 0.27129230295584
423 => 0.27701612725659
424 => 0.27512365194223
425 => 0.27363097814292
426 => 0.28046920618661
427 => 0.27295029355364
428 => 0.27946035676271
429 => 0.2711111333591
430 => 0.27465066217401
501 => 0.27264145443092
502 => 0.27394165807994
503 => 0.26634069411531
504 => 0.27044198976765
505 => 0.26617006673237
506 => 0.26616804128463
507 => 0.26607373834685
508 => 0.27109963685326
509 => 0.27126353122312
510 => 0.26754938463317
511 => 0.26701411808369
512 => 0.26899327906169
513 => 0.26667619989953
514 => 0.26776034665598
515 => 0.26670903760034
516 => 0.26647236578796
517 => 0.26458652452053
518 => 0.26377405225023
519 => 0.26409264356224
520 => 0.26300512716926
521 => 0.2623498592053
522 => 0.26594338905597
523 => 0.26402351101933
524 => 0.26564914021192
525 => 0.26379653057621
526 => 0.25737457843522
527 => 0.25368124584802
528 => 0.24155077356897
529 => 0.2449909604595
530 => 0.24727180792706
531 => 0.24651798785264
601 => 0.24813748506214
602 => 0.24823690903779
603 => 0.24771039398616
604 => 0.24710075700713
605 => 0.24680401944078
606 => 0.24901565814784
607 => 0.25029958885763
608 => 0.24750072148423
609 => 0.24684498601896
610 => 0.24967479546317
611 => 0.2514009775894
612 => 0.2641461365516
613 => 0.26320193400936
614 => 0.2655716971
615 => 0.26530489814297
616 => 0.26778878739482
617 => 0.27184889655167
618 => 0.26359355941141
619 => 0.26502640049088
620 => 0.26467510094733
621 => 0.26851049724815
622 => 0.26852247093676
623 => 0.26622295926216
624 => 0.26746956184627
625 => 0.26677374248257
626 => 0.26803118211841
627 => 0.26318932360876
628 => 0.26908618462718
629 => 0.2724293248393
630 => 0.27247574434439
701 => 0.27406036627213
702 => 0.27567043392583
703 => 0.27876081857977
704 => 0.27558424477514
705 => 0.26986989773385
706 => 0.270282455133
707 => 0.26693213555349
708 => 0.2669884550309
709 => 0.26668781724662
710 => 0.26759005386821
711 => 0.26338731381003
712 => 0.26437368850137
713 => 0.26299275815729
714 => 0.265023398618
715 => 0.26283876515917
716 => 0.26467493154005
717 => 0.26546736008016
718 => 0.26839143845293
719 => 0.26240687640602
720 => 0.25020394927314
721 => 0.25276915250266
722 => 0.24897501543383
723 => 0.24932617726485
724 => 0.2500355800505
725 => 0.24773617352007
726 => 0.24817482782345
727 => 0.24815915600497
728 => 0.24802410473991
729 => 0.24742594029405
730 => 0.24655848350433
731 => 0.25001416436547
801 => 0.25060135188214
802 => 0.25190659699456
803 => 0.25579012109288
804 => 0.25540206545565
805 => 0.25603500030024
806 => 0.25465330708828
807 => 0.24939027005016
808 => 0.24967607828257
809 => 0.24611204504472
810 => 0.25181545665162
811 => 0.25046481350175
812 => 0.24959404507658
813 => 0.24935644784416
814 => 0.25324959844756
815 => 0.25441449012576
816 => 0.25368860780488
817 => 0.25219980198738
818 => 0.25505874928291
819 => 0.25582368296988
820 => 0.25599492341273
821 => 0.26106042987162
822 => 0.25627802895302
823 => 0.25742920038711
824 => 0.26641031129945
825 => 0.25826568301054
826 => 0.26258007426206
827 => 0.26236890726131
828 => 0.26457600383454
829 => 0.26218786092198
830 => 0.26221746481555
831 => 0.26417721705091
901 => 0.26142509847952
902 => 0.26074363521811
903 => 0.25980219860321
904 => 0.26185779101008
905 => 0.26309002569155
906 => 0.27302093224753
907 => 0.27943675078706
908 => 0.27915822318374
909 => 0.28170344409624
910 => 0.28055679876361
911 => 0.27685397851477
912 => 0.28317424116871
913 => 0.28117424561398
914 => 0.28133912281752
915 => 0.28133298607977
916 => 0.28266280828102
917 => 0.28172050737502
918 => 0.27986313556409
919 => 0.2810961456521
920 => 0.2847577448043
921 => 0.29612346092433
922 => 0.30248386624081
923 => 0.29574055653792
924 => 0.30039200127445
925 => 0.29760279191175
926 => 0.29709590959876
927 => 0.30001736063237
928 => 0.30294392527928
929 => 0.30275751576316
930 => 0.30063298011026
1001 => 0.29943288382804
1002 => 0.3085204149388
1003 => 0.31521595305916
1004 => 0.31475936224681
1005 => 0.31677460560124
1006 => 0.32269142241899
1007 => 0.32323238199684
1008 => 0.32316423352384
1009 => 0.32182340876684
1010 => 0.32764928331967
1011 => 0.33250933036814
1012 => 0.32151304657575
1013 => 0.32570028749197
1014 => 0.32758007484374
1015 => 0.33034016038391
1016 => 0.33499688733422
1017 => 0.34005532793808
1018 => 0.34077064690245
1019 => 0.34026309386606
1020 => 0.33692691630964
1021 => 0.34246192237813
1022 => 0.34570419912119
1023 => 0.3476349007235
1024 => 0.35253083874883
1025 => 0.32759168377046
1026 => 0.30993851032035
1027 => 0.3071817123712
1028 => 0.31278776940652
1029 => 0.31426604193927
1030 => 0.31367015213491
1031 => 0.29379990046049
1101 => 0.30707709960837
1102 => 0.32136224951288
1103 => 0.32191100029882
1104 => 0.32906244502941
1105 => 0.33139124858132
1106 => 0.33714909895073
1107 => 0.33678894384243
1108 => 0.33819088877998
1109 => 0.33786860591714
1110 => 0.34853381126804
1111 => 0.36029911656841
1112 => 0.35989172145724
1113 => 0.35820031961954
1114 => 0.36071233977539
1115 => 0.37285539569212
1116 => 0.37173745769181
1117 => 0.37282343923337
1118 => 0.38714078651183
1119 => 0.40575537459272
1120 => 0.39710702955506
1121 => 0.41587144979254
1122 => 0.42768265767286
1123 => 0.44810892040018
1124 => 0.44555145170525
1125 => 0.45350324589016
1126 => 0.44097304898151
1127 => 0.41220118410866
1128 => 0.40764792635825
1129 => 0.41676366368141
1130 => 0.43917381438976
1201 => 0.41605788828465
1202 => 0.42073421002947
1203 => 0.41938742905237
1204 => 0.41931566481755
1205 => 0.42205461377435
1206 => 0.41808162545854
1207 => 0.40189495633295
1208 => 0.40931321140457
1209 => 0.40644866686755
1210 => 0.40962709259731
1211 => 0.42677974537837
1212 => 0.41919614871569
1213 => 0.41120744567293
1214 => 0.42122705212368
1215 => 0.4339854542458
1216 => 0.43318705637005
1217 => 0.43163783078667
1218 => 0.44037073428535
1219 => 0.45479493236453
1220 => 0.45869373514421
1221 => 0.46157175164865
1222 => 0.46196858150013
1223 => 0.46605617559871
1224 => 0.4440761519243
1225 => 0.47895901398262
1226 => 0.48498232064048
1227 => 0.48385018862928
1228 => 0.49054484048
1229 => 0.48857510407859
1230 => 0.48572126507513
1231 => 0.49633371225179
]
'min_raw' => 0.18295294582464
'max_raw' => 0.49633371225179
'avg_raw' => 0.33964332903822
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.182952'
'max' => '$0.496333'
'avg' => '$0.339643'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.063095742800422
'max_diff' => 0.22876094985729
'year' => 2032
]
7 => [
'items' => [
101 => 0.48416739794407
102 => 0.46689884648064
103 => 0.45742497761458
104 => 0.46990093237261
105 => 0.47751956259252
106 => 0.48255499253199
107 => 0.48407871058918
108 => 0.44578239859304
109 => 0.42514281043796
110 => 0.43837254981201
111 => 0.45451374491619
112 => 0.44398648677051
113 => 0.44439913535909
114 => 0.42939003175812
115 => 0.45584171754478
116 => 0.45198792941936
117 => 0.47198138903127
118 => 0.46720978943735
119 => 0.48351367960923
120 => 0.47922031892411
121 => 0.49704181908947
122 => 0.50415129800329
123 => 0.51608921960163
124 => 0.52487080332545
125 => 0.530027517253
126 => 0.52971792749114
127 => 0.55015139713679
128 => 0.53810249397781
129 => 0.52296623190168
130 => 0.52269246467502
131 => 0.53053174928674
201 => 0.54696073923019
202 => 0.55122053729045
203 => 0.55360118327379
204 => 0.54995514107942
205 => 0.53687692025301
206 => 0.53122981080825
207 => 0.53604131166769
208 => 0.53015725957357
209 => 0.54031478426145
210 => 0.55426323518811
211 => 0.55138293522991
212 => 0.56101134615148
213 => 0.57097573851693
214 => 0.58522526712839
215 => 0.58895062156595
216 => 0.59510849078868
217 => 0.60144696097354
218 => 0.60348270677035
219 => 0.60736957715129
220 => 0.60734909142577
221 => 0.6190624369353
222 => 0.63198261976441
223 => 0.63685968967948
224 => 0.64807424302598
225 => 0.62886971342492
226 => 0.64343656973306
227 => 0.65657623875507
228 => 0.64091058366206
301 => 0.66250203957827
302 => 0.66334038688421
303 => 0.67599843587206
304 => 0.66316707823411
305 => 0.65554785902784
306 => 0.67754425938792
307 => 0.68818762464205
308 => 0.68498175640893
309 => 0.66058494086163
310 => 0.64638494778446
311 => 0.60922082692739
312 => 0.65324333345313
313 => 0.67468541222769
314 => 0.66052941105763
315 => 0.6676688746424
316 => 0.70661947298205
317 => 0.72144933896532
318 => 0.71836483050939
319 => 0.71888606166311
320 => 0.72688798816657
321 => 0.76237293702433
322 => 0.74110953313408
323 => 0.75736460868363
324 => 0.76598624214308
325 => 0.77399449578906
326 => 0.75432875586908
327 => 0.72874391718027
328 => 0.72064012478906
329 => 0.65912187572555
330 => 0.65591958370158
331 => 0.65412204014915
401 => 0.64278878231864
402 => 0.63388394610444
403 => 0.62680248973154
404 => 0.60821863350717
405 => 0.61449013944807
406 => 0.58487135137866
407 => 0.60382040236007
408 => 0.55654810143064
409 => 0.59591787834868
410 => 0.57449069869629
411 => 0.58887847355072
412 => 0.58882827595966
413 => 0.56233582080448
414 => 0.54705552555441
415 => 0.55679272440575
416 => 0.56723177451418
417 => 0.5689254752731
418 => 0.58245997622577
419 => 0.58623716451854
420 => 0.57479210765139
421 => 0.5555684880666
422 => 0.56003369645207
423 => 0.546965038249
424 => 0.5240627174268
425 => 0.54051156407746
426 => 0.54612792352873
427 => 0.54860842781935
428 => 0.52608662564004
429 => 0.51900978642318
430 => 0.51524213660456
501 => 0.55266120622193
502 => 0.55471110732434
503 => 0.54422352345759
504 => 0.59162839700882
505 => 0.58089921413585
506 => 0.59288634011858
507 => 0.55962852559319
508 => 0.56089901889564
509 => 0.5451542365192
510 => 0.55397026258327
511 => 0.54773937951497
512 => 0.55325801479896
513 => 0.556565862034
514 => 0.57230806084658
515 => 0.59609762897207
516 => 0.56995670130005
517 => 0.55856672476837
518 => 0.56563300214896
519 => 0.58445142999663
520 => 0.61296231148345
521 => 0.59608329580829
522 => 0.60357391634065
523 => 0.60521028369246
524 => 0.59276432242872
525 => 0.61342121182798
526 => 0.62449140667331
527 => 0.63584713593056
528 => 0.64570699746433
529 => 0.63131140794738
530 => 0.64671675225722
531 => 0.63430276415283
601 => 0.6231661334887
602 => 0.62318302316042
603 => 0.61619685206459
604 => 0.60266026525222
605 => 0.60016391095552
606 => 0.61315026126176
607 => 0.62356408439541
608 => 0.62442181674755
609 => 0.63018744431589
610 => 0.63359948332015
611 => 0.66704210400398
612 => 0.68049300269488
613 => 0.69694050700164
614 => 0.70334773685967
615 => 0.72263120161331
616 => 0.70705823769831
617 => 0.70368892899676
618 => 0.65691355107768
619 => 0.66457301659153
620 => 0.67683655990769
621 => 0.65711577239002
622 => 0.66962407297041
623 => 0.67209347646701
624 => 0.65644566757642
625 => 0.6648038384068
626 => 0.64260701470627
627 => 0.59658145907183
628 => 0.6134724514285
629 => 0.62590990724956
630 => 0.60816012426566
701 => 0.63997592325284
702 => 0.62138979029593
703 => 0.61549887844031
704 => 0.59251633102982
705 => 0.6033632087282
706 => 0.61803376612758
707 => 0.60896906729012
708 => 0.62777967844923
709 => 0.65442052045729
710 => 0.6734063709618
711 => 0.67486386881529
712 => 0.66265723889408
713 => 0.68221844124449
714 => 0.68236092324816
715 => 0.66029580708704
716 => 0.64678104629744
717 => 0.64371046421075
718 => 0.65138138028639
719 => 0.66069528853146
720 => 0.67538072590138
721 => 0.68425482813896
722 => 0.7073937803144
723 => 0.71365451732733
724 => 0.72053316916767
725 => 0.72972516932404
726 => 0.74076252229223
727 => 0.71661342235469
728 => 0.71757291111476
729 => 0.69508560361998
730 => 0.67105469055569
731 => 0.68929115807588
801 => 0.71313291346292
802 => 0.70766358843434
803 => 0.70704817764045
804 => 0.70808312789505
805 => 0.70395943543495
806 => 0.68530812726911
807 => 0.67594155707159
808 => 0.68802682229329
809 => 0.69444960290536
810 => 0.70441077550934
811 => 0.70318285073106
812 => 0.72884176160708
813 => 0.73881203848831
814 => 0.73626121500989
815 => 0.73673062791891
816 => 0.75478133796988
817 => 0.77485743995823
818 => 0.79366135874529
819 => 0.8127895125826
820 => 0.78972977654718
821 => 0.77802146471518
822 => 0.79010145388815
823 => 0.78369164159482
824 => 0.82052432430617
825 => 0.82307453934236
826 => 0.85990455863152
827 => 0.89486063257405
828 => 0.87290534883386
829 => 0.89360819251316
830 => 0.91600000587993
831 => 0.95919744680522
901 => 0.94465006840588
902 => 0.93350700453846
903 => 0.92297686302665
904 => 0.94488841589984
905 => 0.9730772786256
906 => 0.97914888966716
907 => 0.98898721908842
908 => 0.97864341867565
909 => 0.99110138694059
910 => 1.0350834892244
911 => 1.0231991369466
912 => 1.0063214462071
913 => 1.0410410918742
914 => 1.0536059966719
915 => 1.141793078834
916 => 1.2531329128903
917 => 1.2070374904943
918 => 1.178424574323
919 => 1.1851492883307
920 => 1.2258068266368
921 => 1.238864737535
922 => 1.203368834382
923 => 1.2159065874564
924 => 1.2849908395812
925 => 1.322052324358
926 => 1.2717178500096
927 => 1.1328470315768
928 => 1.0048017948188
929 => 1.0387651575592
930 => 1.0349147662303
1001 => 1.1091371767024
1002 => 1.0229156990752
1003 => 1.0243674476311
1004 => 1.1001246989489
1005 => 1.0799139631054
1006 => 1.0471751594344
1007 => 1.0050408243165
1008 => 0.92715160889683
1009 => 0.85816295869814
1010 => 0.99346558887503
1011 => 0.98763109342994
1012 => 0.97918187940166
1013 => 0.99798469092115
1014 => 1.0892858063886
1015 => 1.0871810201642
1016 => 1.073791444076
1017 => 1.0839473195286
1018 => 1.0453947853646
1019 => 1.0553306512436
1020 => 1.0047815117991
1021 => 1.0276318339465
1022 => 1.0471049166655
1023 => 1.0510144263252
1024 => 1.0598227512131
1025 => 0.9845565794519
1026 => 1.018348880874
1027 => 1.038198692049
1028 => 0.94851652301793
1029 => 1.0364259639174
1030 => 0.98324636285365
1031 => 0.9651964075218
1101 => 0.98949829447535
1102 => 0.98002782549519
1103 => 0.97188567239065
1104 => 0.96734221105837
1105 => 0.98518683473566
1106 => 0.98435436171218
1107 => 0.95515709388392
1108 => 0.91707044823484
1109 => 0.9298535766662
1110 => 0.92520934626462
1111 => 0.90837805617165
1112 => 0.9197203134766
1113 => 0.86977475249067
1114 => 0.78384601075874
1115 => 0.8406131696154
1116 => 0.8384276957502
1117 => 0.83732568072402
1118 => 0.87998463167576
1119 => 0.8758839578512
1120 => 0.86844119470571
1121 => 0.9082413639898
1122 => 0.89371376681328
1123 => 0.93848439817891
1124 => 0.96797323157921
1125 => 0.96049390956506
1126 => 0.98822829990994
1127 => 0.93014807412697
1128 => 0.94943999535786
1129 => 0.9534160335861
1130 => 0.90775023607885
1201 => 0.87655487880279
1202 => 0.87447450412559
1203 => 0.82038605359393
1204 => 0.84927966728122
1205 => 0.87470485162706
1206 => 0.86252816139942
1207 => 0.85867338504162
1208 => 0.87836660145463
1209 => 0.87989693303092
1210 => 0.84500521091438
1211 => 0.85226030481954
1212 => 0.88251525246309
1213 => 0.85149795776512
1214 => 0.7912364208133
1215 => 0.77629072646831
1216 => 0.77429669533889
1217 => 0.73376278691733
1218 => 0.77728946923006
1219 => 0.75828890595799
1220 => 0.81831145767277
1221 => 0.78402689804069
1222 => 0.78254895919863
1223 => 0.78031483787237
1224 => 0.74542562845926
1225 => 0.7530641479958
1226 => 0.77845575031464
1227 => 0.78751576007888
1228 => 0.786570726834
1229 => 0.77833131761094
1230 => 0.78210327696065
1231 => 0.76995248165747
]
'min_raw' => 0.42514281043796
'max_raw' => 1.322052324358
'avg_raw' => 0.87359756739796
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.425142'
'max' => '$1.32'
'avg' => '$0.873597'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.24218986461332
'max_diff' => 0.82571861210617
'year' => 2033
]
8 => [
'items' => [
101 => 0.76566178293898
102 => 0.75211915753377
103 => 0.73221523943387
104 => 0.73498300132348
105 => 0.6955481314241
106 => 0.67406192133596
107 => 0.66811482156726
108 => 0.66016211121015
109 => 0.66901310136345
110 => 0.6954364173924
111 => 0.66356429224227
112 => 0.60892176924201
113 => 0.61220587798065
114 => 0.61958429525575
115 => 0.60583466347672
116 => 0.59282179091699
117 => 0.60413542783995
118 => 0.58098267050509
119 => 0.62238219536606
120 => 0.6212624542394
121 => 0.63669363697813
122 => 0.64634307222441
123 => 0.6241042480235
124 => 0.61851124387715
125 => 0.62169727322678
126 => 0.56903930504551
127 => 0.63239035755378
128 => 0.63293822008658
129 => 0.62824708846374
130 => 0.66197956818009
131 => 0.73316562180584
201 => 0.70638256497946
202 => 0.69601135585411
203 => 0.6762956797255
204 => 0.70256564756585
205 => 0.70054852391105
206 => 0.69142632577261
207 => 0.68590919187549
208 => 0.6960746802455
209 => 0.68464957536997
210 => 0.68259731259344
211 => 0.67016283305159
212 => 0.66572428958792
213 => 0.66243816871092
214 => 0.65882047251292
215 => 0.66680020885199
216 => 0.64871707648592
217 => 0.62691059156376
218 => 0.62509761829192
219 => 0.63010339689371
220 => 0.6278887124988
221 => 0.62508701523508
222 => 0.61973781216179
223 => 0.61815081787759
224 => 0.62330777940108
225 => 0.61748587051059
226 => 0.6260764142143
227 => 0.62374026166336
228 => 0.61069070341872
301 => 0.59442612228065
302 => 0.59428133339241
303 => 0.59077715606547
304 => 0.58631405938302
305 => 0.58507252798779
306 => 0.6031826248946
307 => 0.64066998350212
308 => 0.633310318011
309 => 0.63862843057719
310 => 0.66478828087339
311 => 0.6731037106284
312 => 0.66720161555004
313 => 0.65912246378141
314 => 0.65947790545684
315 => 0.68708681277582
316 => 0.68880874645953
317 => 0.6931595173614
318 => 0.69875148749802
319 => 0.66815395224467
320 => 0.658036764298
321 => 0.65324267936865
322 => 0.6384787533306
323 => 0.65440038179927
324 => 0.64512353072269
325 => 0.64637529487528
326 => 0.64556008182875
327 => 0.64600524327662
328 => 0.62237062335514
329 => 0.63098183665548
330 => 0.61666402437138
331 => 0.59749408097283
401 => 0.59742981660071
402 => 0.60212163308947
403 => 0.59933075705116
404 => 0.59182058139206
405 => 0.5928873663974
406 => 0.58354120722663
407 => 0.59402215933841
408 => 0.59432271554232
409 => 0.59028697807797
410 => 0.60643433089884
411 => 0.61304991452453
412 => 0.61039350567162
413 => 0.61286353379797
414 => 0.63361614533905
415 => 0.63699972652017
416 => 0.638502489774
417 => 0.63648898609185
418 => 0.61324285344083
419 => 0.61427391827409
420 => 0.60670864864989
421 => 0.6003167930259
422 => 0.60057243373
423 => 0.60385867840379
424 => 0.61820990162996
425 => 0.6484112048586
426 => 0.64955732223926
427 => 0.65094644993923
428 => 0.64529616946383
429 => 0.64359199080654
430 => 0.64584024234133
501 => 0.65718226392493
502 => 0.68635702276675
503 => 0.67604471447543
504 => 0.66766064731393
505 => 0.67501573454284
506 => 0.67388347651503
507 => 0.6643260792961
508 => 0.66405783498807
509 => 0.64571413404022
510 => 0.63893288546566
511 => 0.63326596658911
512 => 0.62707783911457
513 => 0.62340930971975
514 => 0.62904583818698
515 => 0.63033497893688
516 => 0.61801061093362
517 => 0.61633084511488
518 => 0.6263951900663
519 => 0.62196624708978
520 => 0.62652152477364
521 => 0.62757838827074
522 => 0.62740820890607
523 => 0.62278388377772
524 => 0.62573129071517
525 => 0.61875979464381
526 => 0.61117933975105
527 => 0.60634348180849
528 => 0.60212355437014
529 => 0.60446501537656
530 => 0.59611813442257
531 => 0.59344779921586
601 => 0.62473277556352
602 => 0.64784332396171
603 => 0.64750728743522
604 => 0.64546175150178
605 => 0.64242250002651
606 => 0.65695992374918
607 => 0.65189537600916
608 => 0.65558025764715
609 => 0.65651821467801
610 => 0.65935712811585
611 => 0.66037179565702
612 => 0.65730476561568
613 => 0.64701143819077
614 => 0.6213614449081
615 => 0.60942130379419
616 => 0.60548085834782
617 => 0.60562408605582
618 => 0.60167322647242
619 => 0.60283693168484
620 => 0.60126853729003
621 => 0.59829837774161
622 => 0.60428161639414
623 => 0.60497112891112
624 => 0.60357456951524
625 => 0.60390350980916
626 => 0.59234059448962
627 => 0.59321969782803
628 => 0.5883247387287
629 => 0.58740699290719
630 => 0.57503296255692
701 => 0.55311057414704
702 => 0.56525770538385
703 => 0.55058567899491
704 => 0.54502916028395
705 => 0.57133285564571
706 => 0.56869269418234
707 => 0.56417388540763
708 => 0.55748962542758
709 => 0.55501036838068
710 => 0.5399471874011
711 => 0.53905717430988
712 => 0.54652289354346
713 => 0.54307772099687
714 => 0.5382393939526
715 => 0.52071546385157
716 => 0.50101276444415
717 => 0.50160746509251
718 => 0.50787452719226
719 => 0.52609685547573
720 => 0.5189770765659
721 => 0.51381159527677
722 => 0.51284425590511
723 => 0.52495253340355
724 => 0.54208828282641
725 => 0.55012799306483
726 => 0.54216088438819
727 => 0.53300869892005
728 => 0.53356575004235
729 => 0.53727156159572
730 => 0.53766098999263
731 => 0.53170385811274
801 => 0.53338075584283
802 => 0.53083339485208
803 => 0.51520024515393
804 => 0.51491749104914
805 => 0.51108086399462
806 => 0.51096469245218
807 => 0.50443763274097
808 => 0.50352445196794
809 => 0.49056457874713
810 => 0.49909480654718
811 => 0.49337317759596
812 => 0.48474933317066
813 => 0.48326257914121
814 => 0.48321788551978
815 => 0.49207264548824
816 => 0.49899133352145
817 => 0.49347270778121
818 => 0.49221622367422
819 => 0.50563218670636
820 => 0.50392488312131
821 => 0.50244636922757
822 => 0.54055396441214
823 => 0.51038882925082
824 => 0.49723510855477
825 => 0.48095488136959
826 => 0.48625580543311
827 => 0.48737278802007
828 => 0.44822177637124
829 => 0.43233821582125
830 => 0.42688757639985
831 => 0.4237506563521
901 => 0.42518019020882
902 => 0.410883122758
903 => 0.42049098853662
904 => 0.40811093662524
905 => 0.40603538063412
906 => 0.42817244704581
907 => 0.43125269051414
908 => 0.41811141492164
909 => 0.42655024123129
910 => 0.42349020550295
911 => 0.40832315708236
912 => 0.40774388739394
913 => 0.40013359564402
914 => 0.38822496269825
915 => 0.38278239789075
916 => 0.37994786288449
917 => 0.38111744727206
918 => 0.38052606961583
919 => 0.37666693038569
920 => 0.38074727095916
921 => 0.37032368690707
922 => 0.36617293174901
923 => 0.3642981319409
924 => 0.35504660113556
925 => 0.36976990082128
926 => 0.37267057633861
927 => 0.37557696708277
928 => 0.40087511423346
929 => 0.39961129029363
930 => 0.41103564320244
1001 => 0.41059171385644
1002 => 0.4073333033446
1003 => 0.39358660537766
1004 => 0.39906579417595
1005 => 0.38220170270981
1006 => 0.394837426683
1007 => 0.38907100994208
1008 => 0.3928877953824
1009 => 0.38602487101504
1010 => 0.38982309672314
1011 => 0.37335843411173
1012 => 0.35798396382926
1013 => 0.36417109947969
1014 => 0.3708972235165
1015 => 0.38548117421283
1016 => 0.37679509349308
1017 => 0.37991893657698
1018 => 0.36945458517093
1019 => 0.34786363922605
1020 => 0.34798584163533
1021 => 0.34466454498603
1022 => 0.34179445976379
1023 => 0.37779279435213
1024 => 0.37331583239661
1025 => 0.36618237945079
1026 => 0.37573078969092
1027 => 0.37825554091206
1028 => 0.37832741702995
1029 => 0.385293690661
1030 => 0.38901159214667
1031 => 0.38966688839783
1101 => 0.4006284704726
1102 => 0.40430264819731
1103 => 0.41943606625625
1104 => 0.38869615418115
1105 => 0.38806308592092
1106 => 0.37586515540435
1107 => 0.36812903502908
1108 => 0.37639485418498
1109 => 0.38371724156027
1110 => 0.37609268239117
1111 => 0.37708828885543
1112 => 0.36685294112029
1113 => 0.37051159631773
1114 => 0.37366292304784
1115 => 0.37192294565389
1116 => 0.3693181152793
1117 => 0.3831168892989
1118 => 0.38233830839088
1119 => 0.39518804399038
1120 => 0.40520533178359
1121 => 0.42315810231342
1122 => 0.40442345036645
1123 => 0.40374068518601
1124 => 0.41041482434383
1125 => 0.40430162642137
1126 => 0.40816495648795
1127 => 0.42253566011284
1128 => 0.42283929043538
1129 => 0.41775309132733
1130 => 0.41744359564937
1201 => 0.41842045582499
1202 => 0.42414195638528
1203 => 0.42214268828556
1204 => 0.42445629194584
1205 => 0.42734948875016
1206 => 0.43931697742288
1207 => 0.44220229842613
1208 => 0.43519246425565
1209 => 0.43582537379546
1210 => 0.43320350339145
1211 => 0.43067080943312
1212 => 0.4363639355812
1213 => 0.4467682355155
1214 => 0.44670351090559
1215 => 0.44911710625966
1216 => 0.45062075616994
1217 => 0.44416599001601
1218 => 0.43996417459813
1219 => 0.44157541799781
1220 => 0.44415183128221
1221 => 0.44073992189371
1222 => 0.41968003659773
1223 => 0.42606826048585
1224 => 0.42500494766268
1225 => 0.42349066089922
1226 => 0.4299140694174
1227 => 0.42929451599581
1228 => 0.41073648566665
1229 => 0.41192451055694
1230 => 0.41080873339509
1231 => 0.41441403767156
]
'min_raw' => 0.34179445976379
'max_raw' => 0.76566178293898
'avg_raw' => 0.55372812135139
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.341794'
'max' => '$0.765661'
'avg' => '$0.553728'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.083348350674169
'max_diff' => -0.55639054141898
'year' => 2034
]
9 => [
'items' => [
101 => 0.40410692815884
102 => 0.40727732562551
103 => 0.40926576919598
104 => 0.41043697773492
105 => 0.41466818608281
106 => 0.41417170261961
107 => 0.41463732397365
108 => 0.42091108895598
109 => 0.45264163934045
110 => 0.45436866318836
111 => 0.44586416613194
112 => 0.44926154496219
113 => 0.44273932053318
114 => 0.44711773348748
115 => 0.45011333243118
116 => 0.43657679682515
117 => 0.43577525103795
118 => 0.42922610706863
119 => 0.43274524607527
120 => 0.42714604288066
121 => 0.4285198914928
122 => 0.42467849100328
123 => 0.43159224706921
124 => 0.43932290064
125 => 0.44127596902474
126 => 0.43613828695329
127 => 0.43241826654382
128 => 0.42588713615568
129 => 0.43674855154688
130 => 0.43992476040291
131 => 0.43673186827392
201 => 0.43599200540156
202 => 0.43458996659534
203 => 0.43628945456216
204 => 0.43990746208735
205 => 0.43820127655258
206 => 0.43932824215742
207 => 0.43503341139367
208 => 0.44416812681219
209 => 0.45867625328579
210 => 0.45872289928472
211 => 0.45701670455297
212 => 0.45631856642922
213 => 0.45806922576454
214 => 0.45901888663815
215 => 0.46468019791258
216 => 0.47075501046663
217 => 0.49910351000802
218 => 0.49114336477515
219 => 0.51629584002806
220 => 0.53618818231297
221 => 0.5421530259775
222 => 0.53666565047371
223 => 0.51789363529743
224 => 0.51697259067626
225 => 0.54502590668999
226 => 0.53709955999284
227 => 0.53615674627464
228 => 0.52612680122191
301 => 0.53205574098093
302 => 0.53075899488334
303 => 0.52871201772929
304 => 0.54002402177599
305 => 0.56119908352185
306 => 0.55789875157028
307 => 0.55543520686643
308 => 0.54464067110125
309 => 0.55114139267874
310 => 0.54882661023812
311 => 0.55877238460027
312 => 0.55288072819401
313 => 0.53703951012083
314 => 0.53956227631232
315 => 0.53918096527758
316 => 0.54702831935259
317 => 0.54467273844258
318 => 0.53872100029918
319 => 0.56112670946282
320 => 0.55967180733684
321 => 0.56173452591455
322 => 0.56264259842415
323 => 0.57628055875918
324 => 0.58186759474239
325 => 0.58313594972541
326 => 0.58844320179259
327 => 0.58300390045918
328 => 0.60476498394892
329 => 0.61923483467517
330 => 0.63604231090542
331 => 0.66060255110153
401 => 0.6698374286102
402 => 0.66816923064644
403 => 0.68679052446099
404 => 0.72025257551762
405 => 0.67493286788164
406 => 0.72265463006717
407 => 0.70754647113347
408 => 0.67172529808584
409 => 0.66941883684546
410 => 0.69367735112569
411 => 0.74748040100376
412 => 0.73400334723844
413 => 0.74750244463569
414 => 0.73175503047502
415 => 0.73097303863232
416 => 0.7467376278788
417 => 0.78357244993622
418 => 0.7660736067094
419 => 0.74098472405135
420 => 0.7595099645798
421 => 0.74346168680398
422 => 0.70730042534494
423 => 0.73399304158942
424 => 0.71614444926868
425 => 0.72135361739123
426 => 0.75886870367168
427 => 0.75435478923781
428 => 0.76019621249246
429 => 0.74988625334467
430 => 0.74025512576929
501 => 0.72227791093294
502 => 0.71695574388587
503 => 0.71842659938617
504 => 0.71695501500293
505 => 0.70689692852112
506 => 0.70472488570302
507 => 0.70110471918012
508 => 0.70222676016165
509 => 0.69541978798154
510 => 0.70826595087763
511 => 0.71065031191114
512 => 0.71999867798583
513 => 0.72096925636371
514 => 0.74700432281605
515 => 0.73266464571562
516 => 0.74228493914275
517 => 0.74142440954891
518 => 0.67250165152508
519 => 0.68199859947012
520 => 0.69677287016616
521 => 0.69011708124365
522 => 0.68070735292196
523 => 0.67310849278448
524 => 0.66159544265286
525 => 0.67779983962457
526 => 0.69910689849687
527 => 0.72150963853872
528 => 0.74842506281332
529 => 0.74241785344531
530 => 0.72100647340388
531 => 0.72196697227152
601 => 0.72790439832886
602 => 0.72021489211256
603 => 0.71794710661237
604 => 0.72759283942535
605 => 0.72765926428604
606 => 0.7188115580763
607 => 0.70897895173733
608 => 0.70893775275775
609 => 0.70718813543144
610 => 0.73206628351058
611 => 0.74574674948963
612 => 0.74731519286695
613 => 0.74564118075363
614 => 0.74628544157688
615 => 0.73832507985217
616 => 0.75652010618292
617 => 0.77321766164562
618 => 0.76874236009037
619 => 0.76203324685746
620 => 0.75668911501277
621 => 0.76748345246672
622 => 0.76700279761176
623 => 0.77307182306528
624 => 0.77279649701432
625 => 0.77075571202189
626 => 0.76874243297323
627 => 0.77672485683042
628 => 0.77442604695336
629 => 0.7721236663896
630 => 0.76750588969217
701 => 0.7681335222385
702 => 0.76142556742857
703 => 0.75832216059838
704 => 0.71165436798635
705 => 0.6991832088863
706 => 0.70310688941303
707 => 0.70439866692075
708 => 0.69897120249818
709 => 0.70675279227892
710 => 0.70554003975434
711 => 0.710258150391
712 => 0.70731047970177
713 => 0.70743145313504
714 => 0.71609992412244
715 => 0.71861641812839
716 => 0.71733650896637
717 => 0.71823291347073
718 => 0.7388901769251
719 => 0.73595337464399
720 => 0.73439325696479
721 => 0.73482542022396
722 => 0.74010379393327
723 => 0.74158145038336
724 => 0.73532051617126
725 => 0.73827320893972
726 => 0.7508453999953
727 => 0.75524495534036
728 => 0.76928622409544
729 => 0.76332124356463
730 => 0.77427022348724
731 => 0.80792365498702
801 => 0.83480834470937
802 => 0.8100840729839
803 => 0.85945438191441
804 => 0.89789624916701
805 => 0.89642078627357
806 => 0.88971755754168
807 => 0.84595251370451
808 => 0.80567926786551
809 => 0.83936954810218
810 => 0.83945543155497
811 => 0.83656140660421
812 => 0.81858686618615
813 => 0.83593593155974
814 => 0.83731303736654
815 => 0.83654222431672
816 => 0.82276118632174
817 => 0.80172008846494
818 => 0.80583146862089
819 => 0.81256599318621
820 => 0.79981613321506
821 => 0.79574178041302
822 => 0.80331677744935
823 => 0.82772499621372
824 => 0.8231107638435
825 => 0.82299026758874
826 => 0.84273191040758
827 => 0.82860115466246
828 => 0.80588332629112
829 => 0.80014677501601
830 => 0.77978588259336
831 => 0.7938492235127
901 => 0.7943553381159
902 => 0.78665299001824
903 => 0.80650832938918
904 => 0.80632535894141
905 => 0.82517504859686
906 => 0.86120857559795
907 => 0.85055168856155
908 => 0.83815888840424
909 => 0.83950632939641
910 => 0.85428443131283
911 => 0.84534925354291
912 => 0.84856240576724
913 => 0.8542795678221
914 => 0.85772887363895
915 => 0.83901002737117
916 => 0.83464576888023
917 => 0.82571802765436
918 => 0.82338894661271
919 => 0.83066040555775
920 => 0.82874463303017
921 => 0.79431280114328
922 => 0.79071448313419
923 => 0.79082483841031
924 => 0.78177669668578
925 => 0.76797610875302
926 => 0.80424322985001
927 => 0.80133047246789
928 => 0.79811501374754
929 => 0.79850888909363
930 => 0.81425121715505
1001 => 0.80511987187281
1002 => 0.82939704990372
1003 => 0.82440639193934
1004 => 0.81928774242964
1005 => 0.81858018914953
1006 => 0.81660994579095
1007 => 0.80985324821912
1008 => 0.80169412988656
1009 => 0.79630677323268
1010 => 0.73455090569037
1011 => 0.74601243548887
1012 => 0.75919788077073
1013 => 0.76374944364467
1014 => 0.75596368039023
1015 => 0.81016067760719
1016 => 0.82006299125399
1017 => 0.7900682373059
1018 => 0.78445744351994
1019 => 0.8105285203137
1020 => 0.79480447394755
1021 => 0.80188501106343
1022 => 0.78658076266563
1023 => 0.81767781387007
1024 => 0.8174409064417
1025 => 0.80534345116442
1026 => 0.81556813752498
1027 => 0.81379134665266
1028 => 0.80013334943932
1029 => 0.81811079674306
1030 => 0.81811971333263
1031 => 0.80647617564961
1101 => 0.79287907273398
1102 => 0.7904482318819
1103 => 0.78861691983738
1104 => 0.80143462056195
1105 => 0.81292693095169
1106 => 0.83431127140163
1107 => 0.83968780267014
1108 => 0.8606727621471
1109 => 0.8481772405177
1110 => 0.85371634341192
1111 => 0.85972982315753
1112 => 0.86261290648598
1113 => 0.85791507691706
1114 => 0.89051335673869
1115 => 0.89326565034113
1116 => 0.89418847057877
1117 => 0.88319651403507
1118 => 0.89295994414534
1119 => 0.88839195852757
1120 => 0.90027658808206
1121 => 0.90214024974678
1122 => 0.90056179461845
1123 => 0.90115335024673
1124 => 0.87333646914959
1125 => 0.87189401711896
1126 => 0.85222608132967
1127 => 0.86024091054185
1128 => 0.84525757149044
1129 => 0.85000894264914
1130 => 0.85210330178317
1201 => 0.85100932742538
1202 => 0.86069405696015
1203 => 0.85246005839607
1204 => 0.83072918239076
1205 => 0.80899238582281
1206 => 0.80871949804831
1207 => 0.8029965831983
1208 => 0.79885996396588
1209 => 0.7996568235845
1210 => 0.80246506081653
1211 => 0.79869674411286
1212 => 0.79950090554009
1213 => 0.81285534333175
1214 => 0.81553348059138
1215 => 0.8064321237674
1216 => 0.76988886279959
1217 => 0.76092105489626
1218 => 0.76736693737782
1219 => 0.76428622071963
1220 => 0.61683863021456
1221 => 0.6514792544827
1222 => 0.63089697182702
1223 => 0.64038223462005
1224 => 0.61937305378485
1225 => 0.62939973606492
1226 => 0.6275481739636
1227 => 0.68324927269618
1228 => 0.68237957665383
1229 => 0.68279585412601
1230 => 0.66292584577349
1231 => 0.69457930860858
]
'min_raw' => 0.40410692815884
'max_raw' => 0.90214024974678
'avg_raw' => 0.65312358895281
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.4041069'
'max' => '$0.90214'
'avg' => '$0.653123'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.062312468395053
'max_diff' => 0.1364784668078
'year' => 2035
]
10 => [
'items' => [
101 => 0.71017294262285
102 => 0.70728697597794
103 => 0.70801331160676
104 => 0.69553245903867
105 => 0.68291669606066
106 => 0.66892387336605
107 => 0.69492080836748
108 => 0.6920303929778
109 => 0.6986599659431
110 => 0.71552083659082
111 => 0.71800366384191
112 => 0.72134060884573
113 => 0.72014455160178
114 => 0.74863948759102
115 => 0.74518856282708
116 => 0.75350429860936
117 => 0.73639819918882
118 => 0.71704102396863
119 => 0.72072019014425
120 => 0.72036585685555
121 => 0.7158547874056
122 => 0.71178239560973
123 => 0.70500301065888
124 => 0.72645398780356
125 => 0.72558311730557
126 => 0.73968149839181
127 => 0.73718947259045
128 => 0.72054711438681
129 => 0.72114149946585
130 => 0.72513902477408
131 => 0.73897450550882
201 => 0.74308181818225
202 => 0.74117914730381
203 => 0.74568262814428
204 => 0.74924199577888
205 => 0.7461296299182
206 => 0.79019416710676
207 => 0.77189549909725
208 => 0.78081414256377
209 => 0.78294118647884
210 => 0.77749280821731
211 => 0.77867436637044
212 => 0.7804641050171
213 => 0.79133104761288
214 => 0.81984904935938
215 => 0.8324794782043
216 => 0.87047874655863
217 => 0.83143069691279
218 => 0.8291137472437
219 => 0.83595856294228
220 => 0.85826815609733
221 => 0.87634798591597
222 => 0.88234610851722
223 => 0.88313885943718
224 => 0.89439173618477
225 => 0.90084167528276
226 => 0.89302534096757
227 => 0.88640181603977
228 => 0.86267717189054
229 => 0.86542336405087
301 => 0.88434190476785
302 => 0.91106545782706
303 => 0.93399704646367
304 => 0.92596720336968
305 => 0.98722923799104
306 => 0.99330311849078
307 => 0.99246390459778
308 => 1.0063011082908
309 => 0.97883707685769
310 => 0.9670956713295
311 => 0.88783389730936
312 => 0.91010322276327
313 => 0.94247299514216
314 => 0.93818873438739
315 => 0.91468094043935
316 => 0.93397921369396
317 => 0.92759860104319
318 => 0.92256594711366
319 => 0.9456215103928
320 => 0.92027097149705
321 => 0.94222010412452
322 => 0.91407011449508
323 => 0.92600388301655
324 => 0.91922969883233
325 => 0.92361342621231
326 => 0.89798624552322
327 => 0.91181405015841
328 => 0.89741096338879
329 => 0.89740413445033
330 => 0.8970861855116
331 => 0.91403135322298
401 => 0.9145839345337
402 => 0.90206142999226
403 => 0.90025674144955
404 => 0.9069296208675
405 => 0.89911742669897
406 => 0.90277270318106
407 => 0.89922814129992
408 => 0.89843018576058
409 => 0.89207194026219
410 => 0.88933263327787
411 => 0.89040678612967
412 => 0.88674014868275
413 => 0.8845308669929
414 => 0.89664670377667
415 => 0.89017370093457
416 => 0.89565462325519
417 => 0.8894084205233
418 => 0.86775636051356
419 => 0.85530403183559
420 => 0.81440529762423
421 => 0.82600412791185
422 => 0.8336941643924
423 => 0.83115260738145
424 => 0.83661285529296
425 => 0.83694807016844
426 => 0.83517288791176
427 => 0.83311745427347
428 => 0.83211698285096
429 => 0.8395736771635
430 => 0.84390253919273
501 => 0.83446596243264
502 => 0.83225510452949
503 => 0.84179600464162
504 => 0.84761594819842
505 => 0.89058714147805
506 => 0.88740369668477
507 => 0.89539351839642
508 => 0.89449398708549
509 => 0.90286859311771
510 => 0.91655753460781
511 => 0.8887240890702
512 => 0.8935550128074
513 => 0.89237058186936
514 => 0.90530188827641
515 => 0.90534225840351
516 => 0.89758929424582
517 => 0.90179230189318
518 => 0.89944629832791
519 => 0.90368584385176
520 => 0.8873611798387
521 => 0.90724285846802
522 => 0.91851448910377
523 => 0.91867099570608
524 => 0.92401365917023
525 => 0.92944211467601
526 => 0.93986156230052
527 => 0.92915152193693
528 => 0.90988520192424
529 => 0.91127616799932
530 => 0.89998033162515
531 => 0.90017021667536
601 => 0.89915659539578
602 => 0.90219854915764
603 => 0.88802871762553
604 => 0.89135434876386
605 => 0.88669844569533
606 => 0.89354489178341
607 => 0.88617924755072
608 => 0.8923700107009
609 => 0.89504173884947
610 => 0.90490047323588
611 => 0.88472310446595
612 => 0.84358008365629
613 => 0.85222884544139
614 => 0.83943664741565
615 => 0.84062061404626
616 => 0.84301241506699
617 => 0.8352598054102
618 => 0.83673875901991
619 => 0.83668592038973
620 => 0.83623058562062
621 => 0.8342138324289
622 => 0.83128914129844
623 => 0.84294021058973
624 => 0.8449199542983
625 => 0.84932067932411
626 => 0.8624142519606
627 => 0.86110589528651
628 => 0.86323987930515
629 => 0.85858140417427
630 => 0.84083670734675
701 => 0.8418003297568
702 => 0.82978394286252
703 => 0.8490133932947
704 => 0.84445960561602
705 => 0.84152374907543
706 => 0.84072267341781
707 => 0.85384870248829
708 => 0.85777621611147
709 => 0.85532885318714
710 => 0.85030924042835
711 => 0.85994838084052
712 => 0.86252740817213
713 => 0.86310475728081
714 => 0.88018346596934
715 => 0.86405926737571
716 => 0.86794052223795
717 => 0.89822096472005
718 => 0.87076078180422
719 => 0.88530705312989
720 => 0.88459508884364
721 => 0.89203646903487
722 => 0.88398467847035
723 => 0.88408449006438
724 => 0.89069193155143
725 => 0.88141297164121
726 => 0.87911537067714
727 => 0.875941251401
728 => 0.88287182471762
729 => 0.88702638997807
730 => 0.92050913478532
731 => 0.94214051492948
801 => 0.94120143966871
802 => 0.94978282967687
803 => 0.94591683488167
804 => 0.93343251789007
805 => 0.95474172469446
806 => 0.94799860004647
807 => 0.94855449504956
808 => 0.94853380460978
809 => 0.9530173930065
810 => 0.94984035971258
811 => 0.94357810097448
812 => 0.94773528057221
813 => 0.96008061775856
814 => 0.99840092318619
815 => 1.01984547378
816 => 0.99710993431387
817 => 1.0127926049966
818 => 1.0033885908939
819 => 1.0016796017862
820 => 1.0115294779153
821 => 1.0213965949485
822 => 1.0207681022502
823 => 1.0136050819661
824 => 1.0095588735626
825 => 1.0401981191737
826 => 1.062772593414
827 => 1.061233165612
828 => 1.0680276992813
829 => 1.0879766602813
830 => 1.0898005432666
831 => 1.0895707759319
901 => 1.0850500916503
902 => 1.1046924344547
903 => 1.1210784223963
904 => 1.0840036838542
905 => 1.0981212589471
906 => 1.1044590932461
907 => 1.1137649143478
908 => 1.1294653943831
909 => 1.1465202800481
910 => 1.1489320278784
911 => 1.14722077738
912 => 1.135972621824
913 => 1.1546342812257
914 => 1.1655658436335
915 => 1.172075338883
916 => 1.1885823357589
917 => 1.1044982335531
918 => 1.0449793267608
919 => 1.0356845900018
920 => 1.0545858026988
921 => 1.0595699017526
922 => 1.0575608176735
923 => 0.99056687685656
924 => 1.0353318807681
925 => 1.0834952610284
926 => 1.0853454126158
927 => 1.1094570078229
928 => 1.11730873159
929 => 1.1367217261108
930 => 1.1355074380179
1001 => 1.1402341932555
1002 => 1.1391475940824
1003 => 1.1751060785438
1004 => 1.2147736267914
1005 => 1.2134000657307
1006 => 1.207697386345
1007 => 1.2161668376841
1008 => 1.2571079985084
1009 => 1.2533387924884
1010 => 1.2570002550766
1011 => 1.3052721910312
1012 => 1.368032574375
1013 => 1.3388740752723
1014 => 1.402139628193
1015 => 1.4419619401937
1016 => 1.5108305110949
1017 => 1.5022078268332
1018 => 1.5290178561042
1019 => 1.4867714223963
1020 => 1.38976507119
1021 => 1.3744134447862
1022 => 1.4051477896117
1023 => 1.4807051773516
1024 => 1.4027682185858
1025 => 1.4185347638388
1026 => 1.4139939977453
1027 => 1.4137520396172
1028 => 1.4229865972524
1029 => 1.4095913897604
1030 => 1.3550169046864
1031 => 1.3800280695863
1101 => 1.3703700576837
1102 => 1.3810863419422
1103 => 1.4389177083535
1104 => 1.4133490827354
1105 => 1.3864146126733
1106 => 1.4201964153686
1107 => 1.4632122588865
1108 => 1.4605204047061
1109 => 1.4552970824882
1110 => 1.4847406763459
1111 => 1.5333728672352
1112 => 1.5465179530126
1113 => 1.556221386594
1114 => 1.5575593261441
1115 => 1.5713409350341
1116 => 1.4972337506196
1117 => 1.6148437554929
1118 => 1.6351517544237
1119 => 1.631334692305
1120 => 1.6539061784254
1121 => 1.6472650746254
1122 => 1.6376431571766
1123 => 1.6734237637701
1124 => 1.6324041856567
1125 => 1.574182058746
1126 => 1.5422402484196
1127 => 1.5843038009297
1128 => 1.6099905446319
1129 => 1.6269678482353
1130 => 1.6321051700477
1201 => 1.5029864803896
1202 => 1.4333986679147
1203 => 1.4780036578852
1204 => 1.5324248241212
1205 => 1.4969314382934
1206 => 1.49832271182
1207 => 1.4477184711272
1208 => 1.5369021765546
1209 => 1.5239088608269
1210 => 1.5913182058072
1211 => 1.5752304246338
1212 => 1.6302001286496
1213 => 1.6157247633469
1214 => 1.6758111954118
1215 => 1.6997812999377
1216 => 1.7400308360856
1217 => 1.769638558721
1218 => 1.787024779758
1219 => 1.785980976261
1220 => 1.8548738457907
1221 => 1.8142501275626
1222 => 1.7632171631928
1223 => 1.7622941378743
1224 => 1.7887248332641
1225 => 1.8441163198939
1226 => 1.8584785264637
1227 => 1.8665050406079
1228 => 1.854212154791
1229 => 1.8101180201826
1230 => 1.791078396421
1231 => 1.8073007074969
]
'min_raw' => 0.66892387336605
'max_raw' => 1.8665050406079
'avg_raw' => 1.267714456987
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.668923'
'max' => '$1.86'
'avg' => '$1.26'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.26481694520721
'max_diff' => 0.96436479086114
'year' => 2036
]
11 => [
'items' => [
101 => 1.7874622150501
102 => 1.8217090187111
103 => 1.86873719486
104 => 1.8590260624548
105 => 1.8914889221111
106 => 1.9250845666629
107 => 1.9731278472467
108 => 1.9856881398289
109 => 2.006449825842
110 => 2.0278204206081
111 => 2.0346840796933
112 => 2.0477889345553
113 => 2.0477198655014
114 => 2.0872122276865
115 => 2.1307735261532
116 => 2.147216907878
117 => 2.1850275574608
118 => 2.1202781450934
119 => 2.1693913181617
120 => 2.2136926296518
121 => 2.1608747797647
122 => 2.2336718808535
123 => 2.236498427327
124 => 2.2791759232463
125 => 2.2359141051131
126 => 2.2102253756023
127 => 2.284387775156
128 => 2.3202726242063
129 => 2.3094638156317
130 => 2.2272082486827
131 => 2.1793319806112
201 => 2.0540305524255
202 => 2.2024555067303
203 => 2.2747489723569
204 => 2.2270210260716
205 => 2.2510922260091
206 => 2.3824168877551
207 => 2.4324168163059
208 => 2.4220171806932
209 => 2.4237745479192
210 => 2.4507536018023
211 => 2.5703935843562
212 => 2.4987025335768
213 => 2.5535076556852
214 => 2.582576094837
215 => 2.6095764811229
216 => 2.5432720659645
217 => 2.4570109960488
218 => 2.4296884942131
219 => 2.2222754224285
220 => 2.2114786712928
221 => 2.2054181277053
222 => 2.1672072576669
223 => 2.137183980655
224 => 2.1133083560822
225 => 2.0506515873383
226 => 2.0717964074807
227 => 1.9719345955869
228 => 2.0358226439512
301 => 1.876440780921
302 => 2.0091787325102
303 => 1.9369355003143
304 => 1.9854448877583
305 => 1.9852756430754
306 => 1.8959544808756
307 => 1.8444358986038
308 => 1.8772655443606
309 => 1.9124615306324
310 => 1.9181719609915
311 => 1.9638044759021
312 => 1.976539529946
313 => 1.9379517216501
314 => 1.8731379460697
315 => 1.8881927078922
316 => 1.844130814336
317 => 1.766914040695
318 => 1.8223724755995
319 => 1.8413084236111
320 => 1.8496716170102
321 => 1.7737377885407
322 => 1.7498777310319
323 => 1.7371748366195
324 => 1.8633358423505
325 => 1.8702472270368
326 => 1.8348876058103
327 => 1.9947164466908
328 => 1.958542257547
329 => 1.9989576897122
330 => 1.8868266460534
331 => 1.8911102029256
401 => 1.8380255698778
402 => 1.8677494172681
403 => 1.846741559977
404 => 1.8653480241358
405 => 1.8765006620352
406 => 1.9295765844171
407 => 2.0097847742868
408 => 1.9216488115392
409 => 1.8832467104399
410 => 1.9070711579803
411 => 1.9705188013294
412 => 2.0666452288284
413 => 2.0097364490244
414 => 2.0349915991276
415 => 2.0405087259018
416 => 1.9985462985518
417 => 2.0681924433794
418 => 2.1055163781967
419 => 2.1438030122193
420 => 2.1770462237739
421 => 2.1285104886495
422 => 2.1804506825569
423 => 2.138596054946
424 => 2.1010481271272
425 => 2.1011050718346
426 => 2.0775507082261
427 => 2.0319111606939
428 => 2.0234945278927
429 => 2.0672789146282
430 => 2.1023898463932
501 => 2.1052817509034
502 => 2.1247209667934
503 => 2.1362248945172
504 => 2.2489790250419
505 => 2.29432966909
506 => 2.3497835781883
507 => 2.3713860009932
508 => 2.4364015487386
509 => 2.3838962136296
510 => 2.3725363541047
511 => 2.2148299016979
512 => 2.2406543244446
513 => 2.2820017169483
514 => 2.2155117049711
515 => 2.2576843136795
516 => 2.2660100799766
517 => 2.2132523998068
518 => 2.2414325563103
519 => 2.1665944154712
520 => 2.011416041248
521 => 2.06836520127
522 => 2.1102989519261
523 => 2.0504543193456
524 => 2.1577235069391
525 => 2.0950590620325
526 => 2.0751974414209
527 => 1.9977101782362
528 => 2.0342811837011
529 => 2.0837439922387
530 => 2.0531817272312
531 => 2.1166030160691
601 => 2.2064244749034
602 => 2.2704365954291
603 => 2.2753506512014
604 => 2.2341951461824
605 => 2.3001471056263
606 => 2.3006274936495
607 => 2.2262334139751
608 => 2.1806674544024
609 => 2.170314772516
610 => 2.1961778016313
611 => 2.2275802935558
612 => 2.277093270953
613 => 2.307012926217
614 => 2.3850275189866
615 => 2.4061360309364
616 => 2.4293278858682
617 => 2.4603193561604
618 => 2.497532562296
619 => 2.4161121858203
620 => 2.4193471691642
621 => 2.3435296419319
622 => 2.2625077407509
623 => 2.3239932642247
624 => 2.4043774070903
625 => 2.3859371959003
626 => 2.3838622954421
627 => 2.3873517024834
628 => 2.3734483854472
629 => 2.3105641977733
630 => 2.2789841523993
701 => 2.3197304678606
702 => 2.3413853211184
703 => 2.3749701100196
704 => 2.3708300758986
705 => 2.4573408853651
706 => 2.4909563699726
707 => 2.4823560905223
708 => 2.4839387489185
709 => 2.5447979781157
710 => 2.612485957638
711 => 2.6758846826763
712 => 2.7403765888239
713 => 2.6626290788011
714 => 2.6231536880113
715 => 2.6638822149058
716 => 2.6422710852401
717 => 2.7664550465772
718 => 2.775053274622
719 => 2.8992282560453
720 => 3.0170850998976
721 => 2.9430613278986
722 => 3.0128624107898
723 => 3.0883579729023
724 => 3.2340011609309
725 => 3.184953658992
726 => 3.1473840411792
727 => 3.1118809338811
728 => 3.1857572642088
729 => 3.2807979829723
730 => 3.3012688435052
731 => 3.3344394580392
801 => 3.2995646127665
802 => 3.3415675225593
803 => 3.4898562511416
804 => 3.4497873276979
805 => 3.3928830150069
806 => 3.5099427244217
807 => 3.5523061782009
808 => 3.8496350827359
809 => 4.2250251067558
810 => 4.0696111718678
811 => 3.9731407273065
812 => 3.9958135700879
813 => 4.1328932991057
814 => 4.1769189573731
815 => 4.0572420416479
816 => 4.0995139514963
817 => 4.3324363308434
818 => 4.4573917143186
819 => 4.2876855198124
820 => 3.8194728598151
821 => 3.3877594042526
822 => 3.502269252978
823 => 3.4892873897869
824 => 3.7395334287368
825 => 3.4488316971254
826 => 3.4537263687396
827 => 3.7091472307599
828 => 3.641005323795
829 => 3.530624161468
830 => 3.3885653088927
831 => 3.1259563810538
901 => 2.8933563302752
902 => 3.3495385944446
903 => 3.3298671857
904 => 3.3013800706984
905 => 3.3647750625067
906 => 3.6726031477456
907 => 3.6655067140386
908 => 3.6203628234267
909 => 3.6546040665758
910 => 3.52462150599
911 => 3.5581209715008
912 => 3.3876910186356
913 => 3.4647324751142
914 => 3.5303873330683
915 => 3.5435685178394
916 => 3.5732664001766
917 => 3.3195012471673
918 => 3.433434350715
919 => 3.5003593749612
920 => 3.1979896806638
921 => 3.4943824982976
922 => 3.3150837604299
923 => 3.254227075821
924 => 3.3361625843884
925 => 3.3042322370148
926 => 3.2767803993559
927 => 3.2614618022597
928 => 3.3216261968596
929 => 3.3188194559395
930 => 3.2203788289684
1001 => 3.0919670440378
1002 => 3.1350662540337
1003 => 3.1194079069849
1004 => 3.0626600373133
1005 => 3.1009012497081
1006 => 2.9325063037563
1007 => 2.6427915516539
1008 => 2.8341859910956
1009 => 2.8268175133742
1010 => 2.8231019927732
1011 => 2.9669296242598
1012 => 2.9531039161604
1013 => 2.9280101205783
1014 => 3.0621991700787
1015 => 3.0132183619136
1016 => 3.1641656713485
1017 => 3.2635893320022
1018 => 3.2383722756419
1019 => 3.331880709043
1020 => 3.1360591727838
1021 => 3.2011032321327
1022 => 3.2145087226173
1023 => 3.0605432980374
1024 => 2.9553659729909
1025 => 2.9483518445196
1026 => 2.7659888572171
1027 => 2.8634056930515
1028 => 2.9491284772032
1029 => 2.9080739159513
1030 => 2.8950772683291
1031 => 2.961474322402
1101 => 2.9666339421558
1102 => 2.8489940649777
1103 => 2.8734551206134
1104 => 2.9754617889266
1105 => 2.8708848142941
1106 => 2.6677088351348
1107 => 2.6173183831757
1108 => 2.610595368004
1109 => 2.4739324657736
1110 => 2.6206857141269
1111 => 2.5566239884781
1112 => 2.7589942122252
1113 => 2.6434014257542
1114 => 2.6384184517618
1115 => 2.6308859557289
1116 => 2.5132545503058
1117 => 2.5390083522277
1118 => 2.6246179122307
1119 => 2.6551643677005
1120 => 2.6519781221353
1121 => 2.6241983786825
1122 => 2.6369158029799
1123 => 2.5959485482738
1124 => 2.5814821579774
1125 => 2.5358222509078
1126 => 2.4687148013868
1127 => 2.4780465038366
1128 => 2.3450890867161
1129 => 2.2726468292847
1130 => 2.2525957672013
1201 => 2.2257826489917
1202 => 2.25562438025
1203 => 2.3447124350586
1204 => 2.2372533398743
1205 => 2.0530222585597
1206 => 2.0640948604612
1207 => 2.0889717094489
1208 => 2.0426138659372
1209 => 1.9987400575723
1210 => 2.036884774351
1211 => 1.9588236365226
1212 => 2.0984050250139
1213 => 2.0946297396276
1214 => 2.146657049602
1215 => 2.1791907942368
1216 => 2.1042110457784
1217 => 2.0853538418079
1218 => 2.0960957622016
1219 => 1.9185557460165
1220 => 2.1321482425774
1221 => 2.1339953993573
1222 => 2.1181789215665
1223 => 2.2319103320567
1224 => 2.4719190819075
1225 => 2.381618135884
1226 => 2.3466508802232
1227 => 2.2801781016511
1228 => 2.3687491323354
1229 => 2.3619482591021
1230 => 2.3311921311869
1231 => 2.3125907290587
]
'min_raw' => 1.7371748366195
'max_raw' => 4.4573917143186
'avg_raw' => 3.097283275469
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$1.73'
'max' => '$4.45'
'avg' => '$3.09'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.0682509632534
'max_diff' => 2.5908866737107
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.054527933096263
]
1 => [
'year' => 2028
'avg' => 0.09358576276527
]
2 => [
'year' => 2029
'avg' => 0.25565943668207
]
3 => [
'year' => 2030
'avg' => 0.19724087466076
]
4 => [
'year' => 2031
'avg' => 0.19371498270936
]
5 => [
'year' => 2032
'avg' => 0.33964332903822
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.054527933096263
'min' => '$0.054527'
'max_raw' => 0.33964332903822
'max' => '$0.339643'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.33964332903822
]
1 => [
'year' => 2033
'avg' => 0.87359756739796
]
2 => [
'year' => 2034
'avg' => 0.55372812135139
]
3 => [
'year' => 2035
'avg' => 0.65312358895281
]
4 => [
'year' => 2036
'avg' => 1.267714456987
]
5 => [
'year' => 2037
'avg' => 3.097283275469
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.33964332903822
'min' => '$0.339643'
'max_raw' => 3.097283275469
'max' => '$3.09'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 3.097283275469
]
]
]
]
'prediction_2025_max_price' => '$0.093232'
'last_price' => 0.090401
'sma_50day_nextmonth' => '$0.094912'
'sma_200day_nextmonth' => '$0.170749'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.112445'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.124642'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.111751'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.114043'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.148529'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.161361'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.1881045'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.102999'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.109036'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.112988'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.119029'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.1380099'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.157783'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.177181'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.156926'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.17243'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.212088'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.196478'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0947053'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.103514'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.123047'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.148018'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.173566'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.203679'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.370159'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '44.73'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 46.68
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0.08
'momentum_10_action' => 'SELL'
'vwma_10' => '0.136814'
'vwma_10_action' => 'SELL'
'hma_9' => '0.125218'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 11.44
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -51.26
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.74
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.002417'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -88.56
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 51.06
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.017394'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 0
'sell_pct' => 100
'buy_pct' => 0
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767711299
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Clams para 2026
A previsão de preço para Clams em 2026 sugere que o preço médio poderia variar entre $0.031233 na extremidade inferior e $0.093232 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Clams poderia potencialmente ganhar 3.13% até 2026 se CLAM atingir a meta de preço prevista.
Previsão de preço de Clams 2027-2032
A previsão de preço de CLAM para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.054527 na extremidade inferior e $0.339643 na extremidade superior. Considerando a volatilidade de preços no mercado, se Clams atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Clams | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.030067 | $0.054527 | $0.078988 |
| 2028 | $0.054263 | $0.093585 | $0.132908 |
| 2029 | $0.1192011 | $0.255659 | $0.392117 |
| 2030 | $0.101375 | $0.19724 | $0.2931062 |
| 2031 | $0.119857 | $0.193714 | $0.267572 |
| 2032 | $0.182952 | $0.339643 | $0.496333 |
Previsão de preço de Clams 2032-2037
A previsão de preço de Clams para 2032-2037 é atualmente estimada entre $0.339643 na extremidade inferior e $3.09 na extremidade superior. Comparado ao preço atual, Clams poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Clams | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.182952 | $0.339643 | $0.496333 |
| 2033 | $0.425142 | $0.873597 | $1.32 |
| 2034 | $0.341794 | $0.553728 | $0.765661 |
| 2035 | $0.4041069 | $0.653123 | $0.90214 |
| 2036 | $0.668923 | $1.26 | $1.86 |
| 2037 | $1.73 | $3.09 | $4.45 |
Clams Histograma de preços potenciais
Previsão de preço de Clams baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Clams é Baixista, com 0 indicadores técnicos mostrando sinais de alta e 32 indicando sinais de baixa. A previsão de preço de CLAM foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Clams
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Clams está projetado para aumentar no próximo mês, alcançando $0.170749 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Clams é esperado para alcançar $0.094912 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 44.73, sugerindo que o mercado de CLAM está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de CLAM para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.112445 | SELL |
| SMA 5 | $0.124642 | SELL |
| SMA 10 | $0.111751 | SELL |
| SMA 21 | $0.114043 | SELL |
| SMA 50 | $0.148529 | SELL |
| SMA 100 | $0.161361 | SELL |
| SMA 200 | $0.1881045 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.102999 | SELL |
| EMA 5 | $0.109036 | SELL |
| EMA 10 | $0.112988 | SELL |
| EMA 21 | $0.119029 | SELL |
| EMA 50 | $0.1380099 | SELL |
| EMA 100 | $0.157783 | SELL |
| EMA 200 | $0.177181 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.156926 | SELL |
| SMA 50 | $0.17243 | SELL |
| SMA 100 | $0.212088 | SELL |
| SMA 200 | $0.196478 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.148018 | SELL |
| EMA 50 | $0.173566 | SELL |
| EMA 100 | $0.203679 | SELL |
| EMA 200 | $0.370159 | SELL |
Osciladores de Clams
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 44.73 | NEUTRAL |
| Stoch RSI (14) | 46.68 | NEUTRAL |
| Estocástico Rápido (14) | 11.44 | BUY |
| Índice de Canal de Commodities (20) | -51.26 | NEUTRAL |
| Índice Direcional Médio (14) | 10.74 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.002417 | NEUTRAL |
| Momentum (10) | -0.08 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -88.56 | BUY |
| Oscilador Ultimate (7, 14, 28) | 51.06 | NEUTRAL |
| VWMA (10) | 0.136814 | SELL |
| Média Móvel de Hull (9) | 0.125218 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.017394 | SELL |
Previsão do preço de Clams com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Clams
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Clams por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.127028 | $0.178496 | $0.250817 | $0.352439 | $0.495236 | $0.69589 |
| Amazon.com stock | $0.188627 | $0.393581 | $0.821231 | $1.71 | $3.57 | $7.46 |
| Apple stock | $0.128226 | $0.18188 | $0.257983 | $0.365929 | $0.519042 | $0.736222 |
| Netflix stock | $0.142638 | $0.225061 | $0.355111 | $0.56031 | $0.884081 | $1.39 |
| Google stock | $0.117068 | $0.1516036 | $0.196326 | $0.254241 | $0.329241 | $0.426366 |
| Tesla stock | $0.204932 | $0.464565 | $1.05 | $2.38 | $5.41 | $12.26 |
| Kodak stock | $0.067791 | $0.050836 | $0.038121 | $0.028587 | $0.021437 | $0.016075 |
| Nokia stock | $0.059886 | $0.039672 | $0.026281 | $0.01741 | $0.011533 | $0.00764 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Clams
Você pode fazer perguntas como: 'Devo investir em Clams agora?', 'Devo comprar CLAM hoje?', 'Clams será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Clams regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Clams, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Clams para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Clams é de $0.0904 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Clams com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Clams tiver 1% da média anterior do crescimento anual do Bitcoin | $0.09275 | $0.095161 | $0.097635 | $0.100173 |
| Se Clams tiver 2% da média anterior do crescimento anual do Bitcoin | $0.09510062 | $0.100044 | $0.105245 | $0.110716 |
| Se Clams tiver 5% da média anterior do crescimento anual do Bitcoin | $0.10215 | $0.115426 | $0.130427 | $0.147378 |
| Se Clams tiver 10% da média anterior do crescimento anual do Bitcoin | $0.113899 | $0.1435051 | $0.1808067 | $0.2278042 |
| Se Clams tiver 20% da média anterior do crescimento anual do Bitcoin | $0.137397 | $0.208825 | $0.317385 | $0.482383 |
| Se Clams tiver 50% da média anterior do crescimento anual do Bitcoin | $0.207891 | $0.47808 | $1.09 | $2.52 |
| Se Clams tiver 100% da média anterior do crescimento anual do Bitcoin | $0.325382 | $1.17 | $4.21 | $15.17 |
Perguntas Frequentes sobre Clams
CLAM é um bom investimento?
A decisão de adquirir Clams depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Clams experimentou uma escalada de 1.6051% nas últimas 24 horas, e Clams registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Clams dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Clams pode subir?
Parece que o valor médio de Clams pode potencialmente subir para $0.093232 até o final deste ano. Observando as perspectivas de Clams em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.2931062. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Clams na próxima semana?
Com base na nossa nova previsão experimental de Clams, o preço de Clams aumentará 0.86% na próxima semana e atingirá $0.091174 até 13 de janeiro de 2026.
Qual será o preço de Clams no próximo mês?
Com base na nossa nova previsão experimental de Clams, o preço de Clams diminuirá -11.62% no próximo mês e atingirá $0.079898 até 5 de fevereiro de 2026.
Até onde o preço de Clams pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Clams em 2026, espera-se que CLAM fluctue dentro do intervalo de $0.031233 e $0.093232. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Clams não considera flutuações repentinas e extremas de preço.
Onde estará Clams em 5 anos?
O futuro de Clams parece seguir uma tendência de alta, com um preço máximo de $0.2931062 projetada após um período de cinco anos. Com base na previsão de Clams para 2030, o valor de Clams pode potencialmente atingir seu pico mais alto de aproximadamente $0.2931062, enquanto seu pico mais baixo está previsto para cerca de $0.101375.
Quanto será Clams em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Clams, espera-se que o valor de CLAM em 2026 aumente 3.13% para $0.093232 se o melhor cenário ocorrer. O preço ficará entre $0.093232 e $0.031233 durante 2026.
Quanto será Clams em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Clams, o valor de CLAM pode diminuir -12.62% para $0.078988 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.078988 e $0.030067 ao longo do ano.
Quanto será Clams em 2028?
Nosso novo modelo experimental de previsão de preços de Clams sugere que o valor de CLAM em 2028 pode aumentar 47.02%, alcançando $0.132908 no melhor cenário. O preço é esperado para variar entre $0.132908 e $0.054263 durante o ano.
Quanto será Clams em 2029?
Com base no nosso modelo de previsão experimental, o valor de Clams pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.392117 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.392117 e $0.1192011.
Quanto será Clams em 2030?
Usando nossa nova simulação experimental para previsões de preços de Clams, espera-se que o valor de CLAM em 2030 aumente 224.23%, alcançando $0.2931062 no melhor cenário. O preço está previsto para variar entre $0.2931062 e $0.101375 ao longo de 2030.
Quanto será Clams em 2031?
Nossa simulação experimental indica que o preço de Clams poderia aumentar 195.98% em 2031, potencialmente atingindo $0.267572 sob condições ideais. O preço provavelmente oscilará entre $0.267572 e $0.119857 durante o ano.
Quanto será Clams em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Clams, CLAM poderia ver um 449.04% aumento em valor, atingindo $0.496333 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.496333 e $0.182952 ao longo do ano.
Quanto será Clams em 2033?
De acordo com nossa previsão experimental de preços de Clams, espera-se que o valor de CLAM seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $1.32. Ao longo do ano, o preço de CLAM poderia variar entre $1.32 e $0.425142.
Quanto será Clams em 2034?
Os resultados da nossa nova simulação de previsão de preços de Clams sugerem que CLAM pode aumentar 746.96% em 2034, atingindo potencialmente $0.765661 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.765661 e $0.341794.
Quanto será Clams em 2035?
Com base em nossa previsão experimental para o preço de Clams, CLAM poderia aumentar 897.93%, com o valor potencialmente atingindo $0.90214 em 2035. A faixa de preço esperada para o ano está entre $0.90214 e $0.4041069.
Quanto será Clams em 2036?
Nossa recente simulação de previsão de preços de Clams sugere que o valor de CLAM pode aumentar 1964.7% em 2036, possivelmente atingindo $1.86 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $1.86 e $0.668923.
Quanto será Clams em 2037?
De acordo com a simulação experimental, o valor de Clams poderia aumentar 4830.69% em 2037, com um pico de $4.45 sob condições favoráveis. O preço é esperado para cair entre $4.45 e $1.73 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de Clams?
Traders de Clams utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Clams
Médias móveis são ferramentas populares para a previsão de preço de Clams. Uma média móvel simples (SMA) calcula o preço médio de fechamento de CLAM em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de CLAM acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de CLAM.
Como ler gráficos de Clams e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Clams em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de CLAM dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Clams?
A ação de preço de Clams é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de CLAM. A capitalização de mercado de Clams pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de CLAM, grandes detentores de Clams, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Clams.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


