Previsão de Preço BORNE - Projeção BORNE
Previsão de Preço BORNE até $0.004266 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001429 | $0.004266 |
| 2027 | $0.001376 | $0.003614 |
| 2028 | $0.002483 | $0.006082 |
| 2029 | $0.005455 | $0.017944 |
| 2030 | $0.004639 | $0.013413 |
| 2031 | $0.005485 | $0.012245 |
| 2032 | $0.008372 | $0.022714 |
| 2033 | $0.019456 | $0.0605019 |
| 2034 | $0.015641 | $0.035039 |
| 2035 | $0.018493 | $0.041285 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em BORNE hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.67, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de BORNE para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'BORNE'
'name_with_ticker' => 'BORNE <small>BORNE</small>'
'name_lang' => 'BORNE'
'name_lang_with_ticker' => 'BORNE <small>BORNE</small>'
'name_with_lang' => 'BORNE'
'name_with_lang_with_ticker' => 'BORNE <small>BORNE</small>'
'image' => '/uploads/coins/borne.png?1756558587'
'price_for_sd' => 0.004137
'ticker' => 'BORNE'
'marketcap' => '$108.01K'
'low24h' => '$0.004115'
'high24h' => '$0.004234'
'volume24h' => '$1.35K'
'current_supply' => '26.11M'
'max_supply' => '172.5M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004137'
'change_24h_pct' => '-0.7811%'
'ath_price' => '$0.04767'
'ath_days' => 130
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 de ago. de 2025'
'ath_pct' => '-91.32%'
'fdv' => '$713.61K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.203986'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004172'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003656'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001429'
'current_year_max_price_prediction' => '$0.004266'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004639'
'grand_prediction_max_price' => '$0.013413'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0042154754898959
107 => 0.0042312145451576
108 => 0.0042666754403182
109 => 0.0039636659737137
110 => 0.0040997083283286
111 => 0.00417962046622
112 => 0.003818574519998
113 => 0.0041724837487144
114 => 0.0039583912530353
115 => 0.0038857250444404
116 => 0.0039835605212684
117 => 0.0039454339408004
118 => 0.003912654945782
119 => 0.0038943637033471
120 => 0.003966203279822
121 => 0.0039628518777126
122 => 0.0038453083871387
123 => 0.0036919776953706
124 => 0.0037434405084364
125 => 0.0037247435859831
126 => 0.0036569835270616
127 => 0.003702645625394
128 => 0.0035015728533973
129 => 0.0031556376000303
130 => 0.0033841730246879
131 => 0.0033753746594373
201 => 0.0033709381247039
202 => 0.0035426761800789
203 => 0.0035261675287257
204 => 0.0034962041648663
205 => 0.0036564332263868
206 => 0.0035979474635468
207 => 0.0037781868036408
208 => 0.0038969040901764
209 => 0.0038667935462091
210 => 0.0039784477280062
211 => 0.0037446261077091
212 => 0.0038222922706767
213 => 0.0038382991592236
214 => 0.0036544560246394
215 => 0.003528868548253
216 => 0.0035204932953801
217 => 0.0033027419183464
218 => 0.0034190629463301
219 => 0.0035214206372645
220 => 0.0034723992465846
221 => 0.0034568805387677
222 => 0.0035361622514071
223 => 0.0035423231194811
224 => 0.0034018546744938
225 => 0.0034310625122638
226 => 0.0035528640511636
227 => 0.0034279934259941
228 => 0.0031853901987904
301 => 0.0031252212441918
302 => 0.0031171935965145
303 => 0.0029540106195833
304 => 0.0031292420214472
305 => 0.003052748818624
306 => 0.0032943899298131
307 => 0.0031563658230492
308 => 0.0031504158796719
309 => 0.0031414216675901
310 => 0.0030009633383415
311 => 0.0030317147858545
312 => 0.0031339372809652
313 => 0.0031704114188396
314 => 0.0031666068674355
315 => 0.0031334363349719
316 => 0.0031486216348731
317 => 0.0030997044929821
318 => 0.0030824308320581
319 => 0.0030279104066873
320 => 0.002947780443044
321 => 0.0029589230059542
322 => 0.0028001645808315
323 => 0.0027136645648773
324 => 0.0026897225005131
325 => 0.0026577061714374
326 => 0.0026933388300743
327 => 0.0027997148381601
328 => 0.0026714028034796
329 => 0.0024514208200627
330 => 0.0024646421120971
331 => 0.0024943464298616
401 => 0.0024389926302212
402 => 0.0023866049043538
403 => 0.0024321517816449
404 => 0.0023389425152999
405 => 0.0025056103243869
406 => 0.0025011024272322
407 => 0.0025632258797916
408 => 0.0026020729495786
409 => 0.0025125430306078
410 => 0.0024900264981013
411 => 0.0025028529383363
412 => 0.0022908604524995
413 => 0.0025459015709752
414 => 0.0025481071771586
415 => 0.002529221437954
416 => 0.0026650229600312
417 => 0.002951606529171
418 => 0.0028437822626632
419 => 0.0028020294476657
420 => 0.0027226573158343
421 => 0.0028284159688488
422 => 0.0028202953543893
423 => 0.0027835708561518
424 => 0.0027613597650303
425 => 0.0028022843814508
426 => 0.0027562887521631
427 => 0.0027480266732677
428 => 0.0026979674643918
429 => 0.002680098604372
430 => 0.0026668692117932
501 => 0.0026523049504571
502 => 0.0026844300817767
503 => 0.0026116303077937
504 => 0.00252384091702
505 => 0.0025165421790716
506 => 0.0025366946362589
507 => 0.0025277786741275
508 => 0.0025164994928751
509 => 0.0024949644641621
510 => 0.002488575481166
511 => 0.0025093365764093
512 => 0.0024858985103267
513 => 0.0025204826535692
514 => 0.0025110776802351
515 => 0.0024585422637179
516 => 0.0023930636836351
517 => 0.0023924807869264
518 => 0.002378373534254
519 => 0.002360405826936
520 => 0.0023554076218056
521 => 0.0024283159506801
522 => 0.0025792340094875
523 => 0.0025496051833806
524 => 0.0025710150467271
525 => 0.0026763303842714
526 => 0.0027098069631341
527 => 0.0026860460803936
528 => 0.002653520718591
529 => 0.0026549516694413
530 => 0.0027661006768174
531 => 0.0027730329040693
601 => 0.0027905484059135
602 => 0.0028130607756637
603 => 0.0026898800343083
604 => 0.0026491498676009
605 => 0.0026298496549914
606 => 0.0025704124702762
607 => 0.0026345103782324
608 => 0.0025971632722124
609 => 0.0026022026727733
610 => 0.002598920756547
611 => 0.0026007129047288
612 => 0.0025055637373375
613 => 0.0025402310930419
614 => 0.0024825898903392
615 => 0.0024054147904489
616 => 0.002405156072453
617 => 0.0024240445688172
618 => 0.0024128089520728
619 => 0.0023825741963078
620 => 0.0023868689006602
621 => 0.0023492427714328
622 => 0.0023914373939914
623 => 0.0023926473847868
624 => 0.0023764001567451
625 => 0.0024414067945325
626 => 0.0024680400670744
627 => 0.002457345793528
628 => 0.0024672897283336
629 => 0.0025508363948714
630 => 0.0025644581469137
701 => 0.0025705080293685
702 => 0.0025624019883349
703 => 0.0024688168080291
704 => 0.0024729677087306
705 => 0.0024425111535491
706 => 0.0024167785738534
707 => 0.0024178077420916
708 => 0.0024310376330564
709 => 0.0024888133428225
710 => 0.0026103989179611
711 => 0.0026150130016597
712 => 0.0026206054057048
713 => 0.0025978582879365
714 => 0.002590997539557
715 => 0.002600048637579
716 => 0.0026457097869352
717 => 0.0027631626599606
718 => 0.0027216469702198
719 => 0.0026878940682303
720 => 0.0027175044629921
721 => 0.0027129461748125
722 => 0.0026744696352773
723 => 0.0026733897269626
724 => 0.0025995409459008
725 => 0.0025722407329976
726 => 0.0025494266317102
727 => 0.0025245142286815
728 => 0.0025097453210948
729 => 0.0025324370754964
730 => 0.002537626948209
731 => 0.0024880110306259
801 => 0.0024812485643964
802 => 0.0025217659937288
803 => 0.0025039357837216
804 => 0.0025222745968819
805 => 0.0025265293588425
806 => 0.0025258442441714
807 => 0.0025072274571373
808 => 0.0025190932420323
809 => 0.002491027123395
810 => 0.0024605094347718
811 => 0.0024410410507493
812 => 0.0024240523035833
813 => 0.0024334786479028
814 => 0.0023998754515863
815 => 0.002389125112786
816 => 0.0025150733810985
817 => 0.002608112721073
818 => 0.0026067598922221
819 => 0.0025985248945119
820 => 0.0025862893583228
821 => 0.0026448146812525
822 => 0.0026244256289946
823 => 0.0026392603680746
824 => 0.0026430364317825
825 => 0.0026544654393486
826 => 0.0026585503271971
827 => 0.0026462029589819
828 => 0.0026047636831476
829 => 0.0025015009476966
830 => 0.0024534318655917
831 => 0.0024375682678432
901 => 0.0024381448794921
902 => 0.0024222393561078
903 => 0.00242692424558
904 => 0.0024206101427384
905 => 0.0024086527595019
906 => 0.002432740313183
907 => 0.0024355161793536
908 => 0.0024298938564996
909 => 0.0024312181170628
910 => 0.0023846676851572
911 => 0.0023882068133927
912 => 0.0023685004976465
913 => 0.0023648058010072
914 => 0.0023149899508259
915 => 0.0022267339513066
916 => 0.0022756363422575
917 => 0.0022165691307056
918 => 0.0021941994826766
919 => 0.0023000939172518
920 => 0.0022894650530749
921 => 0.0022712730578602
922 => 0.0022443633053936
923 => 0.0022343822164425
924 => 0.0021737402796044
925 => 0.0021701572304639
926 => 0.0022002130118309
927 => 0.0021863433028863
928 => 0.0021668649786586
929 => 0.0020963164627918
930 => 0.0020169965731467
1001 => 0.002019390742028
1002 => 0.0020446209231251
1003 => 0.0021179810774184
1004 => 0.0020893179959925
1005 => 0.002068522601547
1006 => 0.0020646282492746
1007 => 0.0021133742213422
1008 => 0.0021823599844146
1009 => 0.0022147265609787
1010 => 0.0021826522665912
1011 => 0.0021458070442015
1012 => 0.002148049642164
1013 => 0.0021629686417072
1014 => 0.0021645364176159
1015 => 0.0021405539655903
1016 => 0.0021473048853575
1017 => 0.0021370496209141
1018 => 0.0020741130819545
1019 => 0.0020729747595386
1020 => 0.0020575291178892
1021 => 0.0020570614299985
1022 => 0.0020307845404569
1023 => 0.0020271082219665
1024 => 0.0019749338628884
1025 => 0.0020092751840321
1026 => 0.0019862408288092
1027 => 0.0019515226222332
1028 => 0.0019455371903334
1029 => 0.0019453572610229
1030 => 0.0019810050963275
1031 => 0.0020088586183214
1101 => 0.0019866415212802
1102 => 0.0019815831189442
1103 => 0.0020355936220325
1104 => 0.0020287202931979
1105 => 0.0020227680347553
1106 => 0.0021761830659739
1107 => 0.0020547430976402
1108 => 0.0020017883398957
1109 => 0.001936246771351
1110 => 0.0019575874365584
1111 => 0.0019620842282772
1112 => 0.0018044685706831
1113 => 0.0017405239180269
1114 => 0.0017185805229387
1115 => 0.0017059517888314
1116 => 0.0017117068615457
1117 => 0.0016541491741955
1118 => 0.0016928288920111
1119 => 0.001642988799996
1120 => 0.001634632946376
1121 => 0.0017237532049017
1122 => 0.0017361537682425
1123 => 0.0016832491124774
1124 => 0.0017172224659644
1125 => 0.0017049032557251
1126 => 0.0016438431653239
1127 => 0.0016415111189982
1128 => 0.0016108733120009
1129 => 0.0015629310766985
1130 => 0.0015410201887034
1201 => 0.0015296088079965
1202 => 0.0015343173660795
1203 => 0.0015319365750285
1204 => 0.0015164003029913
1205 => 0.0015328270959555
1206 => 0.0014908634279514
1207 => 0.0014741531572279
1208 => 0.0014666055156175
1209 => 0.0014293603449252
1210 => 0.0014886339744992
1211 => 0.0015003116262348
1212 => 0.0015120122865517
1213 => 0.0016138585462303
1214 => 0.0016087705949113
1215 => 0.0016547631969023
1216 => 0.0016529760089639
1217 => 0.0016398581738453
1218 => 0.0015845161852591
1219 => 0.0016065745155335
1220 => 0.0015386824035747
1221 => 0.0015895517900691
1222 => 0.0015663371264294
1223 => 0.0015817028889407
1224 => 0.0015540738624705
1225 => 0.0015693649064936
1226 => 0.0015030808306736
1227 => 0.0014411856933149
1228 => 0.0014660941034198
1229 => 0.0014931723938259
1230 => 0.0015518850268465
1231 => 0.0015169162669881
]
'min_raw' => 0.0014293603449252
'max_raw' => 0.0042666754403182
'avg_raw' => 0.0028480178926217
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001429'
'max' => '$0.004266'
'avg' => '$0.002848'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0027077196550748
'max_diff' => 0.00012959544031821
'year' => 2026
]
1 => [
'items' => [
101 => 0.0015294923553484
102 => 0.0014873645645533
103 => 0.0014004428989343
104 => 0.0014009348661221
105 => 0.001387563861558
106 => 0.0013760093614161
107 => 0.0015209328497113
108 => 0.0015029093230404
109 => 0.0014741911921513
110 => 0.0015126315515595
111 => 0.0015227957927176
112 => 0.0015230851543742
113 => 0.0015511302483091
114 => 0.0015660979199696
115 => 0.0015687360369733
116 => 0.0016128655982343
117 => 0.001627657245086
118 => 0.001688581945076
119 => 0.0015648280176025
120 => 0.0015622793869047
121 => 0.0015131724862478
122 => 0.0014820281135018
123 => 0.0015153049680948
124 => 0.0015447837185207
125 => 0.0015140884731952
126 => 0.0015180966242227
127 => 0.0014768907652669
128 => 0.0014916199209277
129 => 0.0015043066540144
130 => 0.0014973017856956
131 => 0.001486815158783
201 => 0.001542366797157
202 => 0.0015392323560113
203 => 0.0015909633187918
204 => 0.0016312913035959
205 => 0.0017035662618543
206 => 0.0016281435751329
207 => 0.0016253948726507
208 => 0.0016522638803195
209 => 0.0016276531315809
210 => 0.0016432062752496
211 => 0.0017010604099586
212 => 0.0017022827766597
213 => 0.0016818065594865
214 => 0.0016805605798107
215 => 0.0016844932613041
216 => 0.0017075270996458
217 => 0.0016994783687708
218 => 0.0017087925639083
219 => 0.0017204401075517
220 => 0.001768619286517
221 => 0.0017802351234557
222 => 0.0017520146618156
223 => 0.0017545626535306
224 => 0.0017440074262082
225 => 0.0017338112088714
226 => 0.0017567308164066
227 => 0.0017986168496631
228 => 0.0017983562788241
301 => 0.0018080730243915
302 => 0.0018141264763821
303 => 0.0017881406290407
304 => 0.0017712247979476
305 => 0.001777711403971
306 => 0.0017880836282623
307 => 0.0017743478314267
308 => 0.0016895641303168
309 => 0.0017152820892297
310 => 0.0017110013633227
311 => 0.001704905089077
312 => 0.001730764695635
313 => 0.0017282704734976
314 => 0.0016535588369192
315 => 0.0016583416334916
316 => 0.0016538496946199
317 => 0.0016683640680787
318 => 0.0016268693077821
319 => 0.0016396328165778
320 => 0.0016476379696441
321 => 0.0016523530662986
322 => 0.0016693872285867
323 => 0.0016673884662498
324 => 0.0016692629827135
325 => 0.0016945201485346
326 => 0.0018222622260455
327 => 0.0018292149454774
328 => 0.001794977212157
329 => 0.0018086545113091
330 => 0.0017823970878336
331 => 0.0018000238721221
401 => 0.0018120836702605
402 => 0.0017575877614388
403 => 0.0017543608673939
404 => 0.0017279950701915
405 => 0.001742162556173
406 => 0.0017196210672982
407 => 0.0017251519602003
408 => 0.0017096871014715
409 => 0.0017375207681606
410 => 0.0017686431324336
411 => 0.0017765058707084
412 => 0.0017558223914292
413 => 0.0017408461893233
414 => 0.001714552911893
415 => 0.0017582792182434
416 => 0.0017710661227554
417 => 0.0017582120540776
418 => 0.001755233485498
419 => 0.0017495891034218
420 => 0.0017564309678382
421 => 0.0017709964825273
422 => 0.0017641276547827
423 => 0.0017686646365212
424 => 0.0017513743406495
425 => 0.0017881492314375
426 => 0.0018465566083683
427 => 0.0018467443976357
428 => 0.0018398755328656
429 => 0.0018370649413934
430 => 0.0018441128134851
501 => 0.001847935994976
502 => 0.0018707275209618
503 => 0.0018951837363989
504 => 0.0020093102227616
505 => 0.0019772639620755
506 => 0.0020785237701914
507 => 0.0021586071314707
508 => 0.0021826206298974
509 => 0.0021605293412673
510 => 0.0020849562362115
511 => 0.0020812482591369
512 => 0.0021941863842322
513 => 0.002162276190999
514 => 0.0021584805750513
515 => 0.0021181016341621
516 => 0.0021419705892567
517 => 0.0021367500986411
518 => 0.0021285092988091
519 => 0.0021740496024039
520 => 0.0022592969853222
521 => 0.0022460103812495
522 => 0.002236092547657
523 => 0.0021926354878928
524 => 0.0022188063443566
525 => 0.0022094874036396
526 => 0.0022495274869057
527 => 0.0022258086285753
528 => 0.0021620344399007
529 => 0.0021721906896496
530 => 0.0021706555929316
531 => 0.0022022477746101
601 => 0.0021927645858364
602 => 0.0021688038481238
603 => 0.002259005619035
604 => 0.0022531484177606
605 => 0.0022614525900251
606 => 0.0022651083434709
607 => 0.0023200125718911
608 => 0.0023425050775355
609 => 0.0023476112701035
610 => 0.0023689774108329
611 => 0.002347079661058
612 => 0.0024346862729883
613 => 0.0024929395579344
614 => 0.0025606037460859
615 => 0.0026594793113944
616 => 0.0026966574386006
617 => 0.0026899415426893
618 => 0.002764907867855
619 => 0.00289962068777
620 => 0.002717170855181
621 => 0.0029092909719201
622 => 0.0028484679610939
623 => 0.0027042576965843
624 => 0.0026949722556772
625 => 0.0027926331211187
626 => 0.003009235521158
627 => 0.0029549790766322
628 => 0.0030093242652644
629 => 0.0029459277160103
630 => 0.0029427795429918
701 => 0.0030062452363709
702 => 0.0031545362882859
703 => 0.003084088768128
704 => 0.0029830849735411
705 => 0.003057664603671
706 => 0.0029930568260335
707 => 0.002847477420438
708 => 0.0029549375877516
709 => 0.0028830820341584
710 => 0.0029040533047482
711 => 0.0030550829906943
712 => 0.0030369106993063
713 => 0.0030604273270713
714 => 0.0030189210946034
715 => 0.0029801477285463
716 => 0.0029077743614528
717 => 0.0028863481754203
718 => 0.0028922696024062
719 => 0.0028863452410551
720 => 0.0028458530073119
721 => 0.0028371087132903
722 => 0.0028225345068248
723 => 0.0028270516628241
724 => 0.0027996478908344
725 => 0.0028513644704873
726 => 0.0028609635233958
727 => 0.0028985985372623
728 => 0.0029025059292513
729 => 0.0030073189071687
730 => 0.0029495896802423
731 => 0.0029883194297662
801 => 0.0029848550764302
802 => 0.0027073831703
803 => 0.0027456163508094
804 => 0.002805095181449
805 => 0.0027783000488675
806 => 0.0027404180004927
807 => 0.0027098262153231
808 => 0.0026634765326204
809 => 0.0027287128209576
810 => 0.002814491603015
811 => 0.0029046814207208
812 => 0.0030130385772234
813 => 0.0029888545213084
814 => 0.0029026557590517
815 => 0.0029065225725583
816 => 0.002930425692121
817 => 0.0028994689804598
818 => 0.0028903392418441
819 => 0.0029291714062319
820 => 0.0029294388220063
821 => 0.0028938193839965
822 => 0.0028542348969369
823 => 0.0028540690364908
824 => 0.0028470253593593
825 => 0.0029471807705244
826 => 0.003002256119811
827 => 0.0030085704198483
828 => 0.0030018311171087
829 => 0.0030044248072598
830 => 0.0029723776750125
831 => 0.0030456279160481
901 => 0.0031128495809203
902 => 0.0030948327387532
903 => 0.0030678229310995
904 => 0.0030463083183348
905 => 0.00308976457973
906 => 0.0030878295408166
907 => 0.0031122624583206
908 => 0.0031111540400512
909 => 0.0031029381688631
910 => 0.0030948330321678
911 => 0.0031269689830017
912 => 0.0031177143452492
913 => 0.0031084453324879
914 => 0.0030898549083804
915 => 0.0030923816557709
916 => 0.0030653765117414
917 => 0.003052882696442
918 => 0.002865005691194
919 => 0.0028147988163335
920 => 0.0028305949212198
921 => 0.0028357954090941
922 => 0.0028139453128129
923 => 0.0028452727380509
924 => 0.0028403903920115
925 => 0.0028593847443738
926 => 0.0028475178976568
927 => 0.0028480049171853
928 => 0.0028829027831018
929 => 0.0028930337820435
930 => 0.0028878810742146
1001 => 0.0028914898541534
1002 => 0.0029746526646744
1003 => 0.0029628295724153
1004 => 0.0029565487902956
1005 => 0.0029582886098664
1006 => 0.0029795384909853
1007 => 0.0029854872974981
1008 => 0.0029602817862882
1009 => 0.0029721688510861
1010 => 0.0030227824643024
1011 => 0.0030404943644458
1012 => 0.0030970222475089
1013 => 0.0030730081980807
1014 => 0.0031170870251099
1015 => 0.0032525703118181
1016 => 0.003360803735971
1017 => 0.0032612678061846
1018 => 0.0034600247061979
1019 => 0.0036147854628423
1020 => 0.0036088454872347
1021 => 0.003581859369633
1022 => 0.003405668362721
1023 => 0.0032435347713007
1024 => 0.0033791664050797
1025 => 0.0033795121580071
1026 => 0.0033678612803798
1027 => 0.0032954986800629
1028 => 0.0033653432187438
1029 => 0.0033708872245861
1030 => 0.0033677840555845
1031 => 0.0033123038195847
1101 => 0.0032275957536745
1102 => 0.0032441475069909
1103 => 0.0032712596165698
1104 => 0.0032199307369584
1105 => 0.0032035280497961
1106 => 0.0032340237659697
1107 => 0.0033322873175161
1108 => 0.0033137111622983
1109 => 0.0033132260638134
1110 => 0.0033927027333511
1111 => 0.0033358145901009
1112 => 0.0032443562776063
1113 => 0.0032212618475144
1114 => 0.0031392921789607
1115 => 0.0031959089209967
1116 => 0.0031979464567497
1117 => 0.0031669380457457
1118 => 0.0032468724392621
1119 => 0.0032461358297537
1120 => 0.0033220216397332
1121 => 0.0034670868070054
1122 => 0.0034241838988197
1123 => 0.0033742924844228
1124 => 0.0033797170645066
1125 => 0.0034392113190214
1126 => 0.00340323973462
1127 => 0.0034161753671736
1128 => 0.0034391917393923
1129 => 0.0034530780882162
1130 => 0.0033777190326096
1201 => 0.0033601492319074
1202 => 0.0033242075858328
1203 => 0.0033148310812545
1204 => 0.0033441048020352
1205 => 0.0033363922108653
1206 => 0.0031977752097594
1207 => 0.0031832889618861
1208 => 0.0031837332344268
1209 => 0.0031473068753659
1210 => 0.0030917479344701
1211 => 0.0032377535138922
1212 => 0.0032260272225179
1213 => 0.0032130823043834
1214 => 0.0032146679829922
1215 => 0.0032780440564311
1216 => 0.0032412827332681
1217 => 0.0033390187359593
1218 => 0.0033189271520192
1219 => 0.0032983202947635
1220 => 0.0032954717993905
1221 => 0.0032875399174415
1222 => 0.003260338542915
1223 => 0.0032274912486252
1224 => 0.0032058026197511
1225 => 0.0029571834586351
1226 => 0.0030033257287871
1227 => 0.0030564082045967
1228 => 0.0030747320625315
1229 => 0.0030433878355617
1230 => 0.0032615762040411
1231 => 0.0033014413214778
]
'min_raw' => 0.0013760093614161
'max_raw' => 0.0036147854628423
'avg_raw' => 0.0024953974121292
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001376'
'max' => '$0.003614'
'avg' => '$0.002495'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.3350983509127E-5
'max_diff' => -0.00065188997747595
'year' => 2027
]
2 => [
'items' => [
101 => 0.0031806872804249
102 => 0.003158099129699
103 => 0.0032630570794422
104 => 0.0031997546051595
105 => 0.0032282597054529
106 => 0.0031666472700748
107 => 0.0032918389820742
108 => 0.0032908852309822
109 => 0.0032421828274314
110 => 0.0032833457654129
111 => 0.0032761926919685
112 => 0.0032212077983083
113 => 0.003293582101278
114 => 0.0032936179980293
115 => 0.0032467429934932
116 => 0.003192003250453
117 => 0.0031822170772924
118 => 0.0031748445104033
119 => 0.0032264465059448
120 => 0.003272712693792
121 => 0.0033588025990151
122 => 0.0033804476466339
123 => 0.0034649297084823
124 => 0.0034146247540085
125 => 0.0034369242887685
126 => 0.0034611335882123
127 => 0.0034727404166332
128 => 0.0034538277125781
129 => 0.0035850631288328
130 => 0.0035961434189139
131 => 0.003599858544334
201 => 0.0035556067003607
202 => 0.003594912695082
203 => 0.0035765227218296
204 => 0.0036243683233507
205 => 0.0036318711245925
206 => 0.0036255165188605
207 => 0.0036278980263984
208 => 0.0035159117501389
209 => 0.0035101046709402
210 => 0.003430924734014
211 => 0.00346319114358
212 => 0.0034028706374657
213 => 0.0034219988913246
214 => 0.0034304304433649
215 => 0.0034260262790654
216 => 0.0034650154379647
217 => 0.0034318666879414
218 => 0.0033443816864708
219 => 0.00325687284977
220 => 0.0032557742476084
221 => 0.0032327347155644
222 => 0.0032160813537973
223 => 0.0032192893820834
224 => 0.0032305948921933
225 => 0.0032154242569974
226 => 0.0032186616811872
227 => 0.0032724244935817
228 => 0.0032832062421886
229 => 0.0032465656477213
301 => 0.0030994483737224
302 => 0.0030633454256673
303 => 0.0030892955087767
304 => 0.0030768930404498
305 => 0.0024832928252988
306 => 0.0026227503908521
307 => 0.0025398894409317
308 => 0.002578075578904
309 => 0.0024934960057743
310 => 0.0025338618112671
311 => 0.0025264077209157
312 => 0.0027506513594761
313 => 0.002747150103497
314 => 0.0027488259694518
315 => 0.0026688325209817
316 => 0.0027962642564534
317 => 0.0028590417116438
318 => 0.0028474232754559
319 => 0.0028503473855351
320 => 0.0028001014863358
321 => 0.0027493124595882
322 => 0.0026929796125499
323 => 0.0027976390793967
324 => 0.00278600273328
325 => 0.0028126923246465
326 => 0.0028805714701099
327 => 0.0028905669321272
328 => 0.0029040009344424
329 => 0.0028991858009098
330 => 0.0030139018167904
331 => 0.0030000089503466
401 => 0.0030334867612256
402 => 0.0029646203642798
403 => 0.0028866914992772
404 => 0.0029015032288277
405 => 0.0029000767401636
406 => 0.0028819159022219
407 => 0.0028655211097541
408 => 0.0028382283994994
409 => 0.0029245865733065
410 => 0.0029210805891585
411 => 0.0029778383972543
412 => 0.0029678059033574
413 => 0.0029008064537464
414 => 0.0029031993521966
415 => 0.0029192927442616
416 => 0.0029749921579497
417 => 0.0029915275362376
418 => 0.0029838676901938
419 => 0.0030019979776178
420 => 0.0030163274175663
421 => 0.0030037975346554
422 => 0.0031811942534899
423 => 0.0031075267677737
424 => 0.0031434317877367
425 => 0.0031519949234333
426 => 0.00313006063141
427 => 0.0031348173939417
428 => 0.0031420225930371
429 => 0.0031857711510216
430 => 0.0033005800259202
501 => 0.0033514280950824
502 => 0.0035044070199563
503 => 0.0033472058707778
504 => 0.0033378782051485
505 => 0.0033654343290393
506 => 0.003455249152404
507 => 0.0035280356308638
508 => 0.0035521831049215
509 => 0.0035553745922496
510 => 0.0036006768588757
511 => 0.0036266432732686
512 => 0.0035951759721394
513 => 0.0035685107291962
514 => 0.0034729991387855
515 => 0.003484054865445
516 => 0.0035602178586921
517 => 0.0036678025726315
518 => 0.0037601214494733
519 => 0.003727794596441
520 => 0.0039744256658757
521 => 0.0039988781290125
522 => 0.0039954995892498
523 => 0.00405120593929
524 => 0.0039406401788611
525 => 0.003893371174167
526 => 0.0035742760573839
527 => 0.0036639287694793
528 => 0.0037942442516291
529 => 0.0037769965089086
530 => 0.0036823579224286
531 => 0.003760049657619
601 => 0.0037343623403199
602 => 0.0037141016873983
603 => 0.0038069196661529
604 => 0.0037048624857598
605 => 0.003793226153185
606 => 0.003679898835707
607 => 0.0037279422627826
608 => 0.0037006704899754
609 => 0.0037183186692845
610 => 0.0036151477736554
611 => 0.0036708162846049
612 => 0.0036128317805788
613 => 0.0036128042883741
614 => 0.0036115242772339
615 => 0.003679742789078
616 => 0.0036819673923001
617 => 0.0036315538089749
618 => 0.0036242884240095
619 => 0.0036511523601688
620 => 0.0036197017266023
621 => 0.0036344172801002
622 => 0.0036201474457268
623 => 0.0036169350054407
624 => 0.003591337734689
625 => 0.0035803097266376
626 => 0.0035846340927513
627 => 0.0035698728018417
628 => 0.0035609785901294
629 => 0.0036097549946603
630 => 0.003583695729354
701 => 0.0036057610385096
702 => 0.0035806148338627
703 => 0.0034934471328768
704 => 0.0034433160662581
705 => 0.0032786643595459
706 => 0.0033253593793196
707 => 0.0033563182257392
708 => 0.0033460863271822
709 => 0.0033680684045017
710 => 0.0033694179255181
711 => 0.0033622713281007
712 => 0.0033539964838273
713 => 0.0033499687472626
714 => 0.0033799881957533
715 => 0.0033974154960103
716 => 0.0033594253601533
717 => 0.0033505248028605
718 => 0.0033889349277048
719 => 0.0034123650816711
720 => 0.0035853601742915
721 => 0.0035725441390634
722 => 0.0036047098724661
723 => 0.0036010885045083
724 => 0.0036348033175175
725 => 0.0036899127878444
726 => 0.0035778598258196
727 => 0.0035973083455272
728 => 0.0035925400176268
729 => 0.0036445993713206
730 => 0.0036447618949404
731 => 0.0036135497118433
801 => 0.0036304703426601
802 => 0.0036210257107314
803 => 0.0036380934371451
804 => 0.0035723729730994
805 => 0.0036524134042213
806 => 0.0036977911709761
807 => 0.0036984212413115
808 => 0.003719929942613
809 => 0.0037417840288353
810 => 0.0037837310442492
811 => 0.0037406141493422
812 => 0.0036630510527495
813 => 0.0036686508577962
814 => 0.0036231756426431
815 => 0.0036239400892256
816 => 0.0036198594134575
817 => 0.0036321058286165
818 => 0.0035750603725511
819 => 0.0035884488270688
820 => 0.0035697049123413
821 => 0.0035972675999172
822 => 0.003567614704361
823 => 0.0035925377181947
824 => 0.0036032936647543
825 => 0.0036429833391182
826 => 0.0035617525071868
827 => 0.0033961173420347
828 => 0.0034309358618819
829 => 0.0033794365360922
830 => 0.0033842029947658
831 => 0.0033938319998627
901 => 0.0033626212439291
902 => 0.0033685752725973
903 => 0.0033683625527954
904 => 0.0033665294484633
905 => 0.0033584103254284
906 => 0.0033466359907082
907 => 0.0033935413162843
908 => 0.0034015114451099
909 => 0.0034192280541992
910 => 0.0034719406655583
911 => 0.0034666734326345
912 => 0.0034752645080685
913 => 0.0034565102386329
914 => 0.0033850729515364
915 => 0.0033889523399209
916 => 0.0033405763046032
917 => 0.003417990970212
918 => 0.0033996581555722
919 => 0.0033878388707119
920 => 0.0033846138693328
921 => 0.0034374571450596
922 => 0.003453268681374
923 => 0.0034434159930156
924 => 0.0034232078417438
925 => 0.0034620134661893
926 => 0.0034723962142131
927 => 0.0034747205285946
928 => 0.0035434766548716
929 => 0.0034785632322682
930 => 0.0034941885382728
1001 => 0.0036160927152801
1002 => 0.003505542448361
1003 => 0.0035641033903132
1004 => 0.0035612371369411
1005 => 0.0035911949332496
1006 => 0.0035587797232412
1007 => 0.0035591815486185
1008 => 0.0035857820422236
1009 => 0.0035484264463796
1010 => 0.0035391766755157
1011 => 0.0035263981833153
1012 => 0.0035542995535431
1013 => 0.0035710251631241
1014 => 0.0037058212927411
1015 => 0.003792905739924
1016 => 0.0037891251744029
1017 => 0.0038236724663437
1018 => 0.0038081085949074
1019 => 0.003757848748498
1020 => 0.0038436361777836
1021 => 0.0038164894456591
1022 => 0.0038187273892722
1023 => 0.0038186440928991
1024 => 0.0038366942965534
1025 => 0.0038239040729875
1026 => 0.0037986932294496
1027 => 0.0038154293639308
1028 => 0.0038651297000626
1029 => 0.0040194010684083
1030 => 0.0041057333699584
1031 => 0.004014203755453
1101 => 0.0040773396579084
1102 => 0.0040394806140574
1103 => 0.0040326004995807
1104 => 0.0040722545120293
1105 => 0.0041119779335773
1106 => 0.0041094477233537
1107 => 0.0040806105591302
1108 => 0.0040643211767762
1109 => 0.0041876698373038
1110 => 0.0042785510291909
1111 => 0.0042723535411794
1112 => 0.004299707237731
1113 => 0.0043800185368242
1114 => 0.0043873611955193
1115 => 0.0043864361892928
1116 => 0.0043682366435898
1117 => 0.0044473135472871
1118 => 0.0045132808915771
1119 => 0.0043640239745949
1120 => 0.0044208590546652
1121 => 0.0044463741532207
1122 => 0.0044838378878888
1123 => 0.0045470454879248
1124 => 0.0046157057065517
1125 => 0.0046254150142866
1126 => 0.0046185257958156
1127 => 0.0045732425359453
1128 => 0.0046483713664537
1129 => 0.0046923800733777
1130 => 0.0047185862512296
1201 => 0.0047850407579697
1202 => 0.004446531725783
1203 => 0.0042069182078108
1204 => 0.0041694990969183
1205 => 0.004245592330352
1206 => 0.0042656575091764
1207 => 0.0042575692607519
1208 => 0.0039878624615661
1209 => 0.0041680791464377
1210 => 0.0043619771463101
1211 => 0.0043694255581597
1212 => 0.0044664949511119
1213 => 0.0044981047244659
1214 => 0.0045762583089686
1215 => 0.004571369780979
1216 => 0.0045903989351103
1217 => 0.0045860244621145
1218 => 0.0047307875202269
1219 => 0.004890482670847
1220 => 0.0048849529355805
1221 => 0.0048619948682516
1222 => 0.0048960915131672
1223 => 0.0050609140225795
1224 => 0.0050457398071397
1225 => 0.0050604802649029
1226 => 0.0052548152924896
1227 => 0.0055074784721876
1228 => 0.0053900910582494
1229 => 0.0056447879691769
1230 => 0.0058051061737026
1231 => 0.0060823599312182
]
'min_raw' => 0.0024832928252988
'max_raw' => 0.0060823599312182
'avg_raw' => 0.0042828263782585
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002483'
'max' => '$0.006082'
'avg' => '$0.004282'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011072834638827
'max_diff' => 0.0024675744683759
'year' => 2028
]
3 => [
'items' => [
101 => 0.0060476463952737
102 => 0.0061555792484924
103 => 0.0059855019209995
104 => 0.0055949699987767
105 => 0.0055331668271887
106 => 0.0056568983418133
107 => 0.0059610801969732
108 => 0.005647318572703
109 => 0.0057107921406488
110 => 0.0056925117488104
111 => 0.0056915376644159
112 => 0.005728714503863
113 => 0.0056747875592315
114 => 0.0054550794855305
115 => 0.0055557704009599
116 => 0.0055168888029377
117 => 0.0055600308347585
118 => 0.0057928505873677
119 => 0.0056899154250095
120 => 0.0055814815932386
121 => 0.0057174816816728
122 => 0.0058906565289503
123 => 0.0058798195582328
124 => 0.0058587913055385
125 => 0.0059773264649728
126 => 0.0061731118208152
127 => 0.0062260318157702
128 => 0.0062650962741442
129 => 0.0062704826029546
130 => 0.0063259651372859
131 => 0.0060276215667874
201 => 0.0065011004751748
202 => 0.0065828572030624
203 => 0.0065674903266888
204 => 0.0066583594888868
205 => 0.00663162347624
206 => 0.0065928871886666
207 => 0.0067369341391756
208 => 0.0065717959344066
209 => 0.0063374030430587
210 => 0.0062088104670996
211 => 0.0063781515443898
212 => 0.0064815622311018
213 => 0.0065499101168634
214 => 0.006570592145798
215 => 0.00605078112889
216 => 0.0057706318208173
217 => 0.0059502043153736
218 => 0.0061692951521637
219 => 0.0060264045061269
220 => 0.0060320055489238
221 => 0.0058282810386764
222 => 0.0061873202508355
223 => 0.006135011257619
224 => 0.0064063904069591
225 => 0.0063416235950153
226 => 0.0065629227564243
227 => 0.0065046472706828
228 => 0.0067465455538573
301 => 0.0068430453281502
302 => 0.0070050834681785
303 => 0.0071242793835973
304 => 0.0071942735049857
305 => 0.0071900713204788
306 => 0.0074674229003525
307 => 0.0073038783636272
308 => 0.0070984278810123
309 => 0.0070947119299698
310 => 0.0072011176461719
311 => 0.0074241148363488
312 => 0.0074819347632845
313 => 0.0075142482145021
314 => 0.0074647590391231
315 => 0.0072872431658502
316 => 0.0072105927117969
317 => 0.0072759011194278
318 => 0.0071960345489107
319 => 0.007333906656225
320 => 0.0075232345074606
321 => 0.0074841390548639
322 => 0.0076148292913768
323 => 0.0077500799371539
324 => 0.0079434944351016
325 => 0.0079940601469833
326 => 0.0080776433458819
327 => 0.008163677913199
328 => 0.0081913098975247
329 => 0.0082440679293036
330 => 0.0082437898684341
331 => 0.0084027797482249
401 => 0.0085781505091409
402 => 0.0086443489115442
403 => 0.0087965684876695
404 => 0.0085358977979651
405 => 0.008733619510475
406 => 0.0089119694444543
407 => 0.0086993333006594
408 => 0.0089924026870134
409 => 0.009003781907176
410 => 0.009175594621599
411 => 0.0090014295201979
412 => 0.0088980108389407
413 => 0.0091965766966829
414 => 0.009341043310508
415 => 0.0092975287907156
416 => 0.0089663811465185
417 => 0.0087736390140052
418 => 0.0082691956760371
419 => 0.0088667306001908
420 => 0.0091577724314134
421 => 0.0089656274184862
422 => 0.0090625341865987
423 => 0.0095912260912958
424 => 0.0097925177383386
425 => 0.0097506504828885
426 => 0.0097577253598659
427 => 0.0098663386789083
428 => 0.01034798994999
429 => 0.010059373343769
430 => 0.010280009924967
501 => 0.01039703477207
502 => 0.010505733971925
503 => 0.010238803091816
504 => 0.0098915299387879
505 => 0.0097815339536886
506 => 0.0089465223837149
507 => 0.0089030564052263
508 => 0.0088786576343467
509 => 0.0087248268352256
510 => 0.0086039579649185
511 => 0.0085078385516769
512 => 0.0082555925076443
513 => 0.008340718142745
514 => 0.0079386905963981
515 => 0.0081958935735694
516 => 0.0075542479023051
517 => 0.0080886294839381
518 => 0.0077977898844043
519 => 0.0079930808533853
520 => 0.007992399501592
521 => 0.00763280691064
522 => 0.0074254014086847
523 => 0.0075575682668735
524 => 0.0076992616302701
525 => 0.0077222509017675
526 => 0.0079059600459865
527 => 0.0079572293193231
528 => 0.0078018810275795
529 => 0.0075409512219619
530 => 0.0076015592646317
531 => 0.0074241731886345
601 => 0.0071133109135063
602 => 0.007336577626638
603 => 0.0074128106988455
604 => 0.0074464795664347
605 => 0.0071407822216196
606 => 0.0070447254788665
607 => 0.0069935856750189
608 => 0.0075014895335292
609 => 0.0075293136534265
610 => 0.0073869615220977
611 => 0.0080304066540869
612 => 0.0078847752037178
613 => 0.0080474812143517
614 => 0.0075960597200228
615 => 0.0076133046290259
616 => 0.0073995944592602
617 => 0.0075192578742103
618 => 0.0074346836294555
619 => 0.0075095902528192
620 => 0.0075544889740119
621 => 0.0077681640760416
622 => 0.0080910693103722
623 => 0.007736248141235
624 => 0.0075816474767092
625 => 0.0076775608594739
626 => 0.007932990837094
627 => 0.0083199803284084
628 => 0.008090874760661
629 => 0.0081925479211625
630 => 0.008214758983608
701 => 0.0080458250199001
702 => 0.0083262091646152
703 => 0.0084764693056048
704 => 0.008630605118305
705 => 0.0087644369256852
706 => 0.0085690398851934
707 => 0.0087781427275851
708 => 0.008609642748238
709 => 0.0084584808475559
710 => 0.0084587100977623
711 => 0.0083638840293414
712 => 0.0081801465729224
713 => 0.0081462625669204
714 => 0.008322531445221
715 => 0.0084638823928932
716 => 0.0084755247339688
717 => 0.0085537838814741
718 => 0.0086000968388344
719 => 0.0090540267803775
720 => 0.0092366011579716
721 => 0.0094598496509376
722 => 0.0095468175205435
723 => 0.0098085596283503
724 => 0.0095971816186417
725 => 0.0095514486566112
726 => 0.0089165479182627
727 => 0.0090205128785995
728 => 0.0091869708112252
729 => 0.0089192927482614
730 => 0.009089072868215
731 => 0.0091225910603284
801 => 0.0089101971501102
802 => 0.0090236459145569
803 => 0.0087223596314009
804 => 0.0080976365280246
805 => 0.0083269046600159
806 => 0.0084957231759802
807 => 0.0082547983385262
808 => 0.0086866467845837
809 => 0.0084343698375583
810 => 0.0083544101567803
811 => 0.008042458934381
812 => 0.0081896879032498
813 => 0.0083888171917606
814 => 0.0082657784427254
815 => 0.0085211023213345
816 => 0.0088827090258362
817 => 0.0091404114975156
818 => 0.0091601946933868
819 => 0.0089945092688216
820 => 0.0092600212190776
821 => 0.0092619551837692
822 => 0.0089624566192323
823 => 0.0087790154160685
824 => 0.008737337188746
825 => 0.0088414575720952
826 => 0.0089678789391643
827 => 0.0091672101994112
828 => 0.0092876619052758
829 => 0.0096017360715223
830 => 0.0096867155356965
831 => 0.0097800822026604
901 => 0.0099048488629378
902 => 0.010054663228116
903 => 0.0097268779260427
904 => 0.0097399014471623
905 => 0.0094346723123682
906 => 0.009108491207555
907 => 0.0093560220070595
908 => 0.0096796355997693
909 => 0.0096053982840404
910 => 0.0095970450694902
911 => 0.0096110928593752
912 => 0.0095551203476797
913 => 0.009301958751719
914 => 0.009174822583103
915 => 0.0093388606765135
916 => 0.0094260396226655
917 => 0.0095612465653443
918 => 0.0095445794557869
919 => 0.0098928580199619
920 => 0.010028188538603
921 => 0.0099935652008154
922 => 0.0099999367282255
923 => 0.010244946167997
924 => 0.010517447055058
925 => 0.01077268009545
926 => 0.01103231410665
927 => 0.01071931517246
928 => 0.010560393616769
929 => 0.01072436009628
930 => 0.010637357174256
1001 => 0.011137301770946
1002 => 0.011171916850107
1003 => 0.011671825295112
1004 => 0.012146297937413
1005 => 0.011848290171844
1006 => 0.012129298072211
1007 => 0.012433231027368
1008 => 0.01301956700921
1009 => 0.012822109678074
1010 => 0.012670860456975
1011 => 0.012527930673867
1012 => 0.01282534486305
1013 => 0.013207963466127
1014 => 0.013290375848554
1015 => 0.01342391539204
1016 => 0.013283514890503
1017 => 0.013452611829996
1018 => 0.014049598331365
1019 => 0.01388828730895
1020 => 0.013659199725079
1021 => 0.014130463232717
1022 => 0.01430101166414
1023 => 0.015498009872779
1024 => 0.017009269556715
1025 => 0.016383598124099
1026 => 0.015995223675584
1027 => 0.01608650088335
1028 => 0.016638361760554
1029 => 0.016815601959124
1030 => 0.016333802001052
1031 => 0.016503981891377
1101 => 0.017441689818786
1102 => 0.017944740036569
1103 => 0.017261530272162
1104 => 0.015376581628655
1105 => 0.013638572894653
1106 => 0.014099571074464
1107 => 0.014047308187312
1108 => 0.015054758373867
1109 => 0.013884440094414
1110 => 0.013904145252792
1111 => 0.014932428442296
1112 => 0.014658100116573
1113 => 0.014213723362219
1114 => 0.013641817336736
1115 => 0.012584596153726
1116 => 0.011648185869141
1117 => 0.013484702079622
1118 => 0.013405508161138
1119 => 0.013290823631292
1120 => 0.013546041642302
1121 => 0.014785307858871
1122 => 0.014756738761466
1123 => 0.014574996739855
1124 => 0.014712846461446
1125 => 0.014189557639531
1126 => 0.014324421084003
1127 => 0.013638297585189
1128 => 0.013948454061702
1129 => 0.014212769929284
1130 => 0.014265835252965
1201 => 0.014385394136799
1202 => 0.013363776564697
1203 => 0.013822452861455
1204 => 0.014091882213643
1205 => 0.012874590598532
1206 => 0.014067820272303
1207 => 0.01334599247566
1208 => 0.01310099327999
1209 => 0.013430852420771
1210 => 0.01330230599281
1211 => 0.013191789322549
1212 => 0.013130119121626
1213 => 0.01337233126939
1214 => 0.013361031783191
1215 => 0.012964725698096
1216 => 0.012447760565593
1217 => 0.012621271032863
1218 => 0.012558233053435
1219 => 0.012329775283925
1220 => 0.012483728236478
1221 => 0.011805797347239
1222 => 0.010639452488084
1223 => 0.011409975628151
1224 => 0.011380311325426
1225 => 0.011365353238823
1226 => 0.011944380082888
1227 => 0.011888720012254
1228 => 0.011787696439027
1229 => 0.012327919906779
1230 => 0.012130731074018
1231 => 0.012738420593054
]
'min_raw' => 0.0054550794855305
'max_raw' => 0.017944740036569
'avg_raw' => 0.01169990976105
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005455'
'max' => '$0.017944'
'avg' => '$0.011699'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0029717866602318
'max_diff' => 0.011862380105351
'year' => 2029
]
4 => [
'items' => [
101 => 0.013138684213185
102 => 0.013037164411948
103 => 0.013413614281323
104 => 0.012625268363587
105 => 0.012887125254511
106 => 0.012941093596812
107 => 0.012321253633043
108 => 0.011897826688169
109 => 0.011869588938367
110 => 0.011135424967782
111 => 0.011527609434904
112 => 0.011872715536275
113 => 0.011707436495034
114 => 0.011655114088147
115 => 0.011922417917583
116 => 0.011943189714433
117 => 0.011469590544965
118 => 0.011568066809232
119 => 0.011978729201545
120 => 0.011557719170597
121 => 0.010739765452063
122 => 0.010536901620772
123 => 0.010509835846156
124 => 0.0099596530463605
125 => 0.01055045795201
126 => 0.010292555778107
127 => 0.011107265655325
128 => 0.010641907742835
129 => 0.010621847093326
130 => 0.010591522479337
131 => 0.010117957415788
201 => 0.010221638068075
202 => 0.010566288347288
203 => 0.010689263449674
204 => 0.01067643613899
205 => 0.010564599372896
206 => 0.010615797671717
207 => 0.010450870112546
208 => 0.010392630758732
209 => 0.0102088113381
210 => 0.0099386475711813
211 => 0.009976215499982
212 => 0.0094409503855214
213 => 0.0091493095424935
214 => 0.0090685872009079
215 => 0.0089606419121207
216 => 0.0090807799085078
217 => 0.0094394340467046
218 => 0.0090068210633192
219 => 0.0082651364475774
220 => 0.0083097129567526
221 => 0.0084098631379849
222 => 0.0082232339378183
223 => 0.0080466050624622
224 => 0.0082001695392307
225 => 0.0078859079900854
226 => 0.0084478401447968
227 => 0.0084326414548085
228 => 0.0086420950124336
301 => 0.0087730706204362
302 => 0.0084712142478467
303 => 0.0083952981864469
304 => 0.0084385434252129
305 => 0.0077237959583713
306 => 0.0085836848957143
307 => 0.0085911212509521
308 => 0.0085274466626638
309 => 0.0089853109757065
310 => 0.009951547487687
311 => 0.0095880104451063
312 => 0.0094472379142537
313 => 0.009179629230199
314 => 0.0095362019126706
315 => 0.0095088226940571
316 => 0.0093850034842267
317 => 0.0093101172397819
318 => 0.0094480974413091
319 => 0.0092930199658534
320 => 0.0092651637900175
321 => 0.0090963856722702
322 => 0.0090361395631495
323 => 0.0089915357424232
324 => 0.0089424313184845
325 => 0.0090507434416332
326 => 0.0088052939209317
327 => 0.0085093058606788
328 => 0.008484697656104
329 => 0.0085526430725106
330 => 0.008522582283692
331 => 0.0084845537366123
401 => 0.0084119468837787
402 => 0.0083904059815429
403 => 0.0084604034636491
404 => 0.008381380387458
405 => 0.0084979832409878
406 => 0.0084662737167578
407 => 0.0082891468920645
408 => 0.0080683812877468
409 => 0.0080664160107969
410 => 0.0080188524234748
411 => 0.0079582730437869
412 => 0.0079414212462262
413 => 0.0081872367673234
414 => 0.0086960675393553
415 => 0.008596171883517
416 => 0.0086683567325787
417 => 0.0090234347459915
418 => 0.0091363033688871
419 => 0.0090561918937957
420 => 0.00894653036563
421 => 0.0089513549163276
422 => 0.0093261015548719
423 => 0.0093494740430443
424 => 0.0094085287804056
425 => 0.0094844308067816
426 => 0.0090691183370972
427 => 0.0089317937363539
428 => 0.0088667217220429
429 => 0.008666325104004
430 => 0.0088824356758514
501 => 0.0087565173004133
502 => 0.0087735079912441
503 => 0.008762442781551
504 => 0.0087684851342697
505 => 0.0084476830733073
506 => 0.0085645664834621
507 => 0.0083702251441696
508 => 0.0081100239066961
509 => 0.0081091516209098
510 => 0.0081728355051546
511 => 0.0081349538388551
512 => 0.00803301524887
513 => 0.0080474951444408
514 => 0.0079206360227784
515 => 0.0080628981386692
516 => 0.0080669777071146
517 => 0.0080121990434268
518 => 0.0082313734613455
519 => 0.0083211693991961
520 => 0.0082851129092841
521 => 0.0083186395797446
522 => 0.0086003229990189
523 => 0.0086462496870698
524 => 0.0086666472881553
525 => 0.0086393172048651
526 => 0.0083237882355554
527 => 0.0083377832870771
528 => 0.0082350968848737
529 => 0.0081483376958383
530 => 0.0081518076084077
531 => 0.008196413109477
601 => 0.0083912079487246
602 => 0.0088011422041383
603 => 0.0088166989094732
604 => 0.0088355540901603
605 => 0.0087588605944516
606 => 0.008735729102288
607 => 0.0087662455111965
608 => 0.0089201952642107
609 => 0.0093161958259134
610 => 0.0091762227794195
611 => 0.0090624225138096
612 => 0.0091622560270807
613 => 0.0091468874402336
614 => 0.0090171611008445
615 => 0.0090135201145648
616 => 0.0087645337932575
617 => 0.0086724892194144
618 => 0.0085955698840942
619 => 0.0085115759779546
620 => 0.0084617815748939
621 => 0.0085382884091467
622 => 0.0085557864273425
623 => 0.0083885028971382
624 => 0.0083657027701052
625 => 0.0085023101119359
626 => 0.0084421943140312
627 => 0.0085040249029762
628 => 0.0085183701299844
629 => 0.0085160602180375
630 => 0.0084532924207696
701 => 0.0084932987429855
702 => 0.0083986718644863
703 => 0.0082957793466159
704 => 0.0082301403306451
705 => 0.0081728615834584
706 => 0.0082046431614579
707 => 0.0080913476389767
708 => 0.0080551021211466
709 => 0.0084797455011895
710 => 0.0087934341317129
711 => 0.0087888729747907
712 => 0.0087611081050615
713 => 0.0087198551405421
714 => 0.0089171773529073
715 => 0.0088484342397014
716 => 0.008898450598238
717 => 0.0089111818606655
718 => 0.0089497155576226
719 => 0.0089634880422017
720 => 0.0089218580281983
721 => 0.008782142616525
722 => 0.008433985094378
723 => 0.0082719168279852
724 => 0.0082184316006152
725 => 0.0082203756870471
726 => 0.0081667491044687
727 => 0.0081825445364129
728 => 0.0081612560978458
729 => 0.008120940945426
730 => 0.0082021538144011
731 => 0.0082115128410003
801 => 0.00819255678696
802 => 0.0081970216239056
803 => 0.0080400735926885
804 => 0.0080520060106287
805 => 0.0079855647912391
806 => 0.0079731078635645
807 => 0.0078051502466464
808 => 0.0075075889824302
809 => 0.0076724668077768
810 => 0.0074733175800887
811 => 0.00739789674996
812 => 0.0077549272294437
813 => 0.0077190912717876
814 => 0.0076577556897966
815 => 0.0075670275805766
816 => 0.0075333756423206
817 => 0.0073289171183861
818 => 0.0073168366180483
819 => 0.0074181717833547
820 => 0.0073714090912959
821 => 0.007305736561229
822 => 0.0070678773144442
823 => 0.0068004447685679
824 => 0.0068085168761068
825 => 0.0068935821931907
826 => 0.0071409210752329
827 => 0.0070442814950129
828 => 0.0069741683707519
829 => 0.0069610382901706
830 => 0.0071253887383313
831 => 0.0073579790549622
901 => 0.0074671052276104
902 => 0.0073589645047272
903 => 0.007234738264989
904 => 0.0072422993405929
905 => 0.007292599789164
906 => 0.0072978856550988
907 => 0.007217027143693
908 => 0.0072397883410223
909 => 0.0072052120009516
910 => 0.0069930170657607
911 => 0.0069891791322605
912 => 0.0069371030730591
913 => 0.0069355262306828
914 => 0.0068469318629994
915 => 0.0068345368985365
916 => 0.0066586274042075
917 => 0.0067744115660779
918 => 0.0066967496292365
919 => 0.0065796947718177
920 => 0.0065595144702781
921 => 0.0065589078260454
922 => 0.0066790969916273
923 => 0.0067730070857005
924 => 0.0066981005918779
925 => 0.0066810458352358
926 => 0.006863146017291
927 => 0.0068399721092444
928 => 0.0068199036543318
929 => 0.0073371531431808
930 => 0.0069277098112759
1001 => 0.006749169148357
1002 => 0.0065281911740425
1003 => 0.006600142716747
1004 => 0.0066153039639829
1005 => 0.0060838917700304
1006 => 0.005868297909127
1007 => 0.0057943142205482
1008 => 0.0057517355617953
1009 => 0.0057711391912582
1010 => 0.0055770794298075
1011 => 0.0057074907989546
1012 => 0.0055394514490015
1013 => 0.0055112791051346
1014 => 0.0058117542789315
1015 => 0.0058535636440148
1016 => 0.0056751919034177
1017 => 0.0057897354366428
1018 => 0.0057482003592212
1019 => 0.0055423320013543
1020 => 0.0055344693443489
1021 => 0.005431171838994
1022 => 0.005269531245452
1023 => 0.0051956571568072
1024 => 0.0051571828900367
1025 => 0.0051730581223547
1026 => 0.0051650311191046
1027 => 0.0051126494932234
1028 => 0.0051680335725844
1029 => 0.0050265501360988
1030 => 0.0049702102916807
1031 => 0.0049447628910315
1101 => 0.0048191881976677
1102 => 0.0050190333781291
1103 => 0.0050584053962632
1104 => 0.0050978549894357
1105 => 0.005441236764621
1106 => 0.0054240823815196
1107 => 0.0055791496502332
1108 => 0.0055731240213214
1109 => 0.0055288963243611
1110 => 0.0053423069459885
1111 => 0.0054166781465719
1112 => 0.0051877751510268
1113 => 0.0053592848391799
1114 => 0.0052810149799227
1115 => 0.0053328217210327
1116 => 0.0052396685292914
1117 => 0.005291223351802
1118 => 0.0050677419623684
1119 => 0.0048590581853832
1120 => 0.0049430386291013
1121 => 0.0050343349757515
1122 => 0.0052322887171655
1123 => 0.0051143891018622
1124 => 0.0051567902618033
1125 => 0.0050147534738691
1126 => 0.004721691009558
1127 => 0.0047233497112795
1128 => 0.0046782684358581
1129 => 0.00463931163192
1130 => 0.0051279312909421
1201 => 0.0050671637124089
1202 => 0.0049703385290805
1203 => 0.0050999428846455
1204 => 0.0051342123333546
1205 => 0.0051351879363821
1206 => 0.0052297439286298
1207 => 0.0052802084786424
1208 => 0.005289103074308
1209 => 0.0054378889711271
1210 => 0.0054877600412074
1211 => 0.0056931719208503
1212 => 0.00527592691415
1213 => 0.0052673340278128
1214 => 0.0051017666837136
1215 => 0.0049967612565698
1216 => 0.0051089564951462
1217 => 0.0052083461603476
1218 => 0.005104854997659
1219 => 0.0051183687586885
1220 => 0.0049794403283178
1221 => 0.0050291007049851
1222 => 0.0050718749113461
1223 => 0.0050482575087452
1224 => 0.0050129011139564
1225 => 0.0052001973412259
1226 => 0.0051896293540635
1227 => 0.0053640439068185
1228 => 0.0055000125231953
1229 => 0.0057436925910401
1230 => 0.0054893997369148
1231 => 0.005480132294588
]
'min_raw' => 0.00463931163192
'max_raw' => 0.013413614281323
'avg_raw' => 0.0090264629566215
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004639'
'max' => '$0.013413'
'avg' => '$0.009026'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00081576785361054
'max_diff' => -0.0045311257552459
'year' => 2030
]
5 => [
'items' => [
101 => 0.0055707230298776
102 => 0.0054877461722379
103 => 0.0055401846820024
104 => 0.0057352439364208
105 => 0.0057393652310963
106 => 0.0056703282352932
107 => 0.0056661273278245
108 => 0.0056793866380505
109 => 0.0057570468321909
110 => 0.0057299099741015
111 => 0.0057613134333038
112 => 0.005800583939903
113 => 0.0059630234055473
114 => 0.0060021870107779
115 => 0.0059070397540688
116 => 0.0059156304860309
117 => 0.0058800428001711
118 => 0.0058456655415429
119 => 0.0059229405985437
120 => 0.0060641622840576
121 => 0.0060632837512814
122 => 0.0060960444373634
123 => 0.0061164540733882
124 => 0.0060288409748028
125 => 0.0059718080692466
126 => 0.0059936781143349
127 => 0.0060286487926988
128 => 0.0059823375946646
129 => 0.0056964834269637
130 => 0.0057831933210092
131 => 0.0057687605547429
201 => 0.0057482065404952
202 => 0.0058353940094657
203 => 0.0058269845653883
204 => 0.0055750890664644
205 => 0.0055912145990326
206 => 0.0055760697135093
207 => 0.005625005936987
208 => 0.0054851034555751
209 => 0.0055281365165998
210 => 0.0055551264490646
211 => 0.0055710237266328
212 => 0.0056284555940744
213 => 0.0056217166273063
214 => 0.0056280366904382
215 => 0.0057131929884033
216 => 0.0061438843213981
217 => 0.0061673259003861
218 => 0.0060518909920943
219 => 0.006098004961104
220 => 0.0060094762246218
221 => 0.0060689061585133
222 => 0.0061095666099252
223 => 0.0059258298485499
224 => 0.005914950149983
225 => 0.0058260560239139
226 => 0.0058738226920428
227 => 0.0057978224885048
228 => 0.0058164702800787
301 => 0.0057643294291527
302 => 0.0058581725796797
303 => 0.0059631038037202
304 => 0.0059896135747725
305 => 0.0059198777803081
306 => 0.005869384469303
307 => 0.0057807348487088
308 => 0.0059281611434426
309 => 0.0059712730847577
310 => 0.0059279346947682
311 => 0.0059178922428451
312 => 0.0058988618145972
313 => 0.0059219296381605
314 => 0.0059710382878665
315 => 0.0059478795555596
316 => 0.0059631763062527
317 => 0.0059048808665514
318 => 0.006028869978384
319 => 0.006225794527579
320 => 0.0062264276722051
321 => 0.0062032688150639
322 => 0.0061937927096862
323 => 0.0062175551025101
324 => 0.0062304452258326
325 => 0.0063072884469472
326 => 0.0063897442847721
327 => 0.0067745297016006
328 => 0.0066664834962989
329 => 0.0070078880090959
330 => 0.0072778946528908
331 => 0.0073588578394053
401 => 0.0072843755174242
402 => 0.007029575517383
403 => 0.0070170738137934
404 => 0.0073978525876402
405 => 0.0072902651432558
406 => 0.0072774679590866
407 => 0.0071413275407111
408 => 0.0072218033892899
409 => 0.0072042021406962
410 => 0.0071764177087086
411 => 0.0073299600218007
412 => 0.0076173775250922
413 => 0.00757258081182
414 => 0.0075391421434219
415 => 0.0073926236323519
416 => 0.0074808605021103
417 => 0.0074494410428552
418 => 0.0075844389790964
419 => 0.0075044691922376
420 => 0.0072894500625494
421 => 0.0073236925676645
422 => 0.0073185168819027
423 => 0.0074250321281275
424 => 0.0073930588950818
425 => 0.0073122735949985
426 => 0.0076163951633122
427 => 0.007596647200279
428 => 0.0076246452968473
429 => 0.0076369709248265
430 => 0.007822084364236
501 => 0.0078979194173927
502 => 0.0079151353021387
503 => 0.007987172737344
504 => 0.0079133429451262
505 => 0.0082087147537473
506 => 0.0084051197710575
507 => 0.0086332543055731
508 => 0.0089666201772824
509 => 0.0090919688288519
510 => 0.0090693257168981
511 => 0.0093220799161761
512 => 0.0097762735938683
513 => 0.009161131245054
514 => 0.0098088776320377
515 => 0.0096038086045103
516 => 0.0091175936292771
517 => 0.0090862871169701
518 => 0.00941555754327
519 => 0.010145847657699
520 => 0.0099629182669164
521 => 0.01014614686465
522 => 0.0099324009726339
523 => 0.0099217866875035
524 => 0.010135765703764
525 => 0.010635739338646
526 => 0.010398220605945
527 => 0.010057679260636
528 => 0.010309129690602
529 => 0.010091300057526
530 => 0.0096004689275317
531 => 0.0099627783842588
601 => 0.0097205123685246
602 => 0.0097912184714856
603 => 0.010300425602209
604 => 0.010239156453045
605 => 0.010318444405433
606 => 0.010178503244795
607 => 0.010047776134064
608 => 0.009803764273961
609 => 0.0097315243918238
610 => 0.0097514888963279
611 => 0.0097315144984069
612 => 0.0095949921052641
613 => 0.0095655101074633
614 => 0.009516372152826
615 => 0.0095316020596557
616 => 0.0094392083291219
617 => 0.0096135743881579
618 => 0.0096459382652234
619 => 0.0097728273420672
620 => 0.0097860013869634
621 => 0.01013938565982
622 => 0.0099447475407122
623 => 0.010075327595257
624 => 0.010063647286111
625 => 0.0091281313821232
626 => 0.009257037219566
627 => 0.0094575742497468
628 => 0.0093672325894719
629 => 0.0092395106185359
630 => 0.0091363682789863
701 => 0.008980097087723
702 => 0.0092000457885037
703 => 0.0094892549410938
704 => 0.0097933362083409
705 => 0.010158669926744
706 => 0.01007713169375
707 => 0.0097865065485962
708 => 0.009799543780306
709 => 0.0098801348167744
710 => 0.00977576210208
711 => 0.0097449805509192
712 => 0.0098759059043278
713 => 0.0098768075152814
714 => 0.0097567140931616
715 => 0.0096232522313397
716 => 0.0096226930212656
717 => 0.009598944772043
718 => 0.0099366257334135
719 => 0.010122316118771
720 => 0.010143605222198
721 => 0.010120883192488
722 => 0.010129627999918
723 => 0.010021578856087
724 => 0.010268547157907
725 => 0.01049518969429
726 => 0.010434444653028
727 => 0.010343379200759
728 => 0.010270841181721
729 => 0.010417357001034
730 => 0.010410832882237
731 => 0.010493210169454
801 => 0.010489473059871
802 => 0.010461772676547
803 => 0.010434445642296
804 => 0.010542794244193
805 => 0.010511591586872
806 => 0.010480340463206
807 => 0.010417661550385
808 => 0.010426180655624
809 => 0.01033513092709
810 => 0.010293007156518
811 => 0.0096595667161703
812 => 0.0094902907322461
813 => 0.009543548402719
814 => 0.0095610822106735
815 => 0.0094874130855366
816 => 0.0095930356869374
817 => 0.0095765745163911
818 => 0.0096406153015241
819 => 0.0096006053993007
820 => 0.009602247419644
821 => 0.0097199080110725
822 => 0.0097540653813281
823 => 0.0097366926671323
824 => 0.0097488599206532
825 => 0.010029249142567
826 => 0.0099893867615531
827 => 0.0099682106661264
828 => 0.0099740765892796
829 => 0.010045722047091
830 => 0.010065778863582
831 => 0.0099807967227447
901 => 0.010020874791639
902 => 0.010191522122328
903 => 0.010251239030267
904 => 0.010441826734665
905 => 0.01036086169041
906 => 0.010509476533224
907 => 0.010966267893502
908 => 0.01133118443965
909 => 0.010995592102998
910 => 0.011665714868157
911 => 0.012187501564234
912 => 0.012167474521758
913 => 0.012076488942153
914 => 0.011482448661086
915 => 0.010935803937806
916 => 0.011393095460591
917 => 0.011394261190725
918 => 0.011354979443366
919 => 0.011111003884202
920 => 0.011346489622755
921 => 0.011365181625523
922 => 0.011354719074577
923 => 0.011167663585398
924 => 0.010882064427053
925 => 0.010937869818966
926 => 0.011029280189318
927 => 0.01085622128804
928 => 0.010800918483073
929 => 0.010903736919296
930 => 0.011235039343877
1001 => 0.011172408539614
1002 => 0.011170772996204
1003 => 0.011438734136434
1004 => 0.011246931789662
1005 => 0.010938573703671
1006 => 0.010860709220215
1007 => 0.010584342759747
1008 => 0.010775230058376
1009 => 0.010782099752423
1010 => 0.010677552729785
1011 => 0.010947057118367
1012 => 0.010944573587981
1013 => 0.011200427894505
1014 => 0.01168952523409
1015 => 0.011544875083756
1016 => 0.01137666269681
1017 => 0.011394952047294
1018 => 0.011595541080147
1019 => 0.011474260371882
1020 => 0.011517873760173
1021 => 0.011595475066061
1022 => 0.011642293860634
1023 => 0.011388215543255
1024 => 0.011328977733504
1025 => 0.011207797964397
1026 => 0.011176184424565
1027 => 0.011274882818003
1028 => 0.011248879278398
1029 => 0.010781522381239
1030 => 0.010732680985137
1031 => 0.010734178881026
1101 => 0.010611364868245
1102 => 0.010424044020014
1103 => 0.010916312024819
1104 => 0.010876776014747
1105 => 0.010833131319471
1106 => 0.01083847754561
1107 => 0.011052154401985
1108 => 0.010928211034347
1109 => 0.01125773479113
1110 => 0.011189994613127
1111 => 0.011120517155164
1112 => 0.011110913254139
1113 => 0.011084170360361
1114 => 0.010992459027006
1115 => 0.010881712080983
1116 => 0.010808587354482
1117 => 0.0099703504947441
1118 => 0.010125922380112
1119 => 0.010304893653404
1120 => 0.010366673819762
1121 => 0.010260994570149
1122 => 0.010996631887903
1123 => 0.011131039914635
1124 => 0.010723909234447
1125 => 0.01064775170722
1126 => 0.01100162476271
1127 => 0.010788196051028
1128 => 0.01088430298683
1129 => 0.010676572359309
1130 => 0.011098664956922
1201 => 0.011095449318526
1202 => 0.010931245764661
1203 => 0.011070029483971
1204 => 0.011045912397441
1205 => 0.010860526989543
1206 => 0.011104542005018
1207 => 0.011104663033421
1208 => 0.010946620682919
1209 => 0.010762061817452
1210 => 0.010729067051393
1211 => 0.01070420992739
1212 => 0.010878189658094
1213 => 0.011034179340623
1214 => 0.011324437466688
1215 => 0.011397415255944
1216 => 0.011682252425815
1217 => 0.011512645759627
1218 => 0.011587830197974
1219 => 0.011669453541288
1220 => 0.011708586773672
1221 => 0.011644821271508
1222 => 0.012087290639974
1223 => 0.012124648611584
1224 => 0.01213717441632
1225 => 0.011987976234798
1226 => 0.012120499140258
1227 => 0.012058496061491
1228 => 0.012219810847492
1229 => 0.012245107065708
1230 => 0.012223682068818
1231 => 0.012231711487754
]
'min_raw' => 0.0054851034555751
'max_raw' => 0.012245107065708
'avg_raw' => 0.0088651052606415
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005485'
'max' => '$0.012245'
'avg' => '$0.008865'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00084579182365508
'max_diff' => -0.0011685072156151
'year' => 2031
]
6 => [
'items' => [
101 => 0.011854141938713
102 => 0.011834562965757
103 => 0.011567602280244
104 => 0.011676390732864
105 => 0.011473015935057
106 => 0.011537508178434
107 => 0.01156593574481
108 => 0.011551086797385
109 => 0.01168254146875
110 => 0.011570778143675
111 => 0.011275816353209
112 => 0.010980774200601
113 => 0.010977070186711
114 => 0.010899390795856
115 => 0.010843242823957
116 => 0.010854058915301
117 => 0.010892176231962
118 => 0.010841027376219
119 => 0.010851942577905
120 => 0.011033207653493
121 => 0.011069559071679
122 => 0.010946022749267
123 => 0.01045000658858
124 => 0.010328282978585
125 => 0.010415775495565
126 => 0.010373959707689
127 => 0.0083725951384632
128 => 0.0088427860573425
129 => 0.0085634145795193
130 => 0.0086921618097639
131 => 0.0084069958737999
201 => 0.0085430920052692
202 => 0.0085179600192218
203 => 0.0092740131028188
204 => 0.0092622083738355
205 => 0.0092678586729074
206 => 0.0089981551764261
207 => 0.0094278001695688
208 => 0.0096394587427251
209 => 0.0096002863739443
210 => 0.0096101452152309
211 => 0.0094407376580241
212 => 0.0092694989083678
213 => 0.0090795687815443
214 => 0.0094324354811091
215 => 0.009393202727753
216 => 0.0094831885484529
217 => 0.0097120478265533
218 => 0.0097457482246055
219 => 0.0097910419013433
220 => 0.0097748073424562
221 => 0.010161580399214
222 => 0.01011473963003
223 => 0.010227612406755
224 => 0.0099954245413535
225 => 0.0097326819321777
226 => 0.0097826207124789
227 => 0.0097778112063536
228 => 0.0097165806732841
229 => 0.0096613044858311
301 => 0.009569285207691
302 => 0.0098604478200169
303 => 0.0098486271496819
304 => 0.01003999006238
305 => 0.010006164808761
306 => 0.0097802714866452
307 => 0.0097883393108368
308 => 0.0098425993057887
309 => 0.010030393767847
310 => 0.010086143950208
311 => 0.010060318244478
312 => 0.010121445774344
313 => 0.01016975848158
314 => 0.010127513106537
315 => 0.010725618529531
316 => 0.01047724345814
317 => 0.010598299739753
318 => 0.010627170949613
319 => 0.010553217952653
320 => 0.010569255709636
321 => 0.010593548541437
322 => 0.010741049859108
323 => 0.011128135996529
324 => 0.011299573811808
325 => 0.011815352937668
326 => 0.011285338287778
327 => 0.011253889411873
328 => 0.011346796807477
329 => 0.011649613755122
330 => 0.011895018449039
331 => 0.011976433343748
401 => 0.011987193666097
402 => 0.01213993342093
403 => 0.012227480999972
404 => 0.012121386797239
405 => 0.012031483068948
406 => 0.011709459073472
407 => 0.011746734227791
408 => 0.012003523077054
409 => 0.012366252451425
410 => 0.012677511990195
411 => 0.012568519748208
412 => 0.013400053618039
413 => 0.013482496804721
414 => 0.013471105822029
415 => 0.013658923670483
416 => 0.013286143489742
417 => 0.013126772740199
418 => 0.012050921275455
419 => 0.012353191653637
420 => 0.012792559400042
421 => 0.012734407431261
422 => 0.012415326829488
423 => 0.012677269938946
424 => 0.012590663355241
425 => 0.012522353149362
426 => 0.012835295445078
427 => 0.012491202535978
428 => 0.012789126810056
429 => 0.012407035846918
430 => 0.012569017615589
501 => 0.012477068929515
502 => 0.012536570998212
503 => 0.012188723120437
504 => 0.012376413391754
505 => 0.012180914588081
506 => 0.012180821896194
507 => 0.012176506249267
508 => 0.012406509724814
509 => 0.012414010129894
510 => 0.012244037213949
511 => 0.012219541461285
512 => 0.012310115097627
513 => 0.012204077090744
514 => 0.012253691606769
515 => 0.012205579863891
516 => 0.012194748897181
517 => 0.012108445911698
518 => 0.012071264212601
519 => 0.012085844114871
520 => 0.012036075391969
521 => 0.012006087936207
522 => 0.012170540989543
523 => 0.012082680357163
524 => 0.012157075087532
525 => 0.012072292902913
526 => 0.011778400913184
527 => 0.01160938052204
528 => 0.011054245797245
529 => 0.011211681316554
530 => 0.011316061228735
531 => 0.011281563668382
601 => 0.011355677776804
602 => 0.011360227781131
603 => 0.011336132528979
604 => 0.01130823331378
605 => 0.011294653518745
606 => 0.011395866185222
607 => 0.011454623544774
608 => 0.011326537149345
609 => 0.011296528299016
610 => 0.011426030716638
611 => 0.011505027116576
612 => 0.012088292149477
613 => 0.012045081991919
614 => 0.012153531007826
615 => 0.01214132131292
616 => 0.012254993158874
617 => 0.012440798585701
618 => 0.012063004200947
619 => 0.012128576242993
620 => 0.012112499492563
621 => 0.01228802123821
622 => 0.012288569197941
623 => 0.012183335143464
624 => 0.012240384231623
625 => 0.012208540995673
626 => 0.012266086026907
627 => 0.012044504893921
628 => 0.012314366795693
629 => 0.012467361104481
630 => 0.012469485430607
701 => 0.012542003518734
702 => 0.012615686096237
703 => 0.012757113387352
704 => 0.012611741765847
705 => 0.012350232370402
706 => 0.012369112504083
707 => 0.012215789641217
708 => 0.012218367026241
709 => 0.012204608742986
710 => 0.012245898386712
711 => 0.0120535656488
712 => 0.012098705757959
713 => 0.012035509340797
714 => 0.012128438866324
715 => 0.012028462058658
716 => 0.012112491739867
717 => 0.012148756164649
718 => 0.012282572672812
719 => 0.012008697251599
720 => 0.011450246728011
721 => 0.011567639798627
722 => 0.011394006226159
723 => 0.011410076674361
724 => 0.011442541537321
725 => 0.011337312294625
726 => 0.011357386717977
727 => 0.011356669518313
728 => 0.011350489079074
729 => 0.011323114888903
730 => 0.011283416897336
731 => 0.011441561477341
801 => 0.011468433323133
802 => 0.011528166107612
803 => 0.011705890357086
804 => 0.011688131513537
805 => 0.011717096924173
806 => 0.011653865595389
807 => 0.011413009794351
808 => 0.01142608942314
809 => 0.011262986242559
810 => 0.011523995192579
811 => 0.011462184828064
812 => 0.011422335283962
813 => 0.01141146196665
814 => 0.011589626760162
815 => 0.011642936458772
816 => 0.01160971743208
817 => 0.011541584239178
818 => 0.011672420111319
819 => 0.011707426271181
820 => 0.011715262859397
821 => 0.011947078939539
822 => 0.011728218803121
823 => 0.01178090061324
824 => 0.012191909057098
825 => 0.011819181113807
826 => 0.012016623418193
827 => 0.012006959644834
828 => 0.012107964446675
829 => 0.011998674302974
830 => 0.012000029085288
831 => 0.012089714506664
901 => 0.011963767507192
902 => 0.011932581258926
903 => 0.011889497680306
904 => 0.011983569098041
905 => 0.012039960658488
906 => 0.012494435220657
907 => 0.012788046514376
908 => 0.012775300073771
909 => 0.012891778680564
910 => 0.012839304001382
911 => 0.012669849420182
912 => 0.012959087727506
913 => 0.012867560624824
914 => 0.012875106007963
915 => 0.012874825168426
916 => 0.012935682690271
917 => 0.012892559558534
918 => 0.012807559439381
919 => 0.012863986485264
920 => 0.013031554638499
921 => 0.01355169132776
922 => 0.013842766709965
923 => 0.013534168224266
924 => 0.013747035327403
925 => 0.013619390917825
926 => 0.013596194131512
927 => 0.013729890403037
928 => 0.013863820692187
929 => 0.013855289911765
930 => 0.013758063399239
1001 => 0.013703142609344
1002 => 0.014119021230241
1003 => 0.014425433513811
1004 => 0.014404538250285
1005 => 0.014496763147983
1006 => 0.014767538300032
1007 => 0.01479229458647
1008 => 0.014789175863396
1009 => 0.014727814824406
1010 => 0.014994428126195
1011 => 0.015216841633162
1012 => 0.014713611516771
1013 => 0.014905234957327
1014 => 0.014991260893514
1015 => 0.015117572490581
1016 => 0.015330681327116
1017 => 0.015562174047921
1018 => 0.015594909656831
1019 => 0.015571682175766
1020 => 0.015419006503537
1021 => 0.015672308600924
1022 => 0.015820687028908
1023 => 0.015909042987192
1024 => 0.016133098996372
1025 => 0.014991792160409
1026 => 0.014183918455284
1027 => 0.014057757310391
1028 => 0.014314310959573
1029 => 0.014381962110885
1030 => 0.014354692016618
1031 => 0.013445356712836
1101 => 0.014052969848208
1102 => 0.014706710492304
1103 => 0.014731823332886
1104 => 0.015059099568393
1105 => 0.01516567412618
1106 => 0.01542917439284
1107 => 0.015412692379417
1108 => 0.015476850501143
1109 => 0.015462101660022
1110 => 0.015950180417482
1111 => 0.016488603767357
1112 => 0.016469959878832
1113 => 0.016392555151952
1114 => 0.016507514370837
1115 => 0.01706322496886
1116 => 0.017012064042075
1117 => 0.01706176252457
1118 => 0.017716976638116
1119 => 0.018568848188848
1120 => 0.018173068327028
1121 => 0.019031796744591
1122 => 0.019572320764209
1123 => 0.020507101164912
1124 => 0.020390062054853
1125 => 0.020753965205111
1126 => 0.020180537621049
1127 => 0.018863831979207
1128 => 0.018655458271238
1129 => 0.019072627711453
1130 => 0.020098198073424
1201 => 0.01904032885106
1202 => 0.019254334416972
1203 => 0.019192700799593
1204 => 0.019189416606048
1205 => 0.019314760915848
1206 => 0.019132942456964
1207 => 0.018392181346953
1208 => 0.018731667798339
1209 => 0.01860057577598
1210 => 0.018746032148345
1211 => 0.019531000199223
1212 => 0.019183947112628
1213 => 0.018818354878205
1214 => 0.019276888671584
1215 => 0.019860759759861
1216 => 0.019824222156474
1217 => 0.019753323934369
1218 => 0.020152973500263
1219 => 0.020813077496783
1220 => 0.020991500954529
1221 => 0.021123209503331
1222 => 0.021141369886976
1223 => 0.021328433125141
1224 => 0.020322546947523
1225 => 0.021918914144393
1226 => 0.022194562660538
1227 => 0.022142752163963
1228 => 0.022449123888596
1229 => 0.022358981555309
1230 => 0.022228379457274
1231 => 0.022714043807952
]
'min_raw' => 0.0083725951384632
'max_raw' => 0.022714043807952
'avg_raw' => 0.015543319473208
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008372'
'max' => '$0.022714'
'avg' => '$0.015543'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0028874916828882
'max_diff' => 0.010468936742244
'year' => 2032
]
7 => [
'items' => [
101 => 0.022157268820992
102 => 0.021366996823023
103 => 0.02093343797513
104 => 0.021504383240231
105 => 0.021853039590384
106 => 0.022083479259126
107 => 0.022153210163652
108 => 0.020400631028101
109 => 0.019456088076533
110 => 0.020061529279281
111 => 0.020800209331953
112 => 0.020318443542533
113 => 0.020337327849375
114 => 0.019650456439485
115 => 0.020860982210597
116 => 0.02068461878787
117 => 0.021599592536957
118 => 0.021381226708615
119 => 0.022127352281919
120 => 0.021930872413077
121 => 0.022746449363599
122 => 0.023071805090026
123 => 0.023618127992273
124 => 0.024020005343101
125 => 0.024255995410195
126 => 0.024241827451743
127 => 0.025176937667356
128 => 0.024625535843472
129 => 0.023932845197241
130 => 0.023920316608862
131 => 0.024279070910047
201 => 0.025030921505895
202 => 0.025225865426418
203 => 0.025334812483251
204 => 0.025167956273236
205 => 0.024569449112735
206 => 0.02431101675533
207 => 0.024531208611345
208 => 0.024261932892741
209 => 0.024726778328474
210 => 0.025365110397363
211 => 0.025233297349376
212 => 0.02567392860628
213 => 0.026129935601416
214 => 0.026782046085016
215 => 0.02695253191301
216 => 0.02723433850369
217 => 0.027524410054141
218 => 0.027617573218499
219 => 0.027795450606089
220 => 0.027794513104454
221 => 0.028330558584488
222 => 0.028921833348912
223 => 0.029145025884439
224 => 0.029658244812977
225 => 0.028779375383192
226 => 0.029446007941409
227 => 0.030047327195815
228 => 0.029330409591229
301 => 0.030318513488772
302 => 0.030356879324022
303 => 0.03093615788628
304 => 0.030348948087087
305 => 0.030000264782767
306 => 0.031006900417347
307 => 0.031493979692195
308 => 0.031347267450629
309 => 0.030230780048228
310 => 0.029580936491633
311 => 0.027880170558564
312 => 0.029894801273905
313 => 0.030876069127764
314 => 0.030228238801543
315 => 0.030554966736049
316 => 0.032337488404825
317 => 0.033016157246564
318 => 0.032874998871736
319 => 0.032898852313417
320 => 0.033265049701709
321 => 0.034888970589978
322 => 0.033915879551536
323 => 0.034659771189399
324 => 0.035054328631821
325 => 0.035420815573268
326 => 0.034520839474462
327 => 0.03334998379319
328 => 0.032979124649753
329 => 0.030163824842941
330 => 0.030017276261769
331 => 0.029935014102281
401 => 0.02941636282292
402 => 0.029008844987885
403 => 0.028684771675298
404 => 0.027834306526585
405 => 0.028121313548609
406 => 0.026765849607434
407 => 0.027633027402305
408 => 0.025469674223368
409 => 0.027271379035174
410 => 0.026290793019573
411 => 0.026949230156273
412 => 0.026946932931131
413 => 0.025734541404783
414 => 0.025035259274352
415 => 0.02548086906433
416 => 0.025958598131737
417 => 0.02603610806565
418 => 0.026655496271547
419 => 0.026828354206108
420 => 0.026304586594423
421 => 0.025424843537246
422 => 0.025629187784625
423 => 0.025031118244701
424 => 0.023983024380395
425 => 0.024735783691702
426 => 0.024992808817073
427 => 0.025106325754836
428 => 0.024075645813685
429 => 0.023751783799025
430 => 0.023579362379885
501 => 0.025291795699568
502 => 0.02538560666242
503 => 0.024905656512936
504 => 0.027075076699343
505 => 0.02658407009676
506 => 0.027132644771383
507 => 0.025610645686011
508 => 0.025668788100716
509 => 0.024948249342583
510 => 0.02535170290072
511 => 0.025066554929744
512 => 0.025319107840228
513 => 0.025470487013458
514 => 0.02619090753827
515 => 0.02727960508034
516 => 0.026083300735771
517 => 0.025562053801448
518 => 0.025885432467898
519 => 0.026746632470996
520 => 0.028051394559706
521 => 0.027278949142405
522 => 0.027621747301629
523 => 0.027696633449391
524 => 0.027127060796157
525 => 0.02807239551586
526 => 0.028579008072035
527 => 0.029098687725972
528 => 0.029549911008393
529 => 0.028891116244189
530 => 0.029596121076407
531 => 0.029028011631745
601 => 0.028518358729809
602 => 0.028519131662885
603 => 0.02819941895266
604 => 0.027579935290203
605 => 0.027465692998262
606 => 0.028059995828153
607 => 0.028536570417037
608 => 0.028575823382816
609 => 0.028839679562509
610 => 0.028995826931717
611 => 0.030526283422006
612 => 0.031141845683001
613 => 0.031894543563748
614 => 0.032187761808027
615 => 0.033070243598748
616 => 0.032357567881074
617 => 0.032203376006614
618 => 0.030062763839918
619 => 0.030413288962296
620 => 0.030974513503865
621 => 0.030072018225897
622 => 0.03064444375399
623 => 0.030757452678866
624 => 0.030041351781696
625 => 0.030423852211768
626 => 0.029408044472971
627 => 0.027301746913163
628 => 0.028074740427162
629 => 0.028643923840268
630 => 0.027831628929957
701 => 0.029287636116535
702 => 0.028437066776225
703 => 0.028167477129875
704 => 0.027115711803817
705 => 0.027612104551557
706 => 0.028283482850534
707 => 0.027868649117871
708 => 0.028729491400745
709 => 0.029948673651546
710 => 0.030817535527026
711 => 0.030884235953124
712 => 0.030325615976415
713 => 0.031220808054156
714 => 0.031227328551139
715 => 0.030217548230481
716 => 0.029599063406558
717 => 0.029458542353259
718 => 0.029809591495174
719 => 0.030235829960705
720 => 0.030907889221492
721 => 0.031314000557484
722 => 0.032372923536942
723 => 0.032659437733483
724 => 0.032974229969804
725 => 0.033394889475859
726 => 0.033899999067762
727 => 0.032794848036583
728 => 0.032838757747311
729 => 0.031809656408935
730 => 0.03070991404082
731 => 0.031544481413398
801 => 0.032635567235199
802 => 0.032385270942135
803 => 0.032357107496076
804 => 0.032404470600459
805 => 0.032215755369401
806 => 0.031362203373442
807 => 0.030933554904589
808 => 0.031486620789296
809 => 0.031780550692887
810 => 0.032236410339976
811 => 0.032180216016443
812 => 0.033354461511592
813 => 0.033810737803666
814 => 0.03369400280299
815 => 0.033715484852499
816 => 0.034541551284703
817 => 0.035460307050833
818 => 0.036320843066316
819 => 0.037196217262146
820 => 0.036140919502636
821 => 0.035605104382074
822 => 0.036157928815518
823 => 0.035864592389565
824 => 0.037550190502324
825 => 0.037666897658461
826 => 0.03935237388329
827 => 0.040952091523428
828 => 0.039947337535576
829 => 0.040894775291007
830 => 0.04191950646924
831 => 0.043896379168692
901 => 0.043230637990737
902 => 0.042720690681917
903 => 0.04223879293913
904 => 0.043241545642758
905 => 0.044531570976609
906 => 0.044809430077811
907 => 0.045259667972106
908 => 0.044786297878726
909 => 0.045356420016196
910 => 0.047369201685829
911 => 0.046825330311379
912 => 0.046052945527974
913 => 0.047641843346543
914 => 0.048216859290399
915 => 0.05225262232257
916 => 0.057347939859741
917 => 0.055238444941693
918 => 0.053929013373085
919 => 0.05423676085184
920 => 0.056097398329031
921 => 0.056694976033024
922 => 0.055070553836185
923 => 0.055644327217997
924 => 0.058805874963934
925 => 0.060501943895033
926 => 0.058198454474152
927 => 0.051843218519658
928 => 0.045983400729073
929 => 0.04753768827817
930 => 0.047361480305261
1001 => 0.050758168947156
1002 => 0.046812359158969
1003 => 0.046878796476209
1004 => 0.050345725042063
1005 => 0.049420807938896
1006 => 0.047922560686197
1007 => 0.045994339592078
1008 => 0.042429844560734
1009 => 0.039272671908175
1010 => 0.045464614533281
1011 => 0.045197606707969
1012 => 0.044810939808576
1013 => 0.045671425151448
1014 => 0.049849697723413
1015 => 0.04975337501688
1016 => 0.049140619102199
1017 => 0.049605389062902
1018 => 0.047841084264956
1019 => 0.04829578578386
1020 => 0.045982472503996
1021 => 0.047028186718991
1022 => 0.04791934612049
1023 => 0.048098259564181
1024 => 0.048501360688365
1025 => 0.04505690571696
1026 => 0.046603364875236
1027 => 0.047511764747095
1028 => 0.043407581078163
1029 => 0.047430638231917
1030 => 0.044996945419128
1031 => 0.044170913525628
1101 => 0.045283056648799
1102 => 0.044849653392105
1103 => 0.044477038722292
1104 => 0.044269113334204
1105 => 0.045085748501103
1106 => 0.045047651494477
1107 => 0.043711477859374
1108 => 0.041968493821788
1109 => 0.042553496476302
1110 => 0.042340959527488
1111 => 0.041570698207173
1112 => 0.042089761335359
1113 => 0.039804070010665
1114 => 0.035871656886426
1115 => 0.03846952944937
1116 => 0.038369514181638
1117 => 0.038319081948316
1118 => 0.040271311379445
1119 => 0.040083649565238
1120 => 0.039743041534862
1121 => 0.041564442673587
1122 => 0.04089960675665
1123 => 0.042948474397607
1124 => 0.044297991138391
1125 => 0.043955710040635
1126 => 0.045224937058124
1127 => 0.042566973755923
1128 => 0.043449842545936
1129 => 0.043631800579954
1130 => 0.041541966866264
1201 => 0.040114353358895
1202 => 0.040019147813939
1203 => 0.037543862729421
1204 => 0.038866140041767
1205 => 0.040029689357079
1206 => 0.039472439530119
1207 => 0.039296030882269
1208 => 0.040197264405769
1209 => 0.040267297969088
1210 => 0.038670525303588
1211 => 0.039002544903959
1212 => 0.040387121831175
1213 => 0.038967657117852
1214 => 0.036209869048111
1215 => 0.035525899477412
1216 => 0.035434645328621
1217 => 0.033579665606575
1218 => 0.035571605594654
1219 => 0.034702070409185
1220 => 0.037448921641452
1221 => 0.035879934949239
1222 => 0.035812299068832
1223 => 0.03571005751557
1224 => 0.034113399840557
1225 => 0.034462966398496
1226 => 0.035624978877576
1227 => 0.036039598021118
1228 => 0.035996349847572
1229 => 0.035619284382494
1230 => 0.035791903021519
1231 => 0.035235838240899
]
'min_raw' => 0.019456088076533
'max_raw' => 0.060501943895033
'avg_raw' => 0.039979015985783
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.019456'
'max' => '$0.0605019'
'avg' => '$0.039979'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.01108349293807
'max_diff' => 0.037787900087081
'year' => 2033
]
8 => [
'items' => [
101 => 0.035039480193374
102 => 0.03441972018285
103 => 0.033508844180452
104 => 0.033635507075313
105 => 0.031830823370892
106 => 0.03084753590691
107 => 0.0305753748964
108 => 0.030211429818755
109 => 0.030616483461341
110 => 0.031825710928704
111 => 0.030367126051146
112 => 0.027866484586407
113 => 0.028016777399323
114 => 0.02835444072761
115 => 0.027725207349214
116 => 0.027129690764116
117 => 0.027647444119071
118 => 0.026587889365087
119 => 0.028482482857546
120 => 0.028431239413112
121 => 0.029137426706226
122 => 0.029579020113031
123 => 0.028561290277907
124 => 0.028305333976607
125 => 0.028451138318393
126 => 0.026041317331862
127 => 0.028940492919642
128 => 0.028965565110516
129 => 0.028750881790485
130 => 0.030294603288973
131 => 0.033552337149595
201 => 0.032326646629188
202 => 0.031852022212995
203 => 0.030949760850862
204 => 0.032151970544925
205 => 0.032059659597814
206 => 0.031642194487089
207 => 0.031389710285553
208 => 0.031854920168472
209 => 0.031332065632809
210 => 0.031238146591123
211 => 0.030669099383426
212 => 0.030465975420276
213 => 0.030315590524558
214 => 0.030150031530887
215 => 0.030515213416194
216 => 0.029687663220411
217 => 0.028689718810042
218 => 0.028606750530228
219 => 0.02883583324544
220 => 0.028734481197161
221 => 0.028606265295614
222 => 0.028361466222037
223 => 0.028288839566211
224 => 0.0285248409642
225 => 0.028258409145607
226 => 0.028651543807233
227 => 0.028544632932404
228 => 0.02794743747635
301 => 0.027203110828031
302 => 0.027196484759583
303 => 0.027036120804143
304 => 0.026831873196008
305 => 0.026775056183977
306 => 0.027603840375648
307 => 0.029319398848983
308 => 0.028982593670833
309 => 0.02922596992923
310 => 0.030423140242206
311 => 0.030803684684534
312 => 0.030533583253059
313 => 0.030163851754525
314 => 0.030180118064041
315 => 0.031443602519868
316 => 0.031522404495556
317 => 0.03172151166564
318 => 0.031977420646877
319 => 0.030577165659145
320 => 0.030114166180042
321 => 0.02989477134061
322 => 0.029219120151646
323 => 0.029947752032988
324 => 0.029523209438858
325 => 0.029580494739246
326 => 0.029543187612218
327 => 0.029563559826272
328 => 0.028481953280053
329 => 0.028876033857929
330 => 0.028220798464025
331 => 0.027343511825213
401 => 0.027340570852784
402 => 0.027555285514782
403 => 0.02742756483204
404 => 0.02708387175878
405 => 0.027132691737651
406 => 0.026704977351945
407 => 0.027184624008094
408 => 0.027198378557935
409 => 0.027013688468787
410 => 0.027752650321069
411 => 0.028055403594884
412 => 0.027933836621762
413 => 0.028046874131977
414 => 0.028996589446569
415 => 0.029151434481832
416 => 0.029220206418007
417 => 0.029128061134068
418 => 0.028064233184511
419 => 0.02811141847782
420 => 0.027765204103455
421 => 0.02747268944029
422 => 0.027484388492779
423 => 0.027634779053891
424 => 0.028291543454555
425 => 0.029673665417378
426 => 0.02972611593555
427 => 0.029789687493663
428 => 0.029531110018312
429 => 0.029453120577493
430 => 0.029556008780716
501 => 0.030075061121432
502 => 0.031410204663089
503 => 0.030938275764228
504 => 0.030554590223444
505 => 0.030891185883591
506 => 0.030839369620035
507 => 0.030401988209581
508 => 0.030389712370134
509 => 0.029550237604176
510 => 0.029239902897117
511 => 0.028980563987749
512 => 0.028697372668932
513 => 0.028529487362478
514 => 0.028787435495698
515 => 0.028846431285718
516 => 0.028282423184271
517 => 0.028205550964125
518 => 0.028666132154727
519 => 0.028463447544941
520 => 0.028671913692443
521 => 0.028720279626853
522 => 0.028712491597451
523 => 0.028500865586654
524 => 0.028635749695158
525 => 0.02831670856766
526 => 0.027969799259934
527 => 0.027748492734818
528 => 0.027555373439604
529 => 0.027662527248748
530 => 0.027280543484662
531 => 0.027158339190716
601 => 0.028590053994185
602 => 0.029647677113036
603 => 0.029632298854023
604 => 0.029538687657249
605 => 0.029399600407182
606 => 0.030064886022768
607 => 0.029833113817104
608 => 0.03000174746194
609 => 0.030044671802083
610 => 0.030174590851711
611 => 0.030221025745033
612 => 0.030080667246306
613 => 0.029609606981231
614 => 0.028435769587731
615 => 0.027889345112342
616 => 0.027709015934045
617 => 0.027715570557182
618 => 0.027534764789931
619 => 0.027588020191532
620 => 0.027516244734592
621 => 0.027380319383494
622 => 0.027654134241345
623 => 0.027685688852951
624 => 0.027621777193285
625 => 0.027636830702772
626 => 0.027107669457762
627 => 0.027147900437942
628 => 0.026923889227992
629 => 0.026881889826622
630 => 0.026315608994757
701 => 0.025312360417388
702 => 0.025868257516946
703 => 0.02519681199164
704 => 0.024942525397147
705 => 0.026146278585799
706 => 0.026025455152574
707 => 0.025818657955578
708 => 0.025512761800909
709 => 0.025399301941575
710 => 0.024709955753292
711 => 0.024669225502969
712 => 0.025010884087795
713 => 0.024853220406652
714 => 0.024631800886422
715 => 0.023829841829084
716 => 0.022928174329118
717 => 0.022955390003263
718 => 0.023242193658881
719 => 0.024076113968336
720 => 0.023750286876464
721 => 0.023513895582876
722 => 0.023469626599483
723 => 0.024023745610039
724 => 0.024807940101498
725 => 0.025175866611527
726 => 0.024811262614182
727 => 0.024392425173706
728 => 0.024417917868002
729 => 0.024587509342225
730 => 0.024605331008271
731 => 0.024332710891705
801 => 0.024409451857637
802 => 0.024292875313046
803 => 0.023577445274072
804 => 0.02356450541332
805 => 0.023388927343888
806 => 0.023383610909725
807 => 0.02308490881362
808 => 0.023043118325544
809 => 0.022450027183805
810 => 0.022840401569343
811 => 0.022578558927099
812 => 0.022183900302803
813 => 0.022115861007218
814 => 0.022113815663833
815 => 0.022519041826932
816 => 0.022835666265693
817 => 0.022583113791966
818 => 0.022525612489222
819 => 0.02313957596685
820 => 0.02306144351792
821 => 0.022993781321048
822 => 0.024737724085908
823 => 0.02335725730597
824 => 0.022755294995628
825 => 0.022010252327037
826 => 0.022252841976762
827 => 0.022303959180342
828 => 0.020512265866416
829 => 0.019785376112098
830 => 0.019535934940679
831 => 0.019392378019946
901 => 0.019457798711398
902 => 0.018803512676847
903 => 0.019243203712958
904 => 0.018676647312458
905 => 0.018581662288181
906 => 0.019594735315144
907 => 0.019735698508559
908 => 0.019134305731618
909 => 0.019520497251061
910 => 0.019380458837647
911 => 0.018686359295829
912 => 0.018659849798783
913 => 0.018311575047477
914 => 0.017766592500964
915 => 0.017517520853374
916 => 0.01738780217677
917 => 0.017441326630903
918 => 0.017414263029018
919 => 0.017237654720191
920 => 0.01742438601055
921 => 0.016947364726381
922 => 0.016757411007403
923 => 0.016671613319433
924 => 0.016248229473412
925 => 0.016922021452082
926 => 0.017054766960088
927 => 0.017187774017752
928 => 0.018345509646939
929 => 0.018287672446632
930 => 0.018810492569551
1001 => 0.018790176740979
1002 => 0.018641059972798
1003 => 0.01801196085636
1004 => 0.018262708551559
1005 => 0.017490946120582
1006 => 0.018069203008614
1007 => 0.017805310713501
1008 => 0.017979980758184
1009 => 0.01766590826848
1010 => 0.017839728952018
1011 => 0.01708624584457
1012 => 0.016382653920629
1013 => 0.016665799849951
1014 => 0.01697361185679
1015 => 0.017641026716656
1016 => 0.017243519932173
1017 => 0.017386478403269
1018 => 0.016907591456056
1019 => 0.015919510896664
1020 => 0.015925103325325
1021 => 0.015773108657767
1022 => 0.015641763073413
1023 => 0.017289178368141
1024 => 0.01708429623446
1025 => 0.016757843368749
1026 => 0.017194813502224
1027 => 0.017310355341163
1028 => 0.017313644654885
1029 => 0.017632446784436
1030 => 0.017802591538126
1031 => 0.017832580288414
1101 => 0.018334222327439
1102 => 0.018502366122102
1103 => 0.019194926615717
1104 => 0.017788155944511
1105 => 0.017759184428289
1106 => 0.017200962568116
1107 => 0.016846929439255
1108 => 0.017225203519337
1109 => 0.017560302714728
1110 => 0.017211375034202
1111 => 0.017256937623013
1112 => 0.016788530720345
1113 => 0.016955964147456
1114 => 0.017100180370602
1115 => 0.017020552648818
1116 => 0.016901346095283
1117 => 0.017532828402127
1118 => 0.017497197695576
1119 => 0.018085248537425
1120 => 0.018543676220565
1121 => 0.019365260582502
1122 => 0.018507894470659
1123 => 0.018476648641822
1124 => 0.018782081630694
1125 => 0.018502319361902
1126 => 0.018679119458714
1127 => 0.019336775353587
1128 => 0.019350670586325
1129 => 0.019117907534966
1130 => 0.019103743882137
1201 => 0.0191484485723
1202 => 0.019410285338906
1203 => 0.019318791527223
1204 => 0.019424670482442
1205 => 0.019557073737221
1206 => 0.020104749736802
1207 => 0.020236792566153
1208 => 0.019915996947188
1209 => 0.019944961199785
1210 => 0.019824974832255
1211 => 0.019709069504647
1212 => 0.019969607754497
1213 => 0.02044574652699
1214 => 0.020442784492398
1215 => 0.020553239432802
1216 => 0.020622051945615
1217 => 0.020326658266783
1218 => 0.02013436784379
1219 => 0.020208104227723
1220 => 0.020326010311401
1221 => 0.020169868873884
1222 => 0.019206091589781
1223 => 0.019498440051446
1224 => 0.019449778972316
1225 => 0.019380479678244
1226 => 0.019674438317113
1227 => 0.019646085289277
1228 => 0.018796802027873
1229 => 0.018851170386776
1230 => 0.018800108347852
1231 => 0.018965100241925
]
'min_raw' => 0.015641763073413
'max_raw' => 0.035039480193374
'avg_raw' => 0.025340621633393
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.015641'
'max' => '$0.035039'
'avg' => '$0.02534'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0038143250031205
'max_diff' => -0.025462463701659
'year' => 2034
]
9 => [
'items' => [
101 => 0.018493409258165
102 => 0.018638498227882
103 => 0.018729496669565
104 => 0.018783095450798
105 => 0.018976731001643
106 => 0.018954010104684
107 => 0.018975318638786
108 => 0.019262429042798
109 => 0.020714534941899
110 => 0.020793569862096
111 => 0.020404373009382
112 => 0.020559849475473
113 => 0.020261368659544
114 => 0.020461740830924
115 => 0.020598830381682
116 => 0.019979349062614
117 => 0.019942667399299
118 => 0.019642954646868
119 => 0.019804003303427
120 => 0.019547763311033
121 => 0.019610635642272
122 => 0.019434839123017
123 => 0.019751237856939
124 => 0.020105020804855
125 => 0.020194400348811
126 => 0.019959281248977
127 => 0.019789039525593
128 => 0.01949015114044
129 => 0.019987209186111
130 => 0.020132564106234
131 => 0.019986445698595
201 => 0.019952586870794
202 => 0.019888424453294
203 => 0.019966199230982
204 => 0.020131772472123
205 => 0.020053691189259
206 => 0.020105265252205
207 => 0.019908718107195
208 => 0.020326756054382
209 => 0.020990700920826
210 => 0.020992835612137
211 => 0.020914753908386
212 => 0.020882804557505
213 => 0.020962921123948
214 => 0.021006381074689
215 => 0.021265463359699
216 => 0.021543468973809
217 => 0.022840799871506
218 => 0.022476514546786
219 => 0.023627583697783
220 => 0.024537929948599
221 => 0.024810902984602
222 => 0.024559780635853
223 => 0.023700704646147
224 => 0.023658554279653
225 => 0.024942376500803
226 => 0.024579637920545
227 => 0.024536491320648
228 => 0.024077484395075
301 => 0.024348814337202
302 => 0.024289470498689
303 => 0.024195793346395
304 => 0.024713471974967
305 => 0.025682520154164
306 => 0.02553148490776
307 => 0.025418744102643
308 => 0.024924746712974
309 => 0.025222243479866
310 => 0.025116310579351
311 => 0.025571465546643
312 => 0.025301841826936
313 => 0.024576889819036
314 => 0.024692340815767
315 => 0.024674890629867
316 => 0.025034014219171
317 => 0.024926214231657
318 => 0.024653840952177
319 => 0.025679208052836
320 => 0.025612626416711
321 => 0.025707023954056
322 => 0.025748580669336
323 => 0.026372703554512
324 => 0.026628386730864
325 => 0.02668643128826
326 => 0.026929310530548
327 => 0.026680388231454
328 => 0.027676254906421
329 => 0.028338448134843
330 => 0.029107619645807
331 => 0.030231585957137
401 => 0.030654207687467
402 => 0.030577864854623
403 => 0.031430043284223
404 => 0.032961388979352
405 => 0.030887393602458
406 => 0.033071315770382
407 => 0.032379911226611
408 => 0.030740603491167
409 => 0.030635051399173
410 => 0.03174520963037
411 => 0.034207433738395
412 => 0.033590674525649
413 => 0.034208442535519
414 => 0.033487783337326
415 => 0.033451996533943
416 => 0.034173441726804
417 => 0.035859137743854
418 => 0.035058326753524
419 => 0.033910167831975
420 => 0.034757950512315
421 => 0.034023522696021
422 => 0.032368651272509
423 => 0.033590202901503
424 => 0.032773386114982
425 => 0.033011776677657
426 => 0.034728604070597
427 => 0.034522030856517
428 => 0.034789355723701
429 => 0.03431753433023
430 => 0.033876778749324
501 => 0.033054075726623
502 => 0.03281051392037
503 => 0.032877825641183
504 => 0.032810480564024
505 => 0.032350185783854
506 => 0.032250785169901
507 => 0.032085113125139
508 => 0.032136461819334
509 => 0.031824949906115
510 => 0.032412837248004
511 => 0.032521954319104
512 => 0.032949769700795
513 => 0.032994186912946
514 => 0.034185646661385
515 => 0.033529410653612
516 => 0.033969670424317
517 => 0.03393028944654
518 => 0.03077613226061
519 => 0.031210747291466
520 => 0.031886871889769
521 => 0.031582278674699
522 => 0.031151655132425
523 => 0.030803903533466
524 => 0.030277024301615
525 => 0.031018596702625
526 => 0.031993685552521
527 => 0.033018916775321
528 => 0.034250664913704
529 => 0.033975753068346
530 => 0.03299589010066
531 => 0.0330398460376
601 => 0.033311564343739
602 => 0.032959664449077
603 => 0.032855882300239
604 => 0.033297306270172
605 => 0.033300346114451
606 => 0.032895442757119
607 => 0.032445466771977
608 => 0.032443581356169
609 => 0.032363512475866
610 => 0.033502027413258
611 => 0.034128095511981
612 => 0.03419987321054
613 => 0.034123264300973
614 => 0.034152748029766
615 => 0.033788452797589
616 => 0.034621123669951
617 => 0.035385264805045
618 => 0.035180458657346
619 => 0.034873425127035
620 => 0.034628858131404
621 => 0.035122846445626
622 => 0.035100849923603
623 => 0.035378590698852
624 => 0.035365990772978
625 => 0.035272596996621
626 => 0.035180461992731
627 => 0.035545766868685
628 => 0.035440564931027
629 => 0.035335199585703
630 => 0.035123873255027
701 => 0.035152596013124
702 => 0.034845615496481
703 => 0.03470359226301
704 => 0.03256790359298
705 => 0.031997177794707
706 => 0.032176739749039
707 => 0.032235856206729
708 => 0.031987475607916
709 => 0.032343589582873
710 => 0.032288089597094
711 => 0.032504007575355
712 => 0.032369111396606
713 => 0.032374647582836
714 => 0.032771348481637
715 => 0.032886512440245
716 => 0.03282793912141
717 => 0.032868961866146
718 => 0.033814313703978
719 => 0.033679914903288
720 => 0.033608518219089
721 => 0.033628295588546
722 => 0.033869853251684
723 => 0.033937476208803
724 => 0.033650952987708
725 => 0.033786078995148
726 => 0.034361428384781
727 => 0.034562768109197
728 => 0.035205347860984
729 => 0.03493236856148
730 => 0.035433433879986
731 => 0.036973537843317
801 => 0.038203879456314
802 => 0.037072406462984
803 => 0.039331772152194
804 => 0.041091012428003
805 => 0.041023489856049
806 => 0.040716725622001
807 => 0.038713877339816
808 => 0.036870826489763
809 => 0.038412616785905
810 => 0.038416547126442
811 => 0.038284105972657
812 => 0.037461525341107
813 => 0.038255481949726
814 => 0.038318503342091
815 => 0.038283228121108
816 => 0.037652557479541
817 => 0.036689639977285
818 => 0.036877791752327
819 => 0.037185988198038
820 => 0.036602508029794
821 => 0.036416050761729
822 => 0.036762710298007
823 => 0.037879719553278
824 => 0.037668555423963
825 => 0.037663041075165
826 => 0.038566490767901
827 => 0.037919815764549
828 => 0.036880164948756
829 => 0.036617639406459
830 => 0.035685850589699
831 => 0.036329440444353
901 => 0.036352602097461
902 => 0.036000114511396
903 => 0.036908767373695
904 => 0.036900393977604
905 => 0.037763024635227
906 => 0.039412050463322
907 => 0.038924352382322
908 => 0.038357212575518
909 => 0.038418876397599
910 => 0.039095176326542
911 => 0.038686269951077
912 => 0.038833315534691
913 => 0.03909495375544
914 => 0.039252806590129
915 => 0.038396163803904
916 => 0.038196439392474
917 => 0.037787873340431
918 => 0.0376812860837
919 => 0.038014054608078
920 => 0.03792638185879
921 => 0.036350655450203
922 => 0.036185983273247
923 => 0.036191033533817
924 => 0.035776957515125
925 => 0.035145392196989
926 => 0.036805108144245
927 => 0.036671809725971
928 => 0.036524658588674
929 => 0.03654268376336
930 => 0.037263110203071
1001 => 0.036845226485631
1002 => 0.03795623883824
1003 => 0.037727848098632
1004 => 0.03749359999835
1005 => 0.03746121977552
1006 => 0.03737105424202
1007 => 0.037061843078532
1008 => 0.03668845201791
1009 => 0.036441906897108
1010 => 0.033615732800672
1011 => 0.034140254273872
1012 => 0.034743668417152
1013 => 0.034951964561382
1014 => 0.034595659593022
1015 => 0.037075912170387
1016 => 0.03752907821658
1017 => 0.036156408703372
1018 => 0.035899638283177
1019 => 0.037092745996388
1020 => 0.036373156193836
1021 => 0.036697187437864
1022 => 0.03599680912389
1023 => 0.037419923786303
1024 => 0.037409082036945
1025 => 0.036855458290763
1026 => 0.037323377289984
1027 => 0.037242064848948
1028 => 0.036617025003025
1029 => 0.037439738664282
1030 => 0.037440146719994
1031 => 0.036907295901113
1101 => 0.036285042800703
1102 => 0.036173798643311
1103 => 0.036089991114267
1104 => 0.036676575923214
1105 => 0.037202506028712
1106 => 0.038181131565915
1107 => 0.038427181277537
1108 => 0.039387529682454
1109 => 0.038815688965841
1110 => 0.039069178548939
1111 => 0.039344377349682
1112 => 0.039476317774859
1113 => 0.039261327932346
1114 => 0.040753144300357
1115 => 0.040879099309889
1116 => 0.040921330935079
1117 => 0.040418298849396
1118 => 0.040865109077608
1119 => 0.040656061368627
1120 => 0.041199945432269
1121 => 0.041285233398109
1122 => 0.04121299752525
1123 => 0.041240069271786
1124 => 0.039967067176131
1125 => 0.03990105530185
1126 => 0.039000978712043
1127 => 0.039367766575419
1128 => 0.038682074245436
1129 => 0.038899514346688
1130 => 0.038995359871474
1201 => 0.038945295608511
1202 => 0.039388504210891
1203 => 0.039011686357333
1204 => 0.038017202087202
1205 => 0.037022446870498
1206 => 0.037009958529062
1207 => 0.036748057039392
1208 => 0.036558750232011
1209 => 0.036595217439132
1210 => 0.03672373263352
1211 => 0.036551280695285
1212 => 0.036588082059843
1213 => 0.037199229917711
1214 => 0.037321791262099
1215 => 0.036905279926059
1216 => 0.035232926809559
1217 => 0.03482252715999
1218 => 0.035117514289522
1219 => 0.03497652944121
1220 => 0.028228789065254
1221 => 0.029814070575937
1222 => 0.028872150133363
1223 => 0.029306230408977
1224 => 0.028344773546224
1225 => 0.028803631155402
1226 => 0.028718896909783
1227 => 0.031267982667072
1228 => 0.031228182199124
1229 => 0.031247232576937
1230 => 0.030337908408453
1231 => 0.031786486499689
]
'min_raw' => 0.018493409258165
'max_raw' => 0.041285233398109
'avg_raw' => 0.029889321328137
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.018493'
'max' => '$0.041285'
'avg' => '$0.029889'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0028516461847525
'max_diff' => 0.0062457532047345
'year' => 2035
]
10 => [
'items' => [
101 => 0.032500108156615
102 => 0.032368035780344
103 => 0.032401275552064
104 => 0.031830106145283
105 => 0.031252762745309
106 => 0.030612400062225
107 => 0.031802114776175
108 => 0.031669838809091
109 => 0.03197323228619
110 => 0.03274484732075
111 => 0.03285847056567
112 => 0.033011181359095
113 => 0.032956445410346
114 => 0.034260477774837
115 => 0.034102550851215
116 => 0.034483109298468
117 => 0.033700271699429
118 => 0.03281441664849
119 => 0.03298278873289
120 => 0.0329665731472
121 => 0.032760130129976
122 => 0.032573762604718
123 => 0.032263513183888
124 => 0.033245188259669
125 => 0.033205334044342
126 => 0.033850527465037
127 => 0.033736483260855
128 => 0.032974868153974
129 => 0.033002069386513
130 => 0.033185010747806
131 => 0.033818172888026
201 => 0.034006138520209
202 => 0.033919065350247
203 => 0.034125161084979
204 => 0.034288050750511
205 => 0.034145617519076
206 => 0.036162171711088
207 => 0.035324757816897
208 => 0.035732907522237
209 => 0.035830248822003
210 => 0.03558091112952
211 => 0.035634983546906
212 => 0.035716888525394
213 => 0.036214199516137
214 => 0.037519287453941
215 => 0.03809730201756
216 => 0.039836287350945
217 => 0.038049305954403
218 => 0.037943273873596
219 => 0.038256517644465
220 => 0.039277486125454
221 => 0.040104885184603
222 => 0.040379381186319
223 => 0.040415660364381
224 => 0.04093063311175
225 => 0.041225805886869
226 => 0.040868101875092
227 => 0.040564985178281
228 => 0.039479258794537
229 => 0.03960493457979
301 => 0.040470716113505
302 => 0.041693683524156
303 => 0.042743116790566
304 => 0.042375641837111
305 => 0.045179216335085
306 => 0.045457179294984
307 => 0.045418773801544
308 => 0.04605201479063
309 => 0.04479516038458
310 => 0.044257830775587
311 => 0.040630522448652
312 => 0.041649648132537
313 => 0.043131007165216
314 => 0.04293494374243
315 => 0.041859141216058
316 => 0.04274230069788
317 => 0.042450300554239
318 => 0.042219987925853
319 => 0.043275094724791
320 => 0.04211496145796
321 => 0.043119433948424
322 => 0.041831187589466
323 => 0.042377320431744
324 => 0.042067309016994
325 => 0.042267924395907
326 => 0.041095130990025
327 => 0.041727941843888
328 => 0.041068803978015
329 => 0.041068491460844
330 => 0.041053940955922
331 => 0.041829413732058
401 => 0.041854701871447
402 => 0.041281626318209
403 => 0.041199037177864
404 => 0.041504412516438
405 => 0.041146897972896
406 => 0.04131417677765
407 => 0.041151964677483
408 => 0.041115447317025
409 => 0.040824470775986
410 => 0.04069911008154
411 => 0.040748267239979
412 => 0.040580468515973
413 => 0.040479363715214
414 => 0.041033828666281
415 => 0.040737600409978
416 => 0.040988427437491
417 => 0.040702578382745
418 => 0.039711701020492
419 => 0.039141836971122
420 => 0.037270161488205
421 => 0.037800966333354
422 => 0.038152890494845
423 => 0.038036579561572
424 => 0.038286460452599
425 => 0.03830180110986
426 => 0.038220562284953
427 => 0.038126498133048
428 => 0.038080712905975
429 => 0.038421958477446
430 => 0.038620063017483
501 => 0.038188210792589
502 => 0.038087033858551
503 => 0.038523660301133
504 => 0.038790002178878
505 => 0.04075652095957
506 => 0.040610834896524
507 => 0.040976478325322
508 => 0.040935312486495
509 => 0.041318565051442
510 => 0.041945021020512
511 => 0.04067126087555
512 => 0.040892341593403
513 => 0.040838137706885
514 => 0.04142992152687
515 => 0.041431769011361
516 => 0.041076965049485
517 => 0.041269310033255
518 => 0.041161948340023
519 => 0.041355965430496
520 => 0.040608889170331
521 => 0.041518747413313
522 => 0.042034578407113
523 => 0.042041740720962
524 => 0.042286240518136
525 => 0.042534666472537
526 => 0.043011498458671
527 => 0.042521367887245
528 => 0.0416396707025
529 => 0.041703326391374
530 => 0.041186387654559
531 => 0.041195077488118
601 => 0.041148690475548
602 => 0.041287901392121
603 => 0.04063943813801
604 => 0.04079163116762
605 => 0.040578560034925
606 => 0.040891878418373
607 => 0.040554799631167
608 => 0.04083811156813
609 => 0.040960379608183
610 => 0.041411551308224
611 => 0.040488161204235
612 => 0.038605306274187
613 => 0.039001105207892
614 => 0.038415687495607
615 => 0.038469870133721
616 => 0.038579327685815
617 => 0.038224539947196
618 => 0.038292222267078
619 => 0.038289804178338
620 => 0.03826896639594
621 => 0.038176672402573
622 => 0.03804282785238
623 => 0.038576023345168
624 => 0.038666623649389
625 => 0.038868016902669
626 => 0.039467226618082
627 => 0.039407351437174
628 => 0.039505010341432
629 => 0.039291821501768
630 => 0.038479759352553
701 => 0.038523858234204
702 => 0.037973944473377
703 => 0.03885395437143
704 => 0.038645556412008
705 => 0.03851120089186
706 => 0.038474540743392
707 => 0.039075235783789
708 => 0.039254973154616
709 => 0.039142972886843
710 => 0.038913257070069
711 => 0.039354379347659
712 => 0.039472405059687
713 => 0.03949882666399
714 => 0.040280410763072
715 => 0.039542508532812
716 => 0.039720128933753
717 => 0.041105872597914
718 => 0.039849194314074
719 => 0.040514884828294
720 => 0.040482302741709
721 => 0.040822847483046
722 => 0.040454368133164
723 => 0.040458935876324
724 => 0.040761316536131
725 => 0.040336677434071
726 => 0.040231530820688
727 => 0.040086271527373
728 => 0.040403439880121
729 => 0.040593567963302
730 => 0.042125860680055
731 => 0.043115791656115
801 => 0.043072816141687
802 => 0.043465531896767
803 => 0.043288609852239
804 => 0.042717281900783
805 => 0.043692469047898
806 => 0.043383879030987
807 => 0.043409318817045
808 => 0.043408371946937
809 => 0.043613557330775
810 => 0.043468164681361
811 => 0.043181580845118
812 => 0.043371828569924
813 => 0.043936796297791
814 => 0.045690473460417
815 => 0.046671854433754
816 => 0.045631393093564
817 => 0.046349089393695
818 => 0.045918727354955
819 => 0.045840517770355
820 => 0.046291284084177
821 => 0.04674283940476
822 => 0.046714077282966
823 => 0.046386271307845
824 => 0.046201102030268
825 => 0.047603265836341
826 => 0.048636356243419
827 => 0.048565906403582
828 => 0.048876849085106
829 => 0.049789786415156
830 => 0.049873253963312
831 => 0.049862738970724
901 => 0.04965585594368
902 => 0.050554761305007
903 => 0.05130464397216
904 => 0.049607968500345
905 => 0.050254040308899
906 => 0.050544082758893
907 => 0.050969951127201
908 => 0.051688462448363
909 => 0.05246895631886
910 => 0.052579326709828
911 => 0.052501013635727
912 => 0.051986256947333
913 => 0.052840282653659
914 => 0.053340550883058
915 => 0.05363844916523
916 => 0.054393869643271
917 => 0.050545873962322
918 => 0.047822071361552
919 => 0.047396710253255
920 => 0.048261698793476
921 => 0.048489789373378
922 => 0.048397846346621
923 => 0.045331958882156
924 => 0.047380568990255
925 => 0.049584701214539
926 => 0.049669370909885
927 => 0.050772805587593
928 => 0.051132129149971
929 => 0.052020538696015
930 => 0.051964968437022
1001 => 0.052181282023801
1002 => 0.05213155527623
1003 => 0.053777146883576
1004 => 0.055592478799197
1005 => 0.055529619627361
1006 => 0.055268644186458
1007 => 0.055656237219125
1008 => 0.057529854298837
1009 => 0.057357361662239
1010 => 0.057524923565806
1011 => 0.059734023695218
1012 => 0.062606168104282
1013 => 0.061271768667688
1014 => 0.064167031482003
1015 => 0.065989445952328
1016 => 0.069141123337581
1017 => 0.068746517806609
1018 => 0.069973442684611
1019 => 0.06804009154951
1020 => 0.063600726548586
1021 => 0.062898180043983
1022 => 0.064304695937509
1023 => 0.067762478015928
1024 => 0.064195798074658
1025 => 0.064917332781523
1026 => 0.064709530737405
1027 => 0.064698457849576
1028 => 0.065121064941327
1029 => 0.064508051313039
1030 => 0.062010523512349
1031 => 0.063155125785382
1101 => 0.062713139879448
1102 => 0.063203556194313
1103 => 0.065850130782568
1104 => 0.064680017070643
1105 => 0.063447397327448
1106 => 0.064993376025632
1107 => 0.066961938164338
1108 => 0.066838749083544
1109 => 0.066599710777763
1110 => 0.067947157191814
1111 => 0.07017274390307
1112 => 0.07077431104799
1113 => 0.071218375615872
1114 => 0.071279604617251
1115 => 0.071910301385062
1116 => 0.068518885908491
1117 => 0.073901149367536
1118 => 0.074830517584885
1119 => 0.07465583487839
1120 => 0.075688788538181
1121 => 0.075384867367965
1122 => 0.074944533276093
1123 => 0.076581984542406
1124 => 0.074704778801082
1125 => 0.072040321584903
1126 => 0.070578547659119
1127 => 0.07250352948253
1128 => 0.07367904870948
1129 => 0.074455992141429
1130 => 0.074691094754495
1201 => 0.068782151837815
1202 => 0.065597559330723
1203 => 0.067638846616342
1204 => 0.070129357986919
1205 => 0.068505050992078
1206 => 0.068568720751056
1207 => 0.066252885836781
1208 => 0.070334257990294
1209 => 0.06973963639727
1210 => 0.072824534273746
1211 => 0.072088298637673
1212 => 0.074603913100893
1213 => 0.073941467505305
1214 => 0.076691242135753
1215 => 0.077788201683015
1216 => 0.079630167490989
1217 => 0.080985125037483
1218 => 0.081780782024993
1219 => 0.081733013763897
1220 => 0.084885803143147
1221 => 0.083026713396274
1222 => 0.080691258520391
1223 => 0.080649017509952
1224 => 0.081858582683824
1225 => 0.084393499460258
1226 => 0.085050766498849
1227 => 0.085418089107402
1228 => 0.08485552174581
1229 => 0.082837613067743
1230 => 0.081966290331582
1231 => 0.082708682547441
]
'min_raw' => 0.030612400062225
'max_raw' => 0.085418089107402
'avg_raw' => 0.058015244584814
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.030612'
'max' => '$0.085418'
'avg' => '$0.058015'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.01211899080406
'max_diff' => 0.044132855709294
'year' => 2036
]
11 => [
'items' => [
101 => 0.081800800661936
102 => 0.083368059502983
103 => 0.085520240640166
104 => 0.085075823745984
105 => 0.086561442792529
106 => 0.088098902214021
107 => 0.090297538238378
108 => 0.090872343110401
109 => 0.091822473705984
110 => 0.09280047019048
111 => 0.093114576303556
112 => 0.09371430233482
113 => 0.093711141482603
114 => 0.095518456244037
115 => 0.097511980393778
116 => 0.098264489610114
117 => 0.099994843059481
118 => 0.097031673416258
119 => 0.099279271629082
120 => 0.10130666147808
121 => 0.098889523720632
122 => 0.10222098499841
123 => 0.10235033809057
124 => 0.10430341620716
125 => 0.10232359737151
126 => 0.1011479872667
127 => 0.10454192958974
128 => 0.10618415137168
129 => 0.10568950080612
130 => 0.10192518557826
131 => 0.099734192656575
201 => 0.093999941569548
202 => 0.10079240968334
203 => 0.10410082276256
204 => 0.10191661758764
205 => 0.10301820363024
206 => 0.10902809988821
207 => 0.11131627927128
208 => 0.11084035395518
209 => 0.1109207774992
210 => 0.11215543756091
211 => 0.11763060021425
212 => 0.1143497558391
213 => 0.11685783843301
214 => 0.11818811639726
215 => 0.11942375270764
216 => 0.1163894204562
217 => 0.11244179878025
218 => 0.1111914212856
219 => 0.10169944142897
220 => 0.10120534265586
221 => 0.10092799004178
222 => 0.099179321042343
223 => 0.097805346209534
224 => 0.09671271041007
225 => 0.093845307783606
226 => 0.094812971996551
227 => 0.090242930683407
228 => 0.093166681163237
301 => 0.085872784879953
302 => 0.09194735844397
303 => 0.088641244230044
304 => 0.090861211007039
305 => 0.090853465752087
306 => 0.086765803074532
307 => 0.084408124549462
308 => 0.085910529067857
309 => 0.087521225972597
310 => 0.087782556126356
311 => 0.089870866706841
312 => 0.090453669301768
313 => 0.088687750230686
314 => 0.085721635091715
315 => 0.086410595988614
316 => 0.084394162778876
317 => 0.080860441139792
318 => 0.083398421713843
319 => 0.084264999868952
320 => 0.084647730150117
321 => 0.081172720768751
322 => 0.080080797375001
323 => 0.079499466522294
324 => 0.08527305501788
325 => 0.085589345228807
326 => 0.083971159790774
327 => 0.091285511413323
328 => 0.089630048371729
329 => 0.091479606187482
330 => 0.086348080008567
331 => 0.086544111219118
401 => 0.084114764489665
402 => 0.085475036329152
403 => 0.08451364003661
404 => 0.085365139806989
405 => 0.085875525258489
406 => 0.088304473356049
407 => 0.091975093129571
408 => 0.087941669508555
409 => 0.086184249077188
410 => 0.0872745428287
411 => 0.090178138766208
412 => 0.094577235243874
413 => 0.091972881589028
414 => 0.093128649516256
415 => 0.093381133391819
416 => 0.091460779425149
417 => 0.09464804143379
418 => 0.09635612103749
419 => 0.098108257273616
420 => 0.099629588073701
421 => 0.097408415530606
422 => 0.099785388544295
423 => 0.097869967887482
424 => 0.096151637545774
425 => 0.096154243543606
426 => 0.095076309819451
427 => 0.092987677400512
428 => 0.092602501537089
429 => 0.094606235020964
430 => 0.096213039520764
501 => 0.096345383635442
502 => 0.097234993167128
503 => 0.097761454924273
504 => 0.10292149583434
505 => 0.10499690697447
506 => 0.1075346804311
507 => 0.10852328621353
508 => 0.11149863518385
509 => 0.10909579924429
510 => 0.10857593057421
511 => 0.10135870720143
512 => 0.10254052712441
513 => 0.10443273484975
514 => 0.10138990900988
515 => 0.10331988164332
516 => 0.10370089912357
517 => 0.10128651495219
518 => 0.1025761418575
519 => 0.099151275144719
520 => 0.092049745864829
521 => 0.094655947465958
522 => 0.096574989082362
523 => 0.093836280079628
524 => 0.098745309964353
525 => 0.095877556048643
526 => 0.094968615733827
527 => 0.091422515505112
528 => 0.09309613831115
529 => 0.095359737120288
530 => 0.093961096227848
531 => 0.096863486086648
601 => 0.10097404416581
602 => 0.10390347264099
603 => 0.10412835778445
604 => 0.10224493153138
605 => 0.1052631341218
606 => 0.10528511843262
607 => 0.10188057358091
608 => 0.099795308815824
609 => 0.099321532273762
610 => 0.1005051189652
611 => 0.10194221171075
612 => 0.10420810643018
613 => 0.10557733915326
614 => 0.10914757191015
615 => 0.11011357452756
616 => 0.11117491853041
617 => 0.11259320142459
618 => 0.11429621367931
619 => 0.11057011981851
620 => 0.11071816447391
621 => 0.10724847746201
622 => 0.10354061928635
623 => 0.10635442145063
624 => 0.11003309347601
625 => 0.10918920204882
626 => 0.10909424702412
627 => 0.10925393503734
628 => 0.10861766846015
629 => 0.10573985831267
630 => 0.10429464007266
701 => 0.10615934031677
702 => 0.10715034550826
703 => 0.10868730813553
704 => 0.10849784505037
705 => 0.11245689572047
706 => 0.11399526309539
707 => 0.11360168289043
708 => 0.11367411112018
709 => 0.11645925177048
710 => 0.11955690098146
711 => 0.12245825823837
712 => 0.12540964345628
713 => 0.12185163338156
714 => 0.12004509529317
715 => 0.12190898146749
716 => 0.1209199772273
717 => 0.12660308894917
718 => 0.12699657527432
719 => 0.13267927604252
720 => 0.13807283575496
721 => 0.13468523753524
722 => 0.13787959007566
723 => 0.14133454278752
724 => 0.14799970711457
725 => 0.14575511425253
726 => 0.14403579129746
727 => 0.14241103941263
728 => 0.14579189016287
729 => 0.15014130064264
730 => 0.15107812200184
731 => 0.15259613049706
801 => 0.15100013017759
802 => 0.15292233676873
803 => 0.15970857069582
804 => 0.15787487038498
805 => 0.15527072116154
806 => 0.16062780109015
807 => 0.16256650749119
808 => 0.17617336432213
809 => 0.19335258314242
810 => 0.18624027374599
811 => 0.18182543379083
812 => 0.1828630259017
813 => 0.18913629506161
814 => 0.19115107001216
815 => 0.18567421716199
816 => 0.18760873417834
817 => 0.19826811313598
818 => 0.20398652795293
819 => 0.19622015254594
820 => 0.17479303081696
821 => 0.15503624601659
822 => 0.16027663500526
823 => 0.15968253752215
824 => 0.17113471042752
825 => 0.15783113723901
826 => 0.15805513529259
827 => 0.16974412700559
828 => 0.16662570441661
829 => 0.16157425919986
830 => 0.15507312715693
831 => 0.14305518329366
901 => 0.1324105552688
902 => 0.15328712213698
903 => 0.15238688661205
904 => 0.15108321216452
905 => 0.15398439857519
906 => 0.16807173626924
907 => 0.16774697753913
908 => 0.16568102819153
909 => 0.16724803256324
910 => 0.16129955575714
911 => 0.16283261367437
912 => 0.15503311644093
913 => 0.15855881492622
914 => 0.16156342106714
915 => 0.16216664023388
916 => 0.16352572381769
917 => 0.15191250339743
918 => 0.15712649841989
919 => 0.16018923201032
920 => 0.14635169022556
921 => 0.15991570830032
922 => 0.151710343067
923 => 0.14892531886636
924 => 0.15267498705348
925 => 0.15121373771429
926 => 0.14995744133989
927 => 0.14925640637706
928 => 0.15200974885791
929 => 0.15188130214022
930 => 0.14737629944081
1001 => 0.14149970706682
1002 => 0.1434720843601
1003 => 0.14275550119832
1004 => 0.14015851137895
1005 => 0.14190856895546
1006 => 0.13420220107238
1007 => 0.12094379567169
1008 => 0.12970270439533
1009 => 0.12936549593733
1010 => 0.12919546014162
1011 => 0.13577753796897
1012 => 0.13514482306024
1013 => 0.13399643930534
1014 => 0.14013742041072
1015 => 0.1378958796994
1016 => 0.14480377999826
1017 => 0.14935376991006
1018 => 0.14819974529167
1019 => 0.15247903279574
1020 => 0.1435175239493
1021 => 0.14649417771475
1022 => 0.14710766193035
1023 => 0.14006164165711
1024 => 0.13524834304423
1025 => 0.13492735090237
1026 => 0.12658175442103
1027 => 0.13103990469806
1028 => 0.13496289245105
1029 => 0.13308408575352
1030 => 0.13248931168083
1031 => 0.13552788342743
1101 => 0.13576400647575
1102 => 0.13038037595091
1103 => 0.13149980321443
1104 => 0.13616800099261
1105 => 0.13138217660778
1106 => 0.12208410158803
1107 => 0.11977805042719
1108 => 0.11947038069338
1109 => 0.11321618704995
1110 => 0.11993215179257
1111 => 0.11700045320575
1112 => 0.12626165391437
1113 => 0.12097170573842
1114 => 0.12074366664544
1115 => 0.12039895211034
1116 => 0.11501570928396
1117 => 0.11619429734001
1118 => 0.12011210354234
1119 => 0.12151002093258
1120 => 0.12136420669598
1121 => 0.1200929041546
1122 => 0.12067489994792
1123 => 0.11880008871686
1124 => 0.11813805385035
1125 => 0.1160484897046
1126 => 0.11297740766719
1127 => 0.11340446046053
1128 => 0.10731984335208
1129 => 0.10400462101633
1130 => 0.10308701116772
1201 => 0.1018599449286
1202 => 0.10322561156453
1203 => 0.10730260639631
1204 => 0.10238488564648
1205 => 0.093953798358894
1206 => 0.094460521070751
1207 => 0.095598976556971
1208 => 0.093477472290037
1209 => 0.09146964654574
1210 => 0.093215288130354
1211 => 0.089642925301546
1212 => 0.096030679537667
1213 => 0.095857908687055
1214 => 0.098238868450209
1215 => 0.099727731452322
1216 => 0.096296384257572
1217 => 0.095433409717442
1218 => 0.095924999235506
1219 => 0.087800119531089
1220 => 0.097574892439266
1221 => 0.097659425081282
1222 => 0.096935605279084
1223 => 0.10214037009043
1224 => 0.11312404724923
1225 => 0.1089915460847
1226 => 0.10739131672829
1227 => 0.10434927955198
1228 => 0.10840261347111
1229 => 0.10809138066798
1230 => 0.10668386790069
1231 => 0.10583259978733
]
'min_raw' => 0.079499466522294
'max_raw' => 0.20398652795293
'avg_raw' => 0.14174299723761
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.079499'
'max' => '$0.203986'
'avg' => '$0.141742'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.048887066460068
'max_diff' => 0.11856843884553
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0024953974121292
]
1 => [
'year' => 2028
'avg' => 0.0042828263782585
]
2 => [
'year' => 2029
'avg' => 0.01169990976105
]
3 => [
'year' => 2030
'avg' => 0.0090264629566215
]
4 => [
'year' => 2031
'avg' => 0.0088651052606415
]
5 => [
'year' => 2032
'avg' => 0.015543319473208
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0024953974121292
'min' => '$0.002495'
'max_raw' => 0.015543319473208
'max' => '$0.015543'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.015543319473208
]
1 => [
'year' => 2033
'avg' => 0.039979015985783
]
2 => [
'year' => 2034
'avg' => 0.025340621633393
]
3 => [
'year' => 2035
'avg' => 0.029889321328137
]
4 => [
'year' => 2036
'avg' => 0.058015244584814
]
5 => [
'year' => 2037
'avg' => 0.14174299723761
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.015543319473208
'min' => '$0.015543'
'max_raw' => 0.14174299723761
'max' => '$0.141742'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14174299723761
]
]
]
]
'prediction_2025_max_price' => '$0.004266'
'last_price' => 0.00413708
'sma_50day_nextmonth' => '$0.003939'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.004085'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004049'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.004035'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004122'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00479'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.008519'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.004095'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004065'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.004071'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0042029'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.005738'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.010791'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.008763'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.012852'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.004067'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004296'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.006363'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.012852'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.005397'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.002698'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.001349'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '44.63'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 83.83
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003969'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004122'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 56.57
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -1.25
'cci_20_action' => 'NEUTRAL'
'adx_14' => 23.97
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000160'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -43.43
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 54.17
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003263'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 11
'buy_signals' => 18
'sell_pct' => 37.93
'buy_pct' => 62.07
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767681471
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de BORNE para 2026
A previsão de preço para BORNE em 2026 sugere que o preço médio poderia variar entre $0.001429 na extremidade inferior e $0.004266 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, BORNE poderia potencialmente ganhar 3.13% até 2026 se BORNE atingir a meta de preço prevista.
Previsão de preço de BORNE 2027-2032
A previsão de preço de BORNE para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002495 na extremidade inferior e $0.015543 na extremidade superior. Considerando a volatilidade de preços no mercado, se BORNE atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de BORNE | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001376 | $0.002495 | $0.003614 |
| 2028 | $0.002483 | $0.004282 | $0.006082 |
| 2029 | $0.005455 | $0.011699 | $0.017944 |
| 2030 | $0.004639 | $0.009026 | $0.013413 |
| 2031 | $0.005485 | $0.008865 | $0.012245 |
| 2032 | $0.008372 | $0.015543 | $0.022714 |
Previsão de preço de BORNE 2032-2037
A previsão de preço de BORNE para 2032-2037 é atualmente estimada entre $0.015543 na extremidade inferior e $0.141742 na extremidade superior. Comparado ao preço atual, BORNE poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de BORNE | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.008372 | $0.015543 | $0.022714 |
| 2033 | $0.019456 | $0.039979 | $0.0605019 |
| 2034 | $0.015641 | $0.02534 | $0.035039 |
| 2035 | $0.018493 | $0.029889 | $0.041285 |
| 2036 | $0.030612 | $0.058015 | $0.085418 |
| 2037 | $0.079499 | $0.141742 | $0.203986 |
BORNE Histograma de preços potenciais
Previsão de preço de BORNE baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para BORNE é Altista, com 18 indicadores técnicos mostrando sinais de alta e 11 indicando sinais de baixa. A previsão de preço de BORNE foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de BORNE
De acordo com nossos indicadores técnicos, o SMA de 200 dias de BORNE está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para BORNE é esperado para alcançar $0.003939 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 44.63, sugerindo que o mercado de BORNE está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BORNE para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.004085 | BUY |
| SMA 5 | $0.004049 | BUY |
| SMA 10 | $0.004035 | BUY |
| SMA 21 | $0.004122 | BUY |
| SMA 50 | $0.00479 | SELL |
| SMA 100 | $0.008519 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.004095 | BUY |
| EMA 5 | $0.004065 | BUY |
| EMA 10 | $0.004071 | BUY |
| EMA 21 | $0.0042029 | SELL |
| EMA 50 | $0.005738 | SELL |
| EMA 100 | $0.010791 | SELL |
| EMA 200 | $0.008763 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.012852 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.012852 | SELL |
| EMA 50 | $0.005397 | SELL |
| EMA 100 | $0.002698 | BUY |
| EMA 200 | $0.001349 | BUY |
Osciladores de BORNE
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 44.63 | NEUTRAL |
| Stoch RSI (14) | 83.83 | NEUTRAL |
| Estocástico Rápido (14) | 56.57 | NEUTRAL |
| Índice de Canal de Commodities (20) | -1.25 | NEUTRAL |
| Índice Direcional Médio (14) | 23.97 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000160 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -43.43 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 54.17 | NEUTRAL |
| VWMA (10) | 0.003969 | BUY |
| Média Móvel de Hull (9) | 0.004122 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.003263 | SELL |
Previsão do preço de BORNE com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do BORNE
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de BORNE por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.005813 | $0.008168 | $0.011478 | $0.016128 | $0.022663 | $0.031846 |
| Amazon.com stock | $0.008632 | $0.018011 | $0.037582 | $0.078418 | $0.163624 | $0.341411 |
| Apple stock | $0.005868 | $0.008323 | $0.0118062 | $0.016746 | $0.023753 | $0.033692 |
| Netflix stock | $0.006527 | $0.010299 | $0.016251 | $0.025641 | $0.040458 | $0.063837 |
| Google stock | $0.005357 | $0.006937 | $0.008984 | $0.011635 | $0.015067 | $0.019512 |
| Tesla stock | $0.009378 | $0.02126 | $0.048195 | $0.109255 | $0.247673 | $0.561456 |
| Kodak stock | $0.0031023 | $0.002326 | $0.001744 | $0.0013082 | $0.000981 | $0.000735 |
| Nokia stock | $0.00274 | $0.001815 | $0.0012027 | $0.000796 | $0.000527 | $0.000349 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para BORNE
Você pode fazer perguntas como: 'Devo investir em BORNE agora?', 'Devo comprar BORNE hoje?', 'BORNE será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para BORNE regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como BORNE, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre BORNE para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de BORNE é de $0.004137 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de BORNE com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se BORNE tiver 1% da média anterior do crescimento anual do Bitcoin | $0.004244 | $0.004354 | $0.004468 | $0.004584 |
| Se BORNE tiver 2% da média anterior do crescimento anual do Bitcoin | $0.004352 | $0.004578 | $0.004816 | $0.005066 |
| Se BORNE tiver 5% da média anterior do crescimento anual do Bitcoin | $0.004674 | $0.005282 | $0.005968 | $0.006744 |
| Se BORNE tiver 10% da média anterior do crescimento anual do Bitcoin | $0.005212 | $0.006567 | $0.008274 | $0.010425 |
| Se BORNE tiver 20% da média anterior do crescimento anual do Bitcoin | $0.006287 | $0.009556 | $0.014524 | $0.022075 |
| Se BORNE tiver 50% da média anterior do crescimento anual do Bitcoin | $0.009513 | $0.021878 | $0.050313 | $0.1157041 |
| Se BORNE tiver 100% da média anterior do crescimento anual do Bitcoin | $0.01489 | $0.053596 | $0.19291 | $0.694346 |
Perguntas Frequentes sobre BORNE
BORNE é um bom investimento?
A decisão de adquirir BORNE depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de BORNE experimentou uma queda de -0.7811% nas últimas 24 horas, e BORNE registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em BORNE dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
BORNE pode subir?
Parece que o valor médio de BORNE pode potencialmente subir para $0.004266 até o final deste ano. Observando as perspectivas de BORNE em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.013413. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de BORNE na próxima semana?
Com base na nossa nova previsão experimental de BORNE, o preço de BORNE aumentará 0.86% na próxima semana e atingirá $0.004172 até 13 de janeiro de 2026.
Qual será o preço de BORNE no próximo mês?
Com base na nossa nova previsão experimental de BORNE, o preço de BORNE diminuirá -11.62% no próximo mês e atingirá $0.003656 até 5 de fevereiro de 2026.
Até onde o preço de BORNE pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de BORNE em 2026, espera-se que BORNE fluctue dentro do intervalo de $0.001429 e $0.004266. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de BORNE não considera flutuações repentinas e extremas de preço.
Onde estará BORNE em 5 anos?
O futuro de BORNE parece seguir uma tendência de alta, com um preço máximo de $0.013413 projetada após um período de cinco anos. Com base na previsão de BORNE para 2030, o valor de BORNE pode potencialmente atingir seu pico mais alto de aproximadamente $0.013413, enquanto seu pico mais baixo está previsto para cerca de $0.004639.
Quanto será BORNE em 2026?
Com base na nossa nova simulação experimental de previsão de preços de BORNE, espera-se que o valor de BORNE em 2026 aumente 3.13% para $0.004266 se o melhor cenário ocorrer. O preço ficará entre $0.004266 e $0.001429 durante 2026.
Quanto será BORNE em 2027?
De acordo com nossa última simulação experimental para previsão de preços de BORNE, o valor de BORNE pode diminuir -12.62% para $0.003614 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.003614 e $0.001376 ao longo do ano.
Quanto será BORNE em 2028?
Nosso novo modelo experimental de previsão de preços de BORNE sugere que o valor de BORNE em 2028 pode aumentar 47.02%, alcançando $0.006082 no melhor cenário. O preço é esperado para variar entre $0.006082 e $0.002483 durante o ano.
Quanto será BORNE em 2029?
Com base no nosso modelo de previsão experimental, o valor de BORNE pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.017944 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.017944 e $0.005455.
Quanto será BORNE em 2030?
Usando nossa nova simulação experimental para previsões de preços de BORNE, espera-se que o valor de BORNE em 2030 aumente 224.23%, alcançando $0.013413 no melhor cenário. O preço está previsto para variar entre $0.013413 e $0.004639 ao longo de 2030.
Quanto será BORNE em 2031?
Nossa simulação experimental indica que o preço de BORNE poderia aumentar 195.98% em 2031, potencialmente atingindo $0.012245 sob condições ideais. O preço provavelmente oscilará entre $0.012245 e $0.005485 durante o ano.
Quanto será BORNE em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de BORNE, BORNE poderia ver um 449.04% aumento em valor, atingindo $0.022714 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.022714 e $0.008372 ao longo do ano.
Quanto será BORNE em 2033?
De acordo com nossa previsão experimental de preços de BORNE, espera-se que o valor de BORNE seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.0605019. Ao longo do ano, o preço de BORNE poderia variar entre $0.0605019 e $0.019456.
Quanto será BORNE em 2034?
Os resultados da nossa nova simulação de previsão de preços de BORNE sugerem que BORNE pode aumentar 746.96% em 2034, atingindo potencialmente $0.035039 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.035039 e $0.015641.
Quanto será BORNE em 2035?
Com base em nossa previsão experimental para o preço de BORNE, BORNE poderia aumentar 897.93%, com o valor potencialmente atingindo $0.041285 em 2035. A faixa de preço esperada para o ano está entre $0.041285 e $0.018493.
Quanto será BORNE em 2036?
Nossa recente simulação de previsão de preços de BORNE sugere que o valor de BORNE pode aumentar 1964.7% em 2036, possivelmente atingindo $0.085418 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.085418 e $0.030612.
Quanto será BORNE em 2037?
De acordo com a simulação experimental, o valor de BORNE poderia aumentar 4830.69% em 2037, com um pico de $0.203986 sob condições favoráveis. O preço é esperado para cair entre $0.203986 e $0.079499 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de BORNE?
Traders de BORNE utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de BORNE
Médias móveis são ferramentas populares para a previsão de preço de BORNE. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BORNE em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BORNE acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BORNE.
Como ler gráficos de BORNE e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de BORNE em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BORNE dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de BORNE?
A ação de preço de BORNE é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BORNE. A capitalização de mercado de BORNE pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BORNE, grandes detentores de BORNE, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de BORNE.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


