Previsão de Preço Borealis - Projeção BRL
Previsão de Preço Borealis até $0.005491 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001839 | $0.005491 |
| 2027 | $0.00177 | $0.004652 |
| 2028 | $0.003196 | $0.007828 |
| 2029 | $0.00702 | $0.023095 |
| 2030 | $0.005971 | $0.017263 |
| 2031 | $0.007059 | $0.01576 |
| 2032 | $0.010775 | $0.029234 |
| 2033 | $0.02504 | $0.077868 |
| 2034 | $0.020131 | $0.045097 |
| 2035 | $0.0238018 | $0.053135 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Borealis hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.49, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Borealis para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Borealis'
'name_with_ticker' => 'Borealis <small>BRL</small>'
'name_lang' => 'Borealis'
'name_lang_with_ticker' => 'Borealis <small>BRL</small>'
'name_with_lang' => 'Borealis'
'name_with_lang_with_ticker' => 'Borealis <small>BRL</small>'
'image' => '/uploads/coins/borealis.png?1717133888'
'price_for_sd' => 0.005324
'ticker' => 'BRL'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$21.36'
'current_supply' => '0'
'max_supply' => '789.62K'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.005324'
'change_24h_pct' => '0%'
'ath_price' => '$111.52'
'ath_days' => 1467
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '31 de dez. de 2021'
'ath_pct' => '-100.00%'
'fdv' => '$4.2K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.262539'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00537'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004705'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001839'
'current_year_max_price_prediction' => '$0.005491'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005971'
'grand_prediction_max_price' => '$0.017263'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0054255085587551
107 => 0.0054457654382539
108 => 0.0054914052221066
109 => 0.0051014182660948
110 => 0.0052765109599286
111 => 0.0053793615135892
112 => 0.0049146789704155
113 => 0.005370176233779
114 => 0.0050946294608333
115 => 0.0050011047475219
116 => 0.0051270234530517
117 => 0.0050779528110468
118 => 0.0050357647545757
119 => 0.0050122230941821
120 => 0.0051046838943827
121 => 0.0051003704875388
122 => 0.0049490866725426
123 => 0.0047517431029971
124 => 0.0048179780825184
125 => 0.0047939142935021
126 => 0.0047067040178163
127 => 0.0047654732138197
128 => 0.0045066834170304
129 => 0.0040614490223775
130 => 0.0043555845013835
131 => 0.0043442606053996
201 => 0.0043385505835467
202 => 0.0045595852667122
203 => 0.0045383378820636
204 => 0.0044997736708715
205 => 0.0047059957558354
206 => 0.0046307219207451
207 => 0.0048626981437473
208 => 0.005015492687498
209 => 0.0049767390488171
210 => 0.0051204430557347
211 => 0.0048195040026707
212 => 0.0049194638845194
213 => 0.00494006547763
214 => 0.0047034510073179
215 => 0.004541814216963
216 => 0.0045310348858406
217 => 0.0042507789662869
218 => 0.0044004894163658
219 => 0.0045322284169958
220 => 0.0044691356590535
221 => 0.0044491623767314
222 => 0.0045512015444382
223 => 0.0045591308616754
224 => 0.0043783415883561
225 => 0.0044159334031309
226 => 0.004572697519861
227 => 0.0044119833496046
228 => 0.0040997419693072
301 => 0.0040223017899186
302 => 0.0040119698424825
303 => 0.0038019459341225
304 => 0.004027476713
305 => 0.0039290264841708
306 => 0.0042400295774271
307 => 0.0040623862785022
308 => 0.0040547284309367
309 => 0.0040431524711795
310 => 0.0038623762172757
311 => 0.0039019547279503
312 => 0.0040335197254102
313 => 0.0040804635986897
314 => 0.0040755669681069
315 => 0.0040328749851477
316 => 0.0040524191563281
317 => 0.0039894605713154
318 => 0.0039672285845777
319 => 0.0038970583190441
320 => 0.0037939274137403
321 => 0.0038082683986614
322 => 0.0036039390895852
323 => 0.0034926096374233
324 => 0.0034617951123635
325 => 0.0034205886416259
326 => 0.0034664494928796
327 => 0.0036033602503252
328 => 0.0034382168296082
329 => 0.003155090018253
330 => 0.00317210642204
331 => 0.0032103372291339
401 => 0.0031390943730365
402 => 0.0030716689887
403 => 0.0031302898899863
404 => 0.0030103253276203
405 => 0.0032248343733584
406 => 0.0032190325048258
407 => 0.0032989882119266
408 => 0.003348986156433
409 => 0.0032337570813725
410 => 0.0032047772806073
411 => 0.0032212854921817
412 => 0.0029484415273535
413 => 0.0032766910390493
414 => 0.0032795297544573
415 => 0.0032552229496999
416 => 0.0034300056811112
417 => 0.0037988517604902
418 => 0.0036600770286287
419 => 0.0036063392579634
420 => 0.0035041837166467
421 => 0.0036402999100554
422 => 0.003629848310145
423 => 0.0035825822116986
424 => 0.0035539955278791
425 => 0.0036066673693322
426 => 0.0035474689038296
427 => 0.0035368352327603
428 => 0.0034724067556285
429 => 0.0034494087206013
430 => 0.0034323818910454
501 => 0.003413637024726
502 => 0.0034549835288969
503 => 0.0033612869108601
504 => 0.0032482979747005
505 => 0.0032389041672161
506 => 0.0032648412955926
507 => 0.0032533660470781
508 => 0.003238849228141
509 => 0.0032111326673698
510 => 0.0032029097558595
511 => 0.0032296302290782
512 => 0.0031994643727147
513 => 0.0032439757369983
514 => 0.0032318711088393
515 => 0.0031642556399236
516 => 0.0030799817312018
517 => 0.0030792315166437
518 => 0.0030610748412465
519 => 0.0030379495852538
520 => 0.0030315166680708
521 => 0.0031253530011869
522 => 0.0033195914024523
523 => 0.0032814577565529
524 => 0.0033090132238085
525 => 0.0034445588500574
526 => 0.0034876447286428
527 => 0.0034570633925678
528 => 0.0034152017735738
529 => 0.0034170434723583
530 => 0.0035600972968346
531 => 0.0035690193883938
601 => 0.0035915626353881
602 => 0.0036205370784966
603 => 0.0034619978655182
604 => 0.0034095762896842
605 => 0.0033847360388157
606 => 0.0033082376805277
607 => 0.0033907346014677
608 => 0.0033426671785063
609 => 0.0033491531160808
610 => 0.0033449291407267
611 => 0.003347235716894
612 => 0.0032247744137084
613 => 0.0032693928762126
614 => 0.0031952060284062
615 => 0.0030958781670579
616 => 0.0030955451852379
617 => 0.0031198555385852
618 => 0.00310539478915
619 => 0.0030664812842397
620 => 0.0030720087639456
621 => 0.0030235822254341
622 => 0.0030778886225117
623 => 0.0030794459356623
624 => 0.003058535014698
625 => 0.0031422015122346
626 => 0.0031764797445408
627 => 0.0031627157284067
628 => 0.0031755140244768
629 => 0.0032830423817031
630 => 0.0033005741957222
701 => 0.0033083606694228
702 => 0.003297927826174
703 => 0.0031774794454543
704 => 0.0031828218433253
705 => 0.0031436228724847
706 => 0.0031105038728101
707 => 0.0031118284591108
708 => 0.0031288559301121
709 => 0.0032032158946228
710 => 0.0033597020561761
711 => 0.0033656405916171
712 => 0.003372838269811
713 => 0.0033435616953333
714 => 0.0033347316003318
715 => 0.0033463807748797
716 => 0.0034051487495077
717 => 0.0035563159356002
718 => 0.0035028833559182
719 => 0.0034594418369091
720 => 0.0034975517608295
721 => 0.0034916850367574
722 => 0.0034421639815265
723 => 0.0034407740904412
724 => 0.0033457273526141
725 => 0.0033105907377489
726 => 0.0032812279524375
727 => 0.0032491645574124
728 => 0.0032301563020668
729 => 0.0032593616213752
730 => 0.0032660412234483
731 => 0.0032021832823588
801 => 0.0031934796809515
802 => 0.0032456274541145
803 => 0.0032226791634104
804 => 0.0032462820494898
805 => 0.0032517581215221
806 => 0.0032508763478003
807 => 0.0032269156967107
808 => 0.0032421875011983
809 => 0.0032060651308412
810 => 0.0031667874784824
811 => 0.0031417307833618
812 => 0.0031198654935807
813 => 0.0031319976271693
814 => 0.0030887487861659
815 => 0.0030749126115016
816 => 0.0032370137574644
817 => 0.0033567596168681
818 => 0.0033550184646478
819 => 0.0033444196482947
820 => 0.0033286719570855
821 => 0.0034039967078094
822 => 0.0033777550708231
823 => 0.0033968480542928
824 => 0.0034017080199158
825 => 0.0034164176721287
826 => 0.0034216751084575
827 => 0.0034057834843476
828 => 0.0033524492528364
829 => 0.0032195454187772
830 => 0.0031576783252556
831 => 0.0031372611539155
901 => 0.003138003279316
902 => 0.003117532147777
903 => 0.003123561813467
904 => 0.003115435276119
905 => 0.0031000455804024
906 => 0.0031310473568259
907 => 0.0031346200227571
908 => 0.0031273838376963
909 => 0.0031290882212318
910 => 0.0030691756995429
911 => 0.0030737307184437
912 => 0.00304836779438
913 => 0.0030436125518726
914 => 0.0029794972884418
915 => 0.0028659078056182
916 => 0.0029288474055004
917 => 0.0028528252194897
918 => 0.0028240344657234
919 => 0.0029603254161724
920 => 0.0029466455848698
921 => 0.0029232316601596
922 => 0.0028885975856236
923 => 0.0028757514704796
924 => 0.0027977025414506
925 => 0.0027930909943487
926 => 0.0028317741510739
927 => 0.0028139232052514
928 => 0.0027888537166347
929 => 0.0026980545701185
930 => 0.00259596626687
1001 => 0.0025990476710409
1002 => 0.0026315200608839
1003 => 0.0027259379138506
1004 => 0.002689047225251
1005 => 0.0026622826074002
1006 => 0.0026572703990182
1007 => 0.002720008680688
1008 => 0.0028087964933271
1009 => 0.0028504537485021
1010 => 0.0028091726737733
1011 => 0.0027617511978559
1012 => 0.002764637523365
1013 => 0.0027838389538807
1014 => 0.0027858567527343
1015 => 0.0027549902469185
1016 => 0.0027636789875041
1017 => 0.0027504799960395
1018 => 0.0026694778097851
1019 => 0.0026680127370965
1020 => 0.0026481334942529
1021 => 0.0026475315586801
1022 => 0.0026137120074938
1023 => 0.0026089804184993
1024 => 0.0025418296469187
1025 => 0.0025860284881243
1026 => 0.0025563822259869
1027 => 0.0025116983160996
1028 => 0.0025039947931926
1029 => 0.0025037632159917
1030 => 0.0025496436003066
1031 => 0.0025854923491207
1101 => 0.0025568979354094
1102 => 0.0025503875416868
1103 => 0.0026199015140656
1104 => 0.0026110552274465
1105 => 0.0026033944002868
1106 => 0.0028008465185385
1107 => 0.0026445477595613
1108 => 0.002576392579426
1109 => 0.0024920376016909
1110 => 0.0025195040077962
1111 => 0.002525291583128
1112 => 0.0023224330678026
1113 => 0.0022401333933995
1114 => 0.0022118912465421
1115 => 0.0021956374917404
1116 => 0.0022030445319054
1117 => 0.0021289651721536
1118 => 0.0021787477270663
1119 => 0.0021146012632937
1120 => 0.0021038468998915
1121 => 0.002218548723339
1122 => 0.0022345088119934
1123 => 0.0021664181153829
1124 => 0.0022101433654893
1125 => 0.0021942879819743
1126 => 0.0021157008703035
1127 => 0.0021126994206854
1128 => 0.0020732671705195
1129 => 0.0020115633345982
1130 => 0.0019833630258472
1201 => 0.0019686760602033
1202 => 0.0019747361884712
1203 => 0.001971672002176
1204 => 0.0019516761139041
1205 => 0.0019728181430854
1206 => 0.0019188089950169
1207 => 0.0018973021170747
1208 => 0.001887587959264
1209 => 0.0018396517317026
1210 => 0.0019159395870899
1211 => 0.0019309692556503
1212 => 0.0019460285373007
1213 => 0.0020771093026587
1214 => 0.0020705608780518
1215 => 0.002129755447286
1216 => 0.0021274552551774
1217 => 0.0021105720051434
1218 => 0.0020393443504096
1219 => 0.0020677344240756
1220 => 0.0019803541901287
1221 => 0.0020458254026801
1222 => 0.0020159470754148
1223 => 0.0020357235101768
1224 => 0.0020001636973056
1225 => 0.0020198439659772
1226 => 0.0019345333476299
1227 => 0.00185487149257
1228 => 0.0018869297485207
1229 => 0.0019217807390453
1230 => 0.0019973465663698
1231 => 0.0019523401830198
]
'min_raw' => 0.0018396517317026
'max_raw' => 0.0054914052221066
'avg_raw' => 0.0036655284769046
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001839'
'max' => '$0.005491'
'avg' => '$0.003665'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0034849582682974
'max_diff' => 0.0001667952221066
'year' => 2026
]
1 => [
'items' => [
101 => 0.0019685261803523
102 => 0.0019143057987919
103 => 0.0018024336643465
104 => 0.0018030668484782
105 => 0.0017858577578607
106 => 0.0017709865909989
107 => 0.0019575097075476
108 => 0.0019343126095106
109 => 0.0018973510697499
110 => 0.0019468255595129
111 => 0.0019599073998719
112 => 0.0019602798214761
113 => 0.0019963751320857
114 => 0.0020156392058285
115 => 0.002019034582321
116 => 0.0020758313334561
117 => 0.0020948688552693
118 => 0.002173281713327
119 => 0.002014004783762
120 => 0.0020107245802127
121 => 0.0019475217670433
122 => 0.0019074375437344
123 => 0.0019502663681069
124 => 0.0019882068597833
125 => 0.0019487006838784
126 => 0.0019538593564307
127 => 0.0019008255430516
128 => 0.0019197826358618
129 => 0.0019361110379861
130 => 0.0019270954540721
131 => 0.0019135986885938
201 => 0.0019850961721335
202 => 0.0019810620039113
203 => 0.0020476421043036
204 => 0.002099546053748
205 => 0.0021925672100931
206 => 0.0020954947841444
207 => 0.0020919570791149
208 => 0.0021265387132442
209 => 0.0020948635610013
210 => 0.0021148811638297
211 => 0.0021893420648065
212 => 0.0021909153063102
213 => 0.0021645614841162
214 => 0.0021629578516407
215 => 0.0021680193914723
216 => 0.0021976649883602
217 => 0.0021873059058904
218 => 0.0021992936983843
219 => 0.0022142846164616
220 => 0.0022762934096467
221 => 0.0022912435197538
222 => 0.0022549225029368
223 => 0.0022582018840862
224 => 0.0022446168267625
225 => 0.002231493831608
226 => 0.0022609924082557
227 => 0.0023149016368755
228 => 0.0023145662703621
301 => 0.0023270721635562
302 => 0.0023348632314118
303 => 0.0023014182647656
304 => 0.0022796468212845
305 => 0.0022879953780681
306 => 0.002301344902173
307 => 0.0022836663073213
308 => 0.0021745458303746
309 => 0.0022076460124372
310 => 0.0022021365236258
311 => 0.0021942903415816
312 => 0.0022275728306016
313 => 0.0022243626533424
314 => 0.0021282053812468
315 => 0.0021343610578248
316 => 0.0021285797283277
317 => 0.0021472603866816
318 => 0.0020938547441455
319 => 0.0021102819600971
320 => 0.0021205849559464
321 => 0.0021266534996529
322 => 0.0021485772407604
323 => 0.0021460047427843
324 => 0.0021484173306743
325 => 0.0021809244510836
326 => 0.0023453343110174
327 => 0.0023542827769437
328 => 0.002310217257975
329 => 0.0023278205636491
330 => 0.0022940260661746
331 => 0.0023167125387327
401 => 0.002332234047083
402 => 0.0022620953354624
403 => 0.0022579421761567
404 => 0.0022240081967698
405 => 0.0022422423951735
406 => 0.002213230474428
407 => 0.002220348984985
408 => 0.002200445008887
409 => 0.0022362682030214
410 => 0.0022763241004253
411 => 0.0022864438019648
412 => 0.0022598232240197
413 => 0.0022405481712059
414 => 0.0022067075280619
415 => 0.0022629852717983
416 => 0.0022794425990999
417 => 0.0022628988284641
418 => 0.0022590652753192
419 => 0.0022518006990368
420 => 0.0022606064895194
421 => 0.0022793529689611
422 => 0.0022705124754495
423 => 0.0022763517771633
424 => 0.0022540983804919
425 => 0.0023014293364412
426 => 0.0023766022853036
427 => 0.0023768439786262
428 => 0.002368003437461
429 => 0.0023643860784884
430 => 0.0023734570102127
501 => 0.0023783776185641
502 => 0.0024077113484361
503 => 0.0024391876092962
504 => 0.0025860735845617
505 => 0.0025448285904809
506 => 0.0026751545660222
507 => 0.0027782254919654
508 => 0.0028091319559105
509 => 0.0027806994633425
510 => 0.0026834334421607
511 => 0.0026786611071295
512 => 0.00282401760743
513 => 0.0027829477383456
514 => 0.0027780626081013
515 => 0.0027260930758592
516 => 0.0027568135059661
517 => 0.0027500944972602
518 => 0.0027394882133128
519 => 0.0027981006539529
520 => 0.0029078179104626
521 => 0.0028907174471137
522 => 0.0028779527444913
523 => 0.0028220215333494
524 => 0.0028557046151451
525 => 0.0028437107148746
526 => 0.0028952441219539
527 => 0.0028647168732049
528 => 0.002782636593694
529 => 0.0027957081487462
530 => 0.0027937324094964
531 => 0.0028343929832555
601 => 0.0028221876882705
602 => 0.0027913491297626
603 => 0.0029074429088076
604 => 0.002899904424544
605 => 0.0029105922716924
606 => 0.0029152973925398
607 => 0.0029859616300427
608 => 0.0030149105071442
609 => 0.0030214824090677
610 => 0.0030489816033276
611 => 0.0030207982040633
612 => 0.0031335518955438
613 => 0.0032085265210179
614 => 0.0032956134066652
615 => 0.0034228707533439
616 => 0.0034707206928914
617 => 0.0034620770296003
618 => 0.0035585620974841
619 => 0.0037319436197287
620 => 0.0034971223924134
621 => 0.0037443897149669
622 => 0.003666107735485
623 => 0.003480502570366
624 => 0.0034685517858735
625 => 0.0035942457586123
626 => 0.0038730228925505
627 => 0.0038031923823631
628 => 0.0038731371102491
629 => 0.0037915428698371
630 => 0.0037874910280704
701 => 0.0038691742601141
702 => 0.0040600315841052
703 => 0.0039693624236568
704 => 0.0038393659491638
705 => 0.0039353533229603
706 => 0.0038522001765657
707 => 0.0036648328646385
708 => 0.003803138984288
709 => 0.0037106576208099
710 => 0.0037376485992525
711 => 0.0039320306697189
712 => 0.0039086421047292
713 => 0.0039389090735487
714 => 0.0038854886658068
715 => 0.0038355855813508
716 => 0.003742437768362
717 => 0.0037148612930677
718 => 0.0037224824387414
719 => 0.0037148575164064
720 => 0.0036627421711117
721 => 0.0036514878672573
722 => 0.0036327302011042
723 => 0.0036385439861908
724 => 0.0036032740860742
725 => 0.0036698356747274
726 => 0.0036821900921201
727 => 0.0037306280655661
728 => 0.0037356570566561
729 => 0.0038705561232317
730 => 0.0037962559842486
731 => 0.0038461029322438
801 => 0.0038416441520375
802 => 0.0034845251970982
803 => 0.0035337330382016
804 => 0.0036102849966873
805 => 0.0035757984431533
806 => 0.0035270425250668
807 => 0.003487669507085
808 => 0.0034280153587448
809 => 0.0035119774269772
810 => 0.0036223786183322
811 => 0.0037384570130586
812 => 0.0038779175985646
813 => 0.0038467916193798
814 => 0.0037358498944193
815 => 0.003740826659158
816 => 0.0037715910604882
817 => 0.003731748365525
818 => 0.0037199979769586
819 => 0.0037699767375387
820 => 0.003770320913795
821 => 0.0037244770780893
822 => 0.0036735300440357
823 => 0.0036733165741028
824 => 0.003664251041483
825 => 0.003793155607951
826 => 0.0038640400857868
827 => 0.0038721668769346
828 => 0.0038634930879916
829 => 0.0038668312851054
830 => 0.0038255851692857
831 => 0.0039198615588939
901 => 0.004006378896967
902 => 0.0039831904021901
903 => 0.0039484275520807
904 => 0.0039207372675629
905 => 0.0039766674511676
906 => 0.0039741769681339
907 => 0.004005623243495
908 => 0.0040041966588021
909 => 0.0039936224591524
910 => 0.003983190779828
911 => 0.0040245512092057
912 => 0.0040126400697731
913 => 0.0040007104290511
914 => 0.0039767837082463
915 => 0.0039800357469844
916 => 0.0039452788991712
917 => 0.0039291987910077
918 => 0.0036873925458025
919 => 0.0036227740158367
920 => 0.0036431043207954
921 => 0.0036497975850639
922 => 0.0036216755180119
923 => 0.0036619953381982
924 => 0.0036557115369314
925 => 0.0036801581317597
926 => 0.0036648849606588
927 => 0.0036655117769282
928 => 0.0037104269165527
929 => 0.0037234659726683
930 => 0.0037168342034898
1001 => 0.0037214788672987
1002 => 0.0038285131843841
1003 => 0.0038132963272594
1004 => 0.003805212675195
1005 => 0.0038074519020615
1006 => 0.0038348014649185
1007 => 0.0038424578492877
1008 => 0.0038100172107109
1009 => 0.0038253164034008
1010 => 0.0038904584241178
1011 => 0.0039132544446498
1012 => 0.003986008399477
1013 => 0.0039551012263679
1014 => 0.0040118326802407
1015 => 0.0041862058282677
1016 => 0.0043255071646158
1017 => 0.0041973998988389
1018 => 0.0044532090631239
1019 => 0.0046523931911649
1020 => 0.0046447481725722
1021 => 0.0046100158126363
1022 => 0.0043832499784456
1023 => 0.0041745766769353
1024 => 0.0043491407543851
1025 => 0.0043495857541179
1026 => 0.0043345905450518
1027 => 0.0042414565893939
1028 => 0.0043313496852744
1029 => 0.0043384850727817
1030 => 0.0043344911532303
1031 => 0.0042630855677915
1101 => 0.0041540624367846
1102 => 0.0041753652956188
1103 => 0.0042102598129559
1104 => 0.0041441972118779
1105 => 0.0041230862079594
1106 => 0.0041623355807768
1107 => 0.0042888052379261
1108 => 0.0042648968818309
1109 => 0.004264272538032
1110 => 0.0043665626241283
1111 => 0.0042933449980656
1112 => 0.0041756339928899
1113 => 0.0041459104116657
1114 => 0.0040404117225231
1115 => 0.0041132800428873
1116 => 0.0041159024440122
1117 => 0.0040759932096449
1118 => 0.0041788724073065
1119 => 0.0041779243573885
1120 => 0.0042755928440204
1121 => 0.0044622983078521
1122 => 0.0044070803149792
1123 => 0.0043428677969685
1124 => 0.0043498494780963
1125 => 0.0044264212878104
1126 => 0.0043801242236929
1127 => 0.0043967729707441
1128 => 0.0044263960879378
1129 => 0.0044442684500413
1130 => 0.0043472779202296
1201 => 0.0043246647881372
1202 => 0.0042784062560069
1203 => 0.0042663382684305
1204 => 0.0043040148776347
1205 => 0.0042940884222436
1206 => 0.0041156820413521
1207 => 0.0040970375819052
1208 => 0.0040976093808583
1209 => 0.0040507270010834
1210 => 0.0039792201188662
1211 => 0.0041671359358789
1212 => 0.0041520436658926
1213 => 0.0041353829678766
1214 => 0.0041374238083189
1215 => 0.0042189916954262
1216 => 0.0041716782016269
1217 => 0.0042974688794213
1218 => 0.0042716100976807
1219 => 0.0042450881357625
1220 => 0.0042414219927467
1221 => 0.0042312133001557
1222 => 0.0041962038947738
1223 => 0.0041539279340361
1224 => 0.0041260136828761
1225 => 0.0038060295221951
1226 => 0.0038654167211553
1227 => 0.0039337362802454
1228 => 0.0039573199182699
1229 => 0.003916978473491
1230 => 0.0041977968208977
1231 => 0.0042491050390018
]
'min_raw' => 0.0017709865909989
'max_raw' => 0.0046523931911649
'avg_raw' => 0.0032116898910819
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00177'
'max' => '$0.004652'
'avg' => '$0.003211'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.8665140703717E-5
'max_diff' => -0.00083901203094169
'year' => 2027
]
2 => [
'items' => [
101 => 0.0040936890996122
102 => 0.0040646171229433
103 => 0.0041997027748482
104 => 0.0041182296132002
105 => 0.0041549169729016
106 => 0.0040756189681401
107 => 0.0042367463917406
108 => 0.004235518870735
109 => 0.0041728366637265
110 => 0.0042258152358608
111 => 0.0042166089052139
112 => 0.0041458408478807
113 => 0.0042389898653847
114 => 0.0042390360661353
115 => 0.0041787058047183
116 => 0.0041082532673757
117 => 0.0040956580177135
118 => 0.0040861691890267
119 => 0.0041525833027205
120 => 0.0042121299893867
121 => 0.0043229316103971
122 => 0.0043507897705007
123 => 0.0044595220240078
124 => 0.0043947772611217
125 => 0.004423477775924
126 => 0.0044546362446777
127 => 0.0044695747604129
128 => 0.0044452332506673
129 => 0.0046141391963448
130 => 0.0046284000333045
131 => 0.0046331815685813
201 => 0.0045762274340374
202 => 0.0046268160357935
203 => 0.0046031473043502
204 => 0.0046647267682027
205 => 0.0046743832144209
206 => 0.0046662045480121
207 => 0.0046692696564584
208 => 0.0045251382288733
209 => 0.0045176642539991
210 => 0.0044157560762611
211 => 0.0044572844119566
212 => 0.0043796491788789
213 => 0.0044042681110193
214 => 0.0044151199017291
215 => 0.004409451542096
216 => 0.0044596323617482
217 => 0.0044169684137797
218 => 0.0043043712404883
219 => 0.0041917433901723
220 => 0.0041903294392562
221 => 0.0041606765143147
222 => 0.0041392428807861
223 => 0.0041433717590027
224 => 0.0041579224643761
225 => 0.0041383971673381
226 => 0.0041425638794188
227 => 0.0042117590626167
228 => 0.0042256356631295
229 => 0.004178477552649
301 => 0.0039891309341869
302 => 0.0039426647990763
303 => 0.0039760637355303
304 => 0.0039601011950723
305 => 0.0031961107376493
306 => 0.0033755989631902
307 => 0.003268953154418
308 => 0.0033181004496379
309 => 0.0032092426946798
310 => 0.0032611953210696
311 => 0.0032516015679816
312 => 0.0035402133232086
313 => 0.0035357070476232
314 => 0.0035378639632792
315 => 0.003434908759208
316 => 0.0035989191948318
317 => 0.0036797166330445
318 => 0.0036647631775855
319 => 0.003668526640165
320 => 0.0036038578841015
321 => 0.0035384900981967
322 => 0.0034659871635983
323 => 0.0036006886544487
324 => 0.0035857121480973
325 => 0.0036200628652906
326 => 0.0037074264107685
327 => 0.0037202910247019
328 => 0.0037375811962886
329 => 0.003731383900573
330 => 0.0038790286271235
331 => 0.003861147876547
401 => 0.0039042353407934
402 => 0.0038156011577847
403 => 0.0037153031664765
404 => 0.0037343665356358
405 => 0.0037325305798878
406 => 0.0037091567560042
407 => 0.0036880559129163
408 => 0.0036529289543007
409 => 0.0037640758491723
410 => 0.0037595634882185
411 => 0.0038326133670135
412 => 0.0038197010913678
413 => 0.0037334697544362
414 => 0.0037365495235044
415 => 0.0037572624505745
416 => 0.0038289501276603
417 => 0.0038502319110886
418 => 0.0038403733410721
419 => 0.0038637078450509
420 => 0.0038821504855714
421 => 0.0038660239567524
422 => 0.0040943415969899
423 => 0.003999528194513
424 => 0.0040457395871728
425 => 0.0040567607320289
426 => 0.0040285303012298
427 => 0.0040346524708142
428 => 0.0040439258895432
429 => 0.0041002322721439
430 => 0.0042479965124714
501 => 0.0043134402886472
502 => 0.0045103311182113
503 => 0.0043080060940572
504 => 0.0042960009644281
505 => 0.004331466948366
506 => 0.004447062708331
507 => 0.004540742214425
508 => 0.0045718211110968
509 => 0.0045759287003486
510 => 0.0046342347765908
511 => 0.0046676547321489
512 => 0.004627154885333
513 => 0.0045928355056672
514 => 0.0044699077475826
515 => 0.004484136970302
516 => 0.0045821622043979
517 => 0.0047206286212158
518 => 0.0048394472118209
519 => 0.0047978410826369
520 => 0.0051152664789606
521 => 0.0051467379104396
522 => 0.0051423895762024
523 => 0.0052140861806886
524 => 0.0050717830215431
525 => 0.0050109456640146
526 => 0.0046002557450924
527 => 0.0047156428604855
528 => 0.0048833648091569
529 => 0.0048611661803252
530 => 0.0047393620179795
531 => 0.0048393548124413
601 => 0.0048062940675284
602 => 0.0047802176863241
603 => 0.0048996786437764
604 => 0.0047683264138719
605 => 0.0048820544701844
606 => 0.0047361970615975
607 => 0.0047980311359304
608 => 0.0047629311247614
609 => 0.0047856451336833
610 => 0.0046528595016493
611 => 0.0047245074055059
612 => 0.0046498787132924
613 => 0.0046498433295753
614 => 0.0046481958970584
615 => 0.0047359962224933
616 => 0.0047388593879536
617 => 0.0046739748147983
618 => 0.0046646239341191
619 => 0.0046991990409851
620 => 0.0046587206460798
621 => 0.004677660232288
622 => 0.004659294306852
623 => 0.0046551597501908
624 => 0.0046222148992774
625 => 0.0046080213516664
626 => 0.0046135870074073
627 => 0.0045945885550713
628 => 0.0045831413003347
629 => 0.0046459187499681
630 => 0.0046123792910641
701 => 0.0046407783468675
702 => 0.004608414038533
703 => 0.0044962252453874
704 => 0.0044317042840744
705 => 0.0042197900537291
706 => 0.0042798886665762
707 => 0.0043197341090704
708 => 0.0043065651905638
709 => 0.004334857123211
710 => 0.0043365940180979
711 => 0.0043273960223922
712 => 0.0043167459217012
713 => 0.0043115620416724
714 => 0.0043501984363343
715 => 0.0043726281638768
716 => 0.0043237331322879
717 => 0.0043122777105009
718 => 0.0043617132870059
719 => 0.0043918689601159
720 => 0.0046145215073516
721 => 0.0045980266874941
722 => 0.0046394254483915
723 => 0.0046347645832302
724 => 0.0046781570799904
725 => 0.004749085473156
726 => 0.0046048682179598
727 => 0.0046298993468044
728 => 0.0046237622920648
729 => 0.0046907650464887
730 => 0.0046909742217744
731 => 0.0046508027234615
801 => 0.004672580344405
802 => 0.0046604246738321
803 => 0.0046823916134948
804 => 0.0045978063891185
805 => 0.0047008220619981
806 => 0.0047592253103374
807 => 0.0047600362394973
808 => 0.0047877189156933
809 => 0.0048158461179809
810 => 0.004869833833409
811 => 0.0048143404298995
812 => 0.0047145131991599
813 => 0.0047217204027793
814 => 0.004663191733922
815 => 0.0046641756114196
816 => 0.0046589235962297
817 => 0.0046746852891677
818 => 0.0046012651943615
819 => 0.0046184967438625
820 => 0.0045943724736533
821 => 0.0046298469053523
822 => 0.0045916822809778
823 => 0.0046237593325912
824 => 0.0046376027246965
825 => 0.0046886851395917
826 => 0.0045841373667639
827 => 0.0043709573807061
828 => 0.0044157703983329
829 => 0.0043494884252762
830 => 0.0043556230742359
831 => 0.0043680160414566
901 => 0.0043278463799678
902 => 0.0043355094854884
903 => 0.0043352357054347
904 => 0.0043328764168404
905 => 0.0043224267364613
906 => 0.0043072726325053
907 => 0.0043676419184788
908 => 0.0043778998365385
909 => 0.0044007019176979
910 => 0.004468545444429
911 => 0.004461766276248
912 => 0.0044728233808161
913 => 0.0044486857836269
914 => 0.0043567427481412
915 => 0.0043617356973194
916 => 0.0042994735410611
917 => 0.004399109734378
918 => 0.0043755145686671
919 => 0.0043603026118376
920 => 0.0043561518884789
921 => 0.0044241635861903
922 => 0.0044445137520983
923 => 0.0044318328943532
924 => 0.0044058240851585
925 => 0.0044557686876266
926 => 0.0044691317562535
927 => 0.004472123254508
928 => 0.0045606155141539
929 => 0.0044770689887958
930 => 0.0044971794678306
1001 => 0.0046540756844701
1002 => 0.004511792466176
1003 => 0.0045871630602008
1004 => 0.0045834740618329
1005 => 0.0046220311073342
1006 => 0.004580311258706
1007 => 0.0045808284262305
1008 => 0.0046150644705551
1009 => 0.0045669861208043
1010 => 0.0045550812452787
1011 => 0.0045386347450043
1012 => 0.0045745450766702
1013 => 0.0045960716964193
1014 => 0.004769560442037
1015 => 0.0048816420837539
1016 => 0.0048767763240927
1017 => 0.004921240259076
1018 => 0.0049012088491231
1019 => 0.0048365221423661
1020 => 0.0049469344630967
1021 => 0.0049119953849698
1022 => 0.0049148757201196
1023 => 0.0049147685139015
1024 => 0.0049379999464287
1025 => 0.0049215383473536
1026 => 0.0048890908458283
1027 => 0.0049106310116023
1028 => 0.0049745976032009
1029 => 0.0051731518662578
1030 => 0.0052842654623585
1031 => 0.0051664626882542
1101 => 0.0052477214643893
1102 => 0.0051989951541706
1103 => 0.0051901401341217
1104 => 0.005241176650511
1105 => 0.0052923024995661
1106 => 0.0052890460040044
1107 => 0.0052519312629318
1108 => 0.0052309660874516
1109 => 0.0053897214200369
1110 => 0.0055066896447591
1111 => 0.005498713195998
1112 => 0.0055339186467495
1113 => 0.0056372829390197
1114 => 0.0056467332745013
1115 => 0.0056455427494441
1116 => 0.0056221191069122
1117 => 0.0057238946762016
1118 => 0.0058087976466736
1119 => 0.0056166972104402
1120 => 0.0056898465417785
1121 => 0.0057226856333406
1122 => 0.0057709031626731
1123 => 0.0058522542168532
1124 => 0.0059406230389943
1125 => 0.0059531193593599
1126 => 0.0059442526220565
1127 => 0.005885971008373
1128 => 0.0059826652280191
1129 => 0.0060393064341293
1130 => 0.0060730349761569
1201 => 0.0061585649468449
1202 => 0.0057228884363903
1203 => 0.005414494947763
1204 => 0.0053663348512579
1205 => 0.0054642703013033
1206 => 0.0054900950984597
1207 => 0.0054796851551075
1208 => 0.0051325602457481
1209 => 0.0053645073104492
1210 => 0.0056140628494045
1211 => 0.0056236492940027
1212 => 0.005748582014764
1213 => 0.0057892652298091
1214 => 0.0058898524453279
1215 => 0.0058835606876103
1216 => 0.0059080520738969
1217 => 0.0059024219283213
1218 => 0.0060887385639328
1219 => 0.0062942734813005
1220 => 0.006287156460673
1221 => 0.0062576083845227
1222 => 0.0063014923163016
1223 => 0.0065136263774853
1224 => 0.0064940964725106
1225 => 0.0065130681116402
1226 => 0.0067631861251276
1227 => 0.0070883751215337
1228 => 0.0069372921842616
1229 => 0.007265098685198
1230 => 0.0074714355012615
1231 => 0.0078282736890183
]
'min_raw' => 0.0031961107376493
'max_raw' => 0.0078282736890183
'avg_raw' => 0.0055121922133338
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003196'
'max' => '$0.007828'
'avg' => '$0.005512'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0014251241466504
'max_diff' => 0.0031758804978533
'year' => 2028
]
3 => [
'items' => [
101 => 0.007783595790446
102 => 0.0079225102783401
103 => 0.0077036130274428
104 => 0.0072009806929492
105 => 0.0071214372020163
106 => 0.0072806852852259
107 => 0.0076721811585962
108 => 0.007268355686958
109 => 0.007350049053927
110 => 0.0073265213587441
111 => 0.0073252676678541
112 => 0.0073731159499971
113 => 0.0073037095211501
114 => 0.0070209352440491
115 => 0.0071505290288452
116 => 0.0071004866449307
117 => 0.0071560124007907
118 => 0.0074556620046032
119 => 0.0073231797720033
120 => 0.007183620501942
121 => 0.0073586587972802
122 => 0.0075815426969297
123 => 0.0075675950230505
124 => 0.0075405307060495
125 => 0.0076930908439427
126 => 0.0079450754958161
127 => 0.0080131859346612
128 => 0.0080634636681599
129 => 0.0080703961181602
130 => 0.008141804661656
131 => 0.0077578229260087
201 => 0.0083672118018314
202 => 0.008472436426658
203 => 0.0084526585583045
204 => 0.0085696113002701
205 => 0.0085352008367791
206 => 0.008485345474017
207 => 0.0086707404465942
208 => 0.0084582000711372
209 => 0.0081565257662653
210 => 0.0079910212761714
211 => 0.0082089709395935
212 => 0.0083420651936503
213 => 0.0084300320291974
214 => 0.008456650740483
215 => 0.0077876303350912
216 => 0.0074270654421577
217 => 0.0076581834046432
218 => 0.0079401632697851
219 => 0.0077562565136203
220 => 0.0077634653102804
221 => 0.0075012626058348
222 => 0.0079633623910587
223 => 0.0078960383392225
224 => 0.0082453156392428
225 => 0.0081619578084675
226 => 0.0084467798877673
227 => 0.0083717766888603
228 => 0.0086831107741509
301 => 0.0088073103698072
302 => 0.0090158608210375
303 => 0.0091692713819157
304 => 0.0092593569975397
305 => 0.0092539485950803
306 => 0.0096109126846583
307 => 0.0094004234324095
308 => 0.0091359993230774
309 => 0.0091312167251869
310 => 0.0092681657183286
311 => 0.0095551732378323
312 => 0.00962959011185
313 => 0.0096711789922892
314 => 0.0096074841741772
315 => 0.0093790131767618
316 => 0.0092803605584521
317 => 0.0093644154474934
318 => 0.0092616235411148
319 => 0.0094390712098393
320 => 0.009682744759775
321 => 0.0096324271353029
322 => 0.0098006314098731
323 => 0.0099747051384476
324 => 0.010223638388449
325 => 0.010288718757971
326 => 0.010396294134007
327 => 0.010507024532617
328 => 0.010542588152383
329 => 0.010610490137258
330 => 0.010610132260281
331 => 0.010814759462035
401 => 0.011040469602347
402 => 0.011125669955113
403 => 0.011321583468323
404 => 0.010986088442579
405 => 0.011240565273495
406 => 0.01147010974495
407 => 0.011196437363073
408 => 0.011573630984003
409 => 0.011588276557564
410 => 0.011809407330318
411 => 0.011585248928602
412 => 0.011452144385202
413 => 0.011836412214636
414 => 0.012022347312975
415 => 0.011966342148165
416 => 0.011540140078646
417 => 0.011292072193519
418 => 0.010642830689419
419 => 0.011411885296171
420 => 0.011786469361489
421 => 0.011539169996409
422 => 0.01166389341161
423 => 0.012344343923244
424 => 0.012603415422166
425 => 0.012549530361437
426 => 0.012558636049676
427 => 0.012698426328014
428 => 0.013318333406078
429 => 0.012946870715569
430 => 0.013230840024021
501 => 0.013381456321297
502 => 0.013521357132144
503 => 0.013177804956809
504 => 0.012730848624481
505 => 0.012589278792083
506 => 0.01151458094829
507 => 0.011458638258344
508 => 0.011427235931241
509 => 0.011229248700801
510 => 0.011073684970942
511 => 0.010949974917247
512 => 0.010625322793402
513 => 0.010734883354937
514 => 0.010217455629692
515 => 0.010548487551791
516 => 0.0097226604085715
517 => 0.010410433793031
518 => 0.010036110009088
519 => 0.0102874583626
520 => 0.010286581431873
521 => 0.0098237694229898
522 => 0.0095568291149063
523 => 0.0097269338686893
524 => 0.0099092996676769
525 => 0.0099388879050104
526 => 0.010175329923632
527 => 0.010241315808725
528 => 0.010041375496307
529 => 0.0097055469766044
530 => 0.0097835522822982
531 => 0.0095552483398762
601 => 0.0091551544623658
602 => 0.0094425088701627
603 => 0.009540624299066
604 => 0.0095839576619823
605 => 0.0091905112845432
606 => 0.0090668818906154
607 => 0.0090010626386394
608 => 0.0096547579899651
609 => 0.0096905688969445
610 => 0.0095073552336857
611 => 0.010335498364648
612 => 0.010148064068731
613 => 0.010357474099788
614 => 0.0097764741184194
615 => 0.0097986691001279
616 => 0.0095236143980105
617 => 0.0096776266520344
618 => 0.009568775754937
619 => 0.0096651839838881
620 => 0.0097229706788153
621 => 0.0099979802471626
622 => 0.010413573960547
623 => 0.0099569029884125
624 => 0.0097579249062045
625 => 0.0098813697893111
626 => 0.0102101197804
627 => 0.010708192845303
628 => 0.010413323566226
629 => 0.010544181545075
630 => 0.010572768191988
701 => 0.01035534250225
702 => 0.010716209640617
703 => 0.010909601271746
704 => 0.011107981068526
705 => 0.011280228687594
706 => 0.011028743815227
707 => 0.0112978686776
708 => 0.011081001545461
709 => 0.01088644930862
710 => 0.010886744364055
711 => 0.01076469890393
712 => 0.01052822044622
713 => 0.010484610190388
714 => 0.010711476248595
715 => 0.010893401342982
716 => 0.010908385565118
717 => 0.011009108645019
718 => 0.011068715526174
719 => 0.011652943993122
720 => 0.01188792551552
721 => 0.012175256473135
722 => 0.012287188074212
723 => 0.012624062063753
724 => 0.012352008957631
725 => 0.012293148556827
726 => 0.011476002448843
727 => 0.011609810078248
728 => 0.011824049003441
729 => 0.011479535169811
730 => 0.011698049901096
731 => 0.011741189337827
801 => 0.011467828721574
802 => 0.011613842437929
803 => 0.011226073297339
804 => 0.010422026268161
805 => 0.010717104774809
806 => 0.010934381878053
807 => 0.01062430066165
808 => 0.011180109240252
809 => 0.010855417342851
810 => 0.010752505599334
811 => 0.010351010197191
812 => 0.010540500572027
813 => 0.010796789017234
814 => 0.010638432554826
815 => 0.010967045991666
816 => 0.011432450256233
817 => 0.011764125050467
818 => 0.011789586922746
819 => 0.011576342250539
820 => 0.01191806819866
821 => 0.011920557299121
822 => 0.011535089033649
823 => 0.011298991867344
824 => 0.011245350094407
825 => 0.011379357760293
826 => 0.011542067805859
827 => 0.011798616197871
828 => 0.011953643018131
829 => 0.012357870745499
830 => 0.012467243178407
831 => 0.012587410322524
901 => 0.012747990685239
902 => 0.012940808582638
903 => 0.012518934000258
904 => 0.012535695863888
905 => 0.012142852094027
906 => 0.011723042186436
907 => 0.012041625576254
908 => 0.012458130979069
909 => 0.012362584179466
910 => 0.012351833212666
911 => 0.012369913356753
912 => 0.012297874190119
913 => 0.011972043709329
914 => 0.011808413681683
915 => 0.012019538163818
916 => 0.012131741430004
917 => 0.012305758910705
918 => 0.012284307583145
919 => 0.012732557925317
920 => 0.012906734453898
921 => 0.012862172644453
922 => 0.012870373089831
923 => 0.013185711375072
924 => 0.013536432402524
925 => 0.013864928926449
926 => 0.014199089699839
927 => 0.013796245845
928 => 0.013591706579468
929 => 0.013802738891259
930 => 0.013690762176128
1001 => 0.014334213595724
1002 => 0.01437876477594
1003 => 0.015022169666675
1004 => 0.015632837523211
1005 => 0.015249287983772
1006 => 0.015610957924013
1007 => 0.016002133451766
1008 => 0.016756774510744
1009 => 0.016502637950673
1010 => 0.016307973328486
1011 => 0.016124016201132
1012 => 0.016506801780784
1013 => 0.016999249313858
1014 => 0.017105317795878
1015 => 0.01727718925803
1016 => 0.01709648743102
1017 => 0.017314122878
1018 => 0.0180824716397
1019 => 0.017874857021887
1020 => 0.017580010888876
1021 => 0.018186548443239
1022 => 0.018406052026308
1023 => 0.019946643127205
1024 => 0.021891703030731
1025 => 0.021086435458719
1026 => 0.02058657989095
1027 => 0.020704057806108
1028 => 0.021414327838443
1029 => 0.021642444029985
1030 => 0.021022345585007
1031 => 0.021241374838931
1101 => 0.022448247562534
1102 => 0.023095696057634
1103 => 0.022216374037354
1104 => 0.019790359457819
1105 => 0.01755346322058
1106 => 0.018146788831446
1107 => 0.018079524120211
1108 => 0.019376158301284
1109 => 0.017869905481915
1110 => 0.017895266916392
1111 => 0.01921871411917
1112 => 0.018865641095098
1113 => 0.018293708014277
1114 => 0.017557638965009
1115 => 0.01619694724929
1116 => 0.014991744650982
1117 => 0.017355424487846
1118 => 0.017253498315207
1119 => 0.017105894112615
1120 => 0.017434371293042
1121 => 0.019029363241325
1122 => 0.018992593514432
1123 => 0.018758683272018
1124 => 0.018936102129299
1125 => 0.018262605630788
1126 => 0.018436181013685
1127 => 0.017553108884787
1128 => 0.017952294367399
1129 => 0.018292480902754
1130 => 0.018360778386274
1201 => 0.018514656104002
1202 => 0.017199787853788
1203 => 0.01779012509563
1204 => 0.018136892918093
1205 => 0.016570183280684
1206 => 0.018105924105917
1207 => 0.01717689892287
1208 => 0.016861573822253
1209 => 0.01728611752931
1210 => 0.017120672433788
1211 => 0.01697843245592
1212 => 0.016899060104276
1213 => 0.01721079814756
1214 => 0.017196255195233
1215 => 0.016686191250674
1216 => 0.016020833627864
1217 => 0.016244149485699
1218 => 0.01616301674095
1219 => 0.015868981207648
1220 => 0.016067125655108
1221 => 0.015194597787106
1222 => 0.013693458940261
1223 => 0.014685157243613
1224 => 0.014646977937694
1225 => 0.014627726200357
1226 => 0.015372960066798
1227 => 0.01530132302601
1228 => 0.015171301095508
1229 => 0.01586659325293
1230 => 0.015612802262472
1231 => 0.016394926294387
]
'min_raw' => 0.0070209352440491
'max_raw' => 0.023095696057634
'avg_raw' => 0.015058315650841
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00702'
'max' => '$0.023095'
'avg' => '$0.015058'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0038248245063998
'max_diff' => 0.015267422368615
'year' => 2029
]
4 => [
'items' => [
101 => 0.016910083766417
102 => 0.016779423167911
103 => 0.017263931260327
104 => 0.016249294232029
105 => 0.016586315952657
106 => 0.016655775662187
107 => 0.015858013455635
108 => 0.015313043731833
109 => 0.015276700464365
110 => 0.014331798064746
111 => 0.014836557299637
112 => 0.015280724537985
113 => 0.015068002899586
114 => 0.015000661583748
115 => 0.015344693761818
116 => 0.015371428008491
117 => 0.014761884351191
118 => 0.014888627779281
119 => 0.015417168943757
120 => 0.014875309898033
121 => 0.013822566284363
122 => 0.013561471312853
123 => 0.013526636430719
124 => 0.012818526160282
125 => 0.013578918927324
126 => 0.013246987107251
127 => 0.014295555749707
128 => 0.013696618964723
129 => 0.013670799997002
130 => 0.013631770840473
131 => 0.013022271079041
201 => 0.013155712791064
202 => 0.013599293365575
203 => 0.013757567911853
204 => 0.013741058579971
205 => 0.013597119578765
206 => 0.01366301411643
207 => 0.013450744851432
208 => 0.013375788155958
209 => 0.01313920420658
210 => 0.012791491158979
211 => 0.012839842790896
212 => 0.012150932259529
213 => 0.011775577238791
214 => 0.01167168391615
215 => 0.011532753423114
216 => 0.011687376485018
217 => 0.01214898066255
218 => 0.011592188089657
219 => 0.01063760627789
220 => 0.010694978271306
221 => 0.010823876106613
222 => 0.010583675843263
223 => 0.010356346452483
224 => 0.01055399091395
225 => 0.010149522016274
226 => 0.010872754240524
227 => 0.010853192835693
228 => 0.011122769084512
301 => 0.011291340645161
302 => 0.010902837773557
303 => 0.010805130351972
304 => 0.010860788939862
305 => 0.0099408764630859
306 => 0.011047592609418
307 => 0.011057163536608
308 => 0.010975211447322
309 => 0.011564503629216
310 => 0.012808093937853
311 => 0.012340205240439
312 => 0.01215902459479
313 => 0.011814600054969
314 => 0.012273525304375
315 => 0.01223828700557
316 => 0.012078926054644
317 => 0.011982544054288
318 => 0.012160130845178
319 => 0.011960539085631
320 => 0.011924686921202
321 => 0.011707461812299
322 => 0.011629922331534
323 => 0.011572515186911
324 => 0.01150931556139
325 => 0.011648718186923
326 => 0.011332813497523
327 => 0.010951863410625
328 => 0.010920191532837
329 => 0.011007640372031
330 => 0.010968950770488
331 => 0.010920006301909
401 => 0.010826557982161
402 => 0.010798833861899
403 => 0.010888923802919
404 => 0.010787217512077
405 => 0.010937290684443
406 => 0.010896479085487
407 => 0.010668508811276
408 => 0.010384373444204
409 => 0.010381844043443
410 => 0.010320627544683
411 => 0.01024265912955
412 => 0.010220970100135
413 => 0.01053734584868
414 => 0.011192234179839
415 => 0.011063663930283
416 => 0.011156569111996
417 => 0.011613570654388
418 => 0.011758837702198
419 => 0.011655730592501
420 => 0.011514591221378
421 => 0.011520800637413
422 => 0.012003116594334
423 => 0.012033198048946
424 => 0.012109204180107
425 => 0.012206893537978
426 => 0.011672367512567
427 => 0.011495624509685
428 => 0.011411873869591
429 => 0.011153954313678
430 => 0.011432098442378
501 => 0.011270035769904
502 => 0.01129190356127
503 => 0.011277662133455
504 => 0.011285438916043
505 => 0.010872552082378
506 => 0.011022986343872
507 => 0.010772860206933
508 => 0.010437969387547
509 => 0.010436846716093
510 => 0.010518810769698
511 => 0.01047005534336
512 => 0.0103388557447
513 => 0.010357492028445
514 => 0.010194218572821
515 => 0.01037731638212
516 => 0.010382566972135
517 => 0.01031206434215
518 => 0.010594151780003
519 => 0.010709723233453
520 => 0.010663316892084
521 => 0.010706467240833
522 => 0.011069006604611
523 => 0.011128116339609
524 => 0.011154368979325
525 => 0.011119193919914
526 => 0.01071309379488
527 => 0.010731106062296
528 => 0.010598943995322
529 => 0.010487280975625
530 => 0.010491746910817
531 => 0.010549156218118
601 => 0.010799866030113
602 => 0.011327470049305
603 => 0.011347492236159
604 => 0.011371759710716
605 => 0.011273051695839
606 => 0.011243280414044
607 => 0.011282556419352
608 => 0.011480696748859
609 => 0.011990367470926
610 => 0.011810215797984
611 => 0.011663749683655
612 => 0.011792239952903
613 => 0.011772459883092
614 => 0.011605496187931
615 => 0.011600810073098
616 => 0.011280353360563
617 => 0.011161887810385
618 => 0.011062889129663
619 => 0.010954785154741
620 => 0.010890697494729
621 => 0.010989165267828
622 => 0.011011686012572
623 => 0.01079638450577
624 => 0.010767039705959
625 => 0.01094285956402
626 => 0.010865487799712
627 => 0.01094506657803
628 => 0.010963529537214
629 => 0.010960556575547
630 => 0.01087977156752
701 => 0.010931261522593
702 => 0.01080947242895
703 => 0.010677045081745
704 => 0.010592564684743
705 => 0.01051884433366
706 => 0.010559748669093
707 => 0.010413932182112
708 => 0.010367282553221
709 => 0.010913817884375
710 => 0.011317549409743
711 => 0.011311678993469
712 => 0.011275944344149
713 => 0.011222849903768
714 => 0.01147681255984
715 => 0.011388337048608
716 => 0.011452710375406
717 => 0.011469096088816
718 => 0.011518690708247
719 => 0.011536416521892
720 => 0.011482836801687
721 => 0.01130301671647
722 => 0.01085492216089
723 => 0.01064633293566
724 => 0.010577495017005
725 => 0.010579997144606
726 => 0.010510977295374
727 => 0.010531306734225
728 => 0.01050390754618
729 => 0.010452020112597
730 => 0.010556544766284
731 => 0.010568590258907
801 => 0.01054419295576
802 => 0.010549939403846
803 => 0.010347940154013
804 => 0.010363297718259
805 => 0.010277784848995
806 => 0.010261752216881
807 => 0.010045583129839
808 => 0.009662608257935
809 => 0.0098748135132403
810 => 0.0096184994054058
811 => 0.0095214293689763
812 => 0.0099809438239454
813 => 0.0099348213176135
814 => 0.0098558796357449
815 => 0.0097391084353732
816 => 0.0096957968612781
817 => 0.0094326494478545
818 => 0.0094171012948326
819 => 0.0095475242585032
820 => 0.0094873385483494
821 => 0.0094028150171825
822 => 0.0090966793553092
823 => 0.0087524815133292
824 => 0.0087628706826281
825 => 0.0088723536121334
826 => 0.0091906899954547
827 => 0.0090663104632158
828 => 0.0089760716854857
829 => 0.0089591726749845
830 => 0.0091706991718812
831 => 0.0094700534811612
901 => 0.0096105038254002
902 => 0.0094713217997997
903 => 0.0093114369828823
904 => 0.0093211684308532
905 => 0.0093859073944378
906 => 0.0093927105441509
907 => 0.0092886419647624
908 => 0.0093179366602751
909 => 0.0092734353390282
910 => 0.0090003308126794
911 => 0.0089953912178216
912 => 0.0089283669626502
913 => 0.0089263374948407
914 => 0.0088123125168102
915 => 0.0087963596341663
916 => 0.0085699561194652
917 => 0.0087189755984544
918 => 0.0086190211558222
919 => 0.0084683662339061
920 => 0.0084423932685825
921 => 0.0084416124898816
922 => 0.0085963014088653
923 => 0.0087171679683718
924 => 0.008620759906146
925 => 0.008598809659169
926 => 0.0088331808703548
927 => 0.0088033549973904
928 => 0.0087775259837595
929 => 0.0094432495861119
930 => 0.0089162774077895
1001 => 0.0086864874595205
1002 => 0.00840207876261
1003 => 0.0084946836684372
1004 => 0.0085141968827441
1005 => 0.0078302452351952
1006 => 0.0075527661369654
1007 => 0.0074575457670321
1008 => 0.0074027450979171
1009 => 0.0074277184509763
1010 => 0.0071779547175174
1011 => 0.0073458000771127
1012 => 0.0071295257959401
1013 => 0.0070932667088841
1014 => 0.007479991914863
1015 => 0.0075338024680591
1016 => 0.0073042299304961
1017 => 0.0074516526640293
1018 => 0.0073981951315209
1019 => 0.007133233197746
1020 => 0.0071231136008038
1021 => 0.0069901650162979
1022 => 0.0067821262254649
1023 => 0.0066870469156282
1024 => 0.0066375287855488
1025 => 0.0066579609311087
1026 => 0.0066476298130796
1027 => 0.0065802122797027
1028 => 0.0066514941071767
1029 => 0.0064693984936653
1030 => 0.006396886553121
1031 => 0.0063641345918414
1101 => 0.0062025142538175
1102 => 0.006459724084504
1103 => 0.0065103976613933
1104 => 0.0065611710808829
1105 => 0.0070031190330544
1106 => 0.0069810405622959
1107 => 0.0071806191853017
1108 => 0.0071728639270132
1109 => 0.0071159408707726
1110 => 0.0068757918598818
1111 => 0.0069715109753784
1112 => 0.0066769024159332
1113 => 0.0068976431801043
1114 => 0.0067969063136913
1115 => 0.0068635839442379
1116 => 0.0067436915524356
1117 => 0.0068100449522945
1118 => 0.0065224142463395
1119 => 0.006253828740192
1120 => 0.0063619153883654
1121 => 0.0064794179361375
1122 => 0.0067341933987998
1123 => 0.0065824512350901
1124 => 0.0066370234551666
1125 => 0.0064542156531897
1126 => 0.0060770309412442
1127 => 0.0060791657657517
1128 => 0.0060211441152345
1129 => 0.0059710049378879
1130 => 0.0065998806479601
1201 => 0.0065216700123589
1202 => 0.0063970516004832
1203 => 0.0065638582969176
1204 => 0.0066079646350331
1205 => 0.0066092202804731
1206 => 0.0067309181402877
1207 => 0.0067958683098862
1208 => 0.0068073160587881
1209 => 0.0069988102706626
1210 => 0.0070629966046133
1211 => 0.0073273710301658
1212 => 0.0067903577417774
1213 => 0.0067792983064944
1214 => 0.0065662056092143
1215 => 0.006431058851737
1216 => 0.0065754592233219
1217 => 0.0067033782399297
1218 => 0.0065701804096332
1219 => 0.0065875732343102
1220 => 0.0064087660297998
1221 => 0.0064726811917513
1222 => 0.0065277335395261
1223 => 0.0064973368689123
1224 => 0.0064518315817879
1225 => 0.006692890339337
1226 => 0.0066792888595192
1227 => 0.0069037683164659
1228 => 0.0070787661058357
1229 => 0.0073923934289832
1230 => 0.0070651069675167
1231 => 0.007053179348015
]
'min_raw' => 0.0059710049378879
'max_raw' => 0.017263931260327
'avg_raw' => 0.011617468099108
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005971'
'max' => '$0.017263'
'avg' => '$0.011617'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0010499303061612
'max_diff' => -0.0058317647973062
'year' => 2030
]
5 => [
'items' => [
101 => 0.0071697737418944
102 => 0.007062978754619
103 => 0.0071304695001394
104 => 0.007381519626477
105 => 0.0073868239200469
106 => 0.0072979701685547
107 => 0.0072925634097014
108 => 0.007309628744629
109 => 0.007409580944326
110 => 0.007374654574531
111 => 0.0074150722538852
112 => 0.0074656151808152
113 => 0.0076746821563545
114 => 0.0077250874963642
115 => 0.0076026286523132
116 => 0.0076136853148175
117 => 0.007567882345572
118 => 0.0075236372511904
119 => 0.0076230937618831
120 => 0.0078048524899967
121 => 0.0078037217783824
122 => 0.00784588627042
123 => 0.0078721543996499
124 => 0.0077593923595494
125 => 0.0076859884178191
126 => 0.0077141361598927
127 => 0.0077591450124464
128 => 0.0076995403956237
129 => 0.0073316330890496
130 => 0.0074432326638544
131 => 0.0074246570376665
201 => 0.0073982030871016
202 => 0.0075104173225418
203 => 0.0074995939857852
204 => 0.0071753930294282
205 => 0.0071961473227868
206 => 0.0071766551667477
207 => 0.0072396383106298
208 => 0.0070595774581563
209 => 0.0071149629636488
210 => 0.0071497002334868
211 => 0.0071701607522857
212 => 0.0072440781760963
213 => 0.0072354048195639
214 => 0.0072435390280763
215 => 0.0073531390541111
216 => 0.0079074583756077
217 => 0.0079376287532401
218 => 0.0077890587794809
219 => 0.0078484095535846
220 => 0.007734469045893
221 => 0.0078109580720414
222 => 0.0078632899211215
223 => 0.0076268123579644
224 => 0.0076128096914009
225 => 0.0074983989107032
226 => 0.0075598767836923
227 => 0.0074620610673512
228 => 0.0074860616226928
301 => 0.0074189539776269
302 => 0.0075397343777467
303 => 0.0076747856324574
304 => 0.0077089049127329
305 => 0.0076191517756016
306 => 0.0075541645892986
307 => 0.0074400684982604
308 => 0.0076298128404541
309 => 0.0076852998684656
310 => 0.0076295213907175
311 => 0.0076165962986395
312 => 0.0075921032725067
313 => 0.0076217926099195
314 => 0.0076849976741946
315 => 0.0076551913330967
316 => 0.007674878946512
317 => 0.0075998500659518
318 => 0.0077594296884767
319 => 0.0080128805339738
320 => 0.0080136954198854
321 => 0.0079838889181203
322 => 0.007971692739788
323 => 0.0080022760194089
324 => 0.0080188661940113
325 => 0.0081177669122906
326 => 0.0082238913233828
327 => 0.0087191276442416
328 => 0.0085800672670646
329 => 0.0090194703926712
330 => 0.0093669812156711
331 => 0.0094711845166822
401 => 0.0093753223828961
402 => 0.0090473832015849
403 => 0.0090312929408333
404 => 0.0095213725300633
405 => 0.0093829025990387
406 => 0.0093664320413509
407 => 0.009191213135
408 => 0.0092947892099371
409 => 0.009272135602979
410 => 0.0092363757761433
411 => 0.0094339917119514
412 => 0.009803911102488
413 => 0.0097462556963908
414 => 0.0097032186102966
415 => 0.009514642626939
416 => 0.009628207488891
417 => 0.0095877692167415
418 => 0.0097615176966572
419 => 0.0096585929461552
420 => 0.0093818535531222
421 => 0.0094259252136077
422 => 0.0094192638707852
423 => 0.0095563538340445
424 => 0.0095152028298561
425 => 0.0094112284767674
426 => 0.0098026467582265
427 => 0.0097772302322115
428 => 0.0098132650550741
429 => 0.0098291286985121
430 => 0.010067378108873
501 => 0.010164981269166
502 => 0.010187138895337
503 => 0.010279854348717
504 => 0.010184832050395
505 => 0.010564988993433
506 => 0.01081777117778
507 => 0.011111390692952
508 => 0.011540447722103
509 => 0.011701777134064
510 => 0.011672634419797
511 => 0.011997940562539
512 => 0.012582508469898
513 => 0.01179079230731
514 => 0.012624471348952
515 => 0.012360538189656
516 => 0.011734757416918
517 => 0.011694464512625
518 => 0.012118250517387
519 => 0.013058167088057
520 => 0.01282272864755
521 => 0.013058552181003
522 => 0.012783451502726
523 => 0.012769790435319
524 => 0.013045191155095
525 => 0.013688679948164
526 => 0.013382982543394
527 => 0.012944690353576
528 => 0.013268318485956
529 => 0.012987961847319
530 => 0.012356239873588
531 => 0.012822548612212
601 => 0.012510741238402
602 => 0.012601743206672
603 => 0.013257115928572
604 => 0.013178259748772
605 => 0.013280306947319
606 => 0.013100196312923
607 => 0.012931944579558
608 => 0.012617890224694
609 => 0.012524914212911
610 => 0.012550609437641
611 => 0.012524901479633
612 => 0.012349190954395
613 => 0.0123112462832
614 => 0.012248003502146
615 => 0.012267605084471
616 => 0.012148690153762
617 => 0.012373107197088
618 => 0.012414760977886
619 => 0.01257807298719
620 => 0.012595028581763
621 => 0.013049850203075
622 => 0.012799342097023
623 => 0.012967404562392
624 => 0.012952371473624
625 => 0.011748319983797
626 => 0.011914227655659
627 => 0.01217232792838
628 => 0.012056054105366
629 => 0.011891670123508
630 => 0.011758921244446
701 => 0.011557793118398
702 => 0.011840877093487
703 => 0.012213102418106
704 => 0.01260446883026
705 => 0.013074669931121
706 => 0.012969726519153
707 => 0.012595678747745
708 => 0.012612458257528
709 => 0.012716182584515
710 => 0.012581850156718
711 => 0.012542232901281
712 => 0.012710739781982
713 => 0.01271190019626
714 => 0.012557334503464
715 => 0.012385563021144
716 => 0.012384843292361
717 => 0.012354278216198
718 => 0.012788888961874
719 => 0.013027880927894
720 => 0.013055280971643
721 => 0.013026036686637
722 => 0.013037291651272
723 => 0.012898227492074
724 => 0.013216086921805
725 => 0.013507786167566
726 => 0.013429604538457
727 => 0.013312399162248
728 => 0.013219039434723
729 => 0.013407611953667
730 => 0.013399215116239
731 => 0.013505238429127
801 => 0.013500428599235
802 => 0.013464776946849
803 => 0.01342960581169
804 => 0.01356905538703
805 => 0.013528896148823
806 => 0.013488674532228
807 => 0.013408003922524
808 => 0.01341896839818
809 => 0.013301783259132
810 => 0.013247568051782
811 => 0.012432301413699
812 => 0.012214435528398
813 => 0.012282980570983
814 => 0.012305547378773
815 => 0.012210731866287
816 => 0.012346672955085
817 => 0.012325486680393
818 => 0.012407910081663
819 => 0.012356415518958
820 => 0.012358528873773
821 => 0.012509963402892
822 => 0.012553925490944
823 => 0.012531566018143
824 => 0.012547225826455
825 => 0.012908099499406
826 => 0.012856794803203
827 => 0.012829540205885
828 => 0.012837089915603
829 => 0.012929300876261
830 => 0.012955114910713
831 => 0.012845739032819
901 => 0.012897321329128
902 => 0.013116952200046
903 => 0.013193810574837
904 => 0.013439105613056
905 => 0.013334899921049
906 => 0.013526173978645
907 => 0.014114085221562
908 => 0.014583749402768
909 => 0.014151826812038
910 => 0.01501430526945
911 => 0.015685868463732
912 => 0.015660092749789
913 => 0.015542990173329
914 => 0.01477843333107
915 => 0.014074876725923
916 => 0.01466343170072
917 => 0.014664932048388
918 => 0.01461437465409
919 => 0.014300367020184
920 => 0.014603447869081
921 => 0.014627505326238
922 => 0.014614039547624
923 => 0.014373290630939
924 => 0.014005711532997
925 => 0.014077535608875
926 => 0.014195184910334
927 => 0.013972450238456
928 => 0.013901273014821
929 => 0.014033605015579
930 => 0.014460006294488
1001 => 0.014379397602684
1002 => 0.014377292583976
1003 => 0.014722170750915
1004 => 0.014475312412753
1005 => 0.014078441540484
1006 => 0.013978226411152
1007 => 0.013622530215025
1008 => 0.013868210844636
1009 => 0.013877052453119
1010 => 0.013742495683076
1011 => 0.014089360080788
1012 => 0.014086163664299
1013 => 0.014415459785974
1014 => 0.015044950292642
1015 => 0.014858778974474
1016 => 0.014642281986826
1017 => 0.014665821212194
1018 => 0.014923988414718
1019 => 0.014767894630688
1020 => 0.01482402704375
1021 => 0.014923903451588
1022 => 0.014984161368229
1023 => 0.014657151025306
1024 => 0.014580909271658
1025 => 0.014424945400913
1026 => 0.014384257338239
1027 => 0.014511286656668
1028 => 0.014477818919274
1029 => 0.013876309350163
1030 => 0.013813448253423
1031 => 0.013815376113515
1101 => 0.01365730889688
1102 => 0.013416218451034
1103 => 0.014049789747956
1104 => 0.013998905105988
1105 => 0.013942732399415
1106 => 0.013949613235453
1107 => 0.014224625061723
1108 => 0.014065104314056
1109 => 0.014489216366665
1110 => 0.014402031678624
1111 => 0.014312611032312
1112 => 0.014300250375173
1113 => 0.014265831055354
1114 => 0.01414779440083
1115 => 0.01400525804759
1116 => 0.013911143200893
1117 => 0.012832294262576
1118 => 0.013032522350152
1119 => 0.013262866513544
1120 => 0.013342380395701
1121 => 0.013206366398079
1122 => 0.014153165062471
1123 => 0.014326154302035
1124 => 0.013802158611588
1125 => 0.013704140412509
1126 => 0.014159591119285
1127 => 0.013884898666514
1128 => 0.014008592661177
1129 => 0.013741233901714
1130 => 0.01428448625994
1201 => 0.014280347587167
1202 => 0.014069010149906
1203 => 0.014247631104703
1204 => 0.014216591318161
1205 => 0.013977991871994
1206 => 0.014292050287966
1207 => 0.014292206057022
1208 => 0.01408879836853
1209 => 0.013851262720041
1210 => 0.013808796956432
1211 => 0.013776804708026
1212 => 0.01400072452923
1213 => 0.014201490340742
1214 => 0.014575065741901
1215 => 0.014668991473685
1216 => 0.015035589857827
1217 => 0.014817298369422
1218 => 0.014914064158884
1219 => 0.015019117111702
1220 => 0.015069483360477
1221 => 0.014987414260899
1222 => 0.015556892449388
1223 => 0.015604973856857
1224 => 0.015621095136879
1225 => 0.015429070295854
1226 => 0.015599633298658
1227 => 0.015519832518099
1228 => 0.015727451979818
1229 => 0.015760009362434
1230 => 0.015732434417621
1231 => 0.015742768644746
]
'min_raw' => 0.0070595774581563
'max_raw' => 0.015760009362434
'avg_raw' => 0.011409793410295
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.007059'
'max' => '$0.01576'
'avg' => '$0.0114097'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0010885725202684
'max_diff' => -0.0015039218978934
'year' => 2031
]
6 => [
'items' => [
101 => 0.015256819473708
102 => 0.015231620445604
103 => 0.014888029909358
104 => 0.015028045592571
105 => 0.014766292983931
106 => 0.014849297432482
107 => 0.014885885002507
108 => 0.014866773732252
109 => 0.015035961869223
110 => 0.014892117389945
111 => 0.014512488158909
112 => 0.014132755498144
113 => 0.014127988263911
114 => 0.01402801135717
115 => 0.01395574636528
116 => 0.013969667166456
117 => 0.01401872588552
118 => 0.013952894983344
119 => 0.013966943344035
120 => 0.014200239735239
121 => 0.014247025662702
122 => 0.014088028800743
123 => 0.013449633456839
124 => 0.013292969638152
125 => 0.013405576484246
126 => 0.013351757664622
127 => 0.01077591049731
128 => 0.011381067581189
129 => 0.011021503791141
130 => 0.01118720732833
131 => 0.010820185807283
201 => 0.010995347714372
202 => 0.010963001706022
203 => 0.011936076388999
204 => 0.011920883166245
205 => 0.01192815535797
206 => 0.011581034699341
207 => 0.012134007333889
208 => 0.012406421537921
209 => 0.012356004918824
210 => 0.012368693695667
211 => 0.012150658469571
212 => 0.01193026641556
213 => 0.011685817709568
214 => 0.012139973190528
215 => 0.012089478853738
216 => 0.012205294695045
217 => 0.012499846988152
218 => 0.012543220932207
219 => 0.012601515952873
220 => 0.012580621337686
221 => 0.013078415841477
222 => 0.013018129642514
223 => 0.013163402036492
224 => 0.012864565700237
225 => 0.012526404019959
226 => 0.012590677500042
227 => 0.012584487447055
228 => 0.012505680967923
229 => 0.012434538002238
301 => 0.01231610500878
302 => 0.012690844524868
303 => 0.012675630784869
304 => 0.012921923551406
305 => 0.01287838891256
306 => 0.012587653939616
307 => 0.012598037596052
308 => 0.012667872675799
309 => 0.012909572684168
310 => 0.012981325702843
311 => 0.012948086845729
312 => 0.013026760755057
313 => 0.013088941405195
314 => 0.013034569687364
315 => 0.013804358552053
316 => 0.013484688545942
317 => 0.013640493482671
318 => 0.013677652042025
319 => 0.0135824711736
320 => 0.01360311249579
321 => 0.013634378474484
322 => 0.013824219374609
323 => 0.014322416827443
324 => 0.014543065087958
325 => 0.015206896266312
326 => 0.014524743321494
327 => 0.014484267188778
328 => 0.014603843229781
329 => 0.014993582405141
330 => 0.015309429400432
331 => 0.01541421407042
401 => 0.015428063094365
402 => 0.015624646101216
403 => 0.015737323814686
404 => 0.015600775753538
405 => 0.015485065568892
406 => 0.015070606049968
407 => 0.015118580867819
408 => 0.015449079788476
409 => 0.015915928980195
410 => 0.016316534154069
411 => 0.016176256184678
412 => 0.017246478070316
413 => 0.017352586198813
414 => 0.017337925486341
415 => 0.017579655594063
416 => 0.017099870557715
417 => 0.016894753159279
418 => 0.015510083424179
419 => 0.015899119139797
420 => 0.016464605399716
421 => 0.016389761172751
422 => 0.015979089935307
423 => 0.016316222623109
424 => 0.016204756013408
425 => 0.016116837673583
426 => 0.016519608632131
427 => 0.016076745418288
428 => 0.016460187500385
429 => 0.015968419063895
430 => 0.016176896962626
501 => 0.016058554824365
502 => 0.016135136691287
503 => 0.015687440662087
504 => 0.015929006572236
505 => 0.01567739072603
506 => 0.015677271427357
507 => 0.015671716993607
508 => 0.015967741920833
509 => 0.015977395283082
510 => 0.015758632414593
511 => 0.015727105267526
512 => 0.015843677654281
513 => 0.015707201919747
514 => 0.015771058056967
515 => 0.015709136057092
516 => 0.015695196110643
517 => 0.015584120245653
518 => 0.01553626570892
519 => 0.015555030705832
520 => 0.015490976097352
521 => 0.015452380878786
522 => 0.015664039433206
523 => 0.015550958805861
524 => 0.015646708205261
525 => 0.015537589680107
526 => 0.015159337331246
527 => 0.014941800405469
528 => 0.014227316782481
529 => 0.014429943451646
530 => 0.014564285142935
531 => 0.014519885214766
601 => 0.014615273440965
602 => 0.014621129503343
603 => 0.014590117818637
604 => 0.014554210260591
605 => 0.014536732447147
606 => 0.014666997749257
607 => 0.01474262114166
608 => 0.014577768128916
609 => 0.014539145374569
610 => 0.014705820872237
611 => 0.01480749282953
612 => 0.015558181437639
613 => 0.015502568000858
614 => 0.015642146813593
615 => 0.01562643238129
616 => 0.015772733213685
617 => 0.016011873243305
618 => 0.015525634698484
619 => 0.015610028897001
620 => 0.015589337388471
621 => 0.015815241852994
622 => 0.015815947102074
623 => 0.015680506090827
624 => 0.015753930860303
625 => 0.015712947168285
626 => 0.01578701023904
627 => 0.015501825249504
628 => 0.015849149782942
629 => 0.016046060412303
630 => 0.016048794516583
701 => 0.01614212859212
702 => 0.016236961418411
703 => 0.016418984770279
704 => 0.016231884885921
705 => 0.015895310407768
706 => 0.015919609997962
707 => 0.015722276504568
708 => 0.015725593716243
709 => 0.015707886180347
710 => 0.015761027828533
711 => 0.015513486852867
712 => 0.015571584225078
713 => 0.015490247563765
714 => 0.015609852086984
715 => 0.015481177391336
716 => 0.015589327410399
717 => 0.015636001373397
718 => 0.015808229301676
719 => 0.015455739186295
720 => 0.014736987979549
721 => 0.014888078197223
722 => 0.014664603897403
723 => 0.014685287294678
724 => 0.014727071048912
725 => 0.014591636230647
726 => 0.01461747292593
727 => 0.014616549857364
728 => 0.014608595351149
729 => 0.014573363524177
730 => 0.014522270404663
731 => 0.014725809667172
801 => 0.014760394954095
802 => 0.014837273762715
803 => 0.015066012949772
804 => 0.015043156510944
805 => 0.015080436310978
806 => 0.014999054716821
807 => 0.014689062353423
808 => 0.014705896430174
809 => 0.014495975223344
810 => 0.014831905605489
811 => 0.014752352856933
812 => 0.014701064682417
813 => 0.014687070228819
814 => 0.014916376416078
815 => 0.01498498842124
816 => 0.014942234024004
817 => 0.014854543507926
818 => 0.015022935222168
819 => 0.015067989741024
820 => 0.015078075786248
821 => 0.015376433617977
822 => 0.0150947506747
823 => 0.015162554558834
824 => 0.015691541107379
825 => 0.015211823303003
826 => 0.015465940522964
827 => 0.01545350280741
828 => 0.015583500578284
829 => 0.015442839195847
830 => 0.015444582862264
831 => 0.015560012075988
901 => 0.01539791256308
902 => 0.015357774444074
903 => 0.015302323920141
904 => 0.015423398110532
905 => 0.015495976611956
906 => 0.016080906030404
907 => 0.016458797110743
908 => 0.016442391862328
909 => 0.016592305123497
910 => 0.016524767826293
911 => 0.01630667207818
912 => 0.016678934926265
913 => 0.016561135384992
914 => 0.016570846636048
915 => 0.016570485182799
916 => 0.016648811579531
917 => 0.016593310148937
918 => 0.016483911132132
919 => 0.016556535304926
920 => 0.016772203134505
921 => 0.017441642695018
922 => 0.017816269941975
923 => 0.017419089664355
924 => 0.017693059301401
925 => 0.017528775144536
926 => 0.017498919826204
927 => 0.017670993004466
928 => 0.017843367374048
929 => 0.017832387871901
930 => 0.017707252931106
1001 => 0.017636567378233
1002 => 0.018171822065987
1003 => 0.018566188602099
1004 => 0.018539295448203
1005 => 0.018657993083378
1006 => 0.019006493011431
1007 => 0.019038355477309
1008 => 0.019034341538959
1009 => 0.018955367092776
1010 => 0.019298510530378
1011 => 0.019584766823061
1012 => 0.018937086790276
1013 => 0.019183714868006
1014 => 0.01929443415796
1015 => 0.019457002924544
1016 => 0.019731283683462
1017 => 0.020029225337025
1018 => 0.020071357553603
1019 => 0.020041462729728
1020 => 0.019844962200102
1021 => 0.020170973512614
1022 => 0.020361943293577
1023 => 0.020475661427875
1024 => 0.020764031695561
1025 => 0.019295117922601
1026 => 0.018255347744348
1027 => 0.018092972616551
1028 => 0.018423168824013
1029 => 0.018510238930656
1030 => 0.018475141079845
1031 => 0.017304785212453
1101 => 0.01808681093512
1102 => 0.018928204858119
1103 => 0.018960526225386
1104 => 0.019381745615956
1105 => 0.019518911915892
1106 => 0.019858048735789
1107 => 0.019836835635367
1108 => 0.019919410054167
1109 => 0.019900427625275
1110 => 0.020528607170451
1111 => 0.021221582494345
1112 => 0.021197586962406
1113 => 0.021097963560684
1114 => 0.021245921300555
1115 => 0.021961146098563
1116 => 0.021895299660406
1117 => 0.021959263866289
1118 => 0.022802554211444
1119 => 0.023898951616798
1120 => 0.023389564945511
1121 => 0.024494787450137
1122 => 0.025190466431472
1123 => 0.02639357129514
1124 => 0.026242936640793
1125 => 0.026711296535428
1126 => 0.025973269171109
1127 => 0.024278609162695
1128 => 0.024010422729466
1129 => 0.024547338760353
1130 => 0.02586729443079
1201 => 0.024505768658968
1202 => 0.024781203549352
1203 => 0.024701878282392
1204 => 0.024697651376026
1205 => 0.024858975199932
1206 => 0.024624966579272
1207 => 0.023671573361357
1208 => 0.024108507854746
1209 => 0.023939786463531
1210 => 0.024126995426097
1211 => 0.025137284986218
1212 => 0.024690611889393
1213 => 0.024220078066664
1214 => 0.024810231900181
1215 => 0.025561700529106
1216 => 0.025514674972827
1217 => 0.025423425738488
1218 => 0.025937792894803
1219 => 0.026787376741601
1220 => 0.027017015841486
1221 => 0.027186530730257
1222 => 0.02720990396944
1223 => 0.027450662859422
1224 => 0.026156041628938
1225 => 0.028210638769947
1226 => 0.028565410939099
1227 => 0.028498728475098
1228 => 0.028893042810015
1229 => 0.028777025529893
1230 => 0.028608934693551
1231 => 0.029234006787458
]
'min_raw' => 0.01077591049731
'max_raw' => 0.029234006787458
'avg_raw' => 0.020004958642384
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.010775'
'max' => '$0.029234'
'avg' => '$0.0200049'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.003716333039154
'max_diff' => 0.013473997425024
'year' => 2032
]
7 => [
'items' => [
101 => 0.02851741207251
102 => 0.027500296091407
103 => 0.026942286147901
104 => 0.027677118654888
105 => 0.028125855224784
106 => 0.02842244155248
107 => 0.028512188396038
108 => 0.026256539389747
109 => 0.025040869679385
110 => 0.025820100026045
111 => 0.026770814828577
112 => 0.026150760360208
113 => 0.026175065321449
114 => 0.025291030597002
115 => 0.026849032285662
116 => 0.026622044544481
117 => 0.027799657347261
118 => 0.027518610600945
119 => 0.028478908126947
120 => 0.028226029605276
121 => 0.029275714210484
122 => 0.029694461818578
123 => 0.030397604225429
124 => 0.030914838642213
125 => 0.031218568584866
126 => 0.031200333778372
127 => 0.032403863128821
128 => 0.031694183918974
129 => 0.030802659572859
130 => 0.030786534710161
131 => 0.031248267802011
201 => 0.032215933692243
202 => 0.032466835378614
203 => 0.032607055192658
204 => 0.032392303666363
205 => 0.031621997747241
206 => 0.031289383556904
207 => 0.031572780483832
208 => 0.031226210394775
209 => 0.03182448759888
210 => 0.032646049985232
211 => 0.03247640060126
212 => 0.033043513056621
213 => 0.03363041478595
214 => 0.034469710618295
215 => 0.034689133627905
216 => 0.03505183151888
217 => 0.035425166788745
218 => 0.035545072015757
219 => 0.035774008298531
220 => 0.035772801691315
221 => 0.036462716588644
222 => 0.037223714085284
223 => 0.037510973023133
224 => 0.038171509111167
225 => 0.037040364208355
226 => 0.037898350610794
227 => 0.038672275822586
228 => 0.037749570279896
301 => 0.039021304907676
302 => 0.03907068348146
303 => 0.039816241320657
304 => 0.039060475619032
305 => 0.038611704357896
306 => 0.039907290173555
307 => 0.040534183339181
308 => 0.040345358015869
309 => 0.038908387982005
310 => 0.038072009787752
311 => 0.035883046728088
312 => 0.038475968028427
313 => 0.039738904357271
314 => 0.038905117282016
315 => 0.039325630984277
316 => 0.041619817391787
317 => 0.042493295038198
318 => 0.042311617793814
319 => 0.042342318257453
320 => 0.042813630940715
321 => 0.044903690934935
322 => 0.043651278539187
323 => 0.044608700888739
324 => 0.045116514250699
325 => 0.045588199602033
326 => 0.044429889456843
327 => 0.042922944976906
328 => 0.042445632402884
329 => 0.038822213589529
330 => 0.038633598904584
331 => 0.038527723766314
401 => 0.037860195995859
402 => 0.037335702019526
403 => 0.036918604936333
404 => 0.035824017634303
405 => 0.036193408716791
406 => 0.034448865015479
407 => 0.035564962252745
408 => 0.032780628381971
409 => 0.03509950436648
410 => 0.033837445594465
411 => 0.034684884116911
412 => 0.03468192748374
413 => 0.033121524483288
414 => 0.032221516597408
415 => 0.032795036651122
416 => 0.033409895674782
417 => 0.033509654482737
418 => 0.034306835256374
419 => 0.034529311274953
420 => 0.033855198552247
421 => 0.032722929251273
422 => 0.032985929585576
423 => 0.032216186904028
424 => 0.030867242462339
425 => 0.03183607791067
426 => 0.032166880929418
427 => 0.032312982387929
428 => 0.030986450456845
429 => 0.030569625323688
430 => 0.030347711120298
501 => 0.032551690636844
502 => 0.032672429609963
503 => 0.032054711952716
504 => 0.034846854337863
505 => 0.034214906522936
506 => 0.034920947063183
507 => 0.032962065061877
508 => 0.033036896992311
509 => 0.032109530860416
510 => 0.03262879392765
511 => 0.032261795528359
512 => 0.032586842603275
513 => 0.032781674479761
514 => 0.033708888439999
515 => 0.035110091660501
516 => 0.0335703935942
517 => 0.03289952509783
518 => 0.03331572813987
519 => 0.034424131687419
520 => 0.036103419800089
521 => 0.035109247438566
522 => 0.035550444250468
523 => 0.035646826126389
524 => 0.034913760233263
525 => 0.036130448985203
526 => 0.03678248237173
527 => 0.037451333707008
528 => 0.038032078580641
529 => 0.037184179775342
530 => 0.038091553038531
531 => 0.037360370361343
601 => 0.03670442391163
602 => 0.036705418711631
603 => 0.036293933921877
604 => 0.035496630291309
605 => 0.035349595269
606 => 0.036114490023528
607 => 0.036727863180857
608 => 0.036778383531954
609 => 0.037117978428102
610 => 0.037318947189537
611 => 0.03928871425538
612 => 0.04008097086403
613 => 0.041049727248437
614 => 0.041427112456282
615 => 0.04256290663181
616 => 0.041645660590378
617 => 0.041447208639566
618 => 0.03869214348518
619 => 0.039143285249869
620 => 0.039865606743842
621 => 0.038704054300568
622 => 0.039440791973307
623 => 0.039586239596144
624 => 0.038664585193019
625 => 0.039156880632064
626 => 0.037849489901385
627 => 0.035138589205744
628 => 0.036133466992629
629 => 0.03686603191602
630 => 0.035820571445738
701 => 0.03769451887381
702 => 0.036599797472457
703 => 0.036252823344123
704 => 0.034899153564282
705 => 0.035538033592839
706 => 0.036402127979343
707 => 0.035868218110238
708 => 0.036976161255601
709 => 0.038545304227078
710 => 0.039663568952632
711 => 0.039749415432712
712 => 0.039030446132098
713 => 0.040182599024732
714 => 0.040190991200721
715 => 0.038891358031147
716 => 0.038095339951171
717 => 0.037914482968564
718 => 0.038366299170216
719 => 0.038914887448894
720 => 0.039779858264198
721 => 0.040302542012333
722 => 0.041665424017432
723 => 0.042034180811122
724 => 0.042439332727314
725 => 0.042980740631569
726 => 0.043630839634765
727 => 0.042208460025929
728 => 0.042264973819435
729 => 0.040940473621873
730 => 0.039525055208236
731 => 0.04059918134979
801 => 0.04200345839486
802 => 0.041681315689133
803 => 0.041645068053961
804 => 0.041706026522065
805 => 0.041463141442144
806 => 0.040364581227402
807 => 0.039812891164909
808 => 0.04052471209667
809 => 0.040903013242397
810 => 0.041489725328091
811 => 0.04141740067954
812 => 0.042928708004011
813 => 0.04351595633074
814 => 0.04336571307899
815 => 0.043393361453118
816 => 0.044456546498023
817 => 0.04563902692864
818 => 0.046746575893948
819 => 0.047873222271794
820 => 0.046515006089544
821 => 0.045825387675325
822 => 0.046536897848336
823 => 0.046159360535306
824 => 0.048328801920818
825 => 0.04847900933538
826 => 0.050648293845588
827 => 0.052707203159369
828 => 0.051414039108575
829 => 0.052633434563085
830 => 0.053952310165909
831 => 0.05649663518361
901 => 0.055639796028081
902 => 0.054983470663328
903 => 0.054363246364977
904 => 0.055653834672011
905 => 0.057314155911358
906 => 0.057671773203954
907 => 0.05825124983828
908 => 0.057642001012318
909 => 0.058375774116632
910 => 0.060966315611103
911 => 0.060266328431955
912 => 0.05927223410901
913 => 0.061317217820645
914 => 0.062057289476212
915 => 0.067251499933522
916 => 0.073809405198007
917 => 0.071094389356983
918 => 0.069409091411445
919 => 0.069805176404448
920 => 0.072199901407935
921 => 0.072969011074283
922 => 0.070878305873149
923 => 0.071616778294888
924 => 0.075685833943677
925 => 0.077868751748317
926 => 0.074904056164641
927 => 0.066724578630811
928 => 0.05918272679185
929 => 0.061183165513557
930 => 0.060956377843356
1001 => 0.06532807051295
1002 => 0.060249633969233
1003 => 0.060335141816253
1004 => 0.064797236460551
1005 => 0.06360682610912
1006 => 0.061678513796042
1007 => 0.059196805605734
1008 => 0.054609138485726
1009 => 0.050545713780973
1010 => 0.058515025377815
1011 => 0.058171374170507
1012 => 0.057673716296068
1013 => 0.058781200043425
1014 => 0.064158826755842
1015 => 0.064034855054442
1016 => 0.063246210341051
1017 => 0.063844390405362
1018 => 0.06157364993861
1019 => 0.062158871460692
1020 => 0.059181532123987
1021 => 0.060527413848851
1022 => 0.061674376503867
1023 => 0.061904646237934
1024 => 0.062423455706651
1025 => 0.057990285599887
1026 => 0.059980648826788
1027 => 0.061149800750778
1028 => 0.055867529824078
1029 => 0.061045387238353
1030 => 0.057913113971241
1031 => 0.056849973379218
1101 => 0.058281352128255
1102 => 0.057723542437694
1103 => 0.057243970421433
1104 => 0.056976360996266
1105 => 0.058027407574052
1106 => 0.057978374994926
1107 => 0.056258658794319
1108 => 0.054015359115228
1109 => 0.054768284121333
1110 => 0.054494739407905
1111 => 0.053503378078474
1112 => 0.054171435917087
1113 => 0.051229647292168
1114 => 0.046168452863863
1115 => 0.04951203293178
1116 => 0.04938330873628
1117 => 0.049318400159732
1118 => 0.051831008171005
1119 => 0.051589478886451
1120 => 0.051151100869923
1121 => 0.05349532692242
1122 => 0.052639652878969
1123 => 0.055276638658725
1124 => 0.05701352804282
1125 => 0.056572996712528
1126 => 0.058206549573383
1127 => 0.054785629992778
1128 => 0.055921922253984
1129 => 0.056156110514185
1130 => 0.053466399536817
1201 => 0.051628996064447
1202 => 0.051506462200773
1203 => 0.04832065778948
1204 => 0.050022488791078
1205 => 0.051520029645933
1206 => 0.050802823790322
1207 => 0.050575777842351
1208 => 0.051735706350276
1209 => 0.051825842729458
1210 => 0.049770723731892
1211 => 0.050198048048641
1212 => 0.051980061486239
1213 => 0.050153145882189
1214 => 0.046603747288489
1215 => 0.045723447362976
1216 => 0.045605999125766
1217 => 0.043218555910309
1218 => 0.045782273213317
1219 => 0.044663141907202
1220 => 0.048198464293968
1221 => 0.046179107106961
1222 => 0.046092056654668
1223 => 0.045960467128501
1224 => 0.043905496128919
1225 => 0.044355404177608
1226 => 0.045850967054378
1227 => 0.046384600737531
1228 => 0.046328938372447
1229 => 0.04584363798038
1230 => 0.046065806014728
1231 => 0.045350125367619
]
'min_raw' => 0.025040869679385
'max_raw' => 0.077868751748317
'avg_raw' => 0.051454810713851
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.02504'
'max' => '$0.077868'
'avg' => '$0.051454'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.014264959182074
'max_diff' => 0.048634744960859
'year' => 2033
]
8 => [
'items' => [
101 => 0.045097403635521
102 => 0.044299744332429
103 => 0.04312740551589
104 => 0.043290426418701
105 => 0.040967716464
106 => 0.039702180805131
107 => 0.039351897214248
108 => 0.03888348335716
109 => 0.039404805805808
110 => 0.040961136518531
111 => 0.039083871485007
112 => 0.035865432259861
113 => 0.036058865941246
114 => 0.036493453992342
115 => 0.035683602034212
116 => 0.034917145121564
117 => 0.035583517222496
118 => 0.034219822094867
119 => 0.036658250033386
120 => 0.036592297391264
121 => 0.037501192535371
122 => 0.038069543321388
123 => 0.036759678765372
124 => 0.036430251371785
125 => 0.036617908186812
126 => 0.033516359045125
127 => 0.037247729800936
128 => 0.037279998850181
129 => 0.037003691659439
130 => 0.038990531393761
131 => 0.043183382944034
201 => 0.041605863533758
202 => 0.040995000337323
203 => 0.039833748954361
204 => 0.041381047473873
205 => 0.041262239089192
206 => 0.04072494251692
207 => 0.040399983873543
208 => 0.040998730137741
209 => 0.040325792585377
210 => 0.040204914509885
211 => 0.039472524889048
212 => 0.039211095116013
213 => 0.039017542919877
214 => 0.038804460969978
215 => 0.039274466654742
216 => 0.038209371938669
217 => 0.036924972123608
218 => 0.036818188176384
219 => 0.03711302804321
220 => 0.036982583350386
221 => 0.036817563657381
222 => 0.036502496122994
223 => 0.036409022315894
224 => 0.036712766841924
225 => 0.036369856981443
226 => 0.03687583915985
227 => 0.036738240004594
228 => 0.035969622308717
301 => 0.035011640080937
302 => 0.035003112029674
303 => 0.034796716330104
304 => 0.034533840374901
305 => 0.034460714297951
306 => 0.035527397222819
307 => 0.037735398954162
308 => 0.037301915381296
309 => 0.037615151687875
310 => 0.039155964294878
311 => 0.039645742288792
312 => 0.039298109469739
313 => 0.038822248225961
314 => 0.038843183705651
315 => 0.040469345628635
316 => 0.040570767353081
317 => 0.040827027330867
318 => 0.041156393821383
319 => 0.039354202007295
320 => 0.038758300633275
321 => 0.038475929502916
322 => 0.037606335712787
323 => 0.038544118062104
324 => 0.037997712447001
325 => 0.038071441232352
326 => 0.038023425264169
327 => 0.038049645229623
328 => 0.036657568443081
329 => 0.037164768058695
330 => 0.036321450324754
331 => 0.035192342545865
401 => 0.035188557380674
402 => 0.035464904909951
403 => 0.035300522586057
404 => 0.034858173979115
405 => 0.034921007510904
406 => 0.034370519655878
407 => 0.034987846703409
408 => 0.03500554943423
409 => 0.034767844894899
410 => 0.035718922386337
411 => 0.036108579610584
412 => 0.035952117390672
413 => 0.036097601804139
414 => 0.037319928580809
415 => 0.037519221179263
416 => 0.037607733786966
417 => 0.037489138618317
418 => 0.03611994369376
419 => 0.03618067331093
420 => 0.035735079674867
421 => 0.035358600007894
422 => 0.035373657220197
423 => 0.035567216707952
424 => 0.036412502343092
425 => 0.038191356129934
426 => 0.038258862330819
427 => 0.038340681815587
428 => 0.038007880851857
429 => 0.03790750489672
430 => 0.038039926690778
501 => 0.038707970645427
502 => 0.040426361068949
503 => 0.039818967125839
504 => 0.039325146395441
505 => 0.039758360309113
506 => 0.039691670422746
507 => 0.039128740667479
508 => 0.039112941104145
509 => 0.038032498924258
510 => 0.037633084050833
511 => 0.037299303086913
512 => 0.036934822987885
513 => 0.036718746967698
514 => 0.0370507379395
515 => 0.037126668202753
516 => 0.036400764140698
517 => 0.036301826099348
518 => 0.036894615026149
519 => 0.036633750720863
520 => 0.036902056127974
521 => 0.036964305283904
522 => 0.03695428173608
523 => 0.036681909441286
524 => 0.036855511419729
525 => 0.036444890987471
526 => 0.035998402940585
527 => 0.03571357138386
528 => 0.035465018073194
529 => 0.035602929895955
530 => 0.035111299429517
531 => 0.034954016948737
601 => 0.036796698975601
602 => 0.038157908001015
603 => 0.038138115482688
604 => 0.038017633617592
605 => 0.037838622004913
606 => 0.038694874830966
607 => 0.038396573467684
608 => 0.038613612633384
609 => 0.03866885821016
610 => 0.038836069932157
611 => 0.038895833750438
612 => 0.038715185982953
613 => 0.038108910011006
614 => 0.036598127931905
615 => 0.035894854795805
616 => 0.035662762946951
617 => 0.035671199044852
618 => 0.035438493804353
619 => 0.035507035926797
620 => 0.035414657651352
621 => 0.035239715546363
622 => 0.035592127713945
623 => 0.035632739933313
624 => 0.035550482722387
625 => 0.035569857273315
626 => 0.034888802699366
627 => 0.03494058179945
628 => 0.034652269190409
629 => 0.034598214051875
630 => 0.03386938488247
701 => 0.032578158363393
702 => 0.033293623197353
703 => 0.032429442287509
704 => 0.032102163882474
705 => 0.033651448949677
706 => 0.033495943699408
707 => 0.033229786307456
708 => 0.032836084052698
709 => 0.032690056056719
710 => 0.031802836179995
711 => 0.031750414496544
712 => 0.0321901446244
713 => 0.031987224300585
714 => 0.031702247314011
715 => 0.030670089556296
716 => 0.029509602500934
717 => 0.029544630310574
718 => 0.029913759651256
719 => 0.03098705299316
720 => 0.030567698716314
721 => 0.030263452376927
722 => 0.030206476183171
723 => 0.030919652535767
724 => 0.031928946489755
725 => 0.032402484631286
726 => 0.031933222714596
727 => 0.031394159891557
728 => 0.031426970147819
729 => 0.031645242083475
730 => 0.031668179377713
731 => 0.031317304896469
801 => 0.03141607400768
802 => 0.031266034696113
803 => 0.030345243717979
804 => 0.030328589529044
805 => 0.03010261257325
806 => 0.030095770080837
807 => 0.029711326906438
808 => 0.029657540648809
809 => 0.028894205392006
810 => 0.029396634969626
811 => 0.029059631587695
812 => 0.028551688000064
813 => 0.028464118334101
814 => 0.028461485884199
815 => 0.028983030374588
816 => 0.029390540418598
817 => 0.029065493905807
818 => 0.028991487115607
819 => 0.029781686017395
820 => 0.02968112600432
821 => 0.029594041681539
822 => 0.031838575286208
823 => 0.030061851794971
824 => 0.029287098940961
825 => 0.028328195162546
826 => 0.02864041906801
827 => 0.028706209232415
828 => 0.026400218500725
829 => 0.025464678348071
830 => 0.025143636222767
831 => 0.024958871940785
901 => 0.025043071344208
902 => 0.024200975478905
903 => 0.024766877827369
904 => 0.024037693988607
905 => 0.02391544394507
906 => 0.025219314977319
907 => 0.025400741014352
908 => 0.024626721175716
909 => 0.02512376721455
910 => 0.024943531411412
911 => 0.024050193752638
912 => 0.02401607482502
913 => 0.023567829390185
914 => 0.022866412082087
915 => 0.022545845550747
916 => 0.022378891717939
917 => 0.022447780123221
918 => 0.02241294803749
919 => 0.022185645116768
920 => 0.022425976774835
921 => 0.021812028700371
922 => 0.021567549630204
923 => 0.021457124106081
924 => 0.020912209852462
925 => 0.021779410754438
926 => 0.021950260256837
927 => 0.022121446385533
928 => 0.0236115047621
929 => 0.023537065656468
930 => 0.024209958918067
1001 => 0.024183811523292
1002 => 0.023991891464936
1003 => 0.023182212308049
1004 => 0.023504935988841
1005 => 0.022511642661759
1006 => 0.02325588555979
1007 => 0.022916244181455
1008 => 0.023141052468126
1009 => 0.022736826898545
1010 => 0.022960542018816
1011 => 0.021990775011954
1012 => 0.021085220225937
1013 => 0.021449641906622
1014 => 0.021845809950202
1015 => 0.022704803210422
1016 => 0.022193193911175
1017 => 0.022377187961274
1018 => 0.021760838693676
1019 => 0.020489134103156
1020 => 0.020496331813032
1021 => 0.020300707767371
1022 => 0.020131660030341
1023 => 0.02225195839355
1024 => 0.021988265775128
1025 => 0.021568106098909
1026 => 0.022130506522009
1027 => 0.022279214120372
1028 => 0.022283447616639
1029 => 0.022693760447677
1030 => 0.022912744479155
1031 => 0.022951341363834
1101 => 0.023596977468868
1102 => 0.023813386175129
1103 => 0.024704743008913
1104 => 0.02289416521404
1105 => 0.022856877555839
1106 => 0.022138420649302
1107 => 0.021682763920822
1108 => 0.022169619855332
1109 => 0.022600907750846
1110 => 0.022151821966426
1111 => 0.022210463089153
1112 => 0.021607602115225
1113 => 0.021823096546159
1114 => 0.022008709380314
1115 => 0.021906224883112
1116 => 0.021752800630494
1117 => 0.022565547061756
1118 => 0.022519688722925
1119 => 0.023276536884676
1120 => 0.023866554149492
1121 => 0.024923970566244
1122 => 0.023820501410999
1123 => 0.023780286609089
1124 => 0.024173392748414
1125 => 0.023813325992627
1126 => 0.024040875753203
1127 => 0.02488730878191
1128 => 0.024905192578015
1129 => 0.024605615951288
1130 => 0.024587386686326
1201 => 0.024644923654498
1202 => 0.024981919474216
1203 => 0.024864162779971
1204 => 0.025000433807786
1205 => 0.025170842814725
1206 => 0.025875726719346
1207 => 0.026045671842377
1208 => 0.025632793299856
1209 => 0.025670071609441
1210 => 0.025515643700768
1211 => 0.025366468275967
1212 => 0.025701792845599
1213 => 0.026314605087423
1214 => 0.026310792814272
1215 => 0.026452953343007
1216 => 0.026541518174688
1217 => 0.026161333083695
1218 => 0.025913846569252
1219 => 0.026008748646866
1220 => 0.026160499135668
1221 => 0.025959538008589
1222 => 0.024719112838007
1223 => 0.025095378596095
1224 => 0.025032749575493
1225 => 0.024943558234208
1226 => 0.025321896363542
1227 => 0.025285404728006
1228 => 0.024192338568661
1229 => 0.024262313117737
1230 => 0.024196593952753
1231 => 0.024408946019694
]
'min_raw' => 0.020131660030341
'max_raw' => 0.045097403635521
'avg_raw' => 0.032614531832931
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.020131'
'max' => '$0.045097'
'avg' => '$0.032614'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0049092096490436
'max_diff' => -0.032771348112797
'year' => 2034
]
9 => [
'items' => [
101 => 0.023801858284132
102 => 0.023988594382793
103 => 0.02410571351333
104 => 0.024174697580969
105 => 0.024423915336096
106 => 0.024394672508992
107 => 0.024422097560904
108 => 0.02479162170071
109 => 0.026660547994475
110 => 0.026762269529091
111 => 0.026261355489738
112 => 0.026461460768367
113 => 0.026077302391613
114 => 0.026335190483565
115 => 0.026511630966432
116 => 0.025714330351911
117 => 0.025667119383958
118 => 0.02528137544893
119 => 0.02548865238996
120 => 0.025158859873041
121 => 0.025239779421041
122 => 0.025013521310395
123 => 0.025420740862017
124 => 0.025876075596251
125 => 0.025991111131833
126 => 0.02568850216363
127 => 0.025469393327749
128 => 0.025084710390879
129 => 0.025724446688112
130 => 0.025911525077034
131 => 0.025723464044977
201 => 0.025679886194635
202 => 0.02559730624698
203 => 0.02569740592091
204 => 0.02591050620795
205 => 0.025810012047927
206 => 0.025876390211102
207 => 0.025623425101944
208 => 0.02616145894078
209 => 0.027015986161746
210 => 0.027018733606491
211 => 0.026918238904766
212 => 0.026877118638009
213 => 0.026980232300507
214 => 0.027036167232468
215 => 0.027369617909175
216 => 0.027727423770541
217 => 0.029397147602613
218 => 0.028928295832075
219 => 0.030409774148204
220 => 0.031581431150379
221 => 0.03193275985498
222 => 0.03160955397804
223 => 0.030503884132267
224 => 0.030449634694757
225 => 0.03210197224611
226 => 0.031635111205998
227 => 0.031579579570817
228 => 0.030988816794661
301 => 0.031338030762762
302 => 0.031261652545279
303 => 0.031141085792431
304 => 0.031807361717112
305 => 0.033054570769253
306 => 0.032860181542224
307 => 0.032715079001704
308 => 0.03207928190786
309 => 0.032462173768776
310 => 0.032325833310914
311 => 0.032911638441681
312 => 0.032564620459387
313 => 0.031631574274449
314 => 0.031780164954761
315 => 0.031757705772355
316 => 0.032219914154799
317 => 0.032081170671107
318 => 0.03173061388041
319 => 0.033050307944302
320 => 0.032964614352317
321 => 0.033086108273469
322 => 0.033139593654885
323 => 0.033942868175957
324 => 0.034271944045323
325 => 0.034346650028953
326 => 0.03465924665321
327 => 0.034338872340173
328 => 0.035620598015334
329 => 0.03647287079855
330 => 0.037462829493812
331 => 0.038909425223401
401 => 0.039453358599486
402 => 0.039355101903655
403 => 0.040451894276061
404 => 0.04242280578895
405 => 0.039753479470927
406 => 0.042564286565436
407 => 0.041674417491643
408 => 0.03956455392574
409 => 0.039428703585753
410 => 0.040857527688602
411 => 0.044026522029497
412 => 0.04323272488954
413 => 0.044027820397248
414 => 0.043100299253522
415 => 0.043054240010973
416 => 0.043982772765564
417 => 0.046152340158349
418 => 0.045121660015054
419 => 0.043643927296502
420 => 0.044735062139813
421 => 0.043789820158774
422 => 0.041659925418921
423 => 0.043232117887827
424 => 0.042180837557333
425 => 0.042487657046908
426 => 0.044697291935457
427 => 0.044431422819698
428 => 0.044775482074307
429 => 0.04416822649552
430 => 0.043600954029518
501 => 0.042542097845517
502 => 0.042228622730414
503 => 0.042315255974575
504 => 0.04222857979928
505 => 0.041636159495723
506 => 0.041508226387575
507 => 0.041294998935782
508 => 0.041361087039129
509 => 0.040960157047869
510 => 0.04171679477774
511 => 0.041857233407873
512 => 0.042407851249323
513 => 0.042465018220227
514 => 0.043998481071112
515 => 0.043153875501641
516 => 0.043720509837378
517 => 0.043669824729021
518 => 0.039610281066879
519 => 0.040169650365865
520 => 0.041039853455332
521 => 0.04064782814306
522 => 0.040093596071302
523 => 0.039646023957314
524 => 0.038967906438024
525 => 0.039922343824331
526 => 0.041177327494225
527 => 0.042496846677134
528 => 0.044082162517079
529 => 0.043728338476714
530 => 0.042467210300229
531 => 0.042523783588972
601 => 0.042873497399208
602 => 0.042420586240102
603 => 0.042287013897405
604 => 0.042855146610465
605 => 0.042859059028219
606 => 0.042337930003525
607 => 0.041758790458182
608 => 0.041756363842341
609 => 0.041653311554071
610 => 0.043118632026673
611 => 0.043924410125994
612 => 0.044016791286504
613 => 0.043918192137837
614 => 0.043956139036899
615 => 0.043487274515013
616 => 0.044558959774589
617 => 0.045542444147464
618 => 0.045278849326454
619 => 0.044883683217549
620 => 0.044568914378028
621 => 0.045204699791361
622 => 0.045176389267724
623 => 0.04553385426944
624 => 0.045517637592144
625 => 0.045397435557006
626 => 0.045278853619248
627 => 0.045749017598564
628 => 0.045613617923124
629 => 0.045478007934588
630 => 0.045206021341731
701 => 0.045242988836919
702 => 0.044847890959014
703 => 0.044665100602247
704 => 0.041916372211854
705 => 0.041181822168649
706 => 0.041412926565386
707 => 0.041489012133415
708 => 0.041169335013261
709 => 0.041627669885248
710 => 0.041556238880945
711 => 0.041834135132946
712 => 0.041660517619549
713 => 0.041667642942859
714 => 0.042178215030603
715 => 0.042326436279805
716 => 0.042251049756169
717 => 0.042303847893224
718 => 0.043520558676974
719 => 0.043347581311746
720 => 0.043255690534035
721 => 0.043281144907453
722 => 0.043592040599275
723 => 0.043679074418709
724 => 0.043310306010007
725 => 0.043484219323376
726 => 0.044224720138814
727 => 0.044483853515501
728 => 0.045310882862809
729 => 0.044959546096798
730 => 0.04560443993631
731 => 0.047586623738459
801 => 0.049170129316301
802 => 0.047713872145782
803 => 0.05062177848127
804 => 0.052886000677837
805 => 0.052799096058673
806 => 0.052404276546299
807 => 0.049826519772969
808 => 0.047454429557963
809 => 0.049438783747086
810 => 0.049443842274
811 => 0.049273384489318
812 => 0.048214685828292
813 => 0.049236544070777
814 => 0.049317655467221
815 => 0.049272254654474
816 => 0.048460552873315
817 => 0.047221234281051
818 => 0.04746339416747
819 => 0.047860057001352
820 => 0.047109091504278
821 => 0.046869112525359
822 => 0.047315279105038
823 => 0.048752920787265
824 => 0.048481142954931
825 => 0.048474045737388
826 => 0.049636826555849
827 => 0.048804526433637
828 => 0.047466448579141
829 => 0.047128566273802
830 => 0.045929311714643
831 => 0.046757641110252
901 => 0.046787451210554
902 => 0.0463337836659
903 => 0.047503261200085
904 => 0.047492484258725
905 => 0.048602729123675
906 => 0.05072510031653
907 => 0.050097410719259
908 => 0.049367476010067
909 => 0.04944684015185
910 => 0.05031726889982
911 => 0.049790987808842
912 => 0.049980242158519
913 => 0.050316982440695
914 => 0.050520146213722
915 => 0.049417608011425
916 => 0.049160553615971
917 => 0.048634710536705
918 => 0.04849752789265
919 => 0.048925816108637
920 => 0.04881297729537
921 => 0.046784945787054
922 => 0.046573005210574
923 => 0.046579505125474
924 => 0.04604657046869
925 => 0.045233717198122
926 => 0.047369847060228
927 => 0.047198285937183
928 => 0.047008895735117
929 => 0.047032094954224
930 => 0.047959316527206
1001 => 0.047421481189065
1002 => 0.048851404584992
1003 => 0.048557455322221
1004 => 0.048255967370032
1005 => 0.048214292551492
1006 => 0.048098245411643
1007 => 0.047700276589861
1008 => 0.04721970532334
1009 => 0.046902390546813
1010 => 0.043264976028451
1011 => 0.043940059005192
1012 => 0.044716680434183
1013 => 0.044984767039356
1014 => 0.04452618635018
1015 => 0.047718384150552
1016 => 0.048301629449463
1017 => 0.046534941394911
1018 => 0.046204466193302
1019 => 0.047740050049751
1020 => 0.046813905266821
1021 => 0.047230948205866
1022 => 0.046329529481942
1023 => 0.048161142736371
1024 => 0.048147188912164
1025 => 0.047434649987329
1026 => 0.048036883007343
1027 => 0.047932230199889
1028 => 0.047127775508657
1029 => 0.048186645384963
1030 => 0.048187170571211
1031 => 0.04750136734799
1101 => 0.046700499324898
1102 => 0.046557323038027
1103 => 0.046449458938898
1104 => 0.047204420249669
1105 => 0.047881316200204
1106 => 0.049140851747412
1107 => 0.049457528909807
1108 => 0.050693540957025
1109 => 0.049957555963241
1110 => 0.050283808578384
1111 => 0.050638001943372
1112 => 0.050807815267578
1113 => 0.050531113568471
1114 => 0.052451149040657
1115 => 0.052613258862876
1116 => 0.052667612884022
1117 => 0.052020187725758
1118 => 0.052595252798041
1119 => 0.052326198894873
1120 => 0.053026202405589
1121 => 0.053135971894162
1122 => 0.053043001042503
1123 => 0.05307784361077
1124 => 0.051439432052727
1125 => 0.051354471770133
1126 => 0.050196032288457
1127 => 0.050668104939992
1128 => 0.049785587744978
1129 => 0.050065443038451
1130 => 0.050188800585255
1201 => 0.050124365603284
1202 => 0.050694795219418
1203 => 0.050209813514632
1204 => 0.04892986705733
1205 => 0.04764957187947
1206 => 0.047633498816418
1207 => 0.047296419695175
1208 => 0.047052773229636
1209 => 0.047099708182722
1210 => 0.047265113079217
1211 => 0.047043159596362
1212 => 0.047090524625257
1213 => 0.047877099696438
1214 => 0.048034841717367
1215 => 0.047498772696465
1216 => 0.045346378223154
1217 => 0.044818175220531
1218 => 0.045197837064095
1219 => 0.045016383156226
1220 => 0.036331734591727
1221 => 0.038372063950743
1222 => 0.037159769528654
1223 => 0.037718450573337
1224 => 0.036481011890503
1225 => 0.037071582489669
1226 => 0.036962525664189
1227 => 0.040243314895751
1228 => 0.040192089884478
1229 => 0.040216608586607
1230 => 0.039046267050851
1231 => 0.040910652895547
]
'min_raw' => 0.023801858284132
'max_raw' => 0.053135971894162
'avg_raw' => 0.038468915089147
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0238018'
'max' => '$0.053135'
'avg' => '$0.038468'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0036701982537913
'max_diff' => 0.0080385682586416
'year' => 2035
]
10 => [
'items' => [
101 => 0.041829116403791
102 => 0.041659133252529
103 => 0.041701914349559
104 => 0.040966793362041
105 => 0.040223726164661
106 => 0.039399550285546
107 => 0.040930767197725
108 => 0.040760522015835
109 => 0.041151003210808
110 => 0.042144106832002
111 => 0.042290345112657
112 => 0.042486890844859
113 => 0.042416443190942
114 => 0.044094792115375
115 => 0.043891532986523
116 => 0.044381329005413
117 => 0.043373781433643
118 => 0.042233645718892
119 => 0.042450348244422
120 => 0.042429478048602
121 => 0.042163776502116
122 => 0.041923913026267
123 => 0.041524607920094
124 => 0.042788068362061
125 => 0.042736774175467
126 => 0.043567167433458
127 => 0.043420387359098
128 => 0.042440154099348
129 => 0.042475163321986
130 => 0.042710617169083
131 => 0.043525525622253
201 => 0.043767445934352
202 => 0.04365537880693
203 => 0.043920633385065
204 => 0.044130279788323
205 => 0.043946961745542
206 => 0.046542358647784
207 => 0.045464568903532
208 => 0.045989876125668
209 => 0.046115158802857
210 => 0.045794249859647
211 => 0.045863843518542
212 => 0.04596925894863
213 => 0.046609320797668
214 => 0.048289028292933
215 => 0.04903295930843
216 => 0.051271112473463
217 => 0.048971186193613
218 => 0.048834718086208
219 => 0.049237877056981
220 => 0.050551909897428
221 => 0.051616810093782
222 => 0.051970098924479
223 => 0.052016791875619
224 => 0.052679585208203
225 => 0.053059485986077
226 => 0.052599104664432
227 => 0.052208979698272
228 => 0.050811600493579
229 => 0.05097335094146
301 => 0.052087651127155
302 => 0.053661665771402
303 => 0.055012334084478
304 => 0.054539377116782
305 => 0.058147704924718
306 => 0.058505455888178
307 => 0.058456026272501
308 => 0.059271036207744
309 => 0.057653407460174
310 => 0.056961839830508
311 => 0.052293329144062
312 => 0.053604990220877
313 => 0.055511566627182
314 => 0.055259224090513
315 => 0.053874617341321
316 => 0.055011283736098
317 => 0.05463546627914
318 => 0.054339043458157
319 => 0.055697013865473
320 => 0.054203869620279
321 => 0.05549667137114
322 => 0.05383863975334
323 => 0.054541537544372
324 => 0.054142538762841
325 => 0.054400739873943
326 => 0.052891301454358
327 => 0.053705757786019
328 => 0.052857417393277
329 => 0.052857015169473
330 => 0.052838288008284
331 => 0.053836356718229
401 => 0.053868903703028
402 => 0.053131329418381
403 => 0.053025033440888
404 => 0.053418065381658
405 => 0.052957927914244
406 => 0.053173223339176
407 => 0.05296444899334
408 => 0.052917449490632
409 => 0.052542949456747
410 => 0.052381604545057
411 => 0.052444872042277
412 => 0.052228907457635
413 => 0.052098780983607
414 => 0.052812402577364
415 => 0.052431143347233
416 => 0.05275396913232
417 => 0.052386068406351
418 => 0.051110764203428
419 => 0.05037732327023
420 => 0.047968391851671
421 => 0.048651561813704
422 => 0.049104504205323
423 => 0.048954806747595
424 => 0.04927641481202
425 => 0.049296158935184
426 => 0.049191600875033
427 => 0.049070536036095
428 => 0.049011608367806
429 => 0.049450806928702
430 => 0.049705776476045
501 => 0.049149963033909
502 => 0.049019743721073
503 => 0.049581701798374
504 => 0.049924495900895
505 => 0.052455494954541
506 => 0.052267990369628
507 => 0.052738590081844
508 => 0.052685607776189
509 => 0.053178871247005
510 => 0.053985148553092
511 => 0.052345761351136
512 => 0.052630302283652
513 => 0.052560539418009
514 => 0.053322192092293
515 => 0.053324569888805
516 => 0.052867921063199
517 => 0.053115477799841
518 => 0.052977298420811
519 => 0.053227007234782
520 => 0.05226548613158
521 => 0.05343651504549
522 => 0.054100412980241
523 => 0.054109631203709
524 => 0.054424313555761
525 => 0.054744049050619
526 => 0.055357753489906
527 => 0.054726933166896
528 => 0.053592148814922
529 => 0.053674076579804
530 => 0.053008752929443
531 => 0.053019937140206
601 => 0.05296023494663
602 => 0.053139405723723
603 => 0.052304804041505
604 => 0.052500683388143
605 => 0.052226451155781
606 => 0.052629706156335
607 => 0.052195870436179
608 => 0.052560505776243
609 => 0.052717870301161
610 => 0.053298548785926
611 => 0.052110103751844
612 => 0.049686783876695
613 => 0.050196195094365
614 => 0.049442735890043
615 => 0.049512471408025
616 => 0.049653348252673
617 => 0.049196720307134
618 => 0.049283830529142
619 => 0.049280718339027
620 => 0.049253899165954
621 => 0.049135112601511
622 => 0.048962848581864
623 => 0.04964909541607
624 => 0.049765702125599
625 => 0.050024904396366
626 => 0.050796114535591
627 => 0.050719052456295
628 => 0.050844743904901
629 => 0.05057036017832
630 => 0.049525199282149
701 => 0.049581956547232
702 => 0.048874192542176
703 => 0.050006805279487
704 => 0.049738587633534
705 => 0.049565665972329
706 => 0.049518482694961
707 => 0.050291604514952
708 => 0.050522934680693
709 => 0.050378785245393
710 => 0.050083130548082
711 => 0.050650874969384
712 => 0.05080277942531
713 => 0.050836785230971
714 => 0.051842719491322
715 => 0.050893005781589
716 => 0.051121611310864
717 => 0.052905126391943
718 => 0.051287724321662
719 => 0.05214449827066
720 => 0.052102563644293
721 => 0.052540860204951
722 => 0.052066610533401
723 => 0.052072489426463
724 => 0.052461667079546
725 => 0.05191513725435
726 => 0.051779808783765
727 => 0.051592853470894
728 => 0.052001063556926
729 => 0.052245767041749
730 => 0.054217897414512
731 => 0.055491983575388
801 => 0.055436672134981
802 => 0.055942115161622
803 => 0.055714408448792
804 => 0.054979083407071
805 => 0.056234193589953
806 => 0.055837024212049
807 => 0.055869766373003
808 => 0.055868547708137
809 => 0.056132630623293
810 => 0.055945503675061
811 => 0.055576657251908
812 => 0.055821514720939
813 => 0.056548653865813
814 => 0.058805716082857
815 => 0.060068798001612
816 => 0.058729676965376
817 => 0.059653384724627
818 => 0.059099489219804
819 => 0.058998829929614
820 => 0.05957898666389
821 => 0.06016015888573
822 => 0.060123140727676
823 => 0.059701239538144
824 => 0.059462918261524
825 => 0.061267566811577
826 => 0.06259720112187
827 => 0.06250652897589
828 => 0.062906726340086
829 => 0.064081718179005
830 => 0.064189144707279
831 => 0.064175611433887
901 => 0.063909343574762
902 => 0.065066275632149
903 => 0.066031408708703
904 => 0.063847710258592
905 => 0.064679234041683
906 => 0.065052531857935
907 => 0.065600643804665
908 => 0.066525400533027
909 => 0.067529931619636
910 => 0.067671983329405
911 => 0.067571190843524
912 => 0.06690867558866
913 => 0.068007845490176
914 => 0.068651713439778
915 => 0.06903512206911
916 => 0.070007382559983
917 => 0.065054837218163
918 => 0.061549179467748
919 => 0.061001720387709
920 => 0.062114999954733
921 => 0.062408562898319
922 => 0.062290228043856
923 => 0.058344291525306
924 => 0.060980945848569
925 => 0.063817764204208
926 => 0.063926737950555
927 => 0.065346908534462
928 => 0.065809374291342
929 => 0.066952797757401
930 => 0.066881276308278
1001 => 0.067159681726422
1002 => 0.067095681142101
1003 => 0.069213632336758
1004 => 0.071550047023261
1005 => 0.071469144412011
1006 => 0.071133257157622
1007 => 0.071632107007677
1008 => 0.074043537349562
1009 => 0.073821531486065
1010 => 0.074037191272038
1011 => 0.076880403547379
1012 => 0.080576983947552
1013 => 0.078859551221067
1014 => 0.082585886059585
1015 => 0.084931416315909
1016 => 0.088987768361868
1017 => 0.088479893107759
1018 => 0.090059001192364
1019 => 0.087570690406139
1020 => 0.081857025870387
1021 => 0.080952816586575
1022 => 0.082763066470993
1023 => 0.087213389170233
1024 => 0.08262290997184
1025 => 0.083551557935022
1026 => 0.083284107259152
1027 => 0.083269855949227
1028 => 0.083813770484795
1029 => 0.08302479408228
1030 => 0.079810362284289
1031 => 0.081283517434543
1101 => 0.080714661484309
1102 => 0.081345849572114
1103 => 0.084752111360227
1104 => 0.083246121828563
1105 => 0.08165968419361
1106 => 0.083649429046535
1107 => 0.08618305799482
1108 => 0.086024508048606
1109 => 0.085716854884213
1110 => 0.0874510796637
1111 => 0.090315510919228
1112 => 0.09108975517738
1113 => 0.091661286460022
1114 => 0.091740090967798
1115 => 0.09255182637462
1116 => 0.088186920508476
1117 => 0.095114138216779
1118 => 0.096310277354475
1119 => 0.096085452771476
1120 => 0.097414911081797
1121 => 0.097023750721798
1122 => 0.096457020731341
1123 => 0.098564494937091
1124 => 0.096148445824597
1125 => 0.092719168281538
1126 => 0.090837798797997
1127 => 0.093315337899671
1128 => 0.094828284574865
1129 => 0.095828246085686
1130 => 0.096130833834668
1201 => 0.088525755725571
1202 => 0.084427040421737
1203 => 0.087054269939628
1204 => 0.090259671273151
1205 => 0.088169114342223
1206 => 0.088251060215968
1207 => 0.085270475421162
1208 => 0.090523386890681
1209 => 0.089758081873511
1210 => 0.093728485656387
1211 => 0.092780916929123
1212 => 0.096018627083871
1213 => 0.095166029492642
1214 => 0.098705114425742
1215 => 0.10011695122246
1216 => 0.10248764493899
1217 => 0.10423153688733
1218 => 0.10525558359473
1219 => 0.10519410367152
1220 => 0.1092518869043
1221 => 0.10685915390008
1222 => 0.10385331732291
1223 => 0.10379895122252
1224 => 0.10535571657887
1225 => 0.10861826968806
1226 => 0.10946420224106
1227 => 0.10993696313394
1228 => 0.10921291336956
1229 => 0.1066157731822
1230 => 0.1054943412171
1231 => 0.10644983374238
]
'min_raw' => 0.039399550285546
'max_raw' => 0.10993696313394
'avg_raw' => 0.074668256709743
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.039399'
'max' => '$0.109936'
'avg' => '$0.074668'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.015597692001413
'max_diff' => 0.056800991239778
'year' => 2036
]
11 => [
'items' => [
101 => 0.10528134849037
102 => 0.10729848185439
103 => 0.11006843679963
104 => 0.10949645205703
105 => 0.11140851129481
106 => 0.11338729145141
107 => 0.11621703594793
108 => 0.11695683594445
109 => 0.11817969720663
110 => 0.11943842313442
111 => 0.1198426919788
112 => 0.12061456664
113 => 0.12061049847953
114 => 0.12293659472419
115 => 0.12550235091526
116 => 0.12647086448
117 => 0.12869790801796
118 => 0.12488417400411
119 => 0.12777693506263
120 => 0.13038627794793
121 => 0.1272753117895
122 => 0.13156305387674
123 => 0.13172953718575
124 => 0.13424323749379
125 => 0.13169512066489
126 => 0.13018205702576
127 => 0.13455021505816
128 => 0.13666382913436
129 => 0.13602719137345
130 => 0.13118234657823
131 => 0.12836243910225
201 => 0.12098219731807
202 => 0.12972441251415
203 => 0.13398249052224
204 => 0.13117131918487
205 => 0.13258911049137
206 => 0.14032412013927
207 => 0.1432691110084
208 => 0.14265657349466
209 => 0.14276008225126
210 => 0.14434914586888
211 => 0.15139592906272
212 => 0.14717333322981
213 => 0.15040134952642
214 => 0.15211347773067
215 => 0.15370379782471
216 => 0.14979847429957
217 => 0.14471770577396
218 => 0.14310841310574
219 => 0.13089180359749
220 => 0.13025587601854
221 => 0.1298989105979
222 => 0.12764829411451
223 => 0.1258799260543
224 => 0.12447365411753
225 => 0.12078317660709
226 => 0.12202860443176
227 => 0.11614675354264
228 => 0.1199097533015
301 => 0.1105221772602
302 => 0.11834042954073
303 => 0.11408531027675
304 => 0.11694250842144
305 => 0.11693253992628
306 => 0.1116715322664
307 => 0.10863709284261
308 => 0.1105707557456
309 => 0.11264379587195
310 => 0.11298013965791
311 => 0.11566789029361
312 => 0.11641798372303
313 => 0.11414516561338
314 => 0.11032764061263
315 => 0.11121436460183
316 => 0.10861912340927
317 => 0.10407106304382
318 => 0.1073375593998
319 => 0.10845288487344
320 => 0.10894547614129
321 => 0.10447298112014
322 => 0.1030676260819
323 => 0.10231942685161
324 => 0.10975029766858
325 => 0.11015737754618
326 => 0.1080746993371
327 => 0.11748860232978
328 => 0.11535794615057
329 => 0.11773841112619
330 => 0.11113390369401
331 => 0.11138620477207
401 => 0.10825952511175
402 => 0.11001025679672
403 => 0.1087728960705
404 => 0.10986881497764
405 => 0.11052570425194
406 => 0.11365187085489
407 => 0.1183761253417
408 => 0.11318492581288
409 => 0.11092304583882
410 => 0.11232630345343
411 => 0.11606336340026
412 => 0.12172520051628
413 => 0.1183732789885
414 => 0.11986080484321
415 => 0.12018576306704
416 => 0.11771418022734
417 => 0.12181633130101
418 => 0.1240147073872
419 => 0.1262697863618
420 => 0.12822780824956
421 => 0.12536905822909
422 => 0.12842833053671
423 => 0.12596309709103
424 => 0.1237515278391
425 => 0.12375488187676
426 => 0.12236753217916
427 => 0.11967936732273
428 => 0.11918362847936
429 => 0.1217625245475
430 => 0.12383055497178
501 => 0.12400088786272
502 => 0.12514585576484
503 => 0.12582343597521
504 => 0.13246464316245
505 => 0.1351357916321
506 => 0.13840202141854
507 => 0.13967440199498
508 => 0.14350381135639
509 => 0.14041125228763
510 => 0.13974215768
511 => 0.13045326315948
512 => 0.13197431911684
513 => 0.13440967646464
514 => 0.13049342130514
515 => 0.13297738380617
516 => 0.13346777062139
517 => 0.1303603484534
518 => 0.13202015689711
519 => 0.12761219776952
520 => 0.11847220680512
521 => 0.12182650672375
522 => 0.12429640050901
523 => 0.12077155754174
524 => 0.12708970213032
525 => 0.12339877249465
526 => 0.12222892499601
527 => 0.11766493282307
528 => 0.11981896144453
529 => 0.12273231599777
530 => 0.12093220159769
531 => 0.1246677092664
601 => 0.12995818434879
602 => 0.13372849194575
603 => 0.13401792934695
604 => 0.1315938741531
605 => 0.13547843807136
606 => 0.13550673287863
607 => 0.13112492890992
608 => 0.12844109837707
609 => 0.12783132643318
610 => 0.12935465630185
611 => 0.13120425998463
612 => 0.13412056947876
613 => 0.13588283422821
614 => 0.14047788606178
615 => 0.14172117533748
616 => 0.14308717330973
617 => 0.14491256785882
618 => 0.14710442203656
619 => 0.14230876987799
620 => 0.14249931007847
621 => 0.13803366518873
622 => 0.1332614831858
623 => 0.13688297446514
624 => 0.14161759256609
625 => 0.14053146594244
626 => 0.14040925450973
627 => 0.14061478024093
628 => 0.13979587623628
629 => 0.13609200377325
630 => 0.13423194220979
701 => 0.13663189617897
702 => 0.13790736490393
703 => 0.13988550566378
704 => 0.13964165806164
705 => 0.14473713622221
706 => 0.14671708495614
707 => 0.14621052934322
708 => 0.14630374776694
709 => 0.14988835037504
710 => 0.15387516570501
711 => 0.15760934436815
712 => 0.161407911291
713 => 0.15682859060491
714 => 0.15450349397376
715 => 0.15690240019811
716 => 0.15562950678842
717 => 0.16294392988524
718 => 0.16345036467058
719 => 0.17076425885135
720 => 0.17770601535122
721 => 0.17334602246814
722 => 0.17745729937849
723 => 0.18190398055437
724 => 0.19048234999065
725 => 0.18759345695518
726 => 0.18538061016474
727 => 0.18328948064018
728 => 0.18764078922334
729 => 0.19323867820172
730 => 0.19444440987175
731 => 0.19639815580215
801 => 0.19434403084902
802 => 0.19681799810062
803 => 0.20555218961506
804 => 0.20319213396902
805 => 0.19984047555376
806 => 0.20673528091374
807 => 0.20923048417064
808 => 0.22674312737565
809 => 0.24885356283319
810 => 0.23969969736882
811 => 0.2340175976817
812 => 0.23535302588938
813 => 0.243427008433
814 => 0.24602011537061
815 => 0.23897115681661
816 => 0.241460968145
817 => 0.25518007335729
818 => 0.26253993314209
819 => 0.25254425499329
820 => 0.22496657541509
821 => 0.19953869538476
822 => 0.20628331420116
823 => 0.20551868373727
824 => 0.22025815079464
825 => 0.20313584742238
826 => 0.20342414309858
827 => 0.21846840672533
828 => 0.21445485511368
829 => 0.20795341551967
830 => 0.19958616308872
831 => 0.18411852309292
901 => 0.17041840300159
902 => 0.19728749344991
903 => 0.19612884941151
904 => 0.19445096114248
905 => 0.19818491991874
906 => 0.21631596383356
907 => 0.21589798458686
908 => 0.21323901387425
909 => 0.21525581972467
910 => 0.20759985970298
911 => 0.20957297492354
912 => 0.19953466747865
913 => 0.20407240168049
914 => 0.20793946635025
915 => 0.20871583683558
916 => 0.21046503918147
917 => 0.19551829665247
918 => 0.20222894523469
919 => 0.206170822574
920 => 0.18836127734825
921 => 0.20581878512694
922 => 0.19525810711854
923 => 0.19167365438642
924 => 0.19649964777448
925 => 0.19461895345772
926 => 0.19300204292225
927 => 0.19209977906141
928 => 0.19564345598014
929 => 0.19547813921627
930 => 0.18967999597917
1001 => 0.18211655448893
1002 => 0.18465509371456
1003 => 0.18373281861496
1004 => 0.18039037467814
1005 => 0.18264277832334
1006 => 0.1727243325853
1007 => 0.15566016220896
1008 => 0.16693327584924
1009 => 0.16649927323688
1010 => 0.16628042943928
1011 => 0.17475186277398
1012 => 0.17393752992806
1013 => 0.17245950783877
1014 => 0.18036322964339
1015 => 0.17747826486464
1016 => 0.18636904652956
1017 => 0.19222509035378
1018 => 0.19073980821679
1019 => 0.19624744573818
1020 => 0.18471357653119
1021 => 0.18854466522324
1022 => 0.18933424729301
1023 => 0.18026569894319
1024 => 0.17407076485268
1025 => 0.17365763337626
1026 => 0.16291647137782
1027 => 0.16865431341776
1028 => 0.17370337696487
1029 => 0.17128526734896
1030 => 0.17051976608354
1031 => 0.17443054603163
1101 => 0.17473444712716
1102 => 0.16780546994304
1103 => 0.16924622371179
1104 => 0.17525440643285
1105 => 0.16909483292263
1106 => 0.15712778775287
1107 => 0.15415979509343
1108 => 0.1537638101617
1109 => 0.14571437867482
1110 => 0.15435813055494
1111 => 0.15058490122112
1112 => 0.16250448747643
1113 => 0.15569608373342
1114 => 0.15540258705584
1115 => 0.15495892378108
1116 => 0.1480304455825
1117 => 0.14954734198023
1118 => 0.15458973663613
1119 => 0.15638891985599
1120 => 0.15620125030589
1121 => 0.15456502615145
1122 => 0.15531408119053
1123 => 0.15290111392157
1124 => 0.15204904495733
1125 => 0.14935968092616
1126 => 0.14540705875612
1127 => 0.14595669511171
1128 => 0.138125516333
1129 => 0.13385867450224
1130 => 0.13267766891956
1201 => 0.13109837889678
1202 => 0.13285605392997
1203 => 0.13810333158745
1204 => 0.13177400146047
1205 => 0.12092280890864
1206 => 0.12157498407053
1207 => 0.12304022802677
1208 => 0.12030975560788
1209 => 0.11772559261458
1210 => 0.11997231267748
1211 => 0.11537451934453
1212 => 0.12359584938485
1213 => 0.12337348544727
1214 => 0.12643788888266
1215 => 0.1283541232387
1216 => 0.12393782343627
1217 => 0.1228271359789
1218 => 0.12345983403255
1219 => 0.1130027445581
1220 => 0.1255833215773
1221 => 0.12569211892979
1222 => 0.12476052994505
1223 => 0.13145929882603
1224 => 0.14559579056333
1225 => 0.14027707373269
1226 => 0.13821750581681
1227 => 0.13430226570317
1228 => 0.13951909069064
1229 => 0.13911851992675
1230 => 0.13730698702048
1231 => 0.13621136626645
]
'min_raw' => 0.10231942685161
'max_raw' => 0.26253993314209
'avg_raw' => 0.18242967999685
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.102319'
'max' => '$0.262539'
'avg' => '$0.182429'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.062919876566066
'max_diff' => 0.15260297000815
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0032116898910819
]
1 => [
'year' => 2028
'avg' => 0.0055121922133338
]
2 => [
'year' => 2029
'avg' => 0.015058315650841
]
3 => [
'year' => 2030
'avg' => 0.011617468099108
]
4 => [
'year' => 2031
'avg' => 0.011409793410295
]
5 => [
'year' => 2032
'avg' => 0.020004958642384
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0032116898910819
'min' => '$0.003211'
'max_raw' => 0.020004958642384
'max' => '$0.0200049'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.020004958642384
]
1 => [
'year' => 2033
'avg' => 0.051454810713851
]
2 => [
'year' => 2034
'avg' => 0.032614531832931
]
3 => [
'year' => 2035
'avg' => 0.038468915089147
]
4 => [
'year' => 2036
'avg' => 0.074668256709743
]
5 => [
'year' => 2037
'avg' => 0.18242967999685
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.020004958642384
'min' => '$0.0200049'
'max_raw' => 0.18242967999685
'max' => '$0.182429'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.18242967999685
]
]
]
]
'prediction_2025_max_price' => '$0.005491'
'last_price' => 0.00532461
'sma_50day_nextmonth' => '$0.005234'
'sma_200day_nextmonth' => '$0.006197'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.005246'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005237'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005233'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00582'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.006282'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006758'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.006279'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005268'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005263'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005358'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.005639'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.006116'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.006418'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.007144'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006751'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006895'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.008937'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0054046'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.005617'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.006016'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.006383'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.021863'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.345509'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$1.05'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '40.18'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 31.12
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.005219'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005245'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 25.34
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -54.6
'cci_20_action' => 'NEUTRAL'
'adx_14' => 20.74
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000693'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -74.66
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 64.99
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000559'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 20
'buy_signals' => 11
'sell_pct' => 64.52
'buy_pct' => 35.48
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767705369
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Borealis para 2026
A previsão de preço para Borealis em 2026 sugere que o preço médio poderia variar entre $0.001839 na extremidade inferior e $0.005491 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Borealis poderia potencialmente ganhar 3.13% até 2026 se BRL atingir a meta de preço prevista.
Previsão de preço de Borealis 2027-2032
A previsão de preço de BRL para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.003211 na extremidade inferior e $0.0200049 na extremidade superior. Considerando a volatilidade de preços no mercado, se Borealis atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Borealis | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00177 | $0.003211 | $0.004652 |
| 2028 | $0.003196 | $0.005512 | $0.007828 |
| 2029 | $0.00702 | $0.015058 | $0.023095 |
| 2030 | $0.005971 | $0.011617 | $0.017263 |
| 2031 | $0.007059 | $0.0114097 | $0.01576 |
| 2032 | $0.010775 | $0.0200049 | $0.029234 |
Previsão de preço de Borealis 2032-2037
A previsão de preço de Borealis para 2032-2037 é atualmente estimada entre $0.0200049 na extremidade inferior e $0.182429 na extremidade superior. Comparado ao preço atual, Borealis poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Borealis | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.010775 | $0.0200049 | $0.029234 |
| 2033 | $0.02504 | $0.051454 | $0.077868 |
| 2034 | $0.020131 | $0.032614 | $0.045097 |
| 2035 | $0.0238018 | $0.038468 | $0.053135 |
| 2036 | $0.039399 | $0.074668 | $0.109936 |
| 2037 | $0.102319 | $0.182429 | $0.262539 |
Borealis Histograma de preços potenciais
Previsão de preço de Borealis baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Borealis é Baixista, com 11 indicadores técnicos mostrando sinais de alta e 20 indicando sinais de baixa. A previsão de preço de BRL foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Borealis
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Borealis está projetado para aumentar no próximo mês, alcançando $0.006197 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Borealis é esperado para alcançar $0.005234 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 40.18, sugerindo que o mercado de BRL está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BRL para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.005246 | BUY |
| SMA 5 | $0.005237 | BUY |
| SMA 10 | $0.005233 | BUY |
| SMA 21 | $0.00582 | SELL |
| SMA 50 | $0.006282 | SELL |
| SMA 100 | $0.006758 | SELL |
| SMA 200 | $0.006279 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.005268 | BUY |
| EMA 5 | $0.005263 | BUY |
| EMA 10 | $0.005358 | SELL |
| EMA 21 | $0.005639 | SELL |
| EMA 50 | $0.006116 | SELL |
| EMA 100 | $0.006418 | SELL |
| EMA 200 | $0.007144 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.006751 | SELL |
| SMA 50 | $0.006895 | SELL |
| SMA 100 | $0.008937 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.006383 | SELL |
| EMA 50 | $0.021863 | SELL |
| EMA 100 | $0.345509 | SELL |
| EMA 200 | $1.05 | SELL |
Osciladores de Borealis
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 40.18 | NEUTRAL |
| Stoch RSI (14) | 31.12 | NEUTRAL |
| Estocástico Rápido (14) | 25.34 | NEUTRAL |
| Índice de Canal de Commodities (20) | -54.6 | NEUTRAL |
| Índice Direcional Médio (14) | 20.74 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000693 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -74.66 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 64.99 | NEUTRAL |
| VWMA (10) | 0.005219 | BUY |
| Média Móvel de Hull (9) | 0.005245 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000559 | SELL |
Previsão do preço de Borealis com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Borealis
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Borealis por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.007481 | $0.010513 | $0.014773 | $0.020758 | $0.029169 | $0.040987 |
| Amazon.com stock | $0.01111 | $0.023181 | $0.04837 | $0.100927 | $0.210591 | $0.439412 |
| Apple stock | $0.007552 | $0.010712 | $0.015195 | $0.021553 | $0.030571 | $0.043363 |
| Netflix stock | $0.0084014 | $0.013256 | $0.020916 | $0.0330022 | $0.052072 | $0.082161 |
| Google stock | $0.006895 | $0.008929 | $0.011563 | $0.014974 | $0.019392 | $0.025112 |
| Tesla stock | $0.01207 | $0.027362 | $0.062029 | $0.140616 | $0.318766 | $0.72262 |
| Kodak stock | $0.003992 | $0.002994 | $0.002245 | $0.001683 | $0.001262 | $0.000946 |
| Nokia stock | $0.003527 | $0.002336 | $0.001547 | $0.001025 | $0.000679 | $0.00045 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Borealis
Você pode fazer perguntas como: 'Devo investir em Borealis agora?', 'Devo comprar BRL hoje?', 'Borealis será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Borealis regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Borealis, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Borealis para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Borealis é de $0.005324 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Borealis com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Borealis tiver 1% da média anterior do crescimento anual do Bitcoin | $0.005463 | $0.005605 | $0.00575 | $0.00590018 |
| Se Borealis tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0056014 | $0.005892 | $0.006198 | $0.006521 |
| Se Borealis tiver 5% da média anterior do crescimento anual do Bitcoin | $0.006016 | $0.006798 | $0.007682 | $0.00868 |
| Se Borealis tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0067086 | $0.008452 | $0.010649 | $0.013417 |
| Se Borealis tiver 20% da média anterior do crescimento anual do Bitcoin | $0.008092 | $0.012299 | $0.018693 | $0.028412 |
| Se Borealis tiver 50% da média anterior do crescimento anual do Bitcoin | $0.012244 | $0.028158 | $0.064755 | $0.148916 |
| Se Borealis tiver 100% da média anterior do crescimento anual do Bitcoin | $0.019164 | $0.06898 | $0.248284 | $0.893655 |
Perguntas Frequentes sobre Borealis
BRL é um bom investimento?
A decisão de adquirir Borealis depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Borealis experimentou uma queda de 0% nas últimas 24 horas, e Borealis registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Borealis dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Borealis pode subir?
Parece que o valor médio de Borealis pode potencialmente subir para $0.005491 até o final deste ano. Observando as perspectivas de Borealis em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.017263. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Borealis na próxima semana?
Com base na nossa nova previsão experimental de Borealis, o preço de Borealis aumentará 0.86% na próxima semana e atingirá $0.00537 até 13 de janeiro de 2026.
Qual será o preço de Borealis no próximo mês?
Com base na nossa nova previsão experimental de Borealis, o preço de Borealis diminuirá -11.62% no próximo mês e atingirá $0.004705 até 5 de fevereiro de 2026.
Até onde o preço de Borealis pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Borealis em 2026, espera-se que BRL fluctue dentro do intervalo de $0.001839 e $0.005491. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Borealis não considera flutuações repentinas e extremas de preço.
Onde estará Borealis em 5 anos?
O futuro de Borealis parece seguir uma tendência de alta, com um preço máximo de $0.017263 projetada após um período de cinco anos. Com base na previsão de Borealis para 2030, o valor de Borealis pode potencialmente atingir seu pico mais alto de aproximadamente $0.017263, enquanto seu pico mais baixo está previsto para cerca de $0.005971.
Quanto será Borealis em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Borealis, espera-se que o valor de BRL em 2026 aumente 3.13% para $0.005491 se o melhor cenário ocorrer. O preço ficará entre $0.005491 e $0.001839 durante 2026.
Quanto será Borealis em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Borealis, o valor de BRL pode diminuir -12.62% para $0.004652 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.004652 e $0.00177 ao longo do ano.
Quanto será Borealis em 2028?
Nosso novo modelo experimental de previsão de preços de Borealis sugere que o valor de BRL em 2028 pode aumentar 47.02%, alcançando $0.007828 no melhor cenário. O preço é esperado para variar entre $0.007828 e $0.003196 durante o ano.
Quanto será Borealis em 2029?
Com base no nosso modelo de previsão experimental, o valor de Borealis pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.023095 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.023095 e $0.00702.
Quanto será Borealis em 2030?
Usando nossa nova simulação experimental para previsões de preços de Borealis, espera-se que o valor de BRL em 2030 aumente 224.23%, alcançando $0.017263 no melhor cenário. O preço está previsto para variar entre $0.017263 e $0.005971 ao longo de 2030.
Quanto será Borealis em 2031?
Nossa simulação experimental indica que o preço de Borealis poderia aumentar 195.98% em 2031, potencialmente atingindo $0.01576 sob condições ideais. O preço provavelmente oscilará entre $0.01576 e $0.007059 durante o ano.
Quanto será Borealis em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Borealis, BRL poderia ver um 449.04% aumento em valor, atingindo $0.029234 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.029234 e $0.010775 ao longo do ano.
Quanto será Borealis em 2033?
De acordo com nossa previsão experimental de preços de Borealis, espera-se que o valor de BRL seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.077868. Ao longo do ano, o preço de BRL poderia variar entre $0.077868 e $0.02504.
Quanto será Borealis em 2034?
Os resultados da nossa nova simulação de previsão de preços de Borealis sugerem que BRL pode aumentar 746.96% em 2034, atingindo potencialmente $0.045097 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.045097 e $0.020131.
Quanto será Borealis em 2035?
Com base em nossa previsão experimental para o preço de Borealis, BRL poderia aumentar 897.93%, com o valor potencialmente atingindo $0.053135 em 2035. A faixa de preço esperada para o ano está entre $0.053135 e $0.0238018.
Quanto será Borealis em 2036?
Nossa recente simulação de previsão de preços de Borealis sugere que o valor de BRL pode aumentar 1964.7% em 2036, possivelmente atingindo $0.109936 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.109936 e $0.039399.
Quanto será Borealis em 2037?
De acordo com a simulação experimental, o valor de Borealis poderia aumentar 4830.69% em 2037, com um pico de $0.262539 sob condições favoráveis. O preço é esperado para cair entre $0.262539 e $0.102319 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de Borealis?
Traders de Borealis utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Borealis
Médias móveis são ferramentas populares para a previsão de preço de Borealis. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BRL em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BRL acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BRL.
Como ler gráficos de Borealis e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Borealis em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BRL dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Borealis?
A ação de preço de Borealis é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BRL. A capitalização de mercado de Borealis pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BRL, grandes detentores de Borealis, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Borealis.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


