Previsão de Preço Charli3 - Projeção C3
Previsão de Preço Charli3 até $0.0197098 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0066029 | $0.0197098 |
| 2027 | $0.006356 | $0.016698 |
| 2028 | $0.011471 | $0.028097 |
| 2029 | $0.025199 | $0.082895 |
| 2030 | $0.021431 | $0.061964 |
| 2031 | $0.025338 | $0.056566 |
| 2032 | $0.038677 | $0.104927 |
| 2033 | $0.089877 | $0.279488 |
| 2034 | $0.072256 | $0.161864 |
| 2035 | $0.08543 | $0.190716 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Charli3 hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.85, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Charli3 para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Charli3'
'name_with_ticker' => 'Charli3 <small>C3</small>'
'name_lang' => 'Charli3'
'name_lang_with_ticker' => 'Charli3 <small>C3</small>'
'name_with_lang' => 'Charli3'
'name_with_lang_with_ticker' => 'Charli3 <small>C3</small>'
'image' => '/uploads/coins/charli3.png?1717117060'
'price_for_sd' => 0.01911
'ticker' => 'C3'
'marketcap' => '$683.18K'
'low24h' => '$0.01793'
'high24h' => '$0.03072'
'volume24h' => '$949.84'
'current_supply' => '35.67M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01911'
'change_24h_pct' => '6.0443%'
'ath_price' => '$4.19'
'ath_days' => 1605
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 de ago. de 2021'
'ath_pct' => '-99.54%'
'fdv' => '$1.92M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.942313'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019274'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.01689'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0066029'
'current_year_max_price_prediction' => '$0.0197098'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.021431'
'grand_prediction_max_price' => '$0.061964'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.019473347187509
107 => 0.019546053597082
108 => 0.019709864850331
109 => 0.018310115626683
110 => 0.018938561933623
111 => 0.019307715261495
112 => 0.017639867096258
113 => 0.019274747265809
114 => 0.01828574910686
115 => 0.017950068277459
116 => 0.018402018291661
117 => 0.018225892931591
118 => 0.01807447068943
119 => 0.017989974476541
120 => 0.018321836687068
121 => 0.018306354918285
122 => 0.017763363930184
123 => 0.017055054321349
124 => 0.017292786275544
125 => 0.017206416027836
126 => 0.016893399108158
127 => 0.017104334718214
128 => 0.016175481043598
129 => 0.014577436574033
130 => 0.015633153700053
131 => 0.015592509739101
201 => 0.015572015210932
202 => 0.016365357453258
203 => 0.016289095902178
204 => 0.016150680440212
205 => 0.016890856999653
206 => 0.016620682598677
207 => 0.017453296441389
208 => 0.018001709768286
209 => 0.017862614409272
210 => 0.01837839979393
211 => 0.017298263139618
212 => 0.01765704120862
213 => 0.017730984871396
214 => 0.016881723335804
215 => 0.016301573235077
216 => 0.016262883837554
217 => 0.015256983512502
218 => 0.015794327346801
219 => 0.016267167684185
220 => 0.016040713856471
221 => 0.015969025339732
222 => 0.016335266424408
223 => 0.01636372649333
224 => 0.015714833905843
225 => 0.015849759222538
226 => 0.01641242022262
227 => 0.015835581608975
228 => 0.014714878408714
301 => 0.014436928520115
302 => 0.014399844881344
303 => 0.01364602273898
304 => 0.014455502460741
305 => 0.014102142869484
306 => 0.015218401584365
307 => 0.014580800593041
308 => 0.014553314888662
309 => 0.014511766215217
310 => 0.013862920357284
311 => 0.014004976363866
312 => 0.014477192165484
313 => 0.014645684083394
314 => 0.014628108995942
315 => 0.01447487805044
316 => 0.014545026392622
317 => 0.014319054141152
318 => 0.014239258635953
319 => 0.013987402072061
320 => 0.013617242500291
321 => 0.013668715459066
322 => 0.012935332489869
323 => 0.01253574652467
324 => 0.012425146395962
325 => 0.012277247281555
326 => 0.012441851994478
327 => 0.012933254908062
328 => 0.012340518737336
329 => 0.011324314148235
330 => 0.011385389775569
331 => 0.01152260857667
401 => 0.011266902248611
402 => 0.011024897668908
403 => 0.011235301016507
404 => 0.010804721735717
405 => 0.011574642025637
406 => 0.011553817839471
407 => 0.011840796512002
408 => 0.012020250165331
409 => 0.011606667593218
410 => 0.011502652694778
411 => 0.011561904308143
412 => 0.010582607123819
413 => 0.011760767039366
414 => 0.01177095581524
415 => 0.011683713330423
416 => 0.012311047113846
417 => 0.013634917067181
418 => 0.013136823938191
419 => 0.012943947223701
420 => 0.012577288448464
421 => 0.013065839496423
422 => 0.013028326398524
423 => 0.012858677943402
424 => 0.012756074028408
425 => 0.012945124887791
426 => 0.012732648534797
427 => 0.01269448194334
428 => 0.012463233924769
429 => 0.012380688903254
430 => 0.012319575855536
501 => 0.012252296394843
502 => 0.012400698120135
503 => 0.01206440028675
504 => 0.01165885806737
505 => 0.011625141619856
506 => 0.011718235695822
507 => 0.011677048497246
508 => 0.011624944431395
509 => 0.011525463579987
510 => 0.011495949736447
511 => 0.011591855409872
512 => 0.011483583496223
513 => 0.011643344602689
514 => 0.011599898421715
515 => 0.011357211586521
516 => 0.011054733935696
517 => 0.011052041250135
518 => 0.010986872936427
519 => 0.010903871290799
520 => 0.010880782131806
521 => 0.011217581433435
522 => 0.011914745908254
523 => 0.011777875840115
524 => 0.011876778491354
525 => 0.012363281647899
526 => 0.012517926371704
527 => 0.012408163209708
528 => 0.012257912623671
529 => 0.012264522886922
530 => 0.012777974623356
531 => 0.012809997978344
601 => 0.012890910665275
602 => 0.012994906333903
603 => 0.012425874121765
604 => 0.012237721520902
605 => 0.012148564380305
606 => 0.01187399489542
607 => 0.01217009454506
608 => 0.011997569959466
609 => 0.012020849420341
610 => 0.012005688640906
611 => 0.012013967451645
612 => 0.011574426817225
613 => 0.011734572322832
614 => 0.011468299359029
615 => 0.011111789751039
616 => 0.011110594605824
617 => 0.011197849827313
618 => 0.011145947007274
619 => 0.011006277853094
620 => 0.011026117197225
621 => 0.010852303666694
622 => 0.011047221306827
623 => 0.011052810847297
624 => 0.010977756938611
625 => 0.011278054456687
626 => 0.011401086594862
627 => 0.011351684504354
628 => 0.011397620412496
629 => 0.011783563409377
630 => 0.011846488957743
701 => 0.011874436329698
702 => 0.011836990553595
703 => 0.011404674741993
704 => 0.011423849786587
705 => 0.011283156032203
706 => 0.011164284635691
707 => 0.011169038868154
708 => 0.01123015421816
709 => 0.011497048536008
710 => 0.01205871189364
711 => 0.012080026607491
712 => 0.012105860662473
713 => 0.012000780577705
714 => 0.011969087418658
715 => 0.01201089887614
716 => 0.01222183010241
717 => 0.012764402483645
718 => 0.012572621166926
719 => 0.012416699971179
720 => 0.012553484895901
721 => 0.012532427928896
722 => 0.012354685936388
723 => 0.012349697310646
724 => 0.012008553599471
725 => 0.011882440536916
726 => 0.011777051022446
727 => 0.011661968423907
728 => 0.01159374360189
729 => 0.011698567936136
730 => 0.011722542501623
731 => 0.011493342262779
801 => 0.011462103117148
802 => 0.011649272979819
803 => 0.011566906501653
804 => 0.011651622467037
805 => 0.011671277297686
806 => 0.011668112417263
807 => 0.011582112354328
808 => 0.011636926229884
809 => 0.011507275073392
810 => 0.011366298913681
811 => 0.01127636490691
812 => 0.011197885557988
813 => 0.011241430462017
814 => 0.01108620083014
815 => 0.011036539746748
816 => 0.011618356522197
817 => 0.012048150829805
818 => 0.012041901450355
819 => 0.012003859960164
820 => 0.011947338022175
821 => 0.012217695170592
822 => 0.012123508146045
823 => 0.012192037075992
824 => 0.012209480564814
825 => 0.012262276751835
826 => 0.012281146850709
827 => 0.012224108305785
828 => 0.012032679982348
829 => 0.011555658800801
830 => 0.011333604153097
831 => 0.011260322420742
901 => 0.011262986072532
902 => 0.011189510665118
903 => 0.011211152465538
904 => 0.011181984530128
905 => 0.011126747516942
906 => 0.011238019732106
907 => 0.011250842818331
908 => 0.011224870553708
909 => 0.011230987962237
910 => 0.011015948704056
911 => 0.011032297671815
912 => 0.010941264541808
913 => 0.010924196927352
914 => 0.010694073101855
915 => 0.010286375388006
916 => 0.010512279497653
917 => 0.010239419100124
918 => 0.01013608273307
919 => 0.010625261022601
920 => 0.010576161090026
921 => 0.010492123348685
922 => 0.010367814014242
923 => 0.010321706472893
924 => 0.010041571647533
925 => 0.01002501978759
926 => 0.010163862171315
927 => 0.0100997911885
928 => 0.01000981126305
929 => 0.0096839130941889
930 => 0.0093174956512133
1001 => 0.0093285554905988
1002 => 0.0094451060617704
1003 => 0.0097839925664379
1004 => 0.0096515837462683
1005 => 0.0095555196280191
1006 => 0.0095375297063478
1007 => 0.0097627112405161
1008 => 0.010081390288354
1009 => 0.010230907367558
1010 => 0.010082740482968
1011 => 0.009912534343823
1012 => 0.0099228940028535
1013 => 0.0099918121731741
1014 => 0.0099990544984243
1015 => 0.0098882677993147
1016 => 0.0099194536061773
1017 => 0.0098720795138631
1018 => 0.0095813447967767
1019 => 0.0095760863276743
1020 => 0.0095047353393707
1021 => 0.0095025748598016
1022 => 0.0093811890293589
1023 => 0.0093642063125794
1024 => 0.0091231873786423
1025 => 0.0092818267708323
1026 => 0.0091754197954931
1027 => 0.0090150393847891
1028 => 0.0089873897415327
1029 => 0.0089865585598685
1030 => 0.0091512333812579
1031 => 0.0092799024496659
1101 => 0.0091772707903859
1102 => 0.009153903550999
1103 => 0.009403404533968
1104 => 0.0093716532596333
1105 => 0.0093441568608331
1106 => 0.010052856074923
1107 => 0.0094918653464815
1108 => 0.0092472413686498
1109 => 0.0089444727432497
1110 => 0.0090430557343719
1111 => 0.0090638286190868
1112 => 0.0083357246531462
1113 => 0.0080403329648437
1114 => 0.0079389656690192
1115 => 0.007880627357149
1116 => 0.0079072128584347
1117 => 0.0076413256929731
1118 => 0.0078200062655311
1119 => 0.007589770455124
1120 => 0.0075511706722571
1121 => 0.0079628608220089
1122 => 0.0080201451012879
1123 => 0.0077757525690531
1124 => 0.0079326921383048
1125 => 0.007875783668871
1126 => 0.0075937171872765
1127 => 0.0075829443224202
1128 => 0.0074414132770724
1129 => 0.0072199445969137
1130 => 0.0071187274672831
1201 => 0.0070660127073641
1202 => 0.0070877638446969
1203 => 0.0070767658040657
1204 => 0.0070049961495855
1205 => 0.0070808795566499
1206 => 0.006887028808789
1207 => 0.0068098358790292
1208 => 0.0067749696235191
1209 => 0.0066029159271598
1210 => 0.0068767298706935
1211 => 0.0069306746669868
1212 => 0.0069847257511932
1213 => 0.0074552035369673
1214 => 0.0074316997963465
1215 => 0.0076441621647731
1216 => 0.0076359062678293
1217 => 0.0075753085586918
1218 => 0.0073196567916803
1219 => 0.0074215550294565
1220 => 0.0071079280920833
1221 => 0.0073429187181221
1222 => 0.0072356788098411
1223 => 0.0073066607972586
1224 => 0.0071790287836942
1225 => 0.0072496656097974
1226 => 0.0069434669794079
1227 => 0.0066575430066812
1228 => 0.0067726071599475
1229 => 0.0068976950537301
1230 => 0.0071689174792532
1231 => 0.007007379640148
]
'min_raw' => 0.0066029159271598
'max_raw' => 0.019709864850331
'avg_raw' => 0.013156390388746
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0066029'
'max' => '$0.0197098'
'avg' => '$0.013156'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.01250828407284
'max_diff' => 0.0005986648503315
'year' => 2026
]
1 => [
'items' => [
101 => 0.0070654747555122
102 => 0.0068708658440471
103 => 0.0064693320724071
104 => 0.0064716047099482
105 => 0.0064098374870701
106 => 0.0063564615883412
107 => 0.0070259342041734
108 => 0.0069426747015988
109 => 0.0068100115809804
110 => 0.0069875864397509
111 => 0.0070345400509018
112 => 0.0070358767542023
113 => 0.0071654307872908
114 => 0.007234573797974
115 => 0.0072467605532898
116 => 0.0074506166235547
117 => 0.0075189464893809
118 => 0.0078003875363145
119 => 0.0072287074965928
120 => 0.0072169341223792
121 => 0.0069900852821744
122 => 0.0068462141613782
123 => 0.0069999362609024
124 => 0.0071361130559217
125 => 0.006994316674787
126 => 0.0070128322886782
127 => 0.0068224822321949
128 => 0.006890523420585
129 => 0.0069491296581646
130 => 0.0069167707384886
131 => 0.0068683278695442
201 => 0.0071249481116698
202 => 0.0071104685919063
203 => 0.0073494392610475
204 => 0.0075357339865997
205 => 0.0078696074389546
206 => 0.0075211930862055
207 => 0.0075084954823697
208 => 0.0076326165966244
209 => 0.007518927487085
210 => 0.0075907750798992
211 => 0.0078580316809928
212 => 0.0078636783918364
213 => 0.007769088709829
214 => 0.0077633329190825
215 => 0.0077814999022098
216 => 0.0078879044898216
217 => 0.0078507234574273
218 => 0.0078937502894225
219 => 0.0079475560016828
220 => 0.0081701192407406
221 => 0.0082237784841931
222 => 0.0080934143417314
223 => 0.0081051847641703
224 => 0.0080564249963139
225 => 0.0080093236715227
226 => 0.0081152005710572
227 => 0.0083086926859722
228 => 0.0083074889815676
301 => 0.0083523753912786
302 => 0.0083803392526695
303 => 0.0082602978887822
304 => 0.0081821553749349
305 => 0.0082121201870813
306 => 0.0082600345742521
307 => 0.0081965821970958
308 => 0.0078049247312865
309 => 0.0079237285872372
310 => 0.0079039538163953
311 => 0.007875792138022
312 => 0.0079952503338636
313 => 0.0079837282994544
314 => 0.0076385986357842
315 => 0.007660692717082
316 => 0.0076399422500458
317 => 0.0077069912541857
318 => 0.0075153066208254
319 => 0.0075742675230313
320 => 0.0076112472481707
321 => 0.0076330285903695
322 => 0.0077117177339975
323 => 0.0077024844712195
324 => 0.0077111437814192
325 => 0.0078278190082558
326 => 0.008417922267493
327 => 0.0084500402859038
328 => 0.0082918794166356
329 => 0.008355061564323
330 => 0.0082337656571799
331 => 0.008315192412257
401 => 0.0083709025300655
402 => 0.0081191592201287
403 => 0.0081042526151148
404 => 0.0079824560766155
405 => 0.0080479026374965
406 => 0.0079437724533606
407 => 0.0079693223582283
408 => 0.0078978825968175
409 => 0.0080264599438424
410 => 0.008170229396716
411 => 0.0082065512381396
412 => 0.00811100411089
413 => 0.0080418216938988
414 => 0.0079203601597671
415 => 0.0081223533979749
416 => 0.0081814223764593
417 => 0.0081220431337774
418 => 0.0081082836657859
419 => 0.0080822094988049
420 => 0.0081138154235715
421 => 0.0081811006741168
422 => 0.0081493701925231
423 => 0.0081703287346348
424 => 0.0080904563844596
425 => 0.0082603376274686
426 => 0.0085301499255145
427 => 0.0085310174161715
428 => 0.0084992867635387
429 => 0.0084863032641277
430 => 0.008518860839306
501 => 0.0085365219882586
502 => 0.0086418072163469
503 => 0.0087547824608341
504 => 0.0092819886318952
505 => 0.0091339512487108
506 => 0.0096017199273117
507 => 0.009971664219924
508 => 0.010082594337575
509 => 0.0099805438490015
510 => 0.00963143464025
511 => 0.0096143056769553
512 => 0.010136022224936
513 => 0.0099886134039998
514 => 0.0099710795938004
515 => 0.0097845494771187
516 => 0.009894811878282
517 => 0.0098706958736957
518 => 0.009832627580661
519 => 0.010043000561135
520 => 0.010436800000457
521 => 0.010375422664811
522 => 0.010329607330964
523 => 0.010128857874689
524 => 0.010249753886381
525 => 0.010206705132228
526 => 0.010391669899483
527 => 0.010282100868832
528 => 0.0099874966372006
529 => 0.010034413332116
530 => 0.010027321968063
531 => 0.010173261737778
601 => 0.010129454241358
602 => 0.010018767851302
603 => 0.010435454036785
604 => 0.01040839675363
605 => 0.010446757794987
606 => 0.010463645511748
607 => 0.010717275050017
608 => 0.010821178956606
609 => 0.010844766962496
610 => 0.010943467637539
611 => 0.010842311199786
612 => 0.011247009074114
613 => 0.011516109545765
614 => 0.011828683591373
615 => 0.012285438283988
616 => 0.012457182273629
617 => 0.012426158259121
618 => 0.012772464454193
619 => 0.013394768988782
620 => 0.012551943797929
621 => 0.013439440770437
622 => 0.013158469475586
623 => 0.012492291589953
624 => 0.012449397587839
625 => 0.012900540986475
626 => 0.013901133623704
627 => 0.013650496516706
628 => 0.013901543576223
629 => 0.013608683846147
630 => 0.013594140892133
701 => 0.013887320032808
702 => 0.01457234907536
703 => 0.014246917455173
704 => 0.013780331428529
705 => 0.014124851289721
706 => 0.013826396302148
707 => 0.013153893682857
708 => 0.013650304859234
709 => 0.013318368842567
710 => 0.01341524541892
711 => 0.014112925554197
712 => 0.014028978834488
713 => 0.014137613663048
714 => 0.013945876034107
715 => 0.013766762854427
716 => 0.013432434803435
717 => 0.01333345674971
718 => 0.013360810722903
719 => 0.01333344319444
720 => 0.013146389722543
721 => 0.013105995543097
722 => 0.013038670140976
723 => 0.013059537098283
724 => 0.012932945645555
725 => 0.013171849871981
726 => 0.013216192601623
727 => 0.013390047174656
728 => 0.013408097333169
729 => 0.013892279844403
730 => 0.013625600253572
731 => 0.013804511947109
801 => 0.013788508401257
802 => 0.012506729684763
803 => 0.012683347482666
804 => 0.012958109350486
805 => 0.012834329501464
806 => 0.012659333754971
807 => 0.012518015307
808 => 0.01230390340777
809 => 0.012605261794281
810 => 0.013001516026652
811 => 0.013418146994421
812 => 0.013918701803454
813 => 0.013806983797178
814 => 0.013408789470445
815 => 0.013426652177061
816 => 0.013537072400646
817 => 0.013394068178368
818 => 0.013351893441445
819 => 0.01353127823943
820 => 0.013532513563945
821 => 0.013367969923577
822 => 0.013185109778477
823 => 0.013184343587792
824 => 0.013151805391191
825 => 0.013614472319038
826 => 0.013868892348451
827 => 0.013898061194805
828 => 0.013866929052687
829 => 0.013878910578598
830 => 0.013730869169245
831 => 0.014069247930709
901 => 0.01437977774442
902 => 0.014296549120844
903 => 0.014171777582457
904 => 0.01407239104232
905 => 0.014273136810537
906 => 0.014264197917481
907 => 0.014377065537397
908 => 0.014371945210203
909 => 0.014333992074791
910 => 0.01429655047627
911 => 0.014445002182202
912 => 0.014402250474955
913 => 0.014359432362498
914 => 0.014273554082841
915 => 0.014285226367334
916 => 0.014160476372512
917 => 0.014102761316736
918 => 0.013234865355649
919 => 0.013002935195528
920 => 0.013075905145275
921 => 0.013099928747396
922 => 0.012998992444485
923 => 0.013143709174451
924 => 0.013121155225379
925 => 0.0132088994476
926 => 0.013154080666967
927 => 0.013156330448846
928 => 0.01331754079409
929 => 0.013364340843153
930 => 0.013340537960477
1001 => 0.013357208683588
1002 => 0.013741378461409
1003 => 0.013686761804061
1004 => 0.013657747793395
1005 => 0.013665784872634
1006 => 0.013763948487561
1007 => 0.013791428940205
1008 => 0.013674992331333
1009 => 0.013729904509189
1010 => 0.013963713593108
1011 => 0.014045533540032
1012 => 0.01430666353481
1013 => 0.014195730871813
1014 => 0.014399352575797
1015 => 0.015025216274091
1016 => 0.015525199502763
1017 => 0.015065394262996
1018 => 0.01598354978997
1019 => 0.016698465569308
1020 => 0.016671025910942
1021 => 0.016546363808515
1022 => 0.015732451200758
1023 => 0.014983476684348
1024 => 0.015610025670463
1025 => 0.01561162287268
1026 => 0.015557801759114
1027 => 0.01522352344514
1028 => 0.015546169598378
1029 => 0.015571780078343
1030 => 0.015557445019939
1031 => 0.015301154620372
1101 => 0.014909846550616
1102 => 0.014986307210787
1103 => 0.015111551331903
1104 => 0.014874438081971
1105 => 0.014798666031419
1106 => 0.014939540689617
1107 => 0.015393468190732
1108 => 0.015307655826069
1109 => 0.015305414918433
1110 => 0.015672556604566
1111 => 0.01540976239143
1112 => 0.014987271624573
1113 => 0.014880587133973
1114 => 0.014501929063628
1115 => 0.014763469541549
1116 => 0.014772881917738
1117 => 0.014629638870859
1118 => 0.01499889500837
1119 => 0.014995492248056
1120 => 0.0153460459941
1121 => 0.01601617309456
1122 => 0.015817983536002
1123 => 0.015587510642362
1124 => 0.01561256943622
1125 => 0.015887402554479
1126 => 0.01572123217735
1127 => 0.015780988203546
1128 => 0.015887312106576
1129 => 0.015951459957148
1130 => 0.015603339547702
1201 => 0.015522176027737
1202 => 0.015356143950411
1203 => 0.015312829280572
1204 => 0.015448058943181
1205 => 0.015412430704818
1206 => 0.014772090843966
1207 => 0.014705171765689
1208 => 0.014707224078282
1209 => 0.014538952874127
1210 => 0.014282298898074
1211 => 0.014956770223128
1212 => 0.014902600736506
1213 => 0.01484280181566
1214 => 0.014850126842256
1215 => 0.015142891984508
1216 => 0.014973073417008
1217 => 0.015424563911422
1218 => 0.015331751038817
1219 => 0.015236557866245
1220 => 0.01522339927014
1221 => 0.0151867580202
1222 => 0.015061101540545
1223 => 0.014909363790578
1224 => 0.014809173384752
1225 => 0.01366067963749
1226 => 0.013873833396501
1227 => 0.014119047366667
1228 => 0.014203694246534
1229 => 0.014058899901135
1230 => 0.015066818903833
1231 => 0.015250975418176
]
'min_raw' => 0.0063564615883412
'max_raw' => 0.016698465569308
'avg_raw' => 0.011527463578824
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006356'
'max' => '$0.016698'
'avg' => '$0.011527'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00024645433881859
'max_diff' => -0.0030113992810239
'year' => 2027
]
2 => [
'items' => [
101 => 0.014693153324001
102 => 0.014588807585907
103 => 0.015073659793051
104 => 0.014781234641371
105 => 0.014912913669267
106 => 0.014628295635534
107 => 0.015206617506603
108 => 0.015202211662899
109 => 0.014977231393062
110 => 0.01516738317653
111 => 0.015134339624747
112 => 0.014880337454202
113 => 0.015214669828465
114 => 0.015214835653151
115 => 0.014998297034925
116 => 0.014745427335236
117 => 0.014700220205447
118 => 0.014666162705875
119 => 0.014904537612135
120 => 0.015118263807709
121 => 0.015515955270456
122 => 0.015615944353106
123 => 0.016006208399341
124 => 0.01577382516142
125 => 0.015876837640924
126 => 0.01598867225943
127 => 0.016042289888124
128 => 0.015954922839448
129 => 0.016561163542341
130 => 0.016612348832401
131 => 0.016629510817406
201 => 0.016425089863366
202 => 0.016606663515874
203 => 0.016521711216953
204 => 0.016742733498317
205 => 0.01677739261419
206 => 0.01674803757608
207 => 0.016759038926514
208 => 0.016241719434784
209 => 0.01621489369006
210 => 0.01584912275728
211 => 0.01599817711603
212 => 0.015719527136709
213 => 0.015807889915564
214 => 0.015846839386532
215 => 0.015826494393262
216 => 0.016006604425834
217 => 0.015853474104099
218 => 0.015449338008083
219 => 0.015045091805458
220 => 0.015040016823676
221 => 0.014933585934063
222 => 0.014856655894663
223 => 0.014871475349491
224 => 0.014923701041238
225 => 0.014853620442517
226 => 0.014868575691431
227 => 0.015116932469698
228 => 0.01516673865038
229 => 0.014997477787892
301 => 0.014317871000774
302 => 0.014151093790551
303 => 0.014270969941924
304 => 0.014213676862581
305 => 0.011471546560098
306 => 0.012115769400073
307 => 0.0117329940643
308 => 0.01190939454967
309 => 0.011518680051039
310 => 0.011705149488888
311 => 0.011670715392491
312 => 0.01270660665523
313 => 0.012690432637984
314 => 0.01269817428413
315 => 0.012328645342847
316 => 0.012917314980115
317 => 0.013207314811308
318 => 0.01315364356065
319 => 0.013167151458139
320 => 0.012935041025472
321 => 0.012700421620486
322 => 0.012440192592689
323 => 0.012923665961056
324 => 0.01286991197566
325 => 0.012993204278086
326 => 0.013306771316862
327 => 0.013352945254448
328 => 0.013415003494812
329 => 0.013392760033248
330 => 0.013922689530066
331 => 0.013858511571414
401 => 0.014013161986506
402 => 0.013695034349305
403 => 0.01333504273086
404 => 0.013403465368514
405 => 0.013396875718288
406 => 0.01331298190766
407 => 0.013237246326572
408 => 0.013111167922426
409 => 0.013510098649235
410 => 0.013493902790259
411 => 0.013756094921444
412 => 0.013709749915458
413 => 0.013400246622942
414 => 0.013411300593583
415 => 0.013485643858502
416 => 0.013742946747225
417 => 0.013819331763114
418 => 0.013783947180338
419 => 0.013867699863152
420 => 0.013933894568776
421 => 0.013876012899027
422 => 0.014695495281043
423 => 0.014355189061917
424 => 0.014521051945284
425 => 0.014560609265646
426 => 0.014459284021339
427 => 0.014481257838644
428 => 0.014514542184355
429 => 0.014716638213765
430 => 0.015246996671896
501 => 0.01548188882273
502 => 0.016188573447888
503 => 0.01546238429946
504 => 0.015419295240661
505 => 0.015546590481483
506 => 0.015961489166616
507 => 0.016297725581464
508 => 0.016409274598213
509 => 0.01642401764225
510 => 0.01663329101331
511 => 0.016753242606885
512 => 0.016607879721628
513 => 0.016484699896501
514 => 0.016043485052539
515 => 0.016094556872116
516 => 0.016446391063513
517 => 0.016943377581791
518 => 0.017369843717108
519 => 0.017220510140365
520 => 0.018359819917837
521 => 0.01847277782861
522 => 0.018457170697707
523 => 0.01871450562884
524 => 0.01820374819589
525 => 0.017985389497844
526 => 0.016511332772844
527 => 0.016925482586576
528 => 0.017527473663002
529 => 0.017447797886687
530 => 0.017010615875718
531 => 0.01736951207535
601 => 0.01725084976803
602 => 0.017157255882943
603 => 0.017586027614593
604 => 0.017114575482672
605 => 0.017522770567344
606 => 0.016999256149014
607 => 0.017221192283565
608 => 0.017095210599751
609 => 0.017176736188913
610 => 0.016700139260513
611 => 0.016957299394341
612 => 0.016689440553482
613 => 0.016689313553515
614 => 0.016683400554757
615 => 0.01699853529316
616 => 0.017008811825666
617 => 0.016775926777844
618 => 0.016742364404104
619 => 0.016866462090571
620 => 0.016721176200954
621 => 0.016789154554287
622 => 0.016723235196026
623 => 0.016708395360007
624 => 0.01659014902182
625 => 0.016539205248078
626 => 0.016559181614421
627 => 0.016490991977568
628 => 0.016449905254837
629 => 0.016675227371468
630 => 0.01655484685402
701 => 0.016656777330669
702 => 0.016540614687876
703 => 0.0161379443583
704 => 0.015906364393599
705 => 0.01514575746859
706 => 0.015361464648992
707 => 0.015504478732765
708 => 0.015457212578931
709 => 0.015558758566939
710 => 0.01556499266588
711 => 0.01553197903004
712 => 0.015493753469046
713 => 0.01547514737996
714 => 0.015613821924324
715 => 0.015694327164897
716 => 0.015518832109353
717 => 0.015477716073276
718 => 0.015655151263778
719 => 0.015763386627484
720 => 0.01656253574089
721 => 0.016503332193351
722 => 0.016651921479564
723 => 0.016635192606225
724 => 0.016790937850305
725 => 0.017045515501526
726 => 0.016527887955563
727 => 0.016617730199329
728 => 0.016595702955918
729 => 0.016836190623624
730 => 0.016836941399872
731 => 0.016692757029833
801 => 0.016770921715955
802 => 0.016727292332498
803 => 0.016806136525271
804 => 0.016502541493879
805 => 0.016872287471056
806 => 0.01708190961421
807 => 0.017084820217871
808 => 0.017184179450063
809 => 0.017285134184468
810 => 0.017478908005853
811 => 0.01727972993776
812 => 0.016921427982854
813 => 0.01694729622669
814 => 0.016737223921626
815 => 0.016740755275027
816 => 0.016721904633817
817 => 0.016778476827099
818 => 0.016514955908974
819 => 0.01657680374174
820 => 0.016490216413687
821 => 0.016617541975388
822 => 0.016480560718667
823 => 0.016595692333714
824 => 0.016645379322095
825 => 0.016828725378904
826 => 0.016453480357003
827 => 0.015688330355491
828 => 0.015849174162356
829 => 0.015611273537994
830 => 0.01563329214653
831 => 0.015677773240009
901 => 0.015533595462737
902 => 0.015561100039076
903 => 0.015560117382063
904 => 0.015551649374794
905 => 0.015514143166515
906 => 0.015459751744134
907 => 0.015676430430103
908 => 0.015713248361111
909 => 0.015795090060964
910 => 0.016038595445971
911 => 0.016014263515756
912 => 0.016053949903458
913 => 0.015967314741934
914 => 0.015637310903198
915 => 0.015655231699338
916 => 0.015431759084314
917 => 0.015789375363763
918 => 0.015704687108485
919 => 0.015650088039378
920 => 0.015635190177515
921 => 0.015879299165272
922 => 0.015952340400349
923 => 0.015906826004264
924 => 0.015813474650027
925 => 0.015992736847012
926 => 0.01604069984846
927 => 0.016051436995677
928 => 0.016369055238618
929 => 0.016069188327159
930 => 0.016141369273168
1001 => 0.01670450440897
1002 => 0.016193818548134
1003 => 0.016464340238273
1004 => 0.016451099609267
1005 => 0.016589489351987
1006 => 0.016439747611071
1007 => 0.016441603839413
1008 => 0.016564484555615
1009 => 0.016391920751363
1010 => 0.01634919152666
1011 => 0.016290161408766
1012 => 0.016419051511615
1013 => 0.016496315299075
1014 => 0.017119004682006
1015 => 0.017521290421465
1016 => 0.017503826136562
1017 => 0.017663417008805
1018 => 0.017591519859175
1019 => 0.017359344997509
1020 => 0.017755639175664
1021 => 0.017630235116043
1022 => 0.017640573274353
1023 => 0.017640188487584
1024 => 0.017723571224219
1025 => 0.017664486913397
1026 => 0.017548025671888
1027 => 0.017625338079021
1028 => 0.017854928288512
1029 => 0.018567583343461
1030 => 0.018966394553634
1031 => 0.018543574407846
1101 => 0.018835230082623
1102 => 0.0186603406053
1103 => 0.018628557984759
1104 => 0.018811739301704
1105 => 0.018995241253295
1106 => 0.01898355297228
1107 => 0.018850339978354
1108 => 0.01877509133824
1109 => 0.019344899251327
1110 => 0.019764724015265
1111 => 0.019736094780906
1112 => 0.019862454910643
1113 => 0.020233452159725
1114 => 0.020267371498692
1115 => 0.020263098441609
1116 => 0.020179025820862
1117 => 0.020544320792664
1118 => 0.020849056284894
1119 => 0.020159565438251
1120 => 0.020422114526555
1121 => 0.020539981271097
1122 => 0.020713044621574
1123 => 0.021005031502612
1124 => 0.021322206701116
1125 => 0.021367058751833
1126 => 0.021335234075481
1127 => 0.021126048505941
1128 => 0.02147310539283
1129 => 0.021676403177685
1130 => 0.021797462356178
1201 => 0.022104448290512
1202 => 0.020540709175985
1203 => 0.019433816907846
1204 => 0.019260959696458
1205 => 0.01961247163309
1206 => 0.019705162527525
1207 => 0.019667798944202
1208 => 0.01842189106217
1209 => 0.019254400249306
1210 => 0.020150110135304
1211 => 0.020184517999918
1212 => 0.020632929097259
1213 => 0.020778950131545
1214 => 0.021139979839491
1215 => 0.021117397332961
1216 => 0.021205302321608
1217 => 0.021185094487021
1218 => 0.021853825997215
1219 => 0.022591536160551
1220 => 0.022565991603369
1221 => 0.022459937039199
1222 => 0.022617446151982
1223 => 0.023378842098369
1224 => 0.023308744960747
1225 => 0.023376838359087
1226 => 0.024274567090273
1227 => 0.025441742141238
1228 => 0.024899472147605
1229 => 0.0260760419998
1230 => 0.026816630354469
1231 => 0.028097401335603
]
'min_raw' => 0.011471546560098
'max_raw' => 0.028097401335603
'avg_raw' => 0.019784473947851
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011471'
'max' => '$0.028097'
'avg' => '$0.019784'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0051150849717567
'max_diff' => 0.011398935766296
'year' => 2028
]
3 => [
'items' => [
101 => 0.027937042500835
102 => 0.028435637245059
103 => 0.027649966718701
104 => 0.025845908379973
105 => 0.025560409242212
106 => 0.026131985746
107 => 0.027537150806944
108 => 0.026087732097673
109 => 0.026380947614832
110 => 0.026296501526164
111 => 0.026292001752972
112 => 0.026463739793822
113 => 0.026214624808315
114 => 0.025199685542429
115 => 0.02566482622691
116 => 0.025485213070741
117 => 0.025684507258558
118 => 0.02676001579503
119 => 0.026284507834134
120 => 0.025783598824461
121 => 0.026411849883199
122 => 0.027211829371459
123 => 0.027161768092785
124 => 0.027064628288166
125 => 0.027612200280726
126 => 0.028516628788896
127 => 0.028761092180366
128 => 0.028941550058115
129 => 0.028966432150596
130 => 0.029222733167282
131 => 0.027844538004387
201 => 0.030031769122463
202 => 0.030409443515515
203 => 0.030338456382621
204 => 0.03075822557553
205 => 0.03063471883046
206 => 0.030455776934467
207 => 0.031121200392696
208 => 0.030358346094741
209 => 0.02927557045948
210 => 0.028681538331101
211 => 0.029463807756955
212 => 0.029941512397882
213 => 0.030257244777814
214 => 0.030352785205211
215 => 0.027951523371664
216 => 0.026657376423469
217 => 0.027486909779837
218 => 0.02849899772594
219 => 0.027838915804744
220 => 0.027864789766355
221 => 0.026923686413208
222 => 0.028582264490357
223 => 0.028340623615354
224 => 0.029594256902326
225 => 0.029295067257355
226 => 0.030317356537117
227 => 0.030048153509111
228 => 0.031165600227426
301 => 0.031611379977023
302 => 0.032359913556676
303 => 0.032910537904948
304 => 0.033233875054019
305 => 0.033214463104396
306 => 0.034495685974943
307 => 0.033740193610699
308 => 0.03279111714533
309 => 0.032773951346369
310 => 0.033265491496302
311 => 0.034295624803105
312 => 0.034562723381729
313 => 0.034711995048921
314 => 0.034483380294432
315 => 0.033663347479671
316 => 0.033309261467918
317 => 0.033610953008791
318 => 0.033242010178953
319 => 0.033878909010328
320 => 0.034753507140056
321 => 0.034572906084803
322 => 0.03517662833529
323 => 0.035801417351111
324 => 0.036694893704766
325 => 0.036928481508945
326 => 0.037314593266704
327 => 0.037712029096544
328 => 0.037839674773892
329 => 0.038083389978078
330 => 0.038082105478651
331 => 0.03881655765039
401 => 0.039626681139909
402 => 0.0399324840028
403 => 0.040635660823951
404 => 0.039431495159985
405 => 0.040344868648561
406 => 0.041168754398478
407 => 0.040186483842604
408 => 0.04154031496419
409 => 0.041592881158793
410 => 0.042386568287851
411 => 0.041582014330496
412 => 0.041104272758845
413 => 0.042483494775457
414 => 0.043150856864209
415 => 0.042949841971904
416 => 0.041420108716134
417 => 0.04052973834793
418 => 0.038199467354723
419 => 0.040959774006393
420 => 0.042304238857172
421 => 0.041416626876969
422 => 0.041864286730478
423 => 0.044306573737025
424 => 0.045236438502745
425 => 0.045043033131721
426 => 0.0450757154557
427 => 0.045577453605043
428 => 0.047802436871477
429 => 0.046469175323521
430 => 0.047488403820576
501 => 0.048028998940312
502 => 0.048531133815216
503 => 0.047298049263809
504 => 0.045693824380037
505 => 0.045185699018567
506 => 0.041328371358458
507 => 0.041127580702225
508 => 0.041014870822301
509 => 0.040304250972513
510 => 0.039745898425738
511 => 0.039301875750241
512 => 0.038136627653343
513 => 0.038529864679829
514 => 0.036672702419553
515 => 0.037860849019888
516 => 0.034896773209736
517 => 0.037365343622419
518 => 0.036021812978919
519 => 0.036923957671889
520 => 0.036920810174042
521 => 0.03525967576905
522 => 0.034301568111242
523 => 0.034912111600905
524 => 0.035566662686827
525 => 0.035672861398344
526 => 0.036521503966773
527 => 0.03675834186611
528 => 0.036040711974213
529 => 0.034835349326858
530 => 0.035115327578444
531 => 0.034295894360909
601 => 0.032859869166224
602 => 0.033891247531641
603 => 0.034243405452101
604 => 0.03439893845177
605 => 0.032986772601404
606 => 0.032543039431607
607 => 0.032306799615289
608 => 0.034653056448795
609 => 0.03478158969451
610 => 0.034123995436664
611 => 0.037096383837776
612 => 0.036423640798169
613 => 0.037175259599456
614 => 0.035089922486706
615 => 0.035169585172692
616 => 0.034182353164506
617 => 0.034735137122223
618 => 0.034344447237967
619 => 0.034690477641157
620 => 0.034897886838092
621 => 0.03588495685122
622 => 0.037376614376417
623 => 0.035737521507143
624 => 0.035023345271758
625 => 0.035466416191511
626 => 0.036646372438017
627 => 0.038434066552322
628 => 0.037375715655956
629 => 0.0378453938118
630 => 0.037947997594325
701 => 0.037167608825625
702 => 0.038462840599359
703 => 0.039156965829347
704 => 0.039868994686337
705 => 0.040487229392266
706 => 0.039584594703005
707 => 0.040550543208114
708 => 0.039772159225861
709 => 0.039073868325923
710 => 0.039074927344976
711 => 0.038636879263043
712 => 0.037788105906686
713 => 0.037631579077255
714 => 0.038445851411118
715 => 0.039098820710999
716 => 0.039152602390049
717 => 0.039514119745238
718 => 0.039728061992113
719 => 0.041824986851874
720 => 0.042668387377142
721 => 0.043699681574685
722 => 0.044101428785184
723 => 0.045310543854441
724 => 0.044334085236492
725 => 0.044122822272286
726 => 0.041189904612795
727 => 0.041670169715231
728 => 0.042439120482922
729 => 0.041202584327732
730 => 0.041986881906811
731 => 0.042141718862615
801 => 0.041160567302345
802 => 0.041684642743742
803 => 0.040292853748932
804 => 0.037406951573183
805 => 0.038466053433459
806 => 0.039245908892454
807 => 0.038132958996984
808 => 0.040127878607505
809 => 0.038962487754538
810 => 0.038593114802774
811 => 0.037152059226977
812 => 0.037832181987437
813 => 0.03875205775938
814 => 0.038183681479356
815 => 0.039363147602533
816 => 0.041033586185077
817 => 0.042224040195336
818 => 0.042315428472317
819 => 0.041550046297945
820 => 0.04277657611698
821 => 0.042785510047679
822 => 0.041401979401286
823 => 0.040554574583902
824 => 0.040362042426437
825 => 0.040843025503937
826 => 0.041427027754396
827 => 0.042347836532769
828 => 0.042904261992542
829 => 0.044355124486371
830 => 0.044747686277714
831 => 0.045178992669101
901 => 0.045755351017959
902 => 0.04644741699101
903 => 0.044933216041311
904 => 0.044993378067866
905 => 0.043583375109046
906 => 0.042076584732668
907 => 0.043220050804267
908 => 0.044714980583965
909 => 0.044372042040752
910 => 0.044333454449042
911 => 0.044398348074993
912 => 0.044139783612736
913 => 0.042970306132792
914 => 0.042383001863681
915 => 0.043140774208133
916 => 0.043543496484643
917 => 0.044168083614435
918 => 0.044091090067254
919 => 0.045699959437839
920 => 0.046325117425564
921 => 0.046165175260286
922 => 0.04619460846792
923 => 0.047326427143259
924 => 0.048585242286499
925 => 0.049764288783433
926 => 0.050963665521338
927 => 0.049517770051322
928 => 0.048783633502083
929 => 0.049541075026835
930 => 0.04913916589204
1001 => 0.051448654994563
1002 => 0.051608559009195
1003 => 0.053917881109369
1004 => 0.056109702771395
1005 => 0.054733058856041
1006 => 0.056031172062816
1007 => 0.057435187332667
1008 => 0.060143760581476
1009 => 0.059231608400033
1010 => 0.058532914124295
1011 => 0.057872651409788
1012 => 0.059246553304922
1013 => 0.061014056144394
1014 => 0.061394759327084
1015 => 0.062011643922852
1016 => 0.061363065199462
1017 => 0.062144206833182
1018 => 0.064901980051241
1019 => 0.064156805384184
1020 => 0.063098537564158
1021 => 0.06527553466046
1022 => 0.06606338144675
1023 => 0.071592902791498
1024 => 0.078574151902376
1025 => 0.07568386892912
1026 => 0.07388977701877
1027 => 0.074311431174132
1028 => 0.076860747019228
1029 => 0.077679506357433
1030 => 0.075453836232924
1031 => 0.076239980547267
1101 => 0.080571713011299
1102 => 0.082895548499637
1103 => 0.07973946777373
1104 => 0.07103196622293
1105 => 0.063003252125723
1106 => 0.06513282864201
1107 => 0.064891400753516
1108 => 0.069545306891489
1109 => 0.064139033214821
1110 => 0.064230060998374
1111 => 0.068980204986708
1112 => 0.067712948008705
1113 => 0.065660154002351
1114 => 0.063018239793727
1115 => 0.058134417031601
1116 => 0.053808679015712
1117 => 0.062292447422839
1118 => 0.061926611902392
1119 => 0.061396827854998
1120 => 0.062575804923852
1121 => 0.068300582911727
1122 => 0.068168608249809
1123 => 0.067329052784747
1124 => 0.067965848205494
1125 => 0.065548520686233
1126 => 0.066171521029471
1127 => 0.06300198033639
1128 => 0.064434745101375
1129 => 0.06565574962837
1130 => 0.065900884364445
1201 => 0.066453185441712
1202 => 0.061733833206811
1203 => 0.06385268380738
1204 => 0.065097310025761
1205 => 0.059474043491224
1206 => 0.064986156126554
1207 => 0.061651679784012
1208 => 0.0605199084312
1209 => 0.062043689458224
1210 => 0.061449870510067
1211 => 0.06093933984866
1212 => 0.060654454967565
1213 => 0.061773351580237
1214 => 0.061721153715885
1215 => 0.05989042168908
1216 => 0.057502306390296
1217 => 0.05830383627178
1218 => 0.058012632951454
1219 => 0.056957274552617
1220 => 0.057668458688975
1221 => 0.054536763674512
1222 => 0.049148845173472
1223 => 0.052708269171666
1224 => 0.052571235219644
1225 => 0.052502136487039
1226 => 0.055176945246429
1227 => 0.054919824102551
1228 => 0.054453146708675
1229 => 0.056948703656306
1230 => 0.056037791800443
1231 => 0.058845007502387
]
'min_raw' => 0.025199685542429
'max_raw' => 0.082895548499637
'avg_raw' => 0.054047617021033
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.025199'
'max' => '$0.082895'
'avg' => '$0.054047'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.013728138982331
'max_diff' => 0.054798147164033
'year' => 2029
]
4 => [
'items' => [
101 => 0.060694021323015
102 => 0.060225051608773
103 => 0.061964058044133
104 => 0.058322301901387
105 => 0.059531947210111
106 => 0.059781253431743
107 => 0.056917908870947
108 => 0.05496189230156
109 => 0.054831448296603
110 => 0.051439985120973
111 => 0.05325167737446
112 => 0.05484589158461
113 => 0.054082386693969
114 => 0.053840683854652
115 => 0.055075491241774
116 => 0.055171446351163
117 => 0.052983659688217
118 => 0.053438569813636
119 => 0.055335620659152
120 => 0.053390768999661
121 => 0.049612239914983
122 => 0.048675112459731
123 => 0.048550082382514
124 => 0.046008518399355
125 => 0.04873773579734
126 => 0.047546359264641
127 => 0.051309903456555
128 => 0.049160187198426
129 => 0.049067517227121
130 => 0.048927432973765
131 => 0.046739803862775
201 => 0.047218755606999
202 => 0.04881086415121
203 => 0.049378946416171
204 => 0.049319690781775
205 => 0.048803061950772
206 => 0.049039571984037
207 => 0.048277690761331
208 => 0.048008654644407
209 => 0.04715950265518
210 => 0.045911483815241
211 => 0.046085028489479
212 => 0.043612376605668
213 => 0.042265144625799
214 => 0.041892248570004
215 => 0.041393596379795
216 => 0.04194857266175
217 => 0.043605371893553
218 => 0.041606920510434
219 => 0.038180715789142
220 => 0.03838663653086
221 => 0.038849279299084
222 => 0.037987147561186
223 => 0.037171212224498
224 => 0.037880601800822
225 => 0.036428873693552
226 => 0.039024713705135
227 => 0.038954503507579
228 => 0.039922072138228
301 => 0.04052711265948
302 => 0.039132690142189
303 => 0.03878199665001
304 => 0.038981767601286
305 => 0.03567999877199
306 => 0.039652247183756
307 => 0.039686599352973
308 => 0.039392455224337
309 => 0.041507554874192
310 => 0.04597107485151
311 => 0.044291719091368
312 => 0.043641421782244
313 => 0.042405206122236
314 => 0.044052390089974
315 => 0.043925912061324
316 => 0.043353930450403
317 => 0.043007994187427
318 => 0.043645392358946
319 => 0.042929013500202
320 => 0.042800332172397
321 => 0.042020663332565
322 => 0.041742357029417
323 => 0.04153631012226
324 => 0.04130947272323
325 => 0.041809819501131
326 => 0.040675967876306
327 => 0.039308653969613
328 => 0.039194976612812
329 => 0.039508849789553
330 => 0.039369984273955
331 => 0.039194311778149
401 => 0.038858905142098
402 => 0.038759397158011
403 => 0.039082749831884
404 => 0.038717703515713
405 => 0.039256349240325
406 => 0.039109867407858
407 => 0.038291631799149
408 => 0.037271807281074
409 => 0.037262728703709
410 => 0.037043009184137
411 => 0.036763163340912
412 => 0.036685316629332
413 => 0.037820858989353
414 => 0.040171397690672
415 => 0.039709930699979
416 => 0.040043387893794
417 => 0.04168366725265
418 => 0.042205062735909
419 => 0.041834988571821
420 => 0.041328408230836
421 => 0.041350695194901
422 => 0.043081833572343
423 => 0.043189802549486
424 => 0.043462605322616
425 => 0.043813233980142
426 => 0.041894702148358
427 => 0.041260332518154
428 => 0.040959732993877
429 => 0.040034002805757
430 => 0.041032323447536
501 => 0.040450644761924
502 => 0.040529133089586
503 => 0.040478017463229
504 => 0.040505930051644
505 => 0.039023988114948
506 => 0.039563929868105
507 => 0.038666171980057
508 => 0.037464174946013
509 => 0.03746014543048
510 => 0.037754332501694
511 => 0.037579338520195
512 => 0.037108434215486
513 => 0.037175323949365
514 => 0.036589299495906
515 => 0.03724647792833
516 => 0.037265323454274
517 => 0.03701227396104
518 => 0.038024748009336
519 => 0.038439559453024
520 => 0.038272996855732
521 => 0.038427872977176
522 => 0.039729106736841
523 => 0.039941264616476
524 => 0.040035491132246
525 => 0.039909240083735
526 => 0.038451657141594
527 => 0.038516307143199
528 => 0.03804194832737
529 => 0.037641165114695
530 => 0.037657194341371
531 => 0.037863249010857
601 => 0.038763101837447
602 => 0.040656789061785
603 => 0.040728653107681
604 => 0.040815754427729
605 => 0.040461469585476
606 => 0.040354613887004
607 => 0.040495584135085
608 => 0.041206753491202
609 => 0.043036074155732
610 => 0.042389470056668
611 => 0.041863770859137
612 => 0.042324950782858
613 => 0.042253955748449
614 => 0.041654686211158
615 => 0.041637866711176
616 => 0.040487676871055
617 => 0.040062477875717
618 => 0.03970714976962
619 => 0.039319140753838
620 => 0.039089116003102
621 => 0.039442538564612
622 => 0.039523370486002
623 => 0.038750605878491
624 => 0.03864528091795
625 => 0.039276337177726
626 => 0.038998632845948
627 => 0.039284258637918
628 => 0.039350526271708
629 => 0.039339855656395
630 => 0.039049900439878
701 => 0.039234709248297
702 => 0.03879758132223
703 => 0.038322270357123
704 => 0.038019051574304
705 => 0.03775445297016
706 => 0.037901267654301
707 => 0.037377900112642
708 => 0.037210464302758
709 => 0.039172100182335
710 => 0.040621181697717
711 => 0.040600111478584
712 => 0.040471851938433
713 => 0.040281284278266
714 => 0.041192812279888
715 => 0.040875254150701
716 => 0.041106304222554
717 => 0.041165116162982
718 => 0.041343122193634
719 => 0.041406744049456
720 => 0.04121443461294
721 => 0.040569020655374
722 => 0.038960710437235
723 => 0.038212037689141
724 => 0.037964963212139
725 => 0.037973943900117
726 => 0.037726216434133
727 => 0.037799183275231
728 => 0.037700841544556
729 => 0.037514606098075
730 => 0.037889768140278
731 => 0.037933002070766
801 => 0.037845434767263
802 => 0.037866060037221
803 => 0.037141040164703
804 => 0.03719616185095
805 => 0.0368892372974
806 => 0.036831692643641
807 => 0.036055814099246
808 => 0.034681232792458
809 => 0.035442884270254
810 => 0.03452291638948
811 => 0.034174510613243
812 => 0.035823809369735
813 => 0.03565826551901
814 => 0.035374926406751
815 => 0.034955808806674
816 => 0.034800354011892
817 => 0.033855859889802
818 => 0.033800054138389
819 => 0.034268170928783
820 => 0.034052151136931
821 => 0.033748777536079
822 => 0.032649989106279
823 => 0.031414587114838
824 => 0.0314518761355
825 => 0.031844834523506
826 => 0.032987414034293
827 => 0.032540988452602
828 => 0.032217101570942
829 => 0.032156447294011
830 => 0.032915662558132
831 => 0.033990111217379
901 => 0.034494218488864
902 => 0.033994663492788
903 => 0.033420801611247
904 => 0.033455729924956
905 => 0.033688092347905
906 => 0.033712510353129
907 => 0.033338985262201
908 => 0.033444130387362
909 => 0.033284405327571
910 => 0.032304172930464
911 => 0.032286443634751
912 => 0.032045878796119
913 => 0.032038594588411
914 => 0.031629333786186
915 => 0.031572075370868
916 => 0.030759463207695
917 => 0.031294326994312
918 => 0.030935568447858
919 => 0.030394834695767
920 => 0.030301611993091
921 => 0.030298809606079
922 => 0.030854022263623
923 => 0.031287839011148
924 => 0.030941809206372
925 => 0.03086302492733
926 => 0.031704234911012
927 => 0.03159718327279
928 => 0.031504477244498
929 => 0.033893906124599
930 => 0.032002486716538
1001 => 0.031177719896178
1002 => 0.030156914337011
1003 => 0.030489293774424
1004 => 0.030559331005557
1005 => 0.028104477649793
1006 => 0.027108543949092
1007 => 0.026766777033981
1008 => 0.02657008534246
1009 => 0.026659720216185
1010 => 0.025763263074182
1011 => 0.02636569709964
1012 => 0.025589440990302
1013 => 0.025459299127415
1014 => 0.026847341210592
1015 => 0.027040479157642
1016 => 0.02621649267227
1017 => 0.026745625387173
1018 => 0.026553754509255
1019 => 0.025602747673306
1020 => 0.025566426207306
1021 => 0.025089244406534
1022 => 0.024342547288929
1023 => 0.024001286669625
1024 => 0.023823555176131
1025 => 0.023896890654265
1026 => 0.023859809992418
1027 => 0.023617833591541
1028 => 0.023873679796469
1029 => 0.023220098465829
1030 => 0.022959837113705
1031 => 0.022842283098969
1101 => 0.022262192049288
1102 => 0.023185374876991
1103 => 0.023367253523999
1104 => 0.023549490528127
1105 => 0.025135739230575
1106 => 0.025056494728093
1107 => 0.025772826436892
1108 => 0.025744991103937
1109 => 0.025540681696784
1110 => 0.024678733915268
1111 => 0.025022290938238
1112 => 0.023964875822151
1113 => 0.024757163124362
1114 => 0.024395596286342
1115 => 0.024634917012724
1116 => 0.024204596768009
1117 => 0.024442753758921
1118 => 0.023410383698458
1119 => 0.022446371061835
1120 => 0.022834317888095
1121 => 0.023256060455341
1122 => 0.024170505799137
1123 => 0.023625869696382
1124 => 0.023821741433904
1125 => 0.023165603901739
1126 => 0.021811804756462
1127 => 0.021819467112602
1128 => 0.021611214608219
1129 => 0.021431254039068
1130 => 0.023688427704432
1201 => 0.023407712478509
1202 => 0.022960429505101
1203 => 0.023559135539326
1204 => 0.023717442917518
1205 => 0.023721949706021
1206 => 0.024158750173753
1207 => 0.024391870661682
1208 => 0.024432959158081
1209 => 0.025120274131756
1210 => 0.025350653045028
1211 => 0.026299551184351
1212 => 0.024372092017003
1213 => 0.024332397263852
1214 => 0.023567560561021
1215 => 0.023082489032495
1216 => 0.023600773823576
1217 => 0.024059903395543
1218 => 0.02358182699664
1219 => 0.023644253681594
1220 => 0.023002475176343
1221 => 0.023231880793485
1222 => 0.023429475815241
1223 => 0.023320375458326
1224 => 0.023157046943507
1225 => 0.024022260006487
1226 => 0.023973441294676
1227 => 0.024779147590085
1228 => 0.025407253263966
1229 => 0.026532930918881
1230 => 0.025358227603074
1231 => 0.025315416745224
]
'min_raw' => 0.021431254039068
'max_raw' => 0.061964058044133
'avg_raw' => 0.041697656041601
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.021431'
'max' => '$0.061964'
'avg' => '$0.041697'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0037684315033603
'max_diff' => -0.020931490455504
'year' => 2030
]
5 => [
'items' => [
101 => 0.025733899747793
102 => 0.02535058897746
103 => 0.025592828152872
104 => 0.026493902442719
105 => 0.026512940722569
106 => 0.026194025005641
107 => 0.026174618955282
108 => 0.026235870207274
109 => 0.026594620703338
110 => 0.026469262256724
111 => 0.026614330224834
112 => 0.026795739940314
113 => 0.027546127439667
114 => 0.027727043325336
115 => 0.027287511517292
116 => 0.027327196318329
117 => 0.027162799356703
118 => 0.02700399395166
119 => 0.02736096531053
120 => 0.028013337485154
121 => 0.028009279111714
122 => 0.028160616775924
123 => 0.028254898886977
124 => 0.027850171047611
125 => 0.027586708106439
126 => 0.027687736562667
127 => 0.027849283264289
128 => 0.027635349144603
129 => 0.026314848653976
130 => 0.026715404148934
131 => 0.02664873212841
201 => 0.026553783063589
202 => 0.026956544711173
203 => 0.02691769736772
204 => 0.025754068610473
205 => 0.025828560348127
206 => 0.025758598699764
207 => 0.025984659098433
208 => 0.025338380974065
209 => 0.025537171772371
210 => 0.025661851497521
211 => 0.025735288813469
212 => 0.026000594755111
213 => 0.025969464165009
214 => 0.025998659633921
215 => 0.026392038307205
216 => 0.028381612645417
217 => 0.028489900786898
218 => 0.027956650373721
219 => 0.028169673395886
220 => 0.027760715776343
221 => 0.02803525176612
222 => 0.028223082317867
223 => 0.027374312172259
224 => 0.027324053512708
225 => 0.026913407979595
226 => 0.027134065628938
227 => 0.026782983442987
228 => 0.026869126731086
301 => 0.026628262587724
302 => 0.027061770090203
303 => 0.027546498838228
304 => 0.027668960462498
305 => 0.027346816652089
306 => 0.027113563303041
307 => 0.026704047260542
308 => 0.027385081565877
309 => 0.027584236750902
310 => 0.027384035488473
311 => 0.027337644481485
312 => 0.027249733607068
313 => 0.027356295189074
314 => 0.027583152108994
315 => 0.027476170574949
316 => 0.027546833762957
317 => 0.027277538557832
318 => 0.027850305029367
319 => 0.028759996029921
320 => 0.028762920835238
321 => 0.028655938724523
322 => 0.02861216394978
323 => 0.028721934087591
324 => 0.028781479884346
325 => 0.029136456381626
326 => 0.029517360306094
327 => 0.031294872720186
328 => 0.03079575434714
329 => 0.032372869105609
330 => 0.033620162116837
331 => 0.033994170753392
401 => 0.033650100406228
402 => 0.032473054334896
403 => 0.032415302839241
404 => 0.034174306605845
405 => 0.033677307474303
406 => 0.033618191009044
407 => 0.032989291697535
408 => 0.033361049081332
409 => 0.033279740288144
410 => 0.033151390380334
411 => 0.033860677571775
412 => 0.035188399875647
413 => 0.034981461903288
414 => 0.034826992306498
415 => 0.034150151498787
416 => 0.034557760842896
417 => 0.034412618962702
418 => 0.035036240589331
419 => 0.034666820952626
420 => 0.033673542217069
421 => 0.033831725129596
422 => 0.033807816100588
423 => 0.034299862223373
424 => 0.034152162190648
425 => 0.033778975298697
426 => 0.035183861865154
427 => 0.035092636345918
428 => 0.035221973275138
429 => 0.035278911391258
430 => 0.036134041087382
501 => 0.036484360362786
502 => 0.036563888971505
503 => 0.036896665188473
504 => 0.036555609196074
505 => 0.037920076334472
506 => 0.038827367362641
507 => 0.039881232580629
508 => 0.041421212916376
509 => 0.042000259768231
510 => 0.041895660137291
511 => 0.043063255652302
512 => 0.045161398838585
513 => 0.042319754863448
514 => 0.045312012869318
515 => 0.04436469853194
516 => 0.042118633279473
517 => 0.041974013156584
518 => 0.043495074622908
519 => 0.046868642558475
520 => 0.046023602053306
521 => 0.046870024742014
522 => 0.045882627715248
523 => 0.045833595130434
524 => 0.046822069072336
525 => 0.049131692316499
526 => 0.048034476888129
527 => 0.046461349523302
528 => 0.047622922288918
529 => 0.046616660460856
530 => 0.044349270927283
531 => 0.046022955866758
601 => 0.044903810411534
602 => 0.045230436552413
603 => 0.047582713838972
604 => 0.047299681612499
605 => 0.047665951521633
606 => 0.047019494718964
607 => 0.046415602128391
608 => 0.045288391762432
609 => 0.044954680343871
610 => 0.045046906174283
611 => 0.04495463464133
612 => 0.044323970801174
613 => 0.044187779004939
614 => 0.04396078671118
615 => 0.044031141114625
616 => 0.04360432919342
617 => 0.044409811472576
618 => 0.044559316081472
619 => 0.045145478912594
620 => 0.045206336282242
621 => 0.046838791423409
622 => 0.045939662563948
623 => 0.046542875829926
624 => 0.046488918757753
625 => 0.042167312324159
626 => 0.042762791560852
627 => 0.043689170381468
628 => 0.043271837978457
629 => 0.042681827601343
630 => 0.042205362587468
701 => 0.041483469370399
702 => 0.042499520210693
703 => 0.043835519020718
704 => 0.045240219416797
705 => 0.046927874903071
706 => 0.04655120984501
707 => 0.04520866987139
708 => 0.045268895233881
709 => 0.045641184726991
710 => 0.045159036007346
711 => 0.045016840937262
712 => 0.045621649307915
713 => 0.045625814290767
714 => 0.045071043919197
715 => 0.044454518173103
716 => 0.044451934907715
717 => 0.04434223010613
718 => 0.04590214395574
719 => 0.046759938847946
720 => 0.046858283649932
721 => 0.046753319459202
722 => 0.046793716010335
723 => 0.04629458406278
724 => 0.047435451681908
725 => 0.048482424629333
726 => 0.048201813514109
727 => 0.047781137561167
728 => 0.047446048902149
729 => 0.048122877275315
730 => 0.048092739173285
731 => 0.048473280233997
801 => 0.048456016693371
802 => 0.048328055047527
803 => 0.048201818084022
804 => 0.048702333375139
805 => 0.048558193009327
806 => 0.048413828753714
807 => 0.048124284138021
808 => 0.048163638060121
809 => 0.047743034742813
810 => 0.047548444402728
811 => 0.044622272575361
812 => 0.043840303847666
813 => 0.04408632712784
814 => 0.044167324379665
815 => 0.043827010587252
816 => 0.044314933146132
817 => 0.044238890932168
818 => 0.044534726703493
819 => 0.044349901357265
820 => 0.044357486653944
821 => 0.044901018588282
822 => 0.04505880822117
823 => 0.044978555140364
824 => 0.045034761647246
825 => 0.046330016875047
826 => 0.046145873001584
827 => 0.046048050238931
828 => 0.046075147812718
829 => 0.046406113294007
830 => 0.046498765558722
831 => 0.046106191402564
901 => 0.046291331644052
902 => 0.047079635294515
903 => 0.047355496958055
904 => 0.048235914966962
905 => 0.047861897748596
906 => 0.048548422539994
907 => 0.0506585656952
908 => 0.052344294058379
909 => 0.050794028589929
910 => 0.053889654052695
911 => 0.056300042516556
912 => 0.056207527792601
913 => 0.055787220810637
914 => 0.053043057628024
915 => 0.050517837754214
916 => 0.052630291405155
917 => 0.052635676483942
918 => 0.052454214841883
919 => 0.051327172167753
920 => 0.05241499619983
921 => 0.0525013437211
922 => 0.052453012070848
923 => 0.051588911095084
924 => 0.050269588617647
925 => 0.050527381071726
926 => 0.050949650370332
927 => 0.050150206493468
928 => 0.049894735734797
929 => 0.050369704480466
930 => 0.051900152742682
1001 => 0.051610830363993
1002 => 0.051603274987442
1003 => 0.052841118815255
1004 => 0.051955089777959
1005 => 0.050530632660138
1006 => 0.050170938451607
1007 => 0.048894266330375
1008 => 0.04977606831186
1009 => 0.049807802795332
1010 => 0.049324848861871
1011 => 0.050569821710127
1012 => 0.050558349066158
1013 => 0.051740265495823
1014 => 0.053999645801805
1015 => 0.053331435867974
1016 => 0.052554380415962
1017 => 0.052638867889006
1018 => 0.053565486935449
1019 => 0.053005231907314
1020 => 0.053206703521669
1021 => 0.053565181984031
1022 => 0.053781460940894
1023 => 0.052607748675458
1024 => 0.052334100201237
1025 => 0.051774311460544
1026 => 0.05162827302705
1027 => 0.052084209275968
1028 => 0.051964086182844
1029 => 0.049805135634878
1030 => 0.049579513290329
1031 => 0.049586432805521
1101 => 0.049019094692393
1102 => 0.048153767893124
1103 => 0.050427795055625
1104 => 0.050245158849487
1105 => 0.050043542612829
1106 => 0.050068239451413
1107 => 0.051055317568724
1108 => 0.050482762412044
1109 => 0.052004994136022
1110 => 0.051692069056046
1111 => 0.051371118628543
1112 => 0.051326753503073
1113 => 0.051203214970688
1114 => 0.050779555376478
1115 => 0.050267960958474
1116 => 0.049930162010158
1117 => 0.046057935155993
1118 => 0.046776597936418
1119 => 0.047603353957124
1120 => 0.047888746822455
1121 => 0.047400562577722
1122 => 0.050798831865978
1123 => 0.05141972841148
1124 => 0.049538992275075
1125 => 0.049187183333904
1126 => 0.050821896401591
1127 => 0.049835964586231
1128 => 0.050279929622318
1129 => 0.049320320050188
1130 => 0.051270172615642
1201 => 0.051255318005989
1202 => 0.05049678131861
1203 => 0.051137891332548
1204 => 0.051026482690684
1205 => 0.050170096638826
1206 => 0.051297321580994
1207 => 0.051297880670502
1208 => 0.050567805600909
1209 => 0.049715237753608
1210 => 0.049562818759265
1211 => 0.049447991521638
1212 => 0.050251689160899
1213 => 0.050972281951164
1214 => 0.052313126483745
1215 => 0.052650246656916
1216 => 0.053966049136163
1217 => 0.053182552825032
1218 => 0.05352986659178
1219 => 0.053906924816118
1220 => 0.054087700394723
1221 => 0.053793136290339
1222 => 0.055837119146518
1223 => 0.056009693925596
1224 => 0.056067556756255
1225 => 0.055378337237491
1226 => 0.05599052548399
1227 => 0.055704102876997
1228 => 0.056449294929901
1229 => 0.056566150558886
1230 => 0.056467177998396
1231 => 0.056504269819476
]
'min_raw' => 0.025338380974065
'max_raw' => 0.056566150558886
'avg_raw' => 0.040952265766476
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.025338'
'max' => '$0.056566'
'avg' => '$0.040952'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0039071269349969
'max_diff' => -0.0053979074852467
'year' => 2031
]
6 => [
'items' => [
101 => 0.054760091035012
102 => 0.054669646163761
103 => 0.053436423926585
104 => 0.053938971103753
105 => 0.05299948324375
106 => 0.053297404521955
107 => 0.053428725382689
108 => 0.053360130817434
109 => 0.053967384367134
110 => 0.053451094796185
111 => 0.052088521732587
112 => 0.050725577436868
113 => 0.050708466781466
114 => 0.050349627606368
115 => 0.050090252607446
116 => 0.050140217434061
117 => 0.050316300000067
118 => 0.050080018368609
119 => 0.050130441034464
120 => 0.050967793252109
121 => 0.051135718267634
122 => 0.050565043452338
123 => 0.048273701720942
124 => 0.047711400712661
125 => 0.048115571526499
126 => 0.047922403909419
127 => 0.038677120145174
128 => 0.040849162428351
129 => 0.039558608659274
130 => 0.040153355211589
131 => 0.038836034000639
201 => 0.039464728729225
202 => 0.03934863176911
203 => 0.042841211485055
204 => 0.042786679656677
205 => 0.042812781157161
206 => 0.041566888531939
207 => 0.043551629313589
208 => 0.0445293839916
209 => 0.044348427622798
210 => 0.044393970442273
211 => 0.043611393913105
212 => 0.042820358208591
213 => 0.041942977872763
214 => 0.043573042089245
215 => 0.043391806774496
216 => 0.043807495380122
217 => 0.044864708543907
218 => 0.045020387198236
219 => 0.045229620888393
220 => 0.04515462550474
221 => 0.046941319801758
222 => 0.046724939333401
223 => 0.047246354005233
224 => 0.046173764465448
225 => 0.044960027590047
226 => 0.045190719290013
227 => 0.045168501824201
228 => 0.044885647984392
229 => 0.044630300185062
301 => 0.044205218042973
302 => 0.045550240840861
303 => 0.045495635371566
304 => 0.046379634447525
305 => 0.04622337902414
306 => 0.04517986706459
307 => 0.045217136298371
308 => 0.045467789806528
309 => 0.04633530446017
310 => 0.046592841874273
311 => 0.046473540282969
312 => 0.046755918300503
313 => 0.046979098372082
314 => 0.046783946281352
315 => 0.049546888346752
316 => 0.048399522169549
317 => 0.048958740460996
318 => 0.0490921107284
319 => 0.048750485592918
320 => 0.048824571852125
321 => 0.048936792347527
322 => 0.049618173220578
323 => 0.051406313790611
324 => 0.052198269076793
325 => 0.05458090562966
326 => 0.052132508214826
327 => 0.051987230444705
328 => 0.052416415236607
329 => 0.053815275120833
330 => 0.05494891966877
331 => 0.055325014966843
401 => 0.055374722169141
402 => 0.056080301950669
403 => 0.056484727123158
404 => 0.055994626006601
405 => 0.055579316626045
406 => 0.054091729974992
407 => 0.054263922180415
408 => 0.055450155720989
409 => 0.057125780465855
410 => 0.058563640815992
411 => 0.058060152235866
412 => 0.061901414694678
413 => 0.062282260177319
414 => 0.062229639645827
415 => 0.063097262332691
416 => 0.061375207987554
417 => 0.060638996391777
418 => 0.055669111228083
419 => 0.0570654462401
420 => 0.059095101183946
421 => 0.058826468741312
422 => 0.057352479068259
423 => 0.058562522662649
424 => 0.058162444408782
425 => 0.057846886090695
426 => 0.05929251991984
427 => 0.05770298614133
428 => 0.059079244368575
429 => 0.057314178956565
430 => 0.058062452129289
501 => 0.05763769608655
502 => 0.057912565302345
503 => 0.056305685483309
504 => 0.057172718828858
505 => 0.056269614045593
506 => 0.056269185856338
507 => 0.056249249768193
508 => 0.057311748540725
509 => 0.057346396587552
510 => 0.056561208389304
511 => 0.056448050502992
512 => 0.056866454517138
513 => 0.056376612996758
514 => 0.056605806761118
515 => 0.056383555042397
516 => 0.056333521499175
517 => 0.055934845714281
518 => 0.055763085224329
519 => 0.055830436938162
520 => 0.055600530816663
521 => 0.055462004062392
522 => 0.0562216933101
523 => 0.055815821990826
524 => 0.056159487709407
525 => 0.055767837249013
526 => 0.054410206119303
527 => 0.053629418099918
528 => 0.051064978748368
529 => 0.051792250567291
530 => 0.052274432535653
531 => 0.052115071397986
601 => 0.052457440786269
602 => 0.052478459486101
603 => 0.052367151707927
604 => 0.052238271560211
605 => 0.052175539831823
606 => 0.052643090740092
607 => 0.052914519779382
608 => 0.052322825946941
609 => 0.052184200360677
610 => 0.052782435493586
611 => 0.053147358579072
612 => 0.055841745609728
613 => 0.055642136715741
614 => 0.05614311586838
615 => 0.056086713303945
616 => 0.056611819268148
617 => 0.057470145593282
618 => 0.05572492818247
619 => 0.056027837579909
620 => 0.055953571190856
621 => 0.05676439215284
622 => 0.05676692344738
623 => 0.056280795777159
624 => 0.056544333473706
625 => 0.056397233961272
626 => 0.056663062661932
627 => 0.055639470817266
628 => 0.056886095194158
629 => 0.057592850885155
630 => 0.05760266418861
701 => 0.057937660776982
702 => 0.058278036712463
703 => 0.058931358680121
704 => 0.058259815917376
705 => 0.057051775860567
706 => 0.057138992450723
707 => 0.056430719007421
708 => 0.056442625211963
709 => 0.056379068959012
710 => 0.056569806058409
711 => 0.055681326884507
712 => 0.055889851170755
713 => 0.055597915948891
714 => 0.056027202969751
715 => 0.055565361098992
716 => 0.055953535377355
717 => 0.056121058527715
718 => 0.05673922255906
719 => 0.055474057768949
720 => 0.052894301117785
721 => 0.053436597242385
722 => 0.05263449867766
723 => 0.05270873595363
724 => 0.052858707065864
725 => 0.052372601623618
726 => 0.052465335223056
727 => 0.052462022126328
728 => 0.052433471648604
729 => 0.052307016848793
730 => 0.052123632370747
731 => 0.052854179688515
801 => 0.052978313913452
802 => 0.053254248918512
803 => 0.054075244325066
804 => 0.053993207523546
805 => 0.054127012950499
806 => 0.053834916454746
807 => 0.052722285472315
808 => 0.05278270668769
809 => 0.052029253163777
810 => 0.053234981417911
811 => 0.052949449052496
812 => 0.052765364479016
813 => 0.05271513529761
814 => 0.053538165792979
815 => 0.053784429416616
816 => 0.053630974452502
817 => 0.053316233844109
818 => 0.053920628856932
819 => 0.054082339464984
820 => 0.05411854050647
821 => 0.055189412587942
822 => 0.054178390359919
823 => 0.054421753458901
824 => 0.056320402886097
825 => 0.054598589851342
826 => 0.055510672616864
827 => 0.055466030911741
828 => 0.055932621591385
829 => 0.055427756857249
830 => 0.055434015260704
831 => 0.055848316174637
901 => 0.055266505260581
902 => 0.055122440696236
903 => 0.054923416532403
904 => 0.055357978512979
905 => 0.055618478766787
906 => 0.057717919496123
907 => 0.059074253953403
908 => 0.059015371897535
909 => 0.05955344366558
910 => 0.059311037405903
911 => 0.058528243649866
912 => 0.059864377139892
913 => 0.059441568597448
914 => 0.059476424419975
915 => 0.05947512708452
916 => 0.059756257802681
917 => 0.059557050923612
918 => 0.0591643937168
919 => 0.059425057895226
920 => 0.060199137316003
921 => 0.06260190358975
922 => 0.063946523428959
923 => 0.062520955787076
924 => 0.063504293257335
925 => 0.062914641174146
926 => 0.06280748385
927 => 0.063425092449391
928 => 0.064043782090878
929 => 0.064004374235384
930 => 0.06355523732573
1001 => 0.063301531281893
1002 => 0.065222678443584
1003 => 0.066638146946431
1004 => 0.066541621483958
1005 => 0.066967653483551
1006 => 0.068218496611031
1007 => 0.068332858030531
1008 => 0.068318451120241
1009 => 0.06803499440963
1010 => 0.069266611911139
1011 => 0.070294048899146
1012 => 0.067969382370975
1013 => 0.068854584952783
1014 => 0.069251980911203
1015 => 0.06983547608023
1016 => 0.070819930235526
1017 => 0.071889308561745
1018 => 0.072040530382209
1019 => 0.071933231263959
1020 => 0.071227947511385
1021 => 0.072398074036271
1022 => 0.073083506711705
1023 => 0.073491666184079
1024 => 0.074526690694757
1025 => 0.069254435093352
1026 => 0.065522470530572
1027 => 0.064939670373872
1028 => 0.066124817410005
1029 => 0.066437331232063
1030 => 0.066311357302251
1031 => 0.062110691891468
1101 => 0.064917554739832
1102 => 0.067937503156941
1103 => 0.068053511674769
1104 => 0.069565360996517
1105 => 0.070057681108476
1106 => 0.071274917975103
1107 => 0.071198779477678
1108 => 0.071495157284233
1109 => 0.071427025159054
1110 => 0.073681700135019
1111 => 0.076168941455982
1112 => 0.07608281619798
1113 => 0.075725245830388
1114 => 0.07625629880107
1115 => 0.078823398393283
1116 => 0.078587060999765
1117 => 0.078816642646396
1118 => 0.081843397741008
1119 => 0.085778609914896
1120 => 0.083950308771282
1121 => 0.087917196173441
1122 => 0.090414141517434
1123 => 0.094732350300903
1124 => 0.094191689293586
1125 => 0.09587273628451
1126 => 0.093223793251131
1127 => 0.087141284606779
1128 => 0.086178704330902
1129 => 0.088105814419622
1130 => 0.092843426528087
1201 => 0.087956610154596
1202 => 0.08894520674235
1203 => 0.088660490858571
1204 => 0.088645319559089
1205 => 0.089224346354182
1206 => 0.088384437787892
1207 => 0.084962499192159
1208 => 0.086530753484973
1209 => 0.085925175188761
1210 => 0.086597109457261
1211 => 0.090223261577583
1212 => 0.088620053288518
1213 => 0.086931203590055
1214 => 0.089049395897678
1215 => 0.09174658259513
1216 => 0.091577797498914
1217 => 0.091250283865558
1218 => 0.09309646106873
1219 => 0.096145804929204
1220 => 0.096970030321434
1221 => 0.097578456655432
1222 => 0.097662348367444
1223 => 0.098526485139567
1224 => 0.093879803925352
1225 => 0.10125420634755
1226 => 0.10252756193211
1227 => 0.10228822385739
1228 => 0.10370350499863
1229 => 0.10328709338466
1230 => 0.102683778289
1231 => 0.1049272999368
]
'min_raw' => 0.038677120145174
'max_raw' => 0.1049272999368
'avg_raw' => 0.071802210040987
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.038677'
'max' => '$0.104927'
'avg' => '$0.0718022'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.013338739171109
'max_diff' => 0.048361149377912
'year' => 2032
]
7 => [
'items' => [
101 => 0.10235528341046
102 => 0.098704629759194
103 => 0.096701808964368
104 => 0.099339284949939
105 => 0.1009498994991
106 => 0.10201441326177
107 => 0.10233653448316
108 => 0.094240512560607
109 => 0.089877205770312
110 => 0.092674035397477
111 => 0.096086360569488
112 => 0.093860848286729
113 => 0.093948084154761
114 => 0.090775088493887
115 => 0.09636710027922
116 => 0.095552391198319
117 => 0.099779103351229
118 => 0.098770364574453
119 => 0.10221708425513
120 => 0.10130944745105
121 => 0.10507699707949
122 => 0.10657997462861
123 => 0.10910370785335
124 => 0.11096017628691
125 => 0.11205033005969
126 => 0.11198488131623
127 => 0.11630461367641
128 => 0.11375741842356
129 => 0.11055754085817
130 => 0.1104996651685
131 => 0.11215692710223
201 => 0.11563009346773
202 => 0.11653063497379
203 => 0.11703391482154
204 => 0.11626312421541
205 => 0.11349832632758
206 => 0.11230450061746
207 => 0.11332167471094
208 => 0.11207775820137
209 => 0.11422510707821
210 => 0.11717387573508
211 => 0.11656496666813
212 => 0.11860045838619
213 => 0.12070697817441
214 => 0.12371939608128
215 => 0.12450695367165
216 => 0.1258087564204
217 => 0.12714873906879
218 => 0.12757910538191
219 => 0.12840080820847
220 => 0.12839647742897
221 => 0.1308727342038
222 => 0.13360412210973
223 => 0.13463515781244
224 => 0.13700596755919
225 => 0.13294603895097
226 => 0.1360255414374
227 => 0.13880332976511
228 => 0.13549153600605
301 => 0.14005607215394
302 => 0.1402333027491
303 => 0.14290927431818
304 => 0.1401966644788
305 => 0.13858592541513
306 => 0.14323606873834
307 => 0.1454861266143
308 => 0.14480839087048
309 => 0.13965078839609
310 => 0.13664884253602
311 => 0.12879217118809
312 => 0.13809873778265
313 => 0.14263169489459
314 => 0.13963904913225
315 => 0.14114836558297
316 => 0.14938270674057
317 => 0.15251781071928
318 => 0.15186573100774
319 => 0.15197592174485
320 => 0.1536675669456
321 => 0.16116925337175
322 => 0.15667406897747
323 => 0.16011046901555
324 => 0.16193312320489
325 => 0.16362610599356
326 => 0.15946867533728
327 => 0.15405991913824
328 => 0.15234673900586
329 => 0.13934148948979
330 => 0.13866450977354
331 => 0.13828450054423
401 => 0.13588859610677
402 => 0.13400607151239
403 => 0.13250901806128
404 => 0.12858030274756
405 => 0.12990612883729
406 => 0.12364457661384
407 => 0.12765049583062
408 => 0.11765690729153
409 => 0.12597986478797
410 => 0.1214500574211
411 => 0.12449170123917
412 => 0.12448108923043
413 => 0.1188804586073
414 => 0.11565013174606
415 => 0.11770862174825
416 => 0.11991548643373
417 => 0.12027354280416
418 => 0.12313480047395
419 => 0.12393331598707
420 => 0.12151377670322
421 => 0.11744981238193
422 => 0.1183937786046
423 => 0.11563100230069
424 => 0.11078934309673
425 => 0.11426670726427
426 => 0.11545403227998
427 => 0.11597842264733
428 => 0.11121720688855
429 => 0.10972112952612
430 => 0.10892463049167
501 => 0.11683519921625
502 => 0.11726855802809
503 => 0.11505143307599
504 => 0.12507304809587
505 => 0.12280484796842
506 => 0.12533898323331
507 => 0.11830812356408
508 => 0.11857671187175
509 => 0.11524819022982
510 => 0.11711193993741
511 => 0.11579470171554
512 => 0.11696136737897
513 => 0.11766066196728
514 => 0.12098863743157
515 => 0.12601786492197
516 => 0.12049154887541
517 => 0.11808365383561
518 => 0.11957749837578
519 => 0.12355580324279
520 => 0.12958313876199
521 => 0.12601483482319
522 => 0.1275983875175
523 => 0.12794432333385
524 => 0.12531318811517
525 => 0.12968015247051
526 => 0.13202044414569
527 => 0.1344210991493
528 => 0.13650552062411
529 => 0.13346222474933
530 => 0.13671898757467
531 => 0.13409461163347
601 => 0.13174027511122
602 => 0.13174384566789
603 => 0.13026693597612
604 => 0.1274052373457
605 => 0.12687749621191
606 => 0.12962287223621
607 => 0.13182440381962
608 => 0.13200573250546
609 => 0.13322461350881
610 => 0.13394593473112
611 => 0.14101586329842
612 => 0.14385944705371
613 => 0.14733652744339
614 => 0.14869104621268
615 => 0.1527676620864
616 => 0.14947546368182
617 => 0.14876317584809
618 => 0.13887463918934
619 => 0.14049388651325
620 => 0.14308645771294
621 => 0.13891738973352
622 => 0.1415617037793
623 => 0.14208374738616
624 => 0.1387757263989
625 => 0.14054268333934
626 => 0.13585016957174
627 => 0.12612014889894
628 => 0.129690984765
629 => 0.13232032189277
630 => 0.12856793361651
701 => 0.13529394436422
702 => 0.13136474773845
703 => 0.13011938104278
704 => 0.1252607615577
705 => 0.12755384292924
706 => 0.13065526831802
707 => 0.12873894800716
708 => 0.13271560038914
709 => 0.13834760069649
710 => 0.14236129950692
711 => 0.14266942146329
712 => 0.14008888202512
713 => 0.14422421294357
714 => 0.14425433431467
715 => 0.13958966414533
716 => 0.1367325796396
717 => 0.13608344402854
718 => 0.1377051120555
719 => 0.13967411641666
720 => 0.14277868750176
721 => 0.14465471478777
722 => 0.1495463989817
723 => 0.150869948469
724 => 0.15232412808041
725 => 0.15426736049364
726 => 0.15660070924029
727 => 0.15149547502024
728 => 0.15169831549315
729 => 0.14694439207423
730 => 0.14186414311952
731 => 0.14571941881417
801 => 0.15075967893909
802 => 0.14960343769744
803 => 0.14947333693789
804 => 0.14969213032851
805 => 0.14882036219162
806 => 0.14487738721768
807 => 0.1428972498701
808 => 0.14545213223539
809 => 0.14680993850781
810 => 0.14891577762319
811 => 0.14865618850335
812 => 0.15408060391395
813 => 0.1561883677167
814 => 0.15564911153966
815 => 0.15574834765416
816 => 0.15956435333912
817 => 0.16380853648223
818 => 0.16778377406503
819 => 0.17182755647469
820 => 0.16695261894833
821 => 0.1644774263168
822 => 0.16703119330038
823 => 0.16567612859202
824 => 0.17346273234455
825 => 0.17400185989403
826 => 0.18178790058648
827 => 0.18917778034811
828 => 0.18453632927328
829 => 0.18891300858129
830 => 0.19364674408881
831 => 0.20277888790372
901 => 0.19970350313955
902 => 0.19734780660762
903 => 0.19512168476759
904 => 0.1997538909298
905 => 0.20571315015619
906 => 0.20699671751648
907 => 0.20907658700061
908 => 0.20688985855239
909 => 0.20952353210804
910 => 0.2188215570543
911 => 0.21630914863789
912 => 0.21274112479677
913 => 0.22008102250004
914 => 0.22273730294572
915 => 0.24138047021839
916 => 0.26491823901096
917 => 0.25517344817351
918 => 0.24912454203827
919 => 0.25054617846203
920 => 0.25914137482132
921 => 0.26190187909403
922 => 0.25439787687792
923 => 0.25704841732057
924 => 0.27165315575496
925 => 0.2794881293489
926 => 0.26884718283099
927 => 0.23948923341412
928 => 0.21241986328847
929 => 0.21959987919542
930 => 0.2187858882134
1001 => 0.23447685768293
1002 => 0.21624922852807
1003 => 0.21655613505567
1004 => 0.2325715771568
1005 => 0.22829893177841
1006 => 0.22137779346449
1007 => 0.21247039525755
1008 => 0.19600424583743
1009 => 0.18141971810347
1010 => 0.2100233356059
1011 => 0.20878989560689
1012 => 0.20700369170276
1013 => 0.21097869520395
1014 => 0.23028018388131
1015 => 0.22983522209447
1016 => 0.22700460222813
1017 => 0.22915160244881
1018 => 0.22100141394521
1019 => 0.22310190309893
1020 => 0.21241557536194
1021 => 0.21724624179953
1022 => 0.2213629438101
1023 => 0.22218943268754
1024 => 0.22405155432998
1025 => 0.20813992877536
1026 => 0.2152837815086
1027 => 0.2194801257009
1028 => 0.20052088997578
1029 => 0.21910536256921
1030 => 0.20786294277462
1031 => 0.20404709664086
1101 => 0.20918463076047
1102 => 0.20718252871764
1103 => 0.2054612389486
1104 => 0.20450072968196
1105 => 0.20827316773045
1106 => 0.20809717898645
1107 => 0.20192473814045
1108 => 0.19387304067771
1109 => 0.19657545463416
1110 => 0.19559364230852
1111 => 0.19203542778407
1112 => 0.19443323475309
1113 => 0.18387450636386
1114 => 0.16570876296515
1115 => 0.17770960948611
1116 => 0.17724758994946
1117 => 0.17701461874817
1118 => 0.18603292322963
1119 => 0.18516602134142
1120 => 0.1835925859256
1121 => 0.19200653040875
1122 => 0.18893532748888
1123 => 0.19840005122152
1124 => 0.20463413041179
1125 => 0.20305296627781
1126 => 0.20891614788817
1127 => 0.19663771279361
1128 => 0.20071611640671
1129 => 0.20155666973895
1130 => 0.1919027036399
1201 => 0.18530785721149
1202 => 0.18486805614147
1203 => 0.17343350126043
1204 => 0.17954174818138
1205 => 0.18491675269538
1206 => 0.18234254265038
1207 => 0.18152762465246
1208 => 0.18569086396964
1209 => 0.18601438332032
1210 => 0.17863810783981
1211 => 0.18017186908848
1212 => 0.18656790846199
1213 => 0.18001070530681
1214 => 0.16727113068934
1215 => 0.16411154004581
1216 => 0.16368999241115
1217 => 0.1551209319956
1218 => 0.16432267900078
1219 => 0.16030586984153
1220 => 0.17299492184684
1221 => 0.16574700339416
1222 => 0.16543456011589
1223 => 0.16496225627533
1224 => 0.15758651199224
1225 => 0.15920133123724
1226 => 0.16456923635151
1227 => 0.16648456537007
1228 => 0.1662847808616
1229 => 0.164542930688
1230 => 0.16534034077776
1231 => 0.16277160504256
]
'min_raw' => 0.089877205770312
'max_raw' => 0.2794881293489
'avg_raw' => 0.18468266755961
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.089877'
'max' => '$0.279488'
'avg' => '$0.184682'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.051200085625138
'max_diff' => 0.1745608294121
'year' => 2033
]
8 => [
'items' => [
101 => 0.16186453099085
102 => 0.15900155577327
103 => 0.15479377312052
104 => 0.15537889110622
105 => 0.14704217264491
106 => 0.14249988596405
107 => 0.14124264087716
108 => 0.13956140020309
109 => 0.14143254148491
110 => 0.14701855576896
111 => 0.14028063740335
112 => 0.12872894897554
113 => 0.12942322513317
114 => 0.13098305752693
115 => 0.12807632018049
116 => 0.12532533722606
117 => 0.12771709371063
118 => 0.12282249104055
119 => 0.13157454687537
120 => 0.13133782829239
121 => 0.1346000534841
122 => 0.13663998984408
123 => 0.13193859697157
124 => 0.13075620937805
125 => 0.13142975108784
126 => 0.12029760695773
127 => 0.13369031981153
128 => 0.13380614054843
129 => 0.13281441308225
130 => 0.13994561922328
131 => 0.15499468845982
201 => 0.14933262326562
202 => 0.1471401004856
203 => 0.14297211307806
204 => 0.14852570882801
205 => 0.148099279324
206 => 0.1461708033883
207 => 0.14500445512517
208 => 0.14715348756217
209 => 0.14473816622394
210 => 0.144304308143
211 => 0.14167560021477
212 => 0.14073727108298
213 => 0.14004256954976
214 => 0.13927777142165
215 => 0.14096472551645
216 => 0.13714186560035
217 => 0.13253187130113
218 => 0.13214860015598
219 => 0.13320684548528
220 => 0.13273865070416
221 => 0.13214635861949
222 => 0.1310155117287
223 => 0.13068001361293
224 => 0.13177021972865
225 => 0.13053944058696
226 => 0.13235552225454
227 => 0.13186164852934
228 => 0.12910291004719
301 => 0.12566450048263
302 => 0.12563389142519
303 => 0.12489309172463
304 => 0.12394957192598
305 => 0.12368710630281
306 => 0.12751566665065
307 => 0.13544067199152
308 => 0.13388480381381
309 => 0.13500907802399
310 => 0.14053939440302
311 => 0.1422973156775
312 => 0.14104958479552
313 => 0.13934161380758
314 => 0.13941675586295
315 => 0.14525340976672
316 => 0.14561743471131
317 => 0.1465372083074
318 => 0.14771937730636
319 => 0.14125091328789
320 => 0.13911209178938
321 => 0.13809859950609
322 => 0.13497743554443
323 => 0.13834334328871
324 => 0.13638217298866
325 => 0.13664680186525
326 => 0.13647446196221
327 => 0.13656857120284
328 => 0.13157210049739
329 => 0.13339255181569
330 => 0.13036569841668
331 => 0.12631308149565
401 => 0.1262994957027
402 => 0.12729136795278
403 => 0.12670136352647
404 => 0.12511367678565
405 => 0.12533920019352
406 => 0.12336337783376
407 => 0.12557910080141
408 => 0.12564263980788
409 => 0.12478946577409
410 => 0.12820309271661
411 => 0.12960165846021
412 => 0.12904008103441
413 => 0.12956225669096
414 => 0.13394945716091
415 => 0.13466476226449
416 => 0.1349824535411
417 => 0.13455678931647
418 => 0.12964244666186
419 => 0.12986041865599
420 => 0.12826108478975
421 => 0.12690981620642
422 => 0.12696385986328
423 => 0.12765858756773
424 => 0.1306925041983
425 => 0.13707720288817
426 => 0.1373194975363
427 => 0.13761316571806
428 => 0.13641866963703
429 => 0.1360583981892
430 => 0.13653368922284
501 => 0.13893144635924
502 => 0.1450991286988
503 => 0.14291905783435
504 => 0.14114662628672
505 => 0.1427015265981
506 => 0.14246216188288
507 => 0.14044168279824
508 => 0.14038497467975
509 => 0.13650702933009
510 => 0.13507344123087
511 => 0.13387542771294
512 => 0.13256722822631
513 => 0.13179168371939
514 => 0.13298327256069
515 => 0.13325580302716
516 => 0.13065037320024
517 => 0.13029526274222
518 => 0.132422912981
519 => 0.13148661343771
520 => 0.13244962073709
521 => 0.13267304669107
522 => 0.13263706996655
523 => 0.13165946571003
524 => 0.13228256151056
525 => 0.13080875418852
526 => 0.12920621008452
527 => 0.12818388678818
528 => 0.12729177412063
529 => 0.12778677007848
530 => 0.12602219987142
531 => 0.12545767834841
601 => 0.13207147067344
602 => 0.13695715017419
603 => 0.13688611045931
604 => 0.13645367446489
605 => 0.13581116229363
606 => 0.13888444259196
607 => 0.1378137731882
608 => 0.13859277463685
609 => 0.13879106320012
610 => 0.13939122296045
611 => 0.13960572848929
612 => 0.13895734379746
613 => 0.13678128557816
614 => 0.13135875538908
615 => 0.12883455294821
616 => 0.12800152409881
617 => 0.12803180311534
618 => 0.127196572668
619 => 0.12744258546714
620 => 0.12711101945617
621 => 0.12648311364582
622 => 0.12774799866408
623 => 0.12789376487922
624 => 0.1275985256017
625 => 0.12766806513938
626 => 0.12522361001991
627 => 0.12540945663357
628 => 0.12437463907249
629 => 0.1241806232547
630 => 0.12156469457216
701 => 0.11693019772612
702 => 0.11949815886032
703 => 0.11639642292018
704 => 0.11522174852069
705 => 0.12078247442856
706 => 0.12022433177794
707 => 0.11926903417885
708 => 0.11785594992834
709 => 0.11733182323422
710 => 0.11414739535912
711 => 0.113959242372
712 => 0.11553753081368
713 => 0.11480920500343
714 => 0.11378635972729
715 => 0.11008171782126
716 => 0.10591647375411
717 => 0.10604219629071
718 => 0.10736708293135
719 => 0.11121936952432
720 => 0.10971421450721
721 => 0.10862220727263
722 => 0.10841770714321
723 => 0.11097745441292
724 => 0.11460003308318
725 => 0.11629966594463
726 => 0.11461538139755
727 => 0.11268056599817
728 => 0.11279832924646
729 => 0.11358175537846
730 => 0.11366408238788
731 => 0.11240471646513
801 => 0.11275922059561
802 => 0.11222069640488
803 => 0.10891577444039
804 => 0.10885599888207
805 => 0.10804491773292
806 => 0.10802035851807
807 => 0.10664050714969
808 => 0.10644745640479
809 => 0.10370767776188
810 => 0.10551100836146
811 => 0.10430142887437
812 => 0.10247830727637
813 => 0.1021640004257
814 => 0.10215455198223
815 => 0.10402649022085
816 => 0.10548913367325
817 => 0.10432247002741
818 => 0.10405684333008
819 => 0.10689304152147
820 => 0.1065321094491
821 => 0.10621954460218
822 => 0.11427567089604
823 => 0.10789861830708
824 => 0.10511785938885
825 => 0.10167614217576
826 => 0.10279678265499
827 => 0.10303291806959
828 => 0.094756208588245
829 => 0.091398348582461
830 => 0.090246057566761
831 => 0.089582897796222
901 => 0.089885108031093
902 => 0.086862640188191
903 => 0.088893788565625
904 => 0.08627658689652
905 => 0.085837804519583
906 => 0.090517685313016
907 => 0.091168863385956
908 => 0.088390735421627
909 => 0.090174743312789
910 => 0.089527837251889
911 => 0.086321451307312
912 => 0.086198990948808
913 => 0.084590139191735
914 => 0.082072597727003
915 => 0.080922013722965
916 => 0.080322779583833
917 => 0.08057003526848
918 => 0.080445015228174
919 => 0.079629174898364
920 => 0.08049177824089
921 => 0.078288183153046
922 => 0.077410693833494
923 => 0.07701435226545
924 => 0.075058534790788
925 => 0.078171110148955
926 => 0.078784326705705
927 => 0.079398751488504
928 => 0.084746899737154
929 => 0.084479721364361
930 => 0.086894883733261
1001 => 0.086801034964804
1002 => 0.086112191534157
1003 => 0.083206074409504
1004 => 0.084364400898834
1005 => 0.08079925200858
1006 => 0.083470503963718
1007 => 0.082251456125542
1008 => 0.083058342663379
1009 => 0.081607487914322
1010 => 0.082410450836775
1011 => 0.078929743100145
1012 => 0.075679507190559
1013 => 0.076987497000877
1014 => 0.078409431511472
1015 => 0.081492547832616
1016 => 0.0796562691869
1017 => 0.080316664425283
1018 => 0.078104450925529
1019 => 0.07354002258799
1020 => 0.073565856756685
1021 => 0.072863718898431
1022 => 0.072256969275094
1023 => 0.0798671878787
1024 => 0.078920736895589
1025 => 0.077412691122444
1026 => 0.079431270317156
1027 => 0.079965014695397
1028 => 0.07998020964749
1029 => 0.081452912920881
1030 => 0.082238894921887
1031 => 0.082377427656205
1101 => 0.084694758076748
1102 => 0.085471496667386
1103 => 0.088670772994066
1104 => 0.082172209840453
1105 => 0.082038376208802
1106 => 0.079459675866014
1107 => 0.077824223340979
1108 => 0.079571656699594
1109 => 0.081119644106887
1110 => 0.079507776149757
1111 => 0.079718252076569
1112 => 0.077554451038573
1113 => 0.078327908093355
1114 => 0.07899411350485
1115 => 0.078626274034366
1116 => 0.078075600543421
1117 => 0.080992726792504
1118 => 0.080828131097221
1119 => 0.08354462612481
1120 => 0.085662328257239
1121 => 0.089457629063088
1122 => 0.085497034818679
1123 => 0.085352695022476
1124 => 0.086763639683188
1125 => 0.08547128065911
1126 => 0.08628800695161
1127 => 0.089326041830827
1128 => 0.089390230720552
1129 => 0.088314984114942
1130 => 0.088249555261272
1201 => 0.088456068133788
1202 => 0.089665620478429
1203 => 0.089242965723422
1204 => 0.089732072506225
1205 => 0.090343708027589
1206 => 0.092873691872038
1207 => 0.093483662411715
1208 => 0.092001750233766
1209 => 0.092135550311167
1210 => 0.091581274477215
1211 => 0.091045850966673
1212 => 0.092249404826047
1213 => 0.094448923159963
1214 => 0.094435240070563
1215 => 0.094945485571504
1216 => 0.095263364291489
1217 => 0.09389879612387
1218 => 0.093010512423312
1219 => 0.093351136917067
1220 => 0.093895802900416
1221 => 0.093174509079491
1222 => 0.088722349480941
1223 => 0.090072850298085
1224 => 0.089848060925996
1225 => 0.08952793352482
1226 => 0.090885872539572
1227 => 0.090754896008885
1228 => 0.086831640411859
1229 => 0.087082794506209
1230 => 0.086846913924185
1231 => 0.087609092341331
]
'min_raw' => 0.072256969275094
'max_raw' => 0.16186453099085
'avg_raw' => 0.11706075013297
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.072256'
'max' => '$0.161864'
'avg' => '$0.11706'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.017620236495218
'max_diff' => -0.11762359835805
'year' => 2034
]
9 => [
'items' => [
101 => 0.085430120523328
102 => 0.086100357578946
103 => 0.086520723977148
104 => 0.086768323015096
105 => 0.087662820520414
106 => 0.087557861562416
107 => 0.087656296124215
108 => 0.088982599786015
109 => 0.095690588574941
110 => 0.096055689604379
111 => 0.094257798605997
112 => 0.094976020598019
113 => 0.093597191431221
114 => 0.094522808688245
115 => 0.095156092507371
116 => 0.092294404702213
117 => 0.092124954122592
118 => 0.090740434037345
119 => 0.091484396707931
120 => 0.09030069860622
121 => 0.090591136716378
122 => 0.089779046440438
123 => 0.09124064725157
124 => 0.09287494406822
125 => 0.093287831984443
126 => 0.092201701636285
127 => 0.09141527168474
128 => 0.090034559755959
129 => 0.092330714464694
130 => 0.093002180075575
131 => 0.092327187541692
201 => 0.092170777022713
202 => 0.091874379371876
203 => 0.0922336591855
204 => 0.092998523129654
205 => 0.09263782741841
206 => 0.092876073290327
207 => 0.091968125704656
208 => 0.093899247852713
209 => 0.096966334573681
210 => 0.096976195759008
211 => 0.09661549810348
212 => 0.096467908394178
213 => 0.096838006077713
214 => 0.09703876888883
215 => 0.098235596933075
216 => 0.099519841108283
217 => 0.10551284831435
218 => 0.10383003587229
219 => 0.10914738839111
220 => 0.11335272386168
221 => 0.11461372009227
222 => 0.11345366289458
223 => 0.10948516988635
224 => 0.10929045668668
225 => 0.1152210606955
226 => 0.11354539342413
227 => 0.11334607813414
228 => 0.11122570019703
301 => 0.11247910617178
302 => 0.11220496789874
303 => 0.11177222722346
304 => 0.11416363851025
305 => 0.11864014695637
306 => 0.11794244113461
307 => 0.11742163610431
308 => 0.1151396200656
309 => 0.11651390342764
310 => 0.11602454744508
311 => 0.11812713129913
312 => 0.11688160720193
313 => 0.11353269859649
314 => 0.11406602333005
315 => 0.11398541236948
316 => 0.11564438022601
317 => 0.11514639925359
318 => 0.1138881735923
319 => 0.11862484673716
320 => 0.11831727352989
321 => 0.11875334201677
322 => 0.11894531285056
323 => 0.12182844232429
324 => 0.12300956821983
325 => 0.12327770447664
326 => 0.12439968272584
327 => 0.1232497886357
328 => 0.12785018485686
329 => 0.13090917990337
330 => 0.13446236006433
331 => 0.1396545112843
401 => 0.14160680817309
402 => 0.14125414321446
403 => 0.14519077301223
404 => 0.15226480925247
405 => 0.14268400819305
406 => 0.15277261497262
407 => 0.14957867854477
408 => 0.14200591273081
409 => 0.14151831588944
410 => 0.14664668082027
411 => 0.15802090065003
412 => 0.15517178758801
413 => 0.15802556077833
414 => 0.15469648276473
415 => 0.15453116598168
416 => 0.15786387488985
417 => 0.16565093091029
418 => 0.16195159248841
419 => 0.15664768374565
420 => 0.16056400742334
421 => 0.15717132541508
422 => 0.14952666329855
423 => 0.15516960892494
424 => 0.15139633188641
425 => 0.1524975747247
426 => 0.16042844182708
427 => 0.15947417891485
428 => 0.16070908348565
429 => 0.15852950924128
430 => 0.15649344320972
501 => 0.15269297476158
502 => 0.15156784341491
503 => 0.15187878924115
504 => 0.15156768932561
505 => 0.14944136215698
506 => 0.14898218200736
507 => 0.14821686164086
508 => 0.14845406642406
509 => 0.14701504023266
510 => 0.14973077997381
511 => 0.15023484520079
512 => 0.15221113411049
513 => 0.15241631898119
514 => 0.15792025546401
515 => 0.15488877973917
516 => 0.15692255538042
517 => 0.15674063534442
518 => 0.14217003752863
519 => 0.14417773735018
520 => 0.14730108822159
521 => 0.14589402288762
522 => 0.14390476170797
523 => 0.14229832664797
524 => 0.13986441326564
525 => 0.1432900996121
526 => 0.14779451287655
527 => 0.15253055833499
528 => 0.1582206066353
529 => 0.15695065409414
530 => 0.15242418683993
531 => 0.15262724085436
601 => 0.15388244087281
602 => 0.15225684280198
603 => 0.15177742219545
604 => 0.15381657584347
605 => 0.15383061837395
606 => 0.15196017133337
607 => 0.14988151173596
608 => 0.14987280207635
609 => 0.14950292467846
610 => 0.15476228313213
611 => 0.15765439850053
612 => 0.15798597486664
613 => 0.15763208076923
614 => 0.15776828056177
615 => 0.15608542235231
616 => 0.15993193718303
617 => 0.16346187957259
618 => 0.16251577960597
619 => 0.16109744125997
620 => 0.15996766645095
621 => 0.16224964056572
622 => 0.16214802785055
623 => 0.16343104860527
624 => 0.16337284337275
625 => 0.16294141174979
626 => 0.16251579501375
627 => 0.16420331726261
628 => 0.16371733795572
629 => 0.16323060378873
630 => 0.16225438390156
701 => 0.16238706839752
702 => 0.16096897494763
703 => 0.16031290003017
704 => 0.15044710741541
705 => 0.14781064525468
706 => 0.14864012992058
707 => 0.14891321781015
708 => 0.14776582609908
709 => 0.14941089107201
710 => 0.14915450943854
711 => 0.15015194039615
712 => 0.14952878883725
713 => 0.14955436319459
714 => 0.1513869190594
715 => 0.1519189178232
716 => 0.15164833895818
717 => 0.15183784312034
718 => 0.1562048865527
719 => 0.15558403262681
720 => 0.15525421635276
721 => 0.15534557771467
722 => 0.15646145094211
723 => 0.15677383452137
724 => 0.15545024334523
725 => 0.15607445659549
726 => 0.15873227739063
727 => 0.1596623642493
728 => 0.16263075503515
729 => 0.16136972987038
730 => 0.16368439613621
731 => 0.17079889110948
801 => 0.17648244197973
802 => 0.17125561371677
803 => 0.18169273109416
804 => 0.18981952408801
805 => 0.18950760423703
806 => 0.18809050990244
807 => 0.1788383721409
808 => 0.17032441703113
809 => 0.17744670200208
810 => 0.17746485817119
811 => 0.17685304757574
812 => 0.1730531445123
813 => 0.1767208191859
814 => 0.17701194588245
815 => 0.17684899234922
816 => 0.17393561557983
817 => 0.169487427735
818 => 0.17035659299242
819 => 0.17178030341457
820 => 0.16908492256833
821 => 0.16822358506907
822 => 0.16982497535636
823 => 0.1749849885249
824 => 0.17400951792531
825 => 0.17398404444577
826 => 0.17815752133474
827 => 0.17517021257492
828 => 0.17036755594977
829 => 0.16915482181266
830 => 0.16485043262152
831 => 0.16782348956755
901 => 0.1679304845942
902 => 0.16630217168877
903 => 0.1704996845679
904 => 0.17046100374776
905 => 0.17444591750915
906 => 0.18206357595566
907 => 0.17981065951082
908 => 0.17719076280208
909 => 0.17747561821618
910 => 0.18059977902574
911 => 0.17871084008262
912 => 0.17939011569672
913 => 0.18059875086074
914 => 0.18132795046392
915 => 0.17737069761503
916 => 0.17644807267866
917 => 0.17456070585622
918 => 0.17406832708161
919 => 0.17560554797729
920 => 0.1752005445821
921 => 0.16792149207652
922 => 0.16716079058942
923 => 0.167184120218
924 => 0.1652713001593
925 => 0.16235379044038
926 => 0.17002083178626
927 => 0.16940506106601
928 => 0.16872529784772
929 => 0.16880856496329
930 => 0.17213656775139
1001 => 0.17020615806612
1002 => 0.17533846860234
1003 => 0.17428341984747
1004 => 0.1732013130731
1005 => 0.17305173295511
1006 => 0.17263521416799
1007 => 0.17120681626714
1008 => 0.16948193996845
1009 => 0.16834302722984
1010 => 0.15528754404077
1011 => 0.15771056578041
1012 => 0.16049803142648
1013 => 0.16146025339744
1014 => 0.15981430613239
1015 => 0.17127180829733
1016 => 0.1733652043501
1017 => 0.1670241711574
1018 => 0.16583802274973
1019 => 0.17134957198946
1020 => 0.16802543403841
1021 => 0.16952229315423
1022 => 0.16628690248399
1023 => 0.17286096654278
1024 => 0.17281088318922
1025 => 0.17025342378838
1026 => 0.17241497096124
1027 => 0.1720393489469
1028 => 0.16915198358209
1029 => 0.17295250117494
1030 => 0.17295438618425
1031 => 0.17049288711491
1101 => 0.16761839509335
1102 => 0.16710450381236
1103 => 0.16671735576372
1104 => 0.16942707846687
1105 => 0.17185660736943
1106 => 0.1763773583258
1107 => 0.17751398252663
1108 => 0.18195030245181
1109 => 0.17930868993686
1110 => 0.18047968255013
1111 => 0.18175096067885
1112 => 0.18236045816346
1113 => 0.18136731471972
1114 => 0.18825874562565
1115 => 0.1888405935421
1116 => 0.18903568211552
1117 => 0.18671193038824
1118 => 0.18877596580293
1119 => 0.18781027198606
1120 => 0.19032273902008
1121 => 0.1907167259318
1122 => 0.19038303303406
1123 => 0.1905080906985
1124 => 0.18462747015201
1125 => 0.18432252895393
1126 => 0.18016463408046
1127 => 0.18185900697501
1128 => 0.17869145806206
1129 => 0.17969592045172
1130 => 0.18013867790222
1201 => 0.17990740653634
1202 => 0.18195480427625
1203 => 0.1802140979416
1204 => 0.17562008772587
1205 => 0.17102482587512
1206 => 0.17096713610581
1207 => 0.16975728477361
1208 => 0.16888278385576
1209 => 0.16905124375713
1210 => 0.16964491842211
1211 => 0.16884827840499
1212 => 0.16901828194332
1213 => 0.17184147340717
1214 => 0.17240764432117
1215 => 0.17048357433816
1216 => 0.16275815571438
1217 => 0.16086231860636
1218 => 0.16222500872352
1219 => 0.161573730616
1220 => 0.13040261091975
1221 => 0.13772580312463
1222 => 0.1333746109886
1223 => 0.13537984051361
1224 => 0.13093840007846
1225 => 0.13305808824995
1226 => 0.1326666592433
1227 => 0.14444213559973
1228 => 0.14425827773306
1229 => 0.1443462807643
1230 => 0.14014566679291
1231 => 0.14683735890842
]
'min_raw' => 0.085430120523328
'max_raw' => 0.1907167259318
'avg_raw' => 0.13807342322756
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.08543'
'max' => '$0.190716'
'avg' => '$0.138073'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013173151248233
'max_diff' => 0.028852194940954
'year' => 2035
]
10 => [
'items' => [
101 => 0.15013392706999
102 => 0.1495238200386
103 => 0.14967737083416
104 => 0.14703885942832
105 => 0.1443718273222
106 => 0.14141367826322
107 => 0.14690955357654
108 => 0.14629850605942
109 => 0.14770002921574
110 => 0.1512644972097
111 => 0.15178937866191
112 => 0.1524948246565
113 => 0.15224197248451
114 => 0.15826593704992
115 => 0.15753639519365
116 => 0.15929438116374
117 => 0.15567807064454
118 => 0.15158587202873
119 => 0.15236366520154
120 => 0.15228875746438
121 => 0.15133509599524
122 => 0.15047417306199
123 => 0.14904097894165
124 => 0.15357581721122
125 => 0.15339171105906
126 => 0.1563721756625
127 => 0.15584534959315
128 => 0.15232707616585
129 => 0.1524527319896
130 => 0.15329782779242
131 => 0.15622271401511
201 => 0.15709101938745
202 => 0.156688785743
203 => 0.15764084294412
204 => 0.15839331013738
205 => 0.1577353412384
206 => 0.16705079331435
207 => 0.16318236814136
208 => 0.16506781165435
209 => 0.16551747882252
210 => 0.16436566582674
211 => 0.16461545282219
212 => 0.16499381205742
213 => 0.16729113524341
214 => 0.17331997601926
215 => 0.17599010855918
216 => 0.18402333404754
217 => 0.17576839122178
218 => 0.17527857707684
219 => 0.17672560356747
220 => 0.18144195733241
221 => 0.18526411907432
222 => 0.18653215062991
223 => 0.1866997419329
224 => 0.18907865342833
225 => 0.19044220113344
226 => 0.1887897910012
227 => 0.18738954642868
228 => 0.18237404417467
229 => 0.18295460221733
301 => 0.18695407141956
302 => 0.19260355723526
303 => 0.19745140379395
304 => 0.1957538568936
305 => 0.20870494146187
306 => 0.20998898859638
307 => 0.2098115748006
308 => 0.21273682526484
309 => 0.20693079881022
310 => 0.20444861001441
311 => 0.18769229519871
312 => 0.19240013618072
313 => 0.19924325952988
314 => 0.19833754649422
315 => 0.19336788740085
316 => 0.19744763386188
317 => 0.1960987420964
318 => 0.19503481519539
319 => 0.19990887058129
320 => 0.19454964646934
321 => 0.19918979716977
322 => 0.19323875590025
323 => 0.19576161114485
324 => 0.19432951649124
325 => 0.19525625724305
326 => 0.1898385497444
327 => 0.19276181320325
328 => 0.18971693237371
329 => 0.18971548870374
330 => 0.18964827279067
331 => 0.19323056158356
401 => 0.19334737989248
402 => 0.190700063062
403 => 0.19031854334787
404 => 0.1917292216936
405 => 0.19007768680799
406 => 0.19085042958633
407 => 0.19010109239954
408 => 0.18993240081534
409 => 0.18858823757192
410 => 0.18800913508811
411 => 0.18823621609364
412 => 0.18746107155348
413 => 0.18699401892982
414 => 0.18955536426828
415 => 0.18818694077832
416 => 0.18934563374249
417 => 0.18802515687111
418 => 0.18344780873051
419 => 0.18081532741028
420 => 0.17216914109309
421 => 0.17462118880708
422 => 0.17624689897829
423 => 0.1757096017764
424 => 0.17686392407247
425 => 0.17693479008643
426 => 0.17655950814105
427 => 0.17612497972491
428 => 0.17591347532285
429 => 0.17748985585344
430 => 0.17840499780998
501 => 0.17641006074316
502 => 0.17594267490054
503 => 0.17795966641859
504 => 0.17919003007942
505 => 0.18827434406937
506 => 0.18760134874705
507 => 0.18929043493742
508 => 0.18910026975352
509 => 0.19087070117356
510 => 0.19376460830518
511 => 0.18788048595744
512 => 0.18890176613937
513 => 0.18865137182356
514 => 0.1913851113066
515 => 0.19139364574287
516 => 0.18975463236237
517 => 0.1906431681059
518 => 0.19014721182956
519 => 0.19104347185341
520 => 0.18759236048421
521 => 0.19179544160744
522 => 0.19417831776374
523 => 0.19421140400148
524 => 0.1953408683879
525 => 0.19648846961866
526 => 0.1986911902461
527 => 0.19642703693589
528 => 0.19235404554169
529 => 0.19264810236467
530 => 0.1902601090005
531 => 0.19030025160038
601 => 0.1900859672562
602 => 0.19072905070366
603 => 0.18773348113721
604 => 0.188436535327
605 => 0.18745225534422
606 => 0.18889962650691
607 => 0.18734249439488
608 => 0.18865125107584
609 => 0.18921606707337
610 => 0.19130025026389
611 => 0.18703465884304
612 => 0.17833682918078
613 => 0.18016521842678
614 => 0.17746088711508
615 => 0.17771118327409
616 => 0.17821682134964
617 => 0.17657788291231
618 => 0.17689054071726
619 => 0.17687937038033
620 => 0.17678311045135
621 => 0.176356759265
622 => 0.17573846569377
623 => 0.17820155698081
624 => 0.17862008418696
625 => 0.17955041832169
626 => 0.18231846165495
627 => 0.182041868851
628 => 0.18249300318997
629 => 0.18150817946102
630 => 0.17775686642233
701 => 0.17796058076845
702 => 0.17542025960813
703 => 0.1794854565982
704 => 0.17852276429297
705 => 0.17790211030111
706 => 0.17773275910911
707 => 0.1805076638864
708 => 0.18133795888707
709 => 0.18082057476167
710 => 0.17975940482599
711 => 0.18179716480923
712 => 0.18234238341456
713 => 0.1824644377534
714 => 0.18607495774199
715 => 0.18266622571289
716 => 0.18348674139217
717 => 0.18988817049544
718 => 0.18408295763561
719 => 0.18715810835916
720 => 0.18700759573355
721 => 0.18858073878629
722 => 0.18687855208662
723 => 0.18689965273081
724 => 0.18829649718771
725 => 0.18633488107023
726 => 0.18584915733327
727 => 0.18517813346948
728 => 0.18664328952715
729 => 0.18752158432041
730 => 0.19459999531763
731 => 0.1991729716366
801 => 0.19897444667423
802 => 0.20078859320716
803 => 0.1999713035784
804 => 0.197332059777
805 => 0.20183692712449
806 => 0.20041139860409
807 => 0.20052891744329
808 => 0.20052454338623
809 => 0.20147239523043
810 => 0.20080075532947
811 => 0.19947688414225
812 => 0.20035573161881
813 => 0.20296559443045
814 => 0.21106668867818
815 => 0.21560016834443
816 => 0.21079376750986
817 => 0.21410915844527
818 => 0.21212110527861
819 => 0.21175981687877
820 => 0.21384212739167
821 => 0.21592808271347
822 => 0.21579521637731
823 => 0.21428091992867
824 => 0.21342553228868
825 => 0.21990281407454
826 => 0.22467516495674
827 => 0.22434972262082
828 => 0.22578611925205
829 => 0.23000342418743
830 => 0.23038900169773
831 => 0.23034042779383
901 => 0.22938473370369
902 => 0.23353721809881
903 => 0.23700129363724
904 => 0.22916351813448
905 => 0.23214804044191
906 => 0.23348788866103
907 => 0.23545518336173
908 => 0.23877433927871
909 => 0.24237982296716
910 => 0.24288967789283
911 => 0.24252791142427
912 => 0.24014999801112
913 => 0.2440951612854
914 => 0.24640614540601
915 => 0.2477822835639
916 => 0.25127194096476
917 => 0.23349616310749
918 => 0.22091358402663
919 => 0.21894863260851
920 => 0.22294443858516
921 => 0.22399810075524
922 => 0.22357337085566
923 => 0.20941053414211
924 => 0.21887406820428
925 => 0.22905603513863
926 => 0.22944716595594
927 => 0.23454447149816
928 => 0.23620436312832
929 => 0.24030836220892
930 => 0.24005165594903
1001 => 0.24105091441627
1002 => 0.2408212021994
1003 => 0.24842299629724
1004 => 0.25680890406451
1005 => 0.25651852674409
1006 => 0.25531295328498
1007 => 0.25710343545257
1008 => 0.26575859095689
1009 => 0.26496176293409
1010 => 0.26573581348459
1011 => 0.27594072960737
1012 => 0.28920857219937
1013 => 0.28304432724576
1014 => 0.29641896508138
1015 => 0.30483759063981
1016 => 0.31939673304098
1017 => 0.31757385670707
1018 => 0.32324162400392
1019 => 0.31431052762359
1020 => 0.29380292506196
1021 => 0.29055751845663
1022 => 0.29705490466728
1023 => 0.31302809466048
1024 => 0.29655185207064
1025 => 0.29988497448786
1026 => 0.29892503500747
1027 => 0.29887388391204
1028 => 0.30082611317806
1029 => 0.29799430280627
1030 => 0.28645699791863
1031 => 0.29174447675887
1101 => 0.28970272725306
1102 => 0.29196820055226
1103 => 0.30419402559579
1104 => 0.29878869691678
1105 => 0.29309462224669
1106 => 0.3002362554993
1107 => 0.30933000876132
1108 => 0.30876093802523
1109 => 0.3076567029441
1110 => 0.31388121828057
1111 => 0.32416229400455
1112 => 0.32694122746003
1113 => 0.32899257932408
1114 => 0.32927542608826
1115 => 0.33218892354757
1116 => 0.31652231341293
1117 => 0.34138562604369
1118 => 0.34567883329988
1119 => 0.34487188827093
1120 => 0.34964360745039
1121 => 0.34823964662096
1122 => 0.34620552765382
1123 => 0.35376971752706
1124 => 0.34509798423604
1125 => 0.3327895505703
1126 => 0.32603690042807
1127 => 0.33492933485611
1128 => 0.34035963425813
1129 => 0.34394871673095
1130 => 0.34503477091864
1201 => 0.31773846776056
1202 => 0.30302727428073
1203 => 0.31245698063712
1204 => 0.32396187319549
1205 => 0.31645840315387
1206 => 0.31675252497355
1207 => 0.30605454857143
1208 => 0.32490840672748
1209 => 0.32216155818005
1210 => 0.3364122133032
1211 => 0.33301118008941
1212 => 0.34463203613509
1213 => 0.34157187528097
1214 => 0.35427443189515
1215 => 0.35934182563655
1216 => 0.3678507684052
1217 => 0.37410998134345
1218 => 0.37778551090045
1219 => 0.37756484589241
1220 => 0.39212912513882
1221 => 0.38354107850437
1222 => 0.37275246788433
1223 => 0.37255733595584
1224 => 0.37814491027176
1225 => 0.38985493316177
1226 => 0.39289117172324
1227 => 0.39458801486782
1228 => 0.39198924052436
1229 => 0.38266753141352
1230 => 0.3786424646816
1231 => 0.3820719381546
]
'min_raw' => 0.14141367826322
'max_raw' => 0.39458801486782
'avg_raw' => 0.26800084656552
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.141413'
'max' => '$0.394588'
'avg' => '$0.26800084'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.055983557739892
'max_diff' => 0.20387128893602
'year' => 2036
]
11 => [
'items' => [
101 => 0.37787798679513
102 => 0.3851179234565
103 => 0.39505990285958
104 => 0.39300692342769
105 => 0.39986972586862
106 => 0.40697200440712
107 => 0.41712858170045
108 => 0.41978388710189
109 => 0.42417300595826
110 => 0.4286908510119
111 => 0.43014186108379
112 => 0.43291228953301
113 => 0.43289768800756
114 => 0.44124656061063
115 => 0.45045562563488
116 => 0.45393183449119
117 => 0.461925185077
118 => 0.44823685231921
119 => 0.45861960995623
120 => 0.46798511724209
121 => 0.45681917336134
122 => 0.4722088256697
123 => 0.47280637099513
124 => 0.48182859597067
125 => 0.4726828425088
126 => 0.46725212329743
127 => 0.48293040617428
128 => 0.4905166333971
129 => 0.48823160001882
130 => 0.4708423831841
131 => 0.4607211131277
201 => 0.4342317971429
202 => 0.46560953618018
203 => 0.48089271756405
204 => 0.47080280343646
205 => 0.47589156922716
206 => 0.50365422534337
207 => 0.51422444729356
208 => 0.51202591501935
209 => 0.51239743078277
210 => 0.518100930684
211 => 0.54339339022078
212 => 0.52823756219172
213 => 0.5398236248419
214 => 0.54596883069489
215 => 0.5516768403672
216 => 0.537659772647
217 => 0.51942377349463
218 => 0.51364766706791
219 => 0.46979956032694
220 => 0.4675170759484
221 => 0.46623584830037
222 => 0.45815788921278
223 => 0.45181082610915
224 => 0.4467634058778
225 => 0.43351746790346
226 => 0.43798758313121
227 => 0.41687632264223
228 => 0.43038255896595
301 => 0.39668847747632
302 => 0.42474990976592
303 => 0.40947734796746
304 => 0.41973246246089
305 => 0.41969668333252
306 => 0.40081376616309
307 => 0.38992249361619
308 => 0.39686283637774
309 => 0.40430343474322
310 => 0.40551064679484
311 => 0.41515757679517
312 => 0.4178498275982
313 => 0.40969218197586
314 => 0.3959902425297
315 => 0.39917289055508
316 => 0.38985799735554
317 => 0.37353400531553
318 => 0.38525818138822
319 => 0.38926133057507
320 => 0.39102934931036
321 => 0.37497657796217
322 => 0.36993244868195
323 => 0.3672469965775
324 => 0.39391803133072
325 => 0.39537913082096
326 => 0.38790393925025
327 => 0.4216925139766
328 => 0.41404511888622
329 => 0.42258913285946
330 => 0.39888409860571
331 => 0.39978966283727
401 => 0.38856731973152
402 => 0.3948510819935
403 => 0.39040992136185
404 => 0.39434341610008
405 => 0.39670113662778
406 => 0.40792163825745
407 => 0.42487802987079
408 => 0.40624566948473
409 => 0.39812728324421
410 => 0.40316388440829
411 => 0.41657701702378
412 => 0.43689859954188
413 => 0.4248678136812
414 => 0.43020687215018
415 => 0.43137321890747
416 => 0.42250216281771
417 => 0.43722568803345
418 => 0.44511614481027
419 => 0.45321012076332
420 => 0.4602378932953
421 => 0.44997720877733
422 => 0.4609576120229
423 => 0.45210934530907
424 => 0.44417153534976
425 => 0.44418357373088
426 => 0.43920406959051
427 => 0.42955565286063
428 => 0.42777633678237
429 => 0.43703256372433
430 => 0.44445518116382
501 => 0.44506654348808
502 => 0.44917608589044
503 => 0.4516080707525
504 => 0.47544482852381
505 => 0.48503216968744
506 => 0.49675538898323
507 => 0.50132224358338
508 => 0.51506683862185
509 => 0.50396696184686
510 => 0.50156543368509
511 => 0.46822554194455
512 => 0.47368494734933
513 => 0.48242598215665
514 => 0.468369678389
515 => 0.47728516781444
516 => 0.4790452742829
517 => 0.46789205056569
518 => 0.4738494692554
519 => 0.45802833146706
520 => 0.4252228874404
521 => 0.43726220987059
522 => 0.44612720357132
523 => 0.43347576451453
524 => 0.45615297934551
525 => 0.44290541859399
526 => 0.43870657783082
527 => 0.42232540301887
528 => 0.43005668696086
529 => 0.44051335919374
530 => 0.43405235147245
531 => 0.44745991261932
601 => 0.46644859486924
602 => 0.47998106063611
603 => 0.4810199153244
604 => 0.47231944644109
605 => 0.48626200335224
606 => 0.4863635596579
607 => 0.47063629850511
608 => 0.46100343861878
609 => 0.45881483258489
610 => 0.46428239955903
611 => 0.47092103523417
612 => 0.48138831340181
613 => 0.48771347037664
614 => 0.50420612516296
615 => 0.50866856466666
616 => 0.51357143275412
617 => 0.52012317650748
618 => 0.527990224716
619 => 0.51077757110705
620 => 0.51146146192333
621 => 0.49543327720809
622 => 0.47830486316565
623 => 0.49130319433691
624 => 0.5082967832478
625 => 0.50439843517539
626 => 0.50395979138122
627 => 0.50469746857337
628 => 0.50175824143493
629 => 0.48846422602057
630 => 0.48178805470442
701 => 0.4904020189752
702 => 0.49497995762168
703 => 0.50207994122417
704 => 0.50120471838269
705 => 0.51949351366012
706 => 0.52659998648047
707 => 0.52478184662991
708 => 0.52511642811839
709 => 0.53798235771025
710 => 0.55229191749662
711 => 0.56569470854928
712 => 0.57932860327132
713 => 0.56289241104394
714 => 0.55454712627428
715 => 0.56315732995773
716 => 0.5585886346859
717 => 0.58484171288089
718 => 0.58665941905462
719 => 0.61291059885325
720 => 0.63782609441448
721 => 0.62217711805994
722 => 0.6369333979169
723 => 0.65289351767935
724 => 0.68368317813723
725 => 0.67331430368833
726 => 0.66537190836145
727 => 0.65786638315493
728 => 0.67348418964113
729 => 0.69357624818509
730 => 0.69790388515611
731 => 0.70491631033373
801 => 0.69754360269802
802 => 0.70642321696813
803 => 0.73777215724183
804 => 0.72930139685512
805 => 0.71727155536332
806 => 0.74201853292518
807 => 0.75097436790338
808 => 0.81383110798756
809 => 0.89319033882626
810 => 0.86033509615823
811 => 0.83994078680213
812 => 0.8447339332603
813 => 0.8737132378831
814 => 0.88302047077079
815 => 0.85772020338648
816 => 0.8666566855437
817 => 0.91589758084552
818 => 0.94231374133788
819 => 0.90643704722557
820 => 0.80745467106003
821 => 0.71618839975833
822 => 0.7403963246813
823 => 0.73765189725441
824 => 0.79055509632942
825 => 0.72909937202137
826 => 0.73013412880673
827 => 0.78413131001315
828 => 0.76972578781332
829 => 0.74639068676948
830 => 0.71635877182012
831 => 0.66084199942032
901 => 0.61166924590609
902 => 0.70810833935631
903 => 0.70394971028363
904 => 0.69792739911208
905 => 0.71132940094223
906 => 0.77640571760485
907 => 0.77490549787429
908 => 0.76536186536734
909 => 0.77260062651015
910 => 0.74512169694225
911 => 0.75220364277549
912 => 0.71617394271466
913 => 0.73246087187535
914 => 0.74634062012296
915 => 0.74912718507686
916 => 0.75540545820352
917 => 0.70175830173189
918 => 0.72584429998989
919 => 0.73999256741362
920 => 0.6760701804748
921 => 0.73872902734999
922 => 0.70082442409187
923 => 0.68795903243803
924 => 0.70528058741346
925 => 0.69853036059377
926 => 0.69272691196082
927 => 0.68948848790773
928 => 0.70220752617142
929 => 0.70161416783388
930 => 0.68080335257553
1001 => 0.65365649242835
1002 => 0.66276786975905
1003 => 0.65945762095519
1004 => 0.64746085225941
1005 => 0.65554522586499
1006 => 0.61994573591385
1007 => 0.55869866375338
1008 => 0.59916035567114
1009 => 0.59760262454616
1010 => 0.59681714587546
1011 => 0.62722298907263
1012 => 0.62430016883138
1013 => 0.61899522147317
1014 => 0.64736342274098
1015 => 0.63700864767208
1016 => 0.6689196245426
1017 => 0.68993825778211
1018 => 0.68460725251101
1019 => 0.70437537866464
1020 => 0.66297777749036
1021 => 0.67672840001697
1022 => 0.67956238426217
1023 => 0.64701336354082
1024 => 0.62477837836998
1025 => 0.62329555835647
1026 => 0.58474315823993
1027 => 0.60533753919808
1028 => 0.62345974218787
1029 => 0.61478061329553
1030 => 0.61203306036981
1031 => 0.62606971239577
1101 => 0.62716048047398
1102 => 0.60229085269633
1103 => 0.60746203582999
1104 => 0.62902672913502
1105 => 0.60691866088801
1106 => 0.56396629561652
1107 => 0.55331351516628
1108 => 0.55189223788452
1109 => 0.5230010524208
1110 => 0.55402538489422
1111 => 0.54048243236915
1112 => 0.58326445712635
1113 => 0.55882759402964
1114 => 0.55777416970288
1115 => 0.55618176432923
1116 => 0.53131392752076
1117 => 0.53675840334834
1118 => 0.5548566702163
1119 => 0.56131433572635
1120 => 0.56064074830756
1121 => 0.55476797883517
1122 => 0.55745650262618
1123 => 0.54879583075154
1124 => 0.54573756725631
1125 => 0.5360848464237
1126 => 0.52189801343197
1127 => 0.52387077957237
1128 => 0.49576295122896
1129 => 0.48044831455211
1130 => 0.47620942496363
1201 => 0.47054100465052
1202 => 0.47684968812108
1203 => 0.49568332528283
1204 => 0.47296596308675
1205 => 0.43401863903925
1206 => 0.43635943957751
1207 => 0.44161852339708
1208 => 0.43181825549164
1209 => 0.42254312439328
1210 => 0.43060709836813
1211 => 0.4141046037357
1212 => 0.44361277103181
1213 => 0.44281465780213
1214 => 0.45381347779729
1215 => 0.46069126565878
1216 => 0.44484019134832
1217 => 0.4408536890251
1218 => 0.44312458192484
1219 => 0.40559178076869
1220 => 0.45074624720462
1221 => 0.45113674490544
1222 => 0.44779306651301
1223 => 0.47183642590239
1224 => 0.52257541352585
1225 => 0.50348536541086
1226 => 0.49609312178097
1227 => 0.48204046123686
1228 => 0.50076479704747
1229 => 0.49932706020235
1230 => 0.49282506894325
1231 => 0.48889264434229
]
'min_raw' => 0.3672469965775
'max_raw' => 0.94231374133788
'avg_raw' => 0.65478036895769
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.367246'
'max' => '$0.942313'
'avg' => '$0.65478'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.22583331831428
'max_diff' => 0.54772572647005
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011527463578824
]
1 => [
'year' => 2028
'avg' => 0.019784473947851
]
2 => [
'year' => 2029
'avg' => 0.054047617021033
]
3 => [
'year' => 2030
'avg' => 0.041697656041601
]
4 => [
'year' => 2031
'avg' => 0.040952265766476
]
5 => [
'year' => 2032
'avg' => 0.071802210040987
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011527463578824
'min' => '$0.011527'
'max_raw' => 0.071802210040987
'max' => '$0.0718022'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.071802210040987
]
1 => [
'year' => 2033
'avg' => 0.18468266755961
]
2 => [
'year' => 2034
'avg' => 0.11706075013297
]
3 => [
'year' => 2035
'avg' => 0.13807342322756
]
4 => [
'year' => 2036
'avg' => 0.26800084656552
]
5 => [
'year' => 2037
'avg' => 0.65478036895769
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.071802210040987
'min' => '$0.0718022'
'max_raw' => 0.65478036895769
'max' => '$0.65478'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.65478036895769
]
]
]
]
'prediction_2025_max_price' => '$0.0197098'
'last_price' => 0.0191112
'sma_50day_nextmonth' => '$0.017192'
'sma_200day_nextmonth' => '$0.03376'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.017817'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.017177'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.016644'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.01665'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.021296'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.029197'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.037167'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.018033'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.01752'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.017072'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.017715'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0215038'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0275047'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.036587'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.03251'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.046814'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.072415'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.127793'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.018489'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.01933'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.022942'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.030471'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.046793'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.100389'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.277578'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '52.94'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 130.98
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.016955'
'vwma_10_action' => 'BUY'
'hma_9' => '0.018091'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 264.14
'cci_20_action' => 'SELL'
'adx_14' => 18.75
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.002053'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 74.09
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.0067096'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutro'
'overall_action_dir' => 0
'last_updated' => 1767713302
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Charli3 para 2026
A previsão de preço para Charli3 em 2026 sugere que o preço médio poderia variar entre $0.0066029 na extremidade inferior e $0.0197098 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Charli3 poderia potencialmente ganhar 3.13% até 2026 se C3 atingir a meta de preço prevista.
Previsão de preço de Charli3 2027-2032
A previsão de preço de C3 para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.011527 na extremidade inferior e $0.0718022 na extremidade superior. Considerando a volatilidade de preços no mercado, se Charli3 atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Charli3 | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006356 | $0.011527 | $0.016698 |
| 2028 | $0.011471 | $0.019784 | $0.028097 |
| 2029 | $0.025199 | $0.054047 | $0.082895 |
| 2030 | $0.021431 | $0.041697 | $0.061964 |
| 2031 | $0.025338 | $0.040952 | $0.056566 |
| 2032 | $0.038677 | $0.0718022 | $0.104927 |
Previsão de preço de Charli3 2032-2037
A previsão de preço de Charli3 para 2032-2037 é atualmente estimada entre $0.0718022 na extremidade inferior e $0.65478 na extremidade superior. Comparado ao preço atual, Charli3 poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Charli3 | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.038677 | $0.0718022 | $0.104927 |
| 2033 | $0.089877 | $0.184682 | $0.279488 |
| 2034 | $0.072256 | $0.11706 | $0.161864 |
| 2035 | $0.08543 | $0.138073 | $0.190716 |
| 2036 | $0.141413 | $0.26800084 | $0.394588 |
| 2037 | $0.367246 | $0.65478 | $0.942313 |
Charli3 Histograma de preços potenciais
Previsão de preço de Charli3 baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Charli3 é Neutro, com 17 indicadores técnicos mostrando sinais de alta e 17 indicando sinais de baixa. A previsão de preço de C3 foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Charli3
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Charli3 está projetado para aumentar no próximo mês, alcançando $0.03376 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Charli3 é esperado para alcançar $0.017192 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 52.94, sugerindo que o mercado de C3 está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de C3 para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.017817 | BUY |
| SMA 5 | $0.017177 | BUY |
| SMA 10 | $0.016644 | BUY |
| SMA 21 | $0.01665 | BUY |
| SMA 50 | $0.021296 | SELL |
| SMA 100 | $0.029197 | SELL |
| SMA 200 | $0.037167 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.018033 | BUY |
| EMA 5 | $0.01752 | BUY |
| EMA 10 | $0.017072 | BUY |
| EMA 21 | $0.017715 | BUY |
| EMA 50 | $0.0215038 | SELL |
| EMA 100 | $0.0275047 | SELL |
| EMA 200 | $0.036587 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.03251 | SELL |
| SMA 50 | $0.046814 | SELL |
| SMA 100 | $0.072415 | SELL |
| SMA 200 | $0.127793 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.030471 | SELL |
| EMA 50 | $0.046793 | SELL |
| EMA 100 | $0.100389 | SELL |
| EMA 200 | $0.277578 | SELL |
Osciladores de Charli3
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 52.94 | NEUTRAL |
| Stoch RSI (14) | 130.98 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 264.14 | SELL |
| Índice Direcional Médio (14) | 18.75 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.002053 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 74.09 | SELL |
| VWMA (10) | 0.016955 | BUY |
| Média Móvel de Hull (9) | 0.018091 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0067096 | SELL |
Previsão do preço de Charli3 com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Charli3
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Charli3 por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.026854 | $0.037734 | $0.053023 | $0.0745074 | $0.104695 | $0.147114 |
| Amazon.com stock | $0.039876 | $0.083205 | $0.173612 | $0.362252 | $0.75586 | $1.57 |
| Apple stock | $0.0271077 | $0.03845 | $0.054538 | $0.077359 | $0.109728 | $0.15564 |
| Netflix stock | $0.030154 | $0.047579 | $0.075072 | $0.118452 | $0.186899 | $0.294897 |
| Google stock | $0.024748 | $0.032049 | $0.0415042 | $0.053747 | $0.0696032 | $0.090135 |
| Tesla stock | $0.043323 | $0.098211 | $0.222637 | $0.5047032 | $1.14 | $2.59 |
| Kodak stock | $0.014331 | $0.010747 | $0.008059 | $0.006043 | $0.004531 | $0.003398 |
| Nokia stock | $0.01266 | $0.008386 | $0.005556 | $0.00368 | $0.002438 | $0.001615 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Charli3
Você pode fazer perguntas como: 'Devo investir em Charli3 agora?', 'Devo comprar C3 hoje?', 'Charli3 será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Charli3 regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Charli3, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Charli3 para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Charli3 é de $0.01911 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Charli3 com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Charli3 tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0196079 | $0.020117 | $0.02064 | $0.021177 |
| Se Charli3 tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0201047 | $0.021149 | $0.022249 | $0.023406 |
| Se Charli3 tiver 5% da média anterior do crescimento anual do Bitcoin | $0.021595 | $0.0244016 | $0.027573 | $0.031156 |
| Se Charli3 tiver 10% da média anterior do crescimento anual do Bitcoin | $0.024078 | $0.030337 | $0.038223 | $0.048158 |
| Se Charli3 tiver 20% da média anterior do crescimento anual do Bitcoin | $0.029046 | $0.044146 | $0.067096 | $0.101978 |
| Se Charli3 tiver 50% da média anterior do crescimento anual do Bitcoin | $0.043949 | $0.101068 | $0.232423 | $0.534494 |
| Se Charli3 tiver 100% da média anterior do crescimento anual do Bitcoin | $0.068787 | $0.247587 | $0.891147 | $3.20 |
Perguntas Frequentes sobre Charli3
C3 é um bom investimento?
A decisão de adquirir Charli3 depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Charli3 experimentou uma escalada de 6.0443% nas últimas 24 horas, e Charli3 registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Charli3 dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Charli3 pode subir?
Parece que o valor médio de Charli3 pode potencialmente subir para $0.0197098 até o final deste ano. Observando as perspectivas de Charli3 em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.061964. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Charli3 na próxima semana?
Com base na nossa nova previsão experimental de Charli3, o preço de Charli3 aumentará 0.86% na próxima semana e atingirá $0.019274 até 13 de janeiro de 2026.
Qual será o preço de Charli3 no próximo mês?
Com base na nossa nova previsão experimental de Charli3, o preço de Charli3 diminuirá -11.62% no próximo mês e atingirá $0.01689 até 5 de fevereiro de 2026.
Até onde o preço de Charli3 pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Charli3 em 2026, espera-se que C3 fluctue dentro do intervalo de $0.0066029 e $0.0197098. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Charli3 não considera flutuações repentinas e extremas de preço.
Onde estará Charli3 em 5 anos?
O futuro de Charli3 parece seguir uma tendência de alta, com um preço máximo de $0.061964 projetada após um período de cinco anos. Com base na previsão de Charli3 para 2030, o valor de Charli3 pode potencialmente atingir seu pico mais alto de aproximadamente $0.061964, enquanto seu pico mais baixo está previsto para cerca de $0.021431.
Quanto será Charli3 em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Charli3, espera-se que o valor de C3 em 2026 aumente 3.13% para $0.0197098 se o melhor cenário ocorrer. O preço ficará entre $0.0197098 e $0.0066029 durante 2026.
Quanto será Charli3 em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Charli3, o valor de C3 pode diminuir -12.62% para $0.016698 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.016698 e $0.006356 ao longo do ano.
Quanto será Charli3 em 2028?
Nosso novo modelo experimental de previsão de preços de Charli3 sugere que o valor de C3 em 2028 pode aumentar 47.02%, alcançando $0.028097 no melhor cenário. O preço é esperado para variar entre $0.028097 e $0.011471 durante o ano.
Quanto será Charli3 em 2029?
Com base no nosso modelo de previsão experimental, o valor de Charli3 pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.082895 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.082895 e $0.025199.
Quanto será Charli3 em 2030?
Usando nossa nova simulação experimental para previsões de preços de Charli3, espera-se que o valor de C3 em 2030 aumente 224.23%, alcançando $0.061964 no melhor cenário. O preço está previsto para variar entre $0.061964 e $0.021431 ao longo de 2030.
Quanto será Charli3 em 2031?
Nossa simulação experimental indica que o preço de Charli3 poderia aumentar 195.98% em 2031, potencialmente atingindo $0.056566 sob condições ideais. O preço provavelmente oscilará entre $0.056566 e $0.025338 durante o ano.
Quanto será Charli3 em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Charli3, C3 poderia ver um 449.04% aumento em valor, atingindo $0.104927 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.104927 e $0.038677 ao longo do ano.
Quanto será Charli3 em 2033?
De acordo com nossa previsão experimental de preços de Charli3, espera-se que o valor de C3 seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.279488. Ao longo do ano, o preço de C3 poderia variar entre $0.279488 e $0.089877.
Quanto será Charli3 em 2034?
Os resultados da nossa nova simulação de previsão de preços de Charli3 sugerem que C3 pode aumentar 746.96% em 2034, atingindo potencialmente $0.161864 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.161864 e $0.072256.
Quanto será Charli3 em 2035?
Com base em nossa previsão experimental para o preço de Charli3, C3 poderia aumentar 897.93%, com o valor potencialmente atingindo $0.190716 em 2035. A faixa de preço esperada para o ano está entre $0.190716 e $0.08543.
Quanto será Charli3 em 2036?
Nossa recente simulação de previsão de preços de Charli3 sugere que o valor de C3 pode aumentar 1964.7% em 2036, possivelmente atingindo $0.394588 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.394588 e $0.141413.
Quanto será Charli3 em 2037?
De acordo com a simulação experimental, o valor de Charli3 poderia aumentar 4830.69% em 2037, com um pico de $0.942313 sob condições favoráveis. O preço é esperado para cair entre $0.942313 e $0.367246 ao longo do ano.
Previsões relacionadas
Previsão de Preço do web3war
Previsão de Preço do Safe Haven
Previsão de Preço do Civilization
Previsão de Preço do Göztepe S.K. Fan Token
Previsão de Preço do Alfa Romeo Racing ORLEN Fan Token
Previsão de Preço do Kick
Previsão de Preço do apM Coin
Previsão de Preço do BSC Station
Previsão de Preço do Trias
Previsão de Preço do Prizm
Previsão de Preço do GeroWallet
Previsão de Preço do PoolTogether
Previsão de Preço do Avocado DAO
Previsão de Preço do Launchpool
Previsão de Preço do Restake Finance
Previsão de Preço do Signum
Previsão de Preço do Integritee
Previsão de Preço do HOLD
Previsão de Preço do Pickle Finance
Previsão de Preço do FAME AI
Previsão de Preço do JulSwap
Previsão de Preço do Scotty BeamPrevisão de Preço do Fabwelt
Previsão de Preço do Tiamonds [OLD]
Previsão de Preço do UNICE
Como ler e prever os movimentos de preço de Charli3?
Traders de Charli3 utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Charli3
Médias móveis são ferramentas populares para a previsão de preço de Charli3. Uma média móvel simples (SMA) calcula o preço médio de fechamento de C3 em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de C3 acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de C3.
Como ler gráficos de Charli3 e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Charli3 em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de C3 dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Charli3?
A ação de preço de Charli3 é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de C3. A capitalização de mercado de Charli3 pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de C3, grandes detentores de Charli3, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Charli3.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


