Previsão de Preço Bismuth - Projeção BIS
Previsão de Preço Bismuth até $0.0088073 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.00295 | $0.0088073 |
| 2027 | $0.00284 | $0.007461 |
| 2028 | $0.005126 | $0.012555 |
| 2029 | $0.01126 | $0.037041 |
| 2030 | $0.009576 | $0.027688 |
| 2031 | $0.011322 | $0.025276 |
| 2032 | $0.017282 | $0.046886 |
| 2033 | $0.040161 | $0.124889 |
| 2034 | $0.032288 | $0.072329 |
| 2035 | $0.038174 | $0.085221 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Bismuth hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.40, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Bismuth para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Bismuth'
'name_with_ticker' => 'Bismuth <small>BIS</small>'
'name_lang' => 'Bismuth'
'name_lang_with_ticker' => 'Bismuth <small>BIS</small>'
'name_with_lang' => 'Bismuth'
'name_with_lang_with_ticker' => 'Bismuth <small>BIS</small>'
'image' => '/uploads/coins/bismuth.png?1717118772'
'price_for_sd' => 0.008539
'ticker' => 'BIS'
'marketcap' => '$328.57K'
'low24h' => '$0.01594'
'high24h' => '$0.0225'
'volume24h' => '$1.71'
'current_supply' => '38.48M'
'max_supply' => '41.6M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.008539'
'change_24h_pct' => '41.1765%'
'ath_price' => '$8.94'
'ath_days' => 2916
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 de jan. de 2018'
'ath_pct' => '-99.90%'
'fdv' => '$355.27K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.421073'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.008612'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.007547'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00295'
'current_year_max_price_prediction' => '$0.0088073'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.009576'
'grand_prediction_max_price' => '$0.027688'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0087016858550336
107 => 0.0087341747913044
108 => 0.0088073740236485
109 => 0.0081818945977062
110 => 0.0084627164968432
111 => 0.0086276730531326
112 => 0.0078823933306463
113 => 0.008612941269276
114 => 0.0081710063924667
115 => 0.0080210070576385
116 => 0.008222961401075
117 => 0.0081442595970308
118 => 0.0080765964074385
119 => 0.0080388391850449
120 => 0.0081871321659771
121 => 0.0081802141211682
122 => 0.0079375780219358
123 => 0.0076210691215997
124 => 0.007727299897603
125 => 0.0076887052607622
126 => 0.0075488333180438
127 => 0.0076430901192332
128 => 0.0072280308690704
129 => 0.0065139430020678
130 => 0.0069856913201126
131 => 0.0069675295230313
201 => 0.006958371521371
202 => 0.0073128773442159
203 => 0.0072787997891902
204 => 0.0072169486931303
205 => 0.0075476973741604
206 => 0.0074269696563869
207 => 0.0077990240355372
208 => 0.0080440831126141
209 => 0.0079819282038368
210 => 0.0082124074503009
211 => 0.0077297472401261
212 => 0.0078900676009796
213 => 0.0079231094051571
214 => 0.0075436159867773
215 => 0.0072843752986367
216 => 0.0072670869002979
217 => 0.0068175992726294
218 => 0.0070577119351925
219 => 0.007269001141711
220 => 0.0071678100084934
221 => 0.0071357759187159
222 => 0.0072994311360431
223 => 0.0073121485480415
224 => 0.0070221902067455
225 => 0.0070824817276874
226 => 0.0073339073926466
227 => 0.0070761464460222
228 => 0.0065753590317427
301 => 0.0064511568290737
302 => 0.0064345859657369
303 => 0.0060977397414976
304 => 0.006459456614152
305 => 0.0063015575058288
306 => 0.0068003588970999
307 => 0.0065154462175314
308 => 0.0065031642013629
309 => 0.0064845981325443
310 => 0.0061946606723992
311 => 0.0062581385496842
312 => 0.0064691486817329
313 => 0.0065444394740472
314 => 0.0065365860275695
315 => 0.0064681146169697
316 => 0.006499460478112
317 => 0.0063984845377508
318 => 0.0063628278315768
319 => 0.006250285458742
320 => 0.0060848792612988
321 => 0.0061078800075484
322 => 0.0057801670495276
323 => 0.0056016116369548
324 => 0.0055521898520772
325 => 0.0054861009758602
326 => 0.0055596547665017
327 => 0.0057792386798925
328 => 0.0055143738930172
329 => 0.0050602817940239
330 => 0.0050875735029087
331 => 0.0051488898697917
401 => 0.0050346272257536
402 => 0.0049264872225083
403 => 0.0050205061816543
404 => 0.0048281013731205
405 => 0.0051721410716782
406 => 0.0051628357619923
407 => 0.0052910724863424
408 => 0.005371261541761
409 => 0.0051864517305361
410 => 0.0051399725627919
411 => 0.0051664492090994
412 => 0.0047288492230952
413 => 0.0052553112315711
414 => 0.0052598640968822
415 => 0.0052208796999638
416 => 0.0055012044667862
417 => 0.0060927771602691
418 => 0.0058702037170244
419 => 0.0057840165524821
420 => 0.0056201746896848
421 => 0.005838484243895
422 => 0.0058217214762912
423 => 0.0057459138840961
424 => 0.0057000652158024
425 => 0.0057845427929304
426 => 0.0056895975091243
427 => 0.0056725427272308
428 => 0.0055692093047418
429 => 0.0055323239742844
430 => 0.0055050155440611
501 => 0.0054749516456561
502 => 0.0055412651140808
503 => 0.0053909900703672
504 => 0.0052097730992929
505 => 0.0051947068689429
506 => 0.0052363060555758
507 => 0.005217901512186
508 => 0.0051946187550698
509 => 0.0051501656310536
510 => 0.0051369773387487
511 => 0.0051798328906898
512 => 0.0051314514711822
513 => 0.005202840891138
514 => 0.0051834269190668
515 => 0.0050749820492314
516 => 0.0049398195899834
517 => 0.0049386163605832
518 => 0.0049094958304491
519 => 0.0048724064570223
520 => 0.0048620890418248
521 => 0.0050125881671552
522 => 0.0053241168525294
523 => 0.0052629563173408
524 => 0.0053071510719983
525 => 0.0055245455237569
526 => 0.0055936486826917
527 => 0.0055446008972778
528 => 0.0054774612634676
529 => 0.0054804150666158
530 => 0.0057098515198946
531 => 0.0057241611900531
601 => 0.0057603171100692
602 => 0.0058067876849515
603 => 0.0055525150371247
604 => 0.0054684388477696
605 => 0.0054285988848837
606 => 0.0053059072192012
607 => 0.0054382196618513
608 => 0.0053611268677028
609 => 0.0053715293194983
610 => 0.0053647547091198
611 => 0.0053684541044836
612 => 0.0051720449055709
613 => 0.0052436060946911
614 => 0.0051246217382579
615 => 0.0049653150416146
616 => 0.0049647809897073
617 => 0.0050037710780211
618 => 0.0049805782478097
619 => 0.0049181669380532
620 => 0.004927032170031
621 => 0.0048493634094696
622 => 0.0049364625638015
623 => 0.0049389602558919
624 => 0.0049054223371512
625 => 0.0050396106017665
626 => 0.0050945876432667
627 => 0.0050725122666996
628 => 0.0050930387759983
629 => 0.0052654978137011
630 => 0.0052936161617621
701 => 0.0053061044745769
702 => 0.0052893717897894
703 => 0.00509619101062
704 => 0.0051047593996442
705 => 0.0050418902461996
706 => 0.004988772436527
707 => 0.0049908968703477
708 => 0.0050182063293513
709 => 0.0051374683384986
710 => 0.0053884482058697
711 => 0.0053979727083725
712 => 0.0054095166832553
713 => 0.0053625615358701
714 => 0.0053483994141185
715 => 0.0053670829082627
716 => 0.0054613377505527
717 => 0.0057037867948628
718 => 0.0056180891099764
719 => 0.0055484155581998
720 => 0.0056095380469626
721 => 0.0056001287189115
722 => 0.0055207045209469
723 => 0.0055184753482406
724 => 0.0053660349188945
725 => 0.0053096811630659
726 => 0.00526258774669
727 => 0.0052111629654123
728 => 0.0051806766312966
729 => 0.0052275174962894
730 => 0.0052382305563181
731 => 0.0051358121863732
801 => 0.0051218529409985
802 => 0.0052054899927496
803 => 0.0051686844445776
804 => 0.0052065398636062
805 => 0.0052153226455386
806 => 0.0052139084153629
807 => 0.005175479195981
808 => 0.0051999728344392
809 => 0.0051420380775804
810 => 0.0050790427310156
811 => 0.005038855624656
812 => 0.0050037870443112
813 => 0.0050232451308844
814 => 0.0049538806051572
815 => 0.0049316894973451
816 => 0.0051916749408539
817 => 0.0053837289832883
818 => 0.0053809364414496
819 => 0.0053639375611897
820 => 0.0053386806732204
821 => 0.0054594900518823
822 => 0.0054174024800163
823 => 0.0054480247050831
824 => 0.0054558193465734
825 => 0.0054794113787686
826 => 0.0054878435024747
827 => 0.0054623557681484
828 => 0.0053768158186849
829 => 0.0051636583975161
830 => 0.0050644330425546
831 => 0.0050316870226883
901 => 0.0050328772783169
902 => 0.0050000447145452
903 => 0.0050097153760283
904 => 0.0049966816531384
905 => 0.0049719989351812
906 => 0.0050217210426046
907 => 0.0050274510522917
908 => 0.0050158453182841
909 => 0.0050185788887766
910 => 0.0049224883680679
911 => 0.0049297939216598
912 => 0.0048891156709155
913 => 0.0048814889892846
914 => 0.0047786579136637
915 => 0.0045964777575985
916 => 0.0046974232487143
917 => 0.0045754952905304
918 => 0.0045293193252562
919 => 0.0047479091630286
920 => 0.0047259688060546
921 => 0.004688416452159
922 => 0.0046328686941511
923 => 0.0046122654903721
924 => 0.0044870869463928
925 => 0.0044796907302129
926 => 0.0045417325967141
927 => 0.0045131024100541
928 => 0.0044728947848838
929 => 0.0043272668422987
930 => 0.0041635328190783
1001 => 0.004168474920044
1002 => 0.0042205556664506
1003 => 0.0043719874606734
1004 => 0.0043128204388739
1005 => 0.004269894085695
1006 => 0.0042618552701061
1007 => 0.0043624778776023
1008 => 0.0045048799482975
1009 => 0.004571691813801
1010 => 0.0045054832841936
1011 => 0.004429426490301
1012 => 0.004434055714932
1013 => 0.0044648518724728
1014 => 0.0044680881131961
1015 => 0.0044185829591368
1016 => 0.0044325183700264
1017 => 0.0044113492066044
1018 => 0.004281434089759
1019 => 0.0042790843372605
1020 => 0.0042472010724224
1021 => 0.0042462356598343
1022 => 0.0041919942726915
1023 => 0.0041844055276772
1024 => 0.0040767059612883
1025 => 0.0041475941420298
1026 => 0.0041000460721849
1027 => 0.0040283799154729
1028 => 0.0040160246430431
1029 => 0.0040156532286344
1030 => 0.0040892383473183
1031 => 0.0041467342570746
1101 => 0.0041008731912169
1102 => 0.0040904315155006
1103 => 0.0042019212945002
1104 => 0.0041877332038706
1105 => 0.0041754464088887
1106 => 0.0044921294047464
1107 => 0.0042414501024427
1108 => 0.004132139618364
1109 => 0.0039968471368186
1110 => 0.0040408990510137
1111 => 0.0040501814365919
1112 => 0.0037248274067781
1113 => 0.0035928313174029
1114 => 0.003547535233697
1115 => 0.0035214666971317
1116 => 0.0035333464565926
1117 => 0.0034145344945578
1118 => 0.0034943780980136
1119 => 0.0033914969818167
1120 => 0.0033742486278821
1121 => 0.003558212808167
1122 => 0.0035838103491505
1123 => 0.0034746032867823
1124 => 0.0035447318998401
1125 => 0.0035193022898847
1126 => 0.0033932605832672
1127 => 0.0033884467171744
1128 => 0.003325203419374
1129 => 0.0032262399046318
1130 => 0.003181010922849
1201 => 0.0031574552764406
1202 => 0.0031671747952391
1203 => 0.0031622603091124
1204 => 0.003130189962849
1205 => 0.00316409854382
1206 => 0.0030774761314321
1207 => 0.003042982388855
1208 => 0.0030274023655817
1209 => 0.0029505199887875
1210 => 0.0030728740400153
1211 => 0.0030969793294829
1212 => 0.0031211321138173
1213 => 0.0033313656116417
1214 => 0.003320862940204
1215 => 0.0034158019749916
1216 => 0.0034121128186814
1217 => 0.0033850346680496
1218 => 0.0032707964046736
1219 => 0.003316329740354
1220 => 0.0031761852105812
1221 => 0.0032811910211887
1222 => 0.0032332707543749
1223 => 0.0032649891307755
1224 => 0.0032079566300765
1225 => 0.0032395207707776
1226 => 0.003102695587863
1227 => 0.0029749301572395
1228 => 0.0030263466962278
1229 => 0.0030822423543026
1230 => 0.0032034383829574
1231 => 0.0031312550281361
]
'min_raw' => 0.0029505199887875
'max_raw' => 0.0088073740236485
'avg_raw' => 0.005878947006218
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00295'
'max' => '$0.0088073'
'avg' => '$0.005878'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0055893400112125
'max_diff' => 0.00026751402364854
'year' => 2026
]
1 => [
'items' => [
101 => 0.0031572148920847
102 => 0.0030702536934857
103 => 0.0028908279015377
104 => 0.0028918434320345
105 => 0.0028642426829467
106 => 0.0028403916059594
107 => 0.0031395461547601
108 => 0.0031023415576832
109 => 0.0030430609014584
110 => 0.0031224104155349
111 => 0.0031433916865029
112 => 0.0031439889937912
113 => 0.0032018803509541
114 => 0.0032327769786495
115 => 0.0032382226431944
116 => 0.0033293159445158
117 => 0.003359849217569
118 => 0.0034856114480446
119 => 0.0032301556156522
120 => 0.0032248946708915
121 => 0.0031235270259235
122 => 0.0030592380629258
123 => 0.0031279289462216
124 => 0.003188779691581
125 => 0.0031254178282027
126 => 0.0031336915499179
127 => 0.0030486334251869
128 => 0.0030790377024215
129 => 0.0031052259618744
130 => 0.0030907663442792
131 => 0.0030691195968859
201 => 0.0031837906243943
202 => 0.0031773204356229
203 => 0.0032841047327143
204 => 0.0033673507285154
205 => 0.0035165424349926
206 => 0.0033608531117441
207 => 0.0033551791739959
208 => 0.0034106428256127
209 => 0.0033598407263729
210 => 0.0033919458994636
211 => 0.0035113697952637
212 => 0.0035138930339962
213 => 0.0034716255342166
214 => 0.0034690535530137
215 => 0.0034771714887022
216 => 0.0035247184915886
217 => 0.0035081041078083
218 => 0.0035273306933436
219 => 0.0035513738329634
220 => 0.0036508264525111
221 => 0.0036748041423888
222 => 0.0036165507869929
223 => 0.00362181041275
224 => 0.0036000220587415
225 => 0.0035789747817766
226 => 0.0036262859866857
227 => 0.0037127481435612
228 => 0.0037122102669707
301 => 0.0037322678067816
302 => 0.0037447634879182
303 => 0.0036911228770823
304 => 0.0036562048118481
305 => 0.0036695946199531
306 => 0.0036910052147051
307 => 0.0036626514526398
308 => 0.0034876388984325
309 => 0.0035407265275338
310 => 0.0035318901501989
311 => 0.0035193060743338
312 => 0.0035726860959096
313 => 0.0035675374626072
314 => 0.0034133159061591
315 => 0.0034231886698323
316 => 0.0034139163016177
317 => 0.0034438772202672
318 => 0.0033582227384425
319 => 0.00338456948016
320 => 0.0034010939095799
321 => 0.0034108269254548
322 => 0.0034459892527866
323 => 0.0034418633595163
324 => 0.0034457327814679
325 => 0.0034978692303907
326 => 0.0037615574979736
327 => 0.0037759094685827
328 => 0.0037052351163166
329 => 0.003733468126057
330 => 0.0036792669212359
331 => 0.0037156525531488
401 => 0.0037405466784087
402 => 0.0036280549132241
403 => 0.0036213938809554
404 => 0.0035669689684816
405 => 0.0035962138336604
406 => 0.0035496831503807
407 => 0.0035611001524833
408 => 0.0035291772192881
409 => 0.003586632143247
410 => 0.0036508756758256
411 => 0.003667106129209
412 => 0.0036244107940069
413 => 0.0035934965575609
414 => 0.0035392213421443
415 => 0.0036294822349842
416 => 0.0036558772707015
417 => 0.0036293435930983
418 => 0.0036231951602253
419 => 0.003611543891041
420 => 0.0036256670320619
421 => 0.0036557335176683
422 => 0.0036415547182971
423 => 0.0036509200650801
424 => 0.0036152290206471
425 => 0.0036911406343565
426 => 0.0038117065460517
427 => 0.0038120941851724
428 => 0.0037979153093722
429 => 0.0037921136188828
430 => 0.0038066620059
501 => 0.0038145539090507
502 => 0.0038616007249462
503 => 0.0039120838328299
504 => 0.0041476664698175
505 => 0.0040815158080505
506 => 0.0042905387384598
507 => 0.0044558487381829
508 => 0.0045054179789696
509 => 0.0044598166098588
510 => 0.0043038167894682
511 => 0.0042961626940434
512 => 0.0045292922871323
513 => 0.0044634224990729
514 => 0.0044555874973791
515 => 0.004372236316802
516 => 0.0044215071877676
517 => 0.0044107309255274
518 => 0.0043937200683884
519 => 0.0044877254579521
520 => 0.0046636951552965
521 => 0.004636268627732
522 => 0.0046157959971851
523 => 0.0045260908896218
524 => 0.004580113400736
525 => 0.0045608770192613
526 => 0.0046435287217861
527 => 0.0045945676841698
528 => 0.0044629234706436
529 => 0.0044838882455526
530 => 0.0044807194620004
531 => 0.0045459328029629
601 => 0.0045263573767006
602 => 0.0044768970458483
603 => 0.0046630937100013
604 => 0.0046510031343115
605 => 0.0046681448063492
606 => 0.0046756911005041
607 => 0.0047890257288208
608 => 0.0048354552997385
609 => 0.0048459956252009
610 => 0.0048901001265808
611 => 0.0048448982650283
612 => 0.0050257379396197
613 => 0.0051459857709354
614 => 0.0052856598149054
615 => 0.0054897611339894
616 => 0.0055665051180077
617 => 0.0055526420042036
618 => 0.0057073892949569
619 => 0.0059854667366016
620 => 0.0056088494056983
621 => 0.0060054283696378
622 => 0.0058798760483789
623 => 0.0055821937532638
624 => 0.0055630265229021
625 => 0.0057646204293165
626 => 0.0062117363110494
627 => 0.0060997388538217
628 => 0.0062119194987674
629 => 0.0060810548176124
630 => 0.0060745562831789
701 => 0.0062055636932992
702 => 0.0065116696478873
703 => 0.0063662501830726
704 => 0.0061577557219451
705 => 0.0063117047875085
706 => 0.0061783398596041
707 => 0.0058778313505424
708 => 0.0060996532114768
709 => 0.0059513272501928
710 => 0.0059946166511373
711 => 0.0063063757599347
712 => 0.0062688640791519
713 => 0.0063174076675729
714 => 0.0062317295046167
715 => 0.0061516925902094
716 => 0.0060022977458488
717 => 0.0059580692975105
718 => 0.0059702924494583
719 => 0.0059580632403234
720 => 0.0058744781979132
721 => 0.0058564280159629
722 => 0.0058263435885824
723 => 0.0058356680105982
724 => 0.0057791004856133
725 => 0.0058858550927068
726 => 0.0059056696885017
727 => 0.0059833567889489
728 => 0.0059914225214344
729 => 0.0062077799903733
730 => 0.0060886139322213
731 => 0.0061685608123321
801 => 0.0061614096108858
802 => 0.0055886454312506
803 => 0.0056675672816632
804 => 0.0057903449138642
805 => 0.0057350337569788
806 => 0.0056568367219603
807 => 0.005593688423523
808 => 0.0054980122941456
809 => 0.005632674608947
810 => 0.0058097412331702
811 => 0.0059959132232291
812 => 0.006219586670813
813 => 0.0061696653611582
814 => 0.0059917318037106
815 => 0.0059997137731171
816 => 0.0060490551671993
817 => 0.0059851535787245
818 => 0.0059663077527761
819 => 0.0060464660401113
820 => 0.006047018046182
821 => 0.0059734915458768
822 => 0.0058917802959952
823 => 0.0058914379228746
824 => 0.0058768981951952
825 => 0.0060836414028664
826 => 0.0061973292629896
827 => 0.0062103633929355
828 => 0.0061964519621937
829 => 0.0062018059197613
830 => 0.0061356534588967
831 => 0.0062868583675303
901 => 0.0064256189443081
902 => 0.0063884281455443
903 => 0.0063326738512138
904 => 0.0062882628702889
905 => 0.0063779663298397
906 => 0.0063739719759923
907 => 0.0064244069917221
908 => 0.0064221189680818
909 => 0.0064051595692487
910 => 0.0063884287512179
911 => 0.0064547645535443
912 => 0.0064356609077947
913 => 0.0064165275888067
914 => 0.0063781527884116
915 => 0.0063833685611232
916 => 0.0063276238935577
917 => 0.0063018338596394
918 => 0.005914013628453
919 => 0.0058103753902883
920 => 0.0058429820897658
921 => 0.0058537170618663
922 => 0.0058086135678011
923 => 0.0058732803921537
924 => 0.0058632021360774
925 => 0.0059024107348875
926 => 0.0058779149045904
927 => 0.0058789202220103
928 => 0.0059509572358523
929 => 0.005971869887438
930 => 0.0059612335440557
1001 => 0.0059686828743681
1002 => 0.0061403495472522
1003 => 0.0061159440359593
1004 => 0.0061029790945048
1005 => 0.0061065704718917
1006 => 0.0061504349873885
1007 => 0.0061627146568139
1008 => 0.0061106848345816
1009 => 0.0061352223995272
1010 => 0.0062397002367848
1011 => 0.0062762615668916
1012 => 0.0063929477821582
1013 => 0.0063433774039809
1014 => 0.0064343659784811
1015 => 0.006714033836204
1016 => 0.0069374518724969
1017 => 0.0067319874131811
1018 => 0.0071422661847176
1019 => 0.007461727059353
1020 => 0.0074494656188945
1021 => 0.0073937602261387
1022 => 0.0070300625136731
1023 => 0.0066953824562348
1024 => 0.0069753565355478
1025 => 0.0069760702470531
1026 => 0.0069520202253434
1027 => 0.0068026476060221
1028 => 0.006946822381975
1029 => 0.0069582664521242
1030 => 0.0069518608160645
1031 => 0.0068373371790535
1101 => 0.0066624807528437
1102 => 0.0066966472799779
1103 => 0.0067526127484021
1104 => 0.0066466584410554
1105 => 0.0066127996198602
1106 => 0.0066757496103663
1107 => 0.0068785875959283
1108 => 0.0068402422497183
1109 => 0.006839240897763
1110 => 0.0070032985498071
1111 => 0.0068858686768007
1112 => 0.0066970782293015
1113 => 0.0066494061514678
1114 => 0.006480202390918
1115 => 0.0065970720310129
1116 => 0.0066012779613009
1117 => 0.0065372696537997
1118 => 0.0067022721506853
1119 => 0.0067007516236284
1120 => 0.0068573969370406
1121 => 0.0071568439429919
1122 => 0.0070682827284399
1123 => 0.0069652956713486
1124 => 0.0069764932199758
1125 => 0.0070993026905108
1126 => 0.0070250492811578
1127 => 0.0070517513248743
1128 => 0.0070992622737696
1129 => 0.0071279268088686
1130 => 0.0069723688344972
1201 => 0.0069361008294731
1202 => 0.006861909219534
1203 => 0.0068425540133528
1204 => 0.0069029815315896
1205 => 0.0068870610154699
1206 => 0.0066009244691464
1207 => 0.0065710216080068
1208 => 0.0065719386860665
1209 => 0.0064967465199276
1210 => 0.0063820604183782
1211 => 0.0066834486456988
1212 => 0.0066592429531194
1213 => 0.0066325217418836
1214 => 0.0066357949377909
1215 => 0.006766617352276
1216 => 0.0066907337451843
1217 => 0.0068924827517161
1218 => 0.0068510092211034
1219 => 0.0068084720509245
1220 => 0.0068025921182918
1221 => 0.0067862189368738
1222 => 0.0067300692055987
1223 => 0.0066622650310084
1224 => 0.0066174948418469
1225 => 0.0061042891921499
1226 => 0.0061995371755537
1227 => 0.006309111298333
1228 => 0.0063469358464256
1229 => 0.0062822343395341
1230 => 0.0067326240154512
1231 => 0.0068149145493041
]
'min_raw' => 0.0028403916059594
'max_raw' => 0.007461727059353
'avg_raw' => 0.0051510593326562
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00284'
'max' => '$0.007461'
'avg' => '$0.005151'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00011012838282805
'max_diff' => -0.0013456469642956
'year' => 2027
]
2 => [
'items' => [
101 => 0.0065656511545848
102 => 0.0065190241507902
103 => 0.0067356808740574
104 => 0.00660501038472
105 => 0.0066638512980676
106 => 0.006536669427669
107 => 0.0067950931694471
108 => 0.0067931244135129
109 => 0.0066925917411963
110 => 0.0067775612674202
111 => 0.0067627957212415
112 => 0.0066492945817971
113 => 0.0067986913580158
114 => 0.0067987654569529
115 => 0.0067020049456169
116 => 0.0065890098519761
117 => 0.0065688089980582
118 => 0.0065535903682338
119 => 0.0066601084480498
120 => 0.0067556122253393
121 => 0.006933321077481
122 => 0.0069780013051675
123 => 0.0071523912083595
124 => 0.007048550511899
125 => 0.0070945817476778
126 => 0.0071445551656315
127 => 0.0071685142599101
128 => 0.007129474201499
129 => 0.0074003735029039
130 => 0.0074232457040826
131 => 0.0074309145552941
201 => 0.0073395688350581
202 => 0.0074207052143597
203 => 0.0073827441894389
204 => 0.0074815082304063
205 => 0.0074969956931125
206 => 0.0074838783631828
207 => 0.0074887943282987
208 => 0.0072576295644612
209 => 0.0072456424519649
210 => 0.0070821973225118
211 => 0.0071488024208893
212 => 0.0070242873819379
213 => 0.0070637723834365
214 => 0.0070811769958701
215 => 0.0070720858140378
216 => 0.0071525681732181
217 => 0.0070841417264551
218 => 0.0069035530830983
219 => 0.0067229152384863
220 => 0.0067206474774916
221 => 0.0066730887215281
222 => 0.0066387124517871
223 => 0.0066453345409029
224 => 0.0066686716466797
225 => 0.0066373560567748
226 => 0.0066440388256217
227 => 0.0067550173155363
228 => 0.0067772732602262
229 => 0.0067016388642108
301 => 0.0063979558502173
302 => 0.0063234312768521
303 => 0.0063769980623005
304 => 0.006351396588999
305 => 0.0051260727535015
306 => 0.0054139444131663
307 => 0.0052429008481913
308 => 0.0053217255922678
309 => 0.0051471344039448
310 => 0.0052304584701207
311 => 0.0052150715576057
312 => 0.005677960667605
313 => 0.0056707332908355
314 => 0.0056741926536308
315 => 0.00550906825409
316 => 0.0057721159061745
317 => 0.0059017026384789
318 => 0.0058777195831686
319 => 0.0058837556014956
320 => 0.0057800368083527
321 => 0.0056751968782665
322 => 0.0055589132610513
323 => 0.0057749538487476
324 => 0.0057509338233316
325 => 0.0058060271195036
326 => 0.0059461448835249
327 => 0.0059667777565326
328 => 0.005994508547093
329 => 0.0059845690326892
330 => 0.0062213685906812
331 => 0.0061926906017546
401 => 0.0062617963038472
402 => 0.0061196406315804
403 => 0.0059587779948702
404 => 0.005989352723113
405 => 0.0059864081309168
406 => 0.0059489200926133
407 => 0.0059150775678364
408 => 0.0058587392991551
409 => 0.0060370019177578
410 => 0.0060297647809882
411 => 0.0061469256130352
412 => 0.0061262162979313
413 => 0.0059879144232384
414 => 0.0059928539017494
415 => 0.0060260742685686
416 => 0.0061410503374333
417 => 0.00617518306284
418 => 0.0061593714244777
419 => 0.0061967963996681
420 => 0.0062263755741194
421 => 0.0062005110885702
422 => 0.0065666976605742
423 => 0.0064146314654394
424 => 0.0064887474708784
425 => 0.0065064237014587
426 => 0.0064611464085183
427 => 0.0064709654320987
428 => 0.0064858385772994
429 => 0.0065761454024973
430 => 0.0068131366423069
501 => 0.0069180984491647
502 => 0.0072338812238206
503 => 0.0069093828322441
504 => 0.0068901284405957
505 => 0.0069470104540375
506 => 0.007132408371762
507 => 0.0072826559705367
508 => 0.0073325017670423
509 => 0.0073390897119149
510 => 0.0074326037398451
511 => 0.0074862042367213
512 => 0.0074212486771913
513 => 0.0073662056416201
514 => 0.0071690483203972
515 => 0.0071918698171704
516 => 0.0073490872989476
517 => 0.0075711662520215
518 => 0.0077617330971359
519 => 0.0076950032299019
520 => 0.0082041050129524
521 => 0.0082545803752475
522 => 0.0082476063122422
523 => 0.0083625966992916
524 => 0.0081343641983836
525 => 0.008036790382449
526 => 0.0073781065706756
527 => 0.0075631698544204
528 => 0.007832170205729
529 => 0.0077965670005338
530 => 0.0076012117550134
531 => 0.0077615849026642
601 => 0.0077085605247189
602 => 0.0076667379978499
603 => 0.0078583351011323
604 => 0.0076476662156981
605 => 0.0078300686224435
606 => 0.0075961356490812
607 => 0.0076953080463145
608 => 0.0076390129972158
609 => 0.0076754427932444
610 => 0.0074624749500441
611 => 0.0075773872287328
612 => 0.0074576942214542
613 => 0.0074576374713842
614 => 0.0074549952416146
615 => 0.0075958135338779
616 => 0.007600405613333
617 => 0.0074963406825858
618 => 0.0074813433002654
619 => 0.0075367964831503
620 => 0.0074718753292037
621 => 0.0075022515285264
622 => 0.0074727953933365
623 => 0.0074661641968641
624 => 0.007413325695167
625 => 0.007390561415811
626 => 0.0073994878763097
627 => 0.0073690172647219
628 => 0.0073506576190701
629 => 0.0074513430459889
630 => 0.0073975508840247
701 => 0.0074430986256796
702 => 0.0073911912254805
703 => 0.0072112575614127
704 => 0.0071077758084434
705 => 0.0067678977968788
706 => 0.0068642867793411
707 => 0.0069281927744353
708 => 0.0069070718434379
709 => 0.0069524477759356
710 => 0.0069552334896629
711 => 0.006940481311455
712 => 0.0069234001789614
713 => 0.0069150860283093
714 => 0.0069770528956137
715 => 0.0070130267477928
716 => 0.0069346065959949
717 => 0.0069162338516432
718 => 0.0069955209548061
719 => 0.0070438860419328
720 => 0.0074009866712814
721 => 0.0073745315032394
722 => 0.0074409287834603
723 => 0.0074334534686567
724 => 0.0075030483962444
725 => 0.0076168066898394
726 => 0.0073855042716417
727 => 0.0074256503736049
728 => 0.0074158074765124
729 => 0.0075232696460223
730 => 0.0075236051311856
731 => 0.0074591761924309
801 => 0.00749410416537
802 => 0.0074746083290742
803 => 0.007509839940281
804 => 0.0073741781783413
805 => 0.0075393995606016
806 => 0.0076330694377125
807 => 0.007634370044047
808 => 0.0076787688223875
809 => 0.0077238805525852
810 => 0.0078104685902961
811 => 0.0077214656592092
812 => 0.0075613580504445
813 => 0.0075729173026529
814 => 0.0074790462702153
815 => 0.0074806242592298
816 => 0.0074722008302013
817 => 0.0074974801748018
818 => 0.0073797255729002
819 => 0.007407362342602
820 => 0.0073686707031788
821 => 0.0074255662655372
822 => 0.0073643560456129
823 => 0.0074158027299694
824 => 0.0074380054134531
825 => 0.0075199337934973
826 => 0.0073522551572665
827 => 0.007010347067146
828 => 0.0070822202929242
829 => 0.0069759141464782
830 => 0.0069857531850678
831 => 0.0070056296088903
901 => 0.0069412036161206
902 => 0.0069534940652447
903 => 0.0069530549639154
904 => 0.0069492710258815
905 => 0.0069325113369122
906 => 0.0069082064721034
907 => 0.007005029572859
908 => 0.0070214817043993
909 => 0.0070580527548255
910 => 0.0071668633945136
911 => 0.0071559906456772
912 => 0.0071737245501354
913 => 0.0071350115362747
914 => 0.0069875489707492
915 => 0.0069955568975211
916 => 0.0068956979223579
917 => 0.007055499136317
918 => 0.0070176560995786
919 => 0.0069932584476097
920 => 0.0069866013222274
921 => 0.0070956816824449
922 => 0.0071283202358471
923 => 0.0071079820796587
924 => 0.0070662679279574
925 => 0.0071463714309057
926 => 0.0071678037489992
927 => 0.0071726016546269
928 => 0.007314529703528
929 => 0.0071805338559365
930 => 0.007212787988256
1001 => 0.0074644255212643
1002 => 0.0072362250024316
1003 => 0.0073571079067361
1004 => 0.0073511913176147
1005 => 0.0074130309210025
1006 => 0.0073461186651741
1007 => 0.0073469481227788
1008 => 0.0074018575012095
1009 => 0.0073247471821621
1010 => 0.0073056535827611
1011 => 0.0072792759119396
1012 => 0.0073368705911706
1013 => 0.0073713959965863
1014 => 0.0076496454081207
1015 => 0.0078294072176867
1016 => 0.0078216032834454
1017 => 0.0078929166340582
1018 => 0.0078607893164517
1019 => 0.0077570417331422
1020 => 0.0079341262071816
1021 => 0.0078780892700664
1022 => 0.0078827088870773
1023 => 0.0078825369447015
1024 => 0.007919796609049
1025 => 0.0078933947220607
1026 => 0.0078413538927086
1027 => 0.0078759010238763
1028 => 0.007978493652619
1029 => 0.0082969443201624
1030 => 0.0084751535326299
1031 => 0.0082862159018058
1101 => 0.0084165425495726
1102 => 0.0083383930010453
1103 => 0.0083241909033302
1104 => 0.0084060456691913
1105 => 0.0084880437109844
1106 => 0.0084828207902094
1107 => 0.0084232944225137
1108 => 0.0083896694878281
1109 => 0.0086442887584473
1110 => 0.0088318878997134
1111 => 0.0088190948959596
1112 => 0.0088755590540209
1113 => 0.0090413395684597
1114 => 0.0090564964610709
1115 => 0.0090545870409791
1116 => 0.009017019101184
1117 => 0.0091802515469691
1118 => 0.0093164229250447
1119 => 0.0090083232085636
1120 => 0.0091256435472781
1121 => 0.0091783124271523
1122 => 0.0092556459689602
1123 => 0.0093861206165965
1124 => 0.0095278506906207
1125 => 0.0095478928770788
1126 => 0.0095336719866798
1127 => 0.009440197192952
1128 => 0.0095952799311407
1129 => 0.0096861237620339
1130 => 0.0097402191844067
1201 => 0.0098773961749241
1202 => 0.0091786376922238
1203 => 0.0086840217076186
1204 => 0.0086067802792811
1205 => 0.0087638537611746
1206 => 0.0088052727857123
1207 => 0.0087885768288562
1208 => 0.0082318415696651
1209 => 0.0086038491833605
1210 => 0.0090040980964081
1211 => 0.0090194732872233
1212 => 0.009219846261905
1213 => 0.0092850959160272
1214 => 0.0094464224241321
1215 => 0.0094363314071257
1216 => 0.0094756118445838
1217 => 0.0094665819522545
1218 => 0.0097654053372148
1219 => 0.010095051906528
1220 => 0.010083637294045
1221 => 0.010036246699505
1222 => 0.010106629813694
1223 => 0.010446860400298
1224 => 0.010415537419968
1225 => 0.010445965027274
1226 => 0.010847116063436
1227 => 0.011368669473517
1228 => 0.011126355551428
1229 => 0.011652107038407
1230 => 0.011983039730572
1231 => 0.012555353602592
]
'min_raw' => 0.0051260727535015
'max_raw' => 0.012555353602592
'avg_raw' => 0.0088407131780469
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.005126'
'max' => '$0.012555'
'avg' => '$0.00884'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0022856811475421
'max_diff' => 0.0050936265432394
'year' => 2028
]
3 => [
'items' => [
101 => 0.01248369708711
102 => 0.012706494677654
103 => 0.012355416969231
104 => 0.01154927158618
105 => 0.011421695993511
106 => 0.011677105560762
107 => 0.012305005059347
108 => 0.011657330771047
109 => 0.011788354436037
110 => 0.011750619611706
111 => 0.01174860888328
112 => 0.011825350209075
113 => 0.011714032913451
114 => 0.011260506225479
115 => 0.011468354833927
116 => 0.011388094504495
117 => 0.011477149323803
118 => 0.01195774145461
119 => 0.011745260217695
120 => 0.011521428495179
121 => 0.011802163147449
122 => 0.012159634830683
123 => 0.012137264895184
124 => 0.01209385787041
125 => 0.012338540996346
126 => 0.012742685834963
127 => 0.012851924560855
128 => 0.012932562355022
129 => 0.012943680944451
130 => 0.013058209325733
131 => 0.01244236135471
201 => 0.01341972790082
202 => 0.013588492104128
203 => 0.013556771428466
204 => 0.013744345737758
205 => 0.013689156617663
206 => 0.013609196241554
207 => 0.013906541419982
208 => 0.013565659167432
209 => 0.01308181972582
210 => 0.012816375838892
211 => 0.013165933761946
212 => 0.013379396587665
213 => 0.013520481936679
214 => 0.013563174278045
215 => 0.012490167879606
216 => 0.011911876942511
217 => 0.01228255480307
218 => 0.012734807375772
219 => 0.012439849068834
220 => 0.012451410876036
221 => 0.012030877844023
222 => 0.012772015217811
223 => 0.012664037736396
224 => 0.013224225100983
225 => 0.01309053189064
226 => 0.013547342940112
227 => 0.01342704928138
228 => 0.013926381533247
301 => 0.014125578687397
302 => 0.014460061711777
303 => 0.014706108786102
304 => 0.014850592334276
305 => 0.014841918083988
306 => 0.015414433883271
307 => 0.015076841318612
308 => 0.014652745492942
309 => 0.014645074937461
310 => 0.01486472017506
311 => 0.015325036336339
312 => 0.015444389619631
313 => 0.015511091822517
314 => 0.015408935076877
315 => 0.015042502543416
316 => 0.014884278833323
317 => 0.015019090018505
318 => 0.014854227523485
319 => 0.015138826442135
320 => 0.015529641544491
321 => 0.015448939771305
322 => 0.01571871369958
323 => 0.015997901334299
324 => 0.016397152191049
325 => 0.01650153114922
326 => 0.016674065597901
327 => 0.016851660220206
328 => 0.016908698826582
329 => 0.017017603224193
330 => 0.01701702924426
331 => 0.017345219976572
401 => 0.017707224517532
402 => 0.01784387285132
403 => 0.018158088160033
404 => 0.01762000545528
405 => 0.018028147367884
406 => 0.018396301589507
407 => 0.017957372949271
408 => 0.01856233382258
409 => 0.018585823082419
410 => 0.018940483018266
411 => 0.018580967228663
412 => 0.018367487900412
413 => 0.018983794722107
414 => 0.019282006179642
415 => 0.019192182461707
416 => 0.018508619533078
417 => 0.018110756589223
418 => 0.017069472523123
419 => 0.018302918479542
420 => 0.018903694024802
421 => 0.018507063669553
422 => 0.018707100950131
423 => 0.019798439490658
424 => 0.020213950547954
425 => 0.020127527152678
426 => 0.020142131283829
427 => 0.020366333508286
428 => 0.021360569641951
429 => 0.020764800304446
430 => 0.021220243639917
501 => 0.021461809142828
502 => 0.021686188644523
503 => 0.021135183504229
504 => 0.02041833391258
505 => 0.020191277555606
506 => 0.018467626597453
507 => 0.018377903079644
508 => 0.018327538550198
509 => 0.01800999731624
510 => 0.017760496888213
511 => 0.017562084884489
512 => 0.017041392535878
513 => 0.01721711091845
514 => 0.016387235991703
515 => 0.016918160560874
516 => 0.015593660139755
517 => 0.016696743448206
518 => 0.01609638535446
519 => 0.016499509667831
520 => 0.016498103205078
521 => 0.015755823533482
522 => 0.015327692109887
523 => 0.015600514116126
524 => 0.015893000963452
525 => 0.015940455970387
526 => 0.016319672802633
527 => 0.016425504069275
528 => 0.016104830390562
529 => 0.015566212812511
530 => 0.015691321391333
531 => 0.01532515678853
601 => 0.014683467406435
602 => 0.015144339923477
603 => 0.01530170206393
604 => 0.015371202149877
605 => 0.01474017434111
606 => 0.014541891703316
607 => 0.014436327690706
608 => 0.015484755046507
609 => 0.015542190263749
610 => 0.015248343571819
611 => 0.016576558483029
612 => 0.016275942541895
613 => 0.016611804200836
614 => 0.015679969099131
615 => 0.015715566454899
616 => 0.015274420784432
617 => 0.015521432882529
618 => 0.015346852693166
619 => 0.015501476746024
620 => 0.015594157765768
621 => 0.016035231048571
622 => 0.01670177979659
623 => 0.015969349408618
624 => 0.015650218999983
625 => 0.015848205710643
626 => 0.016375470411514
627 => 0.017174303423517
628 => 0.016701378202398
629 => 0.016911254384739
630 => 0.01695710299384
701 => 0.01660838544443
702 => 0.017187161136969
703 => 0.017497331732565
704 => 0.017815502582886
705 => 0.018091761417275
706 => 0.017688418148541
707 => 0.018120053263073
708 => 0.017772231554615
709 => 0.017460199524981
710 => 0.017460672748769
711 => 0.017264930498519
712 => 0.016885655223548
713 => 0.016815711043717
714 => 0.017179569500175
715 => 0.017471349524731
716 => 0.017495381925085
717 => 0.017656926338878
718 => 0.017752526658921
719 => 0.018689539757673
720 => 0.01906641417737
721 => 0.019527249083908
722 => 0.019706770251237
723 => 0.020247064602996
724 => 0.019810733033389
725 => 0.01971632995365
726 => 0.018405752585218
727 => 0.018620359555879
728 => 0.0189639660224
729 => 0.018411418529293
730 => 0.018761882734768
731 => 0.018831071792776
801 => 0.018392643176912
802 => 0.018626826844027
803 => 0.018004904454788
804 => 0.016715336005157
805 => 0.017188596795296
806 => 0.017537076034697
807 => 0.017039753192891
808 => 0.017931185137777
809 => 0.017410428998465
810 => 0.017245374303006
811 => 0.016601437089774
812 => 0.016905350667003
813 => 0.017316398131829
814 => 0.017062418587964
815 => 0.017589464276705
816 => 0.018335901529914
817 => 0.018867857167658
818 => 0.018908694116204
819 => 0.018566682279395
820 => 0.019114758430572
821 => 0.019118750566985
822 => 0.0185005184295
823 => 0.018121854687622
824 => 0.018035821488752
825 => 0.018250749287331
826 => 0.018511711312668
827 => 0.018923175692407
828 => 0.019171814999562
829 => 0.019820134444524
830 => 0.019995551097555
831 => 0.02018828081623
901 => 0.020445827156025
902 => 0.020755077570474
903 => 0.020078455269295
904 => 0.020105338734703
905 => 0.019475277416318
906 => 0.018801966537691
907 => 0.019312925565183
908 => 0.019980936523598
909 => 0.019827694071651
910 => 0.019810451165348
911 => 0.019839448950966
912 => 0.019723909146629
913 => 0.019201326893716
914 => 0.018938889357841
915 => 0.019277500734076
916 => 0.019457457610686
917 => 0.019736555032419
918 => 0.019702150384159
919 => 0.020421075369669
920 => 0.020700427879876
921 => 0.020628957553597
922 => 0.020642109813662
923 => 0.021147864189775
924 => 0.021710367072334
925 => 0.022237225250643
926 => 0.022773168018704
927 => 0.022127068093604
928 => 0.021799018397541
929 => 0.022137481946642
930 => 0.02195788842327
1001 => 0.022989886079465
1002 => 0.023061339358086
1003 => 0.024093262389105
1004 => 0.02507268022465
1005 => 0.024457525430237
1006 => 0.025037588694188
1007 => 0.025664974407402
1008 => 0.026875303237857
1009 => 0.026467707067641
1010 => 0.026155494789102
1011 => 0.025860455694482
1012 => 0.02647438521425
1013 => 0.027264195733667
1014 => 0.027434313354839
1015 => 0.027709968891069
1016 => 0.027420150800278
1017 => 0.02776920476822
1018 => 0.029001518657143
1019 => 0.028668536566421
1020 => 0.028195648468052
1021 => 0.029168441930673
1022 => 0.029520492103156
1023 => 0.031991364583752
1024 => 0.035110943157155
1025 => 0.033819417143509
1026 => 0.033017725269555
1027 => 0.033206141876319
1028 => 0.034345306366927
1029 => 0.034711169846037
1030 => 0.033716626789113
1031 => 0.0340679162102
1101 => 0.036003555458405
1102 => 0.037041963812325
1103 => 0.035631665790854
1104 => 0.031740709482845
1105 => 0.028153070068775
1106 => 0.029104673594895
1107 => 0.028996791286728
1108 => 0.031076394183011
1109 => 0.028660595053681
1110 => 0.028701270915357
1111 => 0.030823877797197
1112 => 0.030257602671816
1113 => 0.029340309491738
1114 => 0.028159767324127
1115 => 0.025977425940364
1116 => 0.024044465317673
1117 => 0.027835446233015
1118 => 0.027671972242494
1119 => 0.027435237678732
1120 => 0.02796206483303
1121 => 0.030520187951805
1122 => 0.030461214934081
1123 => 0.030086058683617
1124 => 0.030370611393119
1125 => 0.029290426025971
1126 => 0.029568814390448
1127 => 0.028152501768362
1128 => 0.028792734223985
1129 => 0.029338341392551
1130 => 0.029447880109493
1201 => 0.029694676431949
1202 => 0.027585828877805
1203 => 0.028532639517104
1204 => 0.029088802063533
1205 => 0.026576039445402
1206 => 0.02903913282572
1207 => 0.02754911853365
1208 => 0.027043385303658
1209 => 0.027724288472556
1210 => 0.027458939845436
1211 => 0.027230808677633
1212 => 0.027103507566208
1213 => 0.027603487704906
1214 => 0.02758016303383
1215 => 0.026762098484957
1216 => 0.025694966629528
1217 => 0.026053131107619
1218 => 0.025923006594918
1219 => 0.025451418574496
1220 => 0.025769211960506
1221 => 0.024369810720071
1222 => 0.021962213620449
1223 => 0.023552746011153
1224 => 0.023491512244277
1225 => 0.023460635402288
1226 => 0.024655876534815
1227 => 0.024540981678828
1228 => 0.024332446390156
1229 => 0.025447588660384
1230 => 0.025040546730971
1231 => 0.026294954046283
]
'min_raw' => 0.011260506225479
'max_raw' => 0.037041963812325
'avg_raw' => 0.024151235018902
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.01126'
'max' => '$0.037041'
'avg' => '$0.024151'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.006134433471977
'max_diff' => 0.024486610209733
'year' => 2029
]
4 => [
'items' => [
101 => 0.027121187834127
102 => 0.026911628219667
103 => 0.027688705090668
104 => 0.026061382493803
105 => 0.026601913783631
106 => 0.026713316533321
107 => 0.025433827977869
108 => 0.024559779898196
109 => 0.024501490856159
110 => 0.022986011937251
111 => 0.023795568543213
112 => 0.024507944854732
113 => 0.024166771884149
114 => 0.024058766713916
115 => 0.024610541705177
116 => 0.024653419347631
117 => 0.023675804555706
118 => 0.023879081627981
119 => 0.024726780811371
120 => 0.023857721783532
121 => 0.022169282052428
122 => 0.021750525654608
123 => 0.021694655831928
124 => 0.020558955269053
125 => 0.021778508959472
126 => 0.021246141091597
127 => 0.022927884807469
128 => 0.021967281816335
129 => 0.02192587214132
130 => 0.021863275344057
131 => 0.020885730954391
201 => 0.021099751049541
202 => 0.021811186442
203 => 0.022065034604923
204 => 0.022038556161813
205 => 0.021807700020455
206 => 0.021913384779794
207 => 0.021572937346951
208 => 0.021452718272614
209 => 0.021073273805144
210 => 0.020515595262172
211 => 0.020593143884014
212 => 0.019488236765859
213 => 0.018886224726028
214 => 0.018719595727795
215 => 0.018496772467451
216 => 0.018744764207961
217 => 0.019485106702817
218 => 0.018592096581598
219 => 0.017061093366144
220 => 0.017153109268096
221 => 0.017359841680014
222 => 0.016974597198076
223 => 0.016609995627041
224 => 0.016926987111996
225 => 0.016278280866749
226 => 0.017438234730521
227 => 0.017406861229239
228 => 0.017839220298588
301 => 0.018109583297552
302 => 0.017486484115999
303 => 0.017329776356877
304 => 0.017419044218443
305 => 0.015943645313375
306 => 0.017718648731355
307 => 0.017733999034622
308 => 0.017602560418608
309 => 0.0185476949416
310 => 0.020542223579964
311 => 0.019791801676483
312 => 0.019501215633833
313 => 0.018948811354338
314 => 0.019684857258245
315 => 0.019628340416929
316 => 0.019372749827126
317 => 0.019218167840922
318 => 0.019502989890246
319 => 0.019182875237025
320 => 0.019125373849144
321 => 0.018776978000714
322 => 0.018652616533825
323 => 0.018560544254713
324 => 0.018459181722247
325 => 0.018682762210899
326 => 0.01817609940915
327 => 0.017565113739008
328 => 0.017514316891492
329 => 0.017654571453588
330 => 0.017592519250585
331 => 0.017514019809418
401 => 0.017364142998179
402 => 0.017319677749896
403 => 0.017464168235344
404 => 0.017301046901592
405 => 0.017541741315223
406 => 0.017476285752944
407 => 0.017110656302915
408 => 0.016654946634819
409 => 0.01665088986289
410 => 0.016552707962412
411 => 0.016427658550406
412 => 0.016392872664729
413 => 0.016900290973294
414 => 0.017950631686271
415 => 0.01774442467179
416 => 0.017893430372697
417 => 0.018626390944797
418 => 0.018859377069775
419 => 0.018694009036845
420 => 0.018467643073914
421 => 0.018477602027456
422 => 0.019251163048427
423 => 0.019299409100436
424 => 0.019421311309096
425 => 0.019577990096784
426 => 0.018720692111886
427 => 0.018437223369463
428 => 0.018302900153056
429 => 0.017889236636149
430 => 0.018335337274304
501 => 0.018075413536385
502 => 0.018110486128889
503 => 0.01808764505701
504 => 0.018100117826763
505 => 0.017437910499776
506 => 0.017679184045138
507 => 0.0172780199802
508 => 0.016740906330029
509 => 0.016739105736737
510 => 0.016870563541689
511 => 0.016792367295359
512 => 0.016581943207096
513 => 0.01661183295566
514 => 0.016349967306768
515 => 0.016643628186667
516 => 0.016652049329933
517 => 0.016538973895356
518 => 0.016991398998232
519 => 0.017176757932024
520 => 0.017102329258675
521 => 0.01717153581789
522 => 0.017752993504211
523 => 0.017847796477859
524 => 0.01788990169642
525 => 0.01783348628142
526 => 0.017182163796999
527 => 0.01721105271882
528 => 0.016999084978598
529 => 0.01681999457472
530 => 0.016827157251669
531 => 0.016919232999385
601 => 0.017321333189833
602 => 0.018167529335529
603 => 0.018199641860697
604 => 0.018238563177989
605 => 0.018080250620276
606 => 0.018032502038023
607 => 0.01809549474297
608 => 0.018413281524414
609 => 0.019230715404557
610 => 0.018941779676741
611 => 0.018706870432474
612 => 0.018912949170774
613 => 0.018881224964311
614 => 0.018613440735653
615 => 0.018605924924238
616 => 0.018091961373647
617 => 0.017901960751377
618 => 0.017743182010109
619 => 0.017569799769667
620 => 0.017467012965708
621 => 0.017624940212356
622 => 0.017661060042205
623 => 0.017315749357313
624 => 0.017268684786929
625 => 0.017550672946261
626 => 0.017426580470917
627 => 0.017554212659153
628 => 0.017583824421633
629 => 0.017579056245857
630 => 0.017449489449668
701 => 0.017532071461821
702 => 0.017336740384196
703 => 0.017124347175059
704 => 0.016988853540193
705 => 0.01687061737315
706 => 0.016936221670552
707 => 0.016702354329186
708 => 0.016627535459864
709 => 0.017504094534258
710 => 0.018151618147111
711 => 0.018142202897332
712 => 0.018084889985712
713 => 0.017999734624544
714 => 0.018407051879344
715 => 0.018265150692338
716 => 0.018368395662126
717 => 0.018394675840115
718 => 0.018474218023804
719 => 0.018502647517591
720 => 0.018416713841813
721 => 0.018128309929989
722 => 0.017409634802342
723 => 0.017075089590396
724 => 0.016964684098163
725 => 0.016968697128116
726 => 0.016857999847063
727 => 0.016890605157437
728 => 0.016846661050729
729 => 0.016763441543844
730 => 0.016931083100508
731 => 0.016950402228225
801 => 0.016911272685732
802 => 0.016920489109499
803 => 0.016596513210104
804 => 0.016621144394096
805 => 0.016483994831647
806 => 0.016458280942051
807 => 0.016111578791158
808 => 0.015497345675572
809 => 0.015837690446658
810 => 0.015426601822903
811 => 0.015270916332078
812 => 0.016007907231583
813 => 0.015933933786218
814 => 0.015807323403238
815 => 0.015620040258893
816 => 0.015550575118883
817 => 0.015128526918169
818 => 0.015103590058932
819 => 0.015312768543465
820 => 0.015216239870245
821 => 0.015080677054777
822 => 0.014589682278933
823 => 0.014037641588101
824 => 0.014054304226553
825 => 0.014229898099225
826 => 0.014740460966077
827 => 0.014540975221171
828 => 0.014396246024406
829 => 0.014369142596395
830 => 0.014708398742815
831 => 0.015188517266359
901 => 0.015413778135559
902 => 0.015190551455456
903 => 0.014934120664732
904 => 0.014949728418777
905 => 0.015053559814045
906 => 0.015064471025591
907 => 0.01489756094234
908 => 0.014944545153094
909 => 0.014873171840633
910 => 0.014435153953805
911 => 0.014427231599202
912 => 0.014319734945781
913 => 0.014316479989838
914 => 0.014133601366073
915 => 0.014108015382428
916 => 0.013744898775004
917 => 0.013983903225629
918 => 0.013823591588447
919 => 0.013581964137521
920 => 0.013540307473906
921 => 0.013539055224296
922 => 0.013787152589488
923 => 0.013981004063467
924 => 0.013826380278011
925 => 0.013791175439319
926 => 0.014167071013184
927 => 0.014119234875045
928 => 0.014077809087927
929 => 0.015145527918562
930 => 0.014300345148975
1001 => 0.013931797220089
1002 => 0.01347564917274
1003 => 0.013624173277055
1004 => 0.013655469488107
1005 => 0.012558515661097
1006 => 0.012113481630096
1007 => 0.01196076272141
1008 => 0.011872870830333
1009 => 0.011912924268774
1010 => 0.011512341443587
1011 => 0.011781539727141
1012 => 0.011434668860953
1013 => 0.011376514831421
1014 => 0.01199676290922
1015 => 0.012083066805809
1016 => 0.011714867570441
1017 => 0.011951311085589
1018 => 0.011865573380186
1019 => 0.011440614966374
1020 => 0.011424384680749
1021 => 0.011211155486708
1022 => 0.010877493087343
1023 => 0.010725000417476
1024 => 0.010645580911007
1025 => 0.010678350947231
1026 => 0.010661781414137
1027 => 0.01055365400263
1028 => 0.010667979150795
1029 => 0.010375925639645
1030 => 0.010259627578271
1031 => 0.010207098442042
1101 => 0.0099478841409241
1102 => 0.010360409367126
1103 => 0.010441682033543
1104 => 0.01052311483222
1105 => 0.011231931748169
1106 => 0.011196521258144
1107 => 0.011516614842362
1108 => 0.011504176594294
1109 => 0.011412880718903
1110 => 0.01102771843807
1111 => 0.011181237258352
1112 => 0.010708730191644
1113 => 0.011062764613379
1114 => 0.01090119808813
1115 => 0.011008138808671
1116 => 0.010815849750683
1117 => 0.010922270454794
1118 => 0.010460954797768
1119 => 0.010030184728124
1120 => 0.010203539179111
1121 => 0.01039199529282
1122 => 0.010800616165066
1123 => 0.010557244944606
1124 => 0.010644770438368
1125 => 0.010351574685855
1126 => 0.009746628101193
1127 => 0.0097500520331652
1128 => 0.0096569941805928
1129 => 0.0095765786093012
1130 => 0.010585199056887
1201 => 0.0104597611603
1202 => 0.010259892288994
1203 => 0.01052742471571
1204 => 0.010598164535644
1205 => 0.010600178398869
1206 => 0.010795363151389
1207 => 0.010899533288798
1208 => 0.010917893727015
1209 => 0.011225021152351
1210 => 0.011327966214215
1211 => 0.011751982354702
1212 => 0.010890695180435
1213 => 0.010872957537866
1214 => 0.010531189445594
1215 => 0.010314434718335
1216 => 0.010546030827211
1217 => 0.010751193363654
1218 => 0.01053756441749
1219 => 0.010565459847906
1220 => 0.010278680441806
1221 => 0.010381190585261
1222 => 0.010469486130413
1223 => 0.010420734520152
1224 => 0.010347750999988
1225 => 0.010734372375308
1226 => 0.010712557682131
1227 => 0.011072588395217
1228 => 0.01135325808211
1229 => 0.01185626833673
1230 => 0.011331350913516
1231 => 0.011312220836256
]
'min_raw' => 0.0095765786093012
'max_raw' => 0.027688705090668
'avg_raw' => 0.018632641849984
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.009576'
'max' => '$0.027688'
'avg' => '$0.018632'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0016839276161773
'max_diff' => -0.0093532587216572
'year' => 2030
]
5 => [
'items' => [
101 => 0.011499220410031
102 => 0.011327937585555
103 => 0.011436182418142
104 => 0.011838828420742
105 => 0.011847335696295
106 => 0.011704827869766
107 => 0.01169615625557
108 => 0.01172352644252
109 => 0.011883834482377
110 => 0.011827817927483
111 => 0.011892641702972
112 => 0.011973704826839
113 => 0.012309016277204
114 => 0.012389858732696
115 => 0.012193453477859
116 => 0.012211186673314
117 => 0.012137725716561
118 => 0.0120667633528
119 => 0.012226276383314
120 => 0.012517789581814
121 => 0.012515976093336
122 => 0.012583601489181
123 => 0.012625731550554
124 => 0.012444878486053
125 => 0.012327149791214
126 => 0.012372294464087
127 => 0.012444481779133
128 => 0.012348885090733
129 => 0.011758818045237
130 => 0.011937806693212
131 => 0.011908014230091
201 => 0.01186558613972
202 => 0.012045560609337
203 => 0.012028201632692
204 => 0.011508232887722
205 => 0.01154151959974
206 => 0.011510257162929
207 => 0.01161127249196
208 => 0.011322482426283
209 => 0.011411312305454
210 => 0.011467025572942
211 => 0.011499841115502
212 => 0.011618393357057
213 => 0.011604482619835
214 => 0.011617528646099
215 => 0.011793310323693
216 => 0.012682353727976
217 => 0.012730742398907
218 => 0.012492458885916
219 => 0.012587648449422
220 => 0.01240490530316
221 => 0.012527582001518
222 => 0.012611514282884
223 => 0.01223224044264
224 => 0.012209782307288
225 => 0.012026284915056
226 => 0.012124886019818
227 => 0.011968004572472
228 => 0.012006497792171
301 => 0.011898867394115
302 => 0.012092580681617
303 => 0.012309182237046
304 => 0.012363904343802
305 => 0.012219954040275
306 => 0.012115724533734
307 => 0.011932731855583
308 => 0.012237052757607
309 => 0.01232604546337
310 => 0.012236585316809
311 => 0.012215855446108
312 => 0.012176572378587
313 => 0.012224189534585
314 => 0.012325560789982
315 => 0.01227775597797
316 => 0.012309331898516
317 => 0.012188997050341
318 => 0.012444938355942
319 => 0.012851434744866
320 => 0.012852741697225
321 => 0.012804936627527
322 => 0.012785375822982
323 => 0.012834426725546
324 => 0.012861034828014
325 => 0.013019656452509
326 => 0.013189863775357
327 => 0.013984147083815
328 => 0.013761115509176
329 => 0.014465850912566
330 => 0.015023205118208
331 => 0.015190331274334
401 => 0.015036583074591
402 => 0.014510618788585
403 => 0.014484812471468
404 => 0.015270825171156
405 => 0.015048740581832
406 => 0.015022324326599
407 => 0.014741300001889
408 => 0.014907420183332
409 => 0.014871087262815
410 => 0.01481373397031
411 => 0.015130679704471
412 => 0.01572397382488
413 => 0.015631503372337
414 => 0.015562478469095
415 => 0.015260031435934
416 => 0.015442172103887
417 => 0.015377315300704
418 => 0.015655981286324
419 => 0.01549090572965
420 => 0.015047058072641
421 => 0.015117742274961
422 => 0.015107058499977
423 => 0.015326929832082
424 => 0.015260929915726
425 => 0.015094170957048
426 => 0.015721946010076
427 => 0.01568118179
428 => 0.015738976134069
429 => 0.015764418991677
430 => 0.016146534603818
501 => 0.016303075143776
502 => 0.016338612586975
503 => 0.016487313992655
504 => 0.016334912760538
505 => 0.016944626349245
506 => 0.017350050307962
507 => 0.017820971098937
508 => 0.018509112946128
509 => 0.01876786064634
510 => 0.018721120190257
511 => 0.019242861485143
512 => 0.020180418994395
513 => 0.018910627368672
514 => 0.020247721033853
515 => 0.019824412616946
516 => 0.018820755975451
517 => 0.018756132320073
518 => 0.019435820250386
519 => 0.020943302662283
520 => 0.020565695415827
521 => 0.020943920292464
522 => 0.020502700883269
523 => 0.020480790620714
524 => 0.020922491250579
525 => 0.021954548848108
526 => 0.021464256969623
527 => 0.020761303337313
528 => 0.021280353360241
529 => 0.020830704194569
530 => 0.019817518775433
531 => 0.020565406666682
601 => 0.020065315332425
602 => 0.020211268570079
603 => 0.021262386171715
604 => 0.021135912920974
605 => 0.02129958101854
606 => 0.021010711110275
607 => 0.020740861065352
608 => 0.020237165917175
609 => 0.020088046615671
610 => 0.020129257825856
611 => 0.020088026193442
612 => 0.019806213387234
613 => 0.019745355938566
614 => 0.019643924191225
615 => 0.019675362131061
616 => 0.019484640771156
617 => 0.019844571382341
618 => 0.019911377675474
619 => 0.020173305158572
620 => 0.020200499338778
621 => 0.020929963650902
622 => 0.020528186965934
623 => 0.02079773345394
624 => 0.020773622678983
625 => 0.018842508258225
626 => 0.019108598787039
627 => 0.019522552146065
628 => 0.019336066718924
629 => 0.019072419955817
630 => 0.018859511058762
701 => 0.018536932308672
702 => 0.018990955704848
703 => 0.019587948190813
704 => 0.02021564005341
705 => 0.02096977069832
706 => 0.020801457517425
707 => 0.020201542105566
708 => 0.020228453872703
709 => 0.020394811827757
710 => 0.020179363160748
711 => 0.02011582314279
712 => 0.020386082405013
713 => 0.02038794353202
714 => 0.020140043802785
715 => 0.019864548618912
716 => 0.019863394284032
717 => 0.01981437257703
718 => 0.020511421736043
719 => 0.020894728293881
720 => 0.020938673773008
721 => 0.020891770412997
722 => 0.020909821654737
723 => 0.020686784014315
724 => 0.021196581920563
725 => 0.021664422893123
726 => 0.021539031518512
727 => 0.021351052022537
728 => 0.021201317299673
729 => 0.021503758776444
730 => 0.02149029153357
731 => 0.021660336710363
801 => 0.021652622478916
802 => 0.021595442681683
803 => 0.021539033560583
804 => 0.021762689349545
805 => 0.021698280074126
806 => 0.021633770753312
807 => 0.021504387434537
808 => 0.021521972776388
809 => 0.021334025737722
810 => 0.021247072837764
811 => 0.019939509851575
812 => 0.019590086295812
813 => 0.019700022059627
814 => 0.019736215767556
815 => 0.01958414618829
816 => 0.019802174901488
817 => 0.019768195357486
818 => 0.019900389885831
819 => 0.01981780048374
820 => 0.01982118998161
821 => 0.020064067803242
822 => 0.020134576268138
823 => 0.020098715093819
824 => 0.020123831031063
825 => 0.020702617204076
826 => 0.020620332318813
827 => 0.020576620113516
828 => 0.020588728693118
829 => 0.020736620969638
830 => 0.020778022732445
831 => 0.020602600554183
901 => 0.020685330667555
902 => 0.021037584990279
903 => 0.021160854067364
904 => 0.021554269788907
905 => 0.021387139797989
906 => 0.021693914129536
907 => 0.022636833837635
908 => 0.023390103345545
909 => 0.022697365575892
910 => 0.024080649098876
911 => 0.025157733741755
912 => 0.025116393439183
913 => 0.024928578818281
914 => 0.023702346588139
915 => 0.022573949407871
916 => 0.023517901563441
917 => 0.023520307891611
918 => 0.023439221564297
919 => 0.022935601349392
920 => 0.023421696672479
921 => 0.023460281153987
922 => 0.023438684104784
923 => 0.023052559666816
924 => 0.022463019017764
925 => 0.022578213849428
926 => 0.022766905333604
927 => 0.022409672988891
928 => 0.022295515609285
929 => 0.022507755897304
930 => 0.023191638327322
1001 => 0.023062354315388
1002 => 0.023058978187359
1003 => 0.023612110015365
1004 => 0.023216186999832
1005 => 0.02257966682516
1006 => 0.022418937086386
1007 => 0.021848454794263
1008 => 0.02224248894542
1009 => 0.022256669533035
1010 => 0.022040861055378
1011 => 0.022597178493734
1012 => 0.022592051930602
1013 => 0.023120192541398
1014 => 0.024129799028685
1015 => 0.023831208710676
1016 => 0.023483980657366
1017 => 0.02352173397435
1018 => 0.023935794678543
1019 => 0.023685444124701
1020 => 0.023775471929369
1021 => 0.023935658410678
1022 => 0.024032302892058
1023 => 0.023507828320754
1024 => 0.023385548209664
1025 => 0.023135406016861
1026 => 0.023070148587884
1027 => 0.023273884184534
1028 => 0.023220207052902
1029 => 0.022255477709556
1030 => 0.022154658125473
1031 => 0.02215775011818
1101 => 0.021904234480293
1102 => 0.021517562281791
1103 => 0.022533713732457
1104 => 0.022452102549938
1105 => 0.022362010120641
1106 => 0.022373045929169
1107 => 0.022814122833335
1108 => 0.022558275954002
1109 => 0.023238486815189
1110 => 0.023098655911139
1111 => 0.02295523887203
1112 => 0.022935414268636
1113 => 0.022880210944346
1114 => 0.022690898205103
1115 => 0.022462291696535
1116 => 0.022311345878022
1117 => 0.020581037199195
1118 => 0.020902172425243
1119 => 0.021271609230414
1120 => 0.021399137335134
1121 => 0.021180991687334
1122 => 0.022699511924891
1123 => 0.022976960205118
1124 => 0.022136551266808
1125 => 0.021979345068121
1126 => 0.022709818337105
1127 => 0.022269253659182
1128 => 0.022467639906675
1129 => 0.022038837351071
1130 => 0.022910131039046
1201 => 0.022903493240959
1202 => 0.022564540317277
1203 => 0.022851021007324
1204 => 0.022801237937485
1205 => 0.022418560921452
1206 => 0.022922262583023
1207 => 0.022922512412762
1208 => 0.02259627759319
1209 => 0.022215306745915
1210 => 0.022147198156552
1211 => 0.022095887483568
1212 => 0.022455020626522
1213 => 0.022777018279515
1214 => 0.023376176081746
1215 => 0.023526818588866
1216 => 0.024114786322991
1217 => 0.023764680164949
1218 => 0.023919877690175
1219 => 0.024088366557839
1220 => 0.02416914631697
1221 => 0.024037520034347
1222 => 0.024950875942619
1223 => 0.025027991165779
1224 => 0.025053847233061
1225 => 0.02474586875973
1226 => 0.025019425727307
1227 => 0.024891437481432
1228 => 0.025224427341039
1229 => 0.025276644402853
1230 => 0.025232418409172
1231 => 0.025248992928782
]
'min_raw' => 0.011322482426283
'max_raw' => 0.025276644402853
'avg_raw' => 0.018299563414568
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.011322'
'max' => '$0.025276'
'avg' => '$0.018299'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0017459038169818
'max_diff' => -0.0024120606878145
'year' => 2031
]
6 => [
'items' => [
101 => 0.024469604788096
102 => 0.024429189401401
103 => 0.023878122736075
104 => 0.024102686475475
105 => 0.023682875328288
106 => 0.023816001767595
107 => 0.023874682633566
108 => 0.023844031079292
109 => 0.024115382972368
110 => 0.023884678429724
111 => 0.02327581121035
112 => 0.022666778105509
113 => 0.022659132190986
114 => 0.022498784524808
115 => 0.022382882531302
116 => 0.022405209367096
117 => 0.022483892048567
118 => 0.022378309350818
119 => 0.022400840772561
120 => 0.022775012499579
121 => 0.022850049970961
122 => 0.02259504332417
123 => 0.02157115484002
124 => 0.02131989003778
125 => 0.021500494194833
126 => 0.021414177040159
127 => 0.017282912179401
128 => 0.018253491578518
129 => 0.017676806257325
130 => 0.017942569385347
131 => 0.017353923004348
201 => 0.017634855910961
202 => 0.017582977861136
203 => 0.019143640813385
204 => 0.019119273208007
205 => 0.019130936691196
206 => 0.018574208249527
207 => 0.019461091773931
208 => 0.019898002489352
209 => 0.019817141943929
210 => 0.01983749280114
211 => 0.019487797648644
212 => 0.019134322504668
213 => 0.018742264170564
214 => 0.019470660095455
215 => 0.01938967490274
216 => 0.019575425797275
217 => 0.020047842621382
218 => 0.020117407793269
219 => 0.020210904089746
220 => 0.020177392322978
221 => 0.020975778565566
222 => 0.020879088723666
223 => 0.021112083423078
224 => 0.020632795649038
225 => 0.020090436038299
226 => 0.020193520869229
227 => 0.020183592971055
228 => 0.020057199432583
229 => 0.019943096997488
301 => 0.019753148591217
302 => 0.020354173455734
303 => 0.020329772943835
304 => 0.02072478886899
305 => 0.020654965967239
306 => 0.020188671540783
307 => 0.020205325337446
308 => 0.020317330123549
309 => 0.020704979967099
310 => 0.020820060833879
311 => 0.020766750791207
312 => 0.020892931707989
313 => 0.020992659959804
314 => 0.020905456040974
315 => 0.022140079634816
316 => 0.021627377840996
317 => 0.021877265127948
318 => 0.021936861773464
319 => 0.021784206219156
320 => 0.0218173117427
321 => 0.021867457590154
322 => 0.02217193335633
323 => 0.022970965867548
324 => 0.023324851927568
325 => 0.02438953559957
326 => 0.023295466616615
327 => 0.023230549090874
328 => 0.023422330770568
329 => 0.024047412794246
330 => 0.024553983063467
331 => 0.024722041646508
401 => 0.024744253362602
402 => 0.025059542436709
403 => 0.025240260254195
404 => 0.025021258050187
405 => 0.024835676612777
406 => 0.024170946939189
407 => 0.024247891208906
408 => 0.024777960925292
409 => 0.025526715620638
410 => 0.026169225043893
411 => 0.025944240637583
412 => 0.027660712843489
413 => 0.027830894051545
414 => 0.027807380511209
415 => 0.028195078629518
416 => 0.027425576818022
417 => 0.027096599885213
418 => 0.024875801425983
419 => 0.025499755207835
420 => 0.026406708673277
421 => 0.026286669981225
422 => 0.025628016131685
423 => 0.026168725395885
424 => 0.025989950003599
425 => 0.025848942434304
426 => 0.026494925444904
427 => 0.02578464058923
428 => 0.026399623038502
429 => 0.025610901686132
430 => 0.0259452683474
501 => 0.025755465658969
502 => 0.025878291259726
503 => 0.025160255307437
504 => 0.025547690077955
505 => 0.025144136747216
506 => 0.025143945410393
507 => 0.02513503694825
508 => 0.025609815652235
509 => 0.025625298168727
510 => 0.025274435989131
511 => 0.025223871267554
512 => 0.025410835545268
513 => 0.025191949342087
514 => 0.025294364818902
515 => 0.025195051402547
516 => 0.025172693860665
517 => 0.024994545163127
518 => 0.024917793805927
519 => 0.024947889990724
520 => 0.024845156196366
521 => 0.024783255369221
522 => 0.02512272331571
523 => 0.024941359285999
524 => 0.02509492667703
525 => 0.0249199172532
526 => 0.024313258342228
527 => 0.023964362387226
528 => 0.022818439941711
529 => 0.023143422125747
530 => 0.023358885649981
531 => 0.023287674956507
601 => 0.02344066308097
602 => 0.023450055309293
603 => 0.023400317310501
604 => 0.023342727079733
605 => 0.023314695340334
606 => 0.023523620959839
607 => 0.023644909314075
608 => 0.023380510297168
609 => 0.023318565306842
610 => 0.023585887310805
611 => 0.023748953578795
612 => 0.024952943282614
613 => 0.024863747836519
614 => 0.025087610902494
615 => 0.025062407356724
616 => 0.025297051514048
617 => 0.025680595543254
618 => 0.024900743291282
619 => 0.025036098676962
620 => 0.025002912662206
621 => 0.025365228869477
622 => 0.025366359981128
623 => 0.025149133315832
624 => 0.025266895415189
625 => 0.025201163841962
626 => 0.025319949678938
627 => 0.024862556576957
628 => 0.025419612002636
629 => 0.025735426533137
630 => 0.0257398116182
701 => 0.025889505199198
702 => 0.02604160254716
703 => 0.026333540161686
704 => 0.026033460565541
705 => 0.025493646584234
706 => 0.025532619410096
707 => 0.025216126670366
708 => 0.0252214469705
709 => 0.025193046791426
710 => 0.025278277866694
711 => 0.024881260005019
712 => 0.024974439303606
713 => 0.024843987739927
714 => 0.025035815100739
715 => 0.024829440570704
716 => 0.025002896658904
717 => 0.025077754556411
718 => 0.025353981809788
719 => 0.024788641580787
720 => 0.023635874583685
721 => 0.023878200182425
722 => 0.023519781587624
723 => 0.023552954593168
724 => 0.023619969343813
725 => 0.023402752611111
726 => 0.023444190718425
727 => 0.023442710257636
728 => 0.023429952446369
729 => 0.023373445984885
730 => 0.02329150043627
731 => 0.023617946280441
801 => 0.02367341579058
802 => 0.023796717640401
803 => 0.024163580309026
804 => 0.024126922077213
805 => 0.024186713174235
806 => 0.024056189545148
807 => 0.023559009209971
808 => 0.023586008494178
809 => 0.023249326987484
810 => 0.023788107937312
811 => 0.023660517496832
812 => 0.023578259109829
813 => 0.023555814146817
814 => 0.023923586197038
815 => 0.024033629358584
816 => 0.02396505784503
817 => 0.02382441567018
818 => 0.024094490223019
819 => 0.024166750779827
820 => 0.02418292725363
821 => 0.0246614475796
822 => 0.024209671224154
823 => 0.024318418283181
824 => 0.02516683179449
825 => 0.024397437812794
826 => 0.024805002964432
827 => 0.024785054771126
828 => 0.024993551311451
829 => 0.024767951969261
830 => 0.024770748543486
831 => 0.024955879346516
901 => 0.024695896522177
902 => 0.024631521118724
903 => 0.024542586959919
904 => 0.024736771442078
905 => 0.024853176256924
906 => 0.025791313574666
907 => 0.026397393066187
908 => 0.026371081557039
909 => 0.026611519497569
910 => 0.026503200003201
911 => 0.026153407782648
912 => 0.026750460450515
913 => 0.026561528004657
914 => 0.026577103365941
915 => 0.026576523650216
916 => 0.02670214720995
917 => 0.026613131404648
918 => 0.026437672115113
919 => 0.026554150179849
920 => 0.026900048390443
921 => 0.027973727049581
922 => 0.028574571851586
923 => 0.027937555438058
924 => 0.02837696083012
925 => 0.028113474171032
926 => 0.028065590807027
927 => 0.028341569865045
928 => 0.028618031987871
929 => 0.028600422545826
930 => 0.028399725241141
1001 => 0.028286356426231
1002 => 0.029144823074073
1003 => 0.029777326676605
1004 => 0.029734194171271
1005 => 0.029924567022376
1006 => 0.030483507601232
1007 => 0.030534610122892
1008 => 0.03052817237974
1009 => 0.030401509447811
1010 => 0.030951859035301
1011 => 0.031410970343665
1012 => 0.030372190638714
1013 => 0.030767744351734
1014 => 0.030945321157454
1015 => 0.031206056592915
1016 => 0.03164596097687
1017 => 0.03212381381672
1018 => 0.032191387447664
1019 => 0.032143440722813
1020 => 0.031828283929558
1021 => 0.032351156208892
1022 => 0.032657442527262
1023 => 0.032839829020614
1024 => 0.033302330821535
1025 => 0.030946417811352
1026 => 0.02927878548627
1027 => 0.029018360617806
1028 => 0.02954794482853
1029 => 0.029687591961543
1030 => 0.029631300377328
1031 => 0.027754228580951
1101 => 0.029008478223267
1102 => 0.030357945378094
1103 => 0.030409783907389
1104 => 0.031085355381122
1105 => 0.031305349145581
1106 => 0.031849272731114
1107 => 0.031815250162744
1108 => 0.031947686900107
1109 => 0.031917241987672
1110 => 0.032924745893248
1111 => 0.034036172316876
1112 => 0.033997687153945
1113 => 0.033837906455748
1114 => 0.034075208039228
1115 => 0.035222319216107
1116 => 0.035116711601022
1117 => 0.035219300403441
1118 => 0.036571809129334
1119 => 0.038330262865116
1120 => 0.037513284558977
1121 => 0.039285892404125
1122 => 0.040401655080742
1123 => 0.042331251257936
1124 => 0.042089656313089
1125 => 0.04284083394484
1126 => 0.041657150939428
1127 => 0.038939175497197
1128 => 0.038509045479472
1129 => 0.039370176667585
1130 => 0.041487183665607
1201 => 0.039303504583429
1202 => 0.039745260017724
1203 => 0.039618034422928
1204 => 0.039611255111655
1205 => 0.039869993849482
1206 => 0.03949467981536
1207 => 0.037965582922639
1208 => 0.038666359017549
1209 => 0.038395755713272
1210 => 0.038696010254179
1211 => 0.040316360177065
1212 => 0.03959996485184
1213 => 0.038845300571945
1214 => 0.039791817052343
1215 => 0.04099705779024
1216 => 0.040921635990888
1217 => 0.040775286176279
1218 => 0.041600252418603
1219 => 0.042962854958491
1220 => 0.043331160949642
1221 => 0.043603036902625
1222 => 0.04364052400316
1223 => 0.044026664436769
1224 => 0.041950290005335
1225 => 0.045245549553098
1226 => 0.045814549847289
1227 => 0.045707601374627
1228 => 0.046340021254427
1229 => 0.046153947282846
1230 => 0.045884355292137
1231 => 0.046886875321187
]
'min_raw' => 0.017282912179401
'max_raw' => 0.046886875321187
'avg_raw' => 0.032084893750294
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.017282'
'max' => '$0.046886'
'avg' => '$0.032084'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0059604297531179
'max_diff' => 0.021610230918333
'year' => 2032
]
7 => [
'items' => [
101 => 0.045737567007076
102 => 0.044106268549088
103 => 0.043211305951612
104 => 0.044389864894543
105 => 0.045109569714951
106 => 0.045585248819418
107 => 0.045729189029016
108 => 0.042111473041767
109 => 0.040161724772366
110 => 0.041411491059143
111 => 0.042936292183272
112 => 0.041941819658101
113 => 0.041980801098302
114 => 0.040562944620191
115 => 0.043061741020475
116 => 0.042697687403139
117 => 0.044586398213875
118 => 0.044135642221042
119 => 0.045675812567866
120 => 0.045270234098818
121 => 0.04695376764825
122 => 0.047625374760969
123 => 0.048753107630526
124 => 0.04958267252007
125 => 0.050069808890258
126 => 0.050040563049794
127 => 0.051970840038856
128 => 0.050832623137148
129 => 0.049402754451476
130 => 0.04937689263813
131 => 0.050117441891835
201 => 0.051669429967836
202 => 0.052071837895435
203 => 0.052296729029463
204 => 0.051952300429182
205 => 0.050716847559118
206 => 0.050183385273712
207 => 0.050637910596768
208 => 0.050082065184477
209 => 0.051041610308768
210 => 0.052359270712199
211 => 0.052087179049485
212 => 0.052996740683677
213 => 0.053938041286393
214 => 0.05528414342473
215 => 0.05563606436971
216 => 0.056217776309406
217 => 0.056816548977771
218 => 0.057008858621474
219 => 0.05737603740148
220 => 0.057374102188065
221 => 0.058480620155598
222 => 0.059701143739796
223 => 0.060161863137644
224 => 0.061221261988782
225 => 0.059407078581973
226 => 0.060783157535874
227 => 0.062024415197784
228 => 0.060544536642208
301 => 0.062584204463589
302 => 0.062663400143106
303 => 0.063859160878379
304 => 0.062647028293142
305 => 0.061927267833292
306 => 0.064005189311805
307 => 0.065010630061345
308 => 0.064707783125036
309 => 0.062403102986323
310 => 0.061061680293211
311 => 0.057550918364223
312 => 0.061709567522738
313 => 0.063735124218391
314 => 0.06239785728382
315 => 0.063072296941445
316 => 0.066751821025658
317 => 0.068152745565384
318 => 0.067861363054323
319 => 0.067910601902128
320 => 0.068666515355185
321 => 0.072018651895184
322 => 0.0700099739785
323 => 0.071545532982079
324 => 0.072359987940708
325 => 0.07311649909635
326 => 0.071258746795899
327 => 0.068841838348814
328 => 0.068076301988707
329 => 0.062264892441827
330 => 0.061962383337239
331 => 0.061792575809871
401 => 0.060721963369561
402 => 0.059880755256905
403 => 0.059211795333666
404 => 0.057456244726745
405 => 0.058048691521853
406 => 0.055250710266308
407 => 0.057040759519238
408 => 0.052575113875769
409 => 0.056294236265027
410 => 0.054270087036299
411 => 0.055629248804071
412 => 0.055624506816704
413 => 0.053121859079605
414 => 0.051678384093772
415 => 0.052598222535632
416 => 0.053584362362172
417 => 0.053744360231255
418 => 0.055022916257247
419 => 0.055379733761632
420 => 0.05429856006513
421 => 0.052482573295654
422 => 0.052904385603955
423 => 0.051669836080807
424 => 0.049506335527753
425 => 0.051060199396052
426 => 0.051590756839261
427 => 0.051825081231373
428 => 0.049697526917162
429 => 0.049029003160185
430 => 0.048673086721428
501 => 0.052207932750372
502 => 0.052401579595301
503 => 0.051410854957739
504 => 0.055889024263888
505 => 0.054875476630017
506 => 0.05600785766225
507 => 0.052866110558204
508 => 0.052986129528502
509 => 0.051498776100716
510 => 0.052331594635284
511 => 0.051742985338046
512 => 0.052264311127764
513 => 0.052576791656615
514 => 0.054063901024339
515 => 0.05631121666523
516 => 0.053841776475528
517 => 0.05276580602184
518 => 0.053433332039821
519 => 0.055211041791253
520 => 0.05790436306396
521 => 0.056309862662375
522 => 0.057017474864226
523 => 0.057172056650854
524 => 0.055996331086339
525 => 0.057947713742561
526 => 0.058993475561034
527 => 0.060066210796871
528 => 0.060997636744789
529 => 0.059637736753725
530 => 0.06109302467817
531 => 0.059920319503968
601 => 0.058868281730675
602 => 0.058869877237715
603 => 0.058209918574709
604 => 0.056931165504993
605 => 0.056695343819345
606 => 0.05792211800908
607 => 0.058905874733299
608 => 0.058986901648983
609 => 0.059531559918756
610 => 0.059853883072382
611 => 0.063013088154991
612 => 0.064283746573532
613 => 0.065837483635391
614 => 0.066442751784807
615 => 0.06826439191391
616 => 0.066793269563282
617 => 0.06647498298893
618 => 0.062056279889672
619 => 0.062779842274635
620 => 0.063938335466347
621 => 0.062075383015704
622 => 0.063256997553092
623 => 0.06349027329279
624 => 0.062012080604298
625 => 0.062801647188158
626 => 0.060704792431604
627 => 0.05635692236888
628 => 0.057952554164845
629 => 0.059127476250531
630 => 0.057450717567409
701 => 0.060456242607382
702 => 0.05870047692566
703 => 0.05814398349617
704 => 0.055972904223497
705 => 0.056997570067694
706 => 0.058383445293772
707 => 0.057527135529343
708 => 0.05930410686609
709 => 0.061820772179869
710 => 0.063614297752478
711 => 0.063751982375647
712 => 0.062598865589341
713 => 0.06444674259849
714 => 0.064460202365128
715 => 0.062375789550009
716 => 0.061099098306807
717 => 0.06080903137017
718 => 0.061533675448862
719 => 0.06241352713707
720 => 0.063800808020886
721 => 0.064639112804402
722 => 0.066824967077308
723 => 0.067416396570203
724 => 0.068066198272676
725 => 0.068934533738605
726 => 0.069977193102095
727 => 0.067695913773409
728 => 0.067786553253974
729 => 0.065662257529563
730 => 0.063392142893208
731 => 0.065114876928418
801 => 0.067367122513749
802 => 0.066850454887964
803 => 0.066792319225501
804 => 0.066890087284275
805 => 0.06650053676722
806 => 0.064738614215997
807 => 0.063853787740991
808 => 0.064995439637057
809 => 0.065602176810736
810 => 0.06654317325407
811 => 0.066427175580404
812 => 0.068851081362792
813 => 0.069792937854722
814 => 0.069551970659775
815 => 0.069596314422844
816 => 0.071301500612554
817 => 0.073198018353797
818 => 0.074974357486029
819 => 0.076781325946877
820 => 0.074602954940146
821 => 0.073496912486173
822 => 0.074638065972735
823 => 0.074032553869867
824 => 0.077512006019504
825 => 0.077752915737085
826 => 0.081232116282728
827 => 0.084534291896038
828 => 0.08246025455794
829 => 0.084415978351073
830 => 0.086531253085848
831 => 0.090611961240185
901 => 0.089237722294848
902 => 0.08818507679979
903 => 0.087190331893306
904 => 0.089260238132392
905 => 0.091923139441418
906 => 0.09249670287843
907 => 0.093426094764487
908 => 0.092448952836931
909 => 0.093625812660019
910 => 0.097780644973929
911 => 0.096657972606992
912 => 0.095063597367351
913 => 0.098343438444846
914 => 0.099530400180732
915 => 0.10786111925987
916 => 0.11837899622212
917 => 0.11402452609564
918 => 0.11132156597027
919 => 0.1119568257148
920 => 0.11579759832881
921 => 0.1170311325924
922 => 0.1136779612392
923 => 0.11486235804864
924 => 0.12138850091598
925 => 0.12488956718058
926 => 0.12013464893733
927 => 0.10701601808698
928 => 0.094920041321458
929 => 0.098128439048607
930 => 0.097764706314522
1001 => 0.10477623267257
1002 => 0.096631197242333
1003 => 0.09676833874987
1004 => 0.10392485604767
1005 => 0.10201561992639
1006 => 0.098922901926389
1007 => 0.094942621585465
1008 => 0.087584705243898
1009 => 0.081067593549495
1010 => 0.093849150383406
1011 => 0.093297986410975
1012 => 0.09249981930097
1013 => 0.094276053833584
1014 => 0.10290094453099
1015 => 0.10270211288437
1016 => 0.10143724739335
1017 => 0.10239663672027
1018 => 0.0987547163388
1019 => 0.099693322146092
1020 => 0.094918125256939
1021 => 0.097076713680674
1022 => 0.098916266342571
1023 => 0.099285583774489
1024 => 0.10011767480642
1025 => 0.093007548042588
1026 => 0.096199786217193
1027 => 0.098074927072506
1028 => 0.089602972469993
1029 => 0.097907463769425
1030 => 0.092883776554234
1031 => 0.091178661660149
1101 => 0.09347437423323
1102 => 0.092579732810846
1103 => 0.091810572650988
1104 => 0.091381368065938
1105 => 0.093067086011058
1106 => 0.09298844525405
1107 => 0.090230283512079
1108 => 0.086632373956734
1109 => 0.087839950500863
1110 => 0.087401226621291
1111 => 0.085811234685213
1112 => 0.086882697273771
1113 => 0.082164518288569
1114 => 0.074047136574132
1115 => 0.079409727576815
1116 => 0.079203273656589
1117 => 0.07909917022807
1118 => 0.083129009155458
1119 => 0.082741633126792
1120 => 0.082038541841566
1121 => 0.085798321862389
1122 => 0.084425951578611
1123 => 0.08865527342211
1124 => 0.091440978323624
1125 => 0.090734433452487
1126 => 0.093354402376841
1127 => 0.087867770625478
1128 => 0.089690209607822
1129 => 0.090065811756292
1130 => 0.085751926760548
1201 => 0.082805012635842
1202 => 0.082608487061005
1203 => 0.077498944078546
1204 => 0.080228420696985
1205 => 0.082630247167795
1206 => 0.081479958677541
1207 => 0.081115811705418
1208 => 0.082976159612154
1209 => 0.083120724577309
1210 => 0.079824628051451
1211 => 0.080509990892979
1212 => 0.083368067874243
1213 => 0.080437974686121
1214 => 0.074745282249606
1215 => 0.073333415817719
1216 => 0.073145046809845
1217 => 0.06931595307003
1218 => 0.0734277634838
1219 => 0.071632848048521
1220 => 0.077302964402178
1221 => 0.074064224350413
1222 => 0.073924608739969
1223 => 0.073713559267626
1224 => 0.070417700107897
1225 => 0.071139283801102
1226 => 0.073537937897611
1227 => 0.074393804702018
1228 => 0.074304530782409
1229 => 0.073526183183957
1230 => 0.073882506728744
1231 => 0.072734664439634
]
'min_raw' => 0.040161724772366
'max_raw' => 0.12488956718058
'avg_raw' => 0.082525645976473
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.040161'
'max' => '$0.124889'
'avg' => '$0.082525'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.022878812592966
'max_diff' => 0.078002691859393
'year' => 2033
]
8 => [
'items' => [
101 => 0.072329337437078
102 => 0.071050013923035
103 => 0.069169761779534
104 => 0.069431222372344
105 => 0.065705950881333
106 => 0.063676225257907
107 => 0.063114423956697
108 => 0.062363159777426
109 => 0.063199281244783
110 => 0.065695397655254
111 => 0.062684551683588
112 => 0.057522667451455
113 => 0.057832905489229
114 => 0.058529918249607
115 => 0.057231039581844
116 => 0.056001759929429
117 => 0.057070518852593
118 => 0.054883360455521
119 => 0.058794225892621
120 => 0.058688447942621
121 => 0.060146176731275
122 => 0.061057724458427
123 => 0.058956902064423
124 => 0.058428550913559
125 => 0.058729523741313
126 => 0.053755113323812
127 => 0.059739661274313
128 => 0.059791415893503
129 => 0.05934826142286
130 => 0.062534848454313
131 => 0.069259541012099
201 => 0.066729441171729
202 => 0.065749710040865
203 => 0.063887240444913
204 => 0.066368870599017
205 => 0.066178320122643
206 => 0.065316578604357
207 => 0.0647953946453
208 => 0.065755692070234
209 => 0.06467640316721
210 => 0.064482533223351
211 => 0.063307892296146
212 => 0.062888598927891
213 => 0.062578170810584
214 => 0.062236419955467
215 => 0.062990237182849
216 => 0.061281988172686
217 => 0.059222007328145
218 => 0.059050742210223
219 => 0.059523620258589
220 => 0.059314406923817
221 => 0.059049740577266
222 => 0.05854442044411
223 => 0.058394502755059
224 => 0.058881662514752
225 => 0.058331687549237
226 => 0.059143205569541
227 => 0.058922517571359
228 => 0.057689772353153
301 => 0.056153315390533
302 => 0.056139637700738
303 => 0.055808610568436
304 => 0.055386997745187
305 => 0.055269714702954
306 => 0.056980510957095
307 => 0.060521808003345
308 => 0.05982656665711
309 => 0.060328949780964
310 => 0.062800177523472
311 => 0.063585706510404
312 => 0.063028156641753
313 => 0.062264947993366
314 => 0.062298525300545
315 => 0.064906640291055
316 => 0.065069305223834
317 => 0.065480307031271
318 => 0.066008560502924
319 => 0.063118120492208
320 => 0.062162385835974
321 => 0.06170950573371
322 => 0.060314810305393
323 => 0.061818869752683
324 => 0.060942518722994
325 => 0.061060768417313
326 => 0.06098375814876
327 => 0.061025810962802
328 => 0.058793132726027
329 => 0.059606603329395
330 => 0.058254050676078
331 => 0.056443134504448
401 => 0.056437063678452
402 => 0.056880282845935
403 => 0.056616638741949
404 => 0.05590717923703
405 => 0.056007954611149
406 => 0.055125056293032
407 => 0.056115154452359
408 => 0.056143546924826
409 => 0.055762305202475
410 => 0.057287688024134
411 => 0.057912638610761
412 => 0.05766169714212
413 => 0.057895031888363
414 => 0.059855457073872
415 => 0.060175091918458
416 => 0.06031705260253
417 => 0.06012684409206
418 => 0.057930864861951
419 => 0.058028265878831
420 => 0.057313601843555
421 => 0.056709786043187
422 => 0.056733935508605
423 => 0.057044375320554
424 => 0.058400084186387
425 => 0.06125309357113
426 => 0.061361363191758
427 => 0.061492589130408
428 => 0.060958827289049
429 => 0.060797839610282
430 => 0.061010223913021
501 => 0.062081664233824
502 => 0.064837699632137
503 => 0.063863532652958
504 => 0.063071519735073
505 => 0.063766328589208
506 => 0.063659368212206
507 => 0.062756514989188
508 => 0.062731174906264
509 => 0.060998310911657
510 => 0.060357710548255
511 => 0.05982237693649
512 => 0.05923780660768
513 => 0.058891253721787
514 => 0.059423716459989
515 => 0.059545496988129
516 => 0.058381257905195
517 => 0.058222576420203
518 => 0.059173319187173
519 => 0.058754932742692
520 => 0.059185253576325
521 => 0.059285091700952
522 => 0.05926901546342
523 => 0.058832171964005
524 => 0.059110602983671
525 => 0.058452030617878
526 => 0.05773593208445
527 => 0.057279105834637
528 => 0.056880464342467
529 => 0.057101653811503
530 => 0.056313153741993
531 => 0.056060896700385
601 => 0.059016276819105
602 => 0.061199447888493
603 => 0.061167703716513
604 => 0.060974469233526
605 => 0.060687361987991
606 => 0.062060660550532
607 => 0.061582230791314
608 => 0.061930328415289
609 => 0.062018933870202
610 => 0.062287115895968
611 => 0.062382967919155
612 => 0.062093236531573
613 => 0.061120862607137
614 => 0.058697799237983
615 => 0.057569856698707
616 => 0.057197616873377
617 => 0.057211147084044
618 => 0.056837923472337
619 => 0.056947854552693
620 => 0.056799693928846
621 => 0.056519113551183
622 => 0.057084328763837
623 => 0.057149464551751
624 => 0.057017536567299
625 => 0.0570486103835
626 => 0.055956303019414
627 => 0.056039348775939
628 => 0.055576939450666
629 => 0.055490243276605
630 => 0.0543213127689
701 => 0.052250382935314
702 => 0.053397879093144
703 => 0.052011865096863
704 => 0.051486960594932
705 => 0.053971776867674
706 => 0.053722370231966
707 => 0.053295494486092
708 => 0.052664056289244
709 => 0.052429849719797
710 => 0.051006884744628
711 => 0.050922808382672
712 => 0.051628068247652
713 => 0.051302615086474
714 => 0.050845555589429
715 => 0.049190132422511
716 => 0.047328888691121
717 => 0.047385067940011
718 => 0.047977094941295
719 => 0.049698493293249
720 => 0.049025913176647
721 => 0.048537948585084
722 => 0.048446567485246
723 => 0.049590393269008
724 => 0.051209146391942
725 => 0.051968629139662
726 => 0.051216004802505
727 => 0.050351430488151
728 => 0.050404053120614
729 => 0.050754127919037
730 => 0.05079091583056
731 => 0.050228166831591
801 => 0.050386577378479
802 => 0.050145937272392
803 => 0.048669129385518
804 => 0.048642418613852
805 => 0.048279986141669
806 => 0.048269011830452
807 => 0.047652423782251
808 => 0.047566158852036
809 => 0.046341885858114
810 => 0.047147706050154
811 => 0.046607204172793
812 => 0.045792540352106
813 => 0.045652092002354
814 => 0.045647869955365
815 => 0.046484347543713
816 => 0.047137931322513
817 => 0.046616606434358
818 => 0.046497910862784
819 => 0.047765269034261
820 => 0.047603986154714
821 => 0.04746431622119
822 => 0.051064204804423
823 => 0.048214612087985
824 => 0.046972027014552
825 => 0.045434092025673
826 => 0.045934851412993
827 => 0.046040368773588
828 => 0.042341912358952
829 => 0.040841449052148
830 => 0.04032654658902
831 => 0.040030212941837
901 => 0.040165255905982
902 => 0.038814662943066
903 => 0.039722283750891
904 => 0.038552784407787
905 => 0.038356714037036
906 => 0.040447923735674
907 => 0.040738903348569
908 => 0.039497493919677
909 => 0.040294679738957
910 => 0.040005609079174
911 => 0.038572832117358
912 => 0.038518110576211
913 => 0.037799193461317
914 => 0.036674227386293
915 => 0.036160087703137
916 => 0.035892319292184
917 => 0.036002805757246
918 => 0.035946940419569
919 => 0.035582381302458
920 => 0.035967836521424
921 => 0.034983157718059
922 => 0.034591050684462
923 => 0.034413945034201
924 => 0.033539985920217
925 => 0.034930843521948
926 => 0.035204859991051
927 => 0.035479416357246
928 => 0.037869242077385
929 => 0.037749853137984
930 => 0.038829071005396
1001 => 0.038787134583622
1002 => 0.038479324165666
1003 => 0.037180722644666
1004 => 0.03769832206559
1005 => 0.036105231500795
1006 => 0.037298883271568
1007 => 0.036754150451477
1008 => 0.037114708557143
1009 => 0.036466392572941
1010 => 0.03682519740691
1011 => 0.035269839461216
1012 => 0.033817468096004
1013 => 0.034401944730729
1014 => 0.035037337675685
1015 => 0.036415031475462
1016 => 0.035594488414042
1017 => 0.035889586727097
1018 => 0.034901056777224
1019 => 0.032861437131016
1020 => 0.032872981156711
1021 => 0.032559230109671
1022 => 0.032288103396626
1023 => 0.035688737655291
1024 => 0.035265815029154
1025 => 0.034591943175149
1026 => 0.035493947430337
1027 => 0.035732451672141
1028 => 0.035739241552608
1029 => 0.036397320573094
1030 => 0.036748537464294
1031 => 0.03681044096363
1101 => 0.037845942521102
1102 => 0.038193028984571
1103 => 0.039622629006085
1104 => 0.036718739164892
1105 => 0.03665893546457
1106 => 0.035506640479988
1107 => 0.034775836783702
1108 => 0.035556679234302
1109 => 0.03624839904991
1110 => 0.03552813414282
1111 => 0.035622185534064
1112 => 0.034655288744101
1113 => 0.03500090884979
1114 => 0.035298603444866
1115 => 0.035134233987145
1116 => 0.034888164953364
1117 => 0.036191685913298
1118 => 0.036118136152199
1119 => 0.037332004837907
1120 => 0.038278302282999
1121 => 0.039974236475506
1122 => 0.038204440734576
1123 => 0.038139942343476
1124 => 0.03877042446235
1125 => 0.038192932461044
1126 => 0.038557887471523
1127 => 0.039915436581136
1128 => 0.039944119454624
1129 => 0.039463644367901
1130 => 0.039434407415208
1201 => 0.039526687911435
1202 => 0.040067177660163
1203 => 0.039878313934385
1204 => 0.0400968718193
1205 => 0.040370181801063
1206 => 0.041500707766668
1207 => 0.041773273749597
1208 => 0.041111079720338
1209 => 0.041170868426908
1210 => 0.040923189682332
1211 => 0.040683935118478
1212 => 0.041221744437699
1213 => 0.042204601539246
1214 => 0.042198487236227
1215 => 0.042426490979774
1216 => 0.042568535423119
1217 => 0.041958776689396
1218 => 0.041561846175193
1219 => 0.041714054591683
1220 => 0.041957439164319
1221 => 0.041635128255032
1222 => 0.039645676013976
1223 => 0.040249148737212
1224 => 0.040148701367757
1225 => 0.040005652098835
1226 => 0.040612448588565
1227 => 0.040553921586841
1228 => 0.038800810660116
1229 => 0.038913039133691
1230 => 0.038807635645306
1231 => 0.0391482158798
]
'min_raw' => 0.032288103396626
'max_raw' => 0.072329337437078
'avg_raw' => 0.052308720416852
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.032288'
'max' => '$0.072329'
'avg' => '$0.0523087'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0078736213757404
'max_diff' => -0.052560229743502
'year' => 2034
]
9 => [
'items' => [
101 => 0.038174540010692
102 => 0.038474036150223
103 => 0.038661877321334
104 => 0.038772517214183
105 => 0.039172224373637
106 => 0.039125323351878
107 => 0.039169308940272
108 => 0.039761969138965
109 => 0.042759441047532
110 => 0.042922586829966
111 => 0.042119197329493
112 => 0.042440135588775
113 => 0.041824004312435
114 => 0.042237617365963
115 => 0.042520600912554
116 => 0.041241852680116
117 => 0.041166133508798
118 => 0.040547459239512
119 => 0.040879899748325
120 => 0.040350962995485
121 => 0.04048074557321
122 => 0.04011786217165
123 => 0.040770980045093
124 => 0.04150126731186
125 => 0.041685766715364
126 => 0.041200428216733
127 => 0.04084901115836
128 => 0.04023203856783
129 => 0.041258077736011
130 => 0.041558122856764
131 => 0.041256501726725
201 => 0.041186609520343
202 => 0.041054163915542
203 => 0.041214708481512
204 => 0.041556488746599
205 => 0.041395311485275
206 => 0.041501771905957
207 => 0.041096054563824
208 => 0.041958978544909
209 => 0.043329509500837
210 => 0.043333915981964
211 => 0.043172737851835
212 => 0.043106787233617
213 => 0.043272165776237
214 => 0.043361876851425
215 => 0.04389668073302
216 => 0.044470546605497
217 => 0.047148528235054
218 => 0.046396561709591
219 => 0.048772626325174
220 => 0.050651784942724
221 => 0.05121526244648
222 => 0.05069688965669
223 => 0.048923564344765
224 => 0.048836556544867
225 => 0.051486653239517
226 => 0.05073787954116
227 => 0.050648815292319
228 => 0.04970132216107
301 => 0.050261407950945
302 => 0.050138908972737
303 => 0.049945538342779
304 => 0.051014143013947
305 => 0.053014475563377
306 => 0.052702704976549
307 => 0.052469982696102
308 => 0.051450261407625
309 => 0.052064361386284
310 => 0.051845692146194
311 => 0.052785233972549
312 => 0.052228670208016
313 => 0.050732206843956
314 => 0.05097052356709
315 => 0.050934502473815
316 => 0.051675814020934
317 => 0.051453290694972
318 => 0.05089105122305
319 => 0.053007638644187
320 => 0.052870199230136
321 => 0.053065056896236
322 => 0.053150839267027
323 => 0.054439168731819
324 => 0.0549669560916
325 => 0.055086773062488
326 => 0.055588130233741
327 => 0.055074298839342
328 => 0.057129990772513
329 => 0.058496905955123
330 => 0.060084648280536
331 => 0.062404766562869
401 => 0.06327715249932
402 => 0.063119563788324
403 => 0.064878650990845
404 => 0.068039691591463
405 => 0.063758500471318
406 => 0.068266605116375
407 => 0.066839391234321
408 => 0.063455492794452
409 => 0.063237609628467
410 => 0.065529224939815
411 => 0.070611807140584
412 => 0.069338677945461
413 => 0.070613889523861
414 => 0.069126287480807
415 => 0.069052415500874
416 => 0.07054164001302
417 => 0.074021294259049
418 => 0.07236824095965
419 => 0.069998183709662
420 => 0.071748197100878
421 => 0.070232173545313
422 => 0.06681614816635
423 => 0.069337704407559
424 => 0.06765161155885
425 => 0.068143703089729
426 => 0.071687619470333
427 => 0.071261206075379
428 => 0.071813024493267
429 => 0.070839079429298
430 => 0.069929261162511
501 => 0.068231017803561
502 => 0.067728251667362
503 => 0.067867198139777
504 => 0.06772818281239
505 => 0.06677803126072
506 => 0.066572846123602
507 => 0.066230861905704
508 => 0.066336857114789
509 => 0.065693826734129
510 => 0.06690735791929
511 => 0.067132600000856
512 => 0.068015706797314
513 => 0.068107393874517
514 => 0.070566833732413
515 => 0.069212215587891
516 => 0.07012101039134
517 => 0.070039719230211
518 => 0.063528832134522
519 => 0.064425974930265
520 => 0.065821647581522
521 => 0.06519289894392
522 => 0.064303995474874
523 => 0.06358615826363
524 => 0.062498561485973
525 => 0.06402933306508
526 => 0.066042134912196
527 => 0.068158441850988
528 => 0.070701045972024
529 => 0.070133566331383
530 => 0.068110909635544
531 => 0.068201644537368
601 => 0.068762531997574
602 => 0.068036131774608
603 => 0.067821902167838
604 => 0.068733100139323
605 => 0.068739375058967
606 => 0.067903563814045
607 => 0.066974712567157
608 => 0.066970820646517
609 => 0.066805540538772
610 => 0.069155690444803
611 => 0.070448035266163
612 => 0.070596200517215
613 => 0.070438062564249
614 => 0.070498923586074
615 => 0.069746936609399
616 => 0.071465755843268
617 => 0.073043114345869
618 => 0.072620348571823
619 => 0.071986562576831
620 => 0.071481721504551
621 => 0.072501424059274
622 => 0.072456018309672
623 => 0.073029337495406
624 => 0.073003328425489
625 => 0.072810542746952
626 => 0.072620355456806
627 => 0.073374426564439
628 => 0.073157266195452
629 => 0.072939768516431
630 => 0.072503543623926
701 => 0.072562833831746
702 => 0.071929157268842
703 => 0.071635989495776
704 => 0.067227449596706
705 => 0.066049343682478
706 => 0.066419999785652
707 => 0.066542029398898
708 => 0.066029316195242
709 => 0.066764415224069
710 => 0.066649850819089
711 => 0.067095553900931
712 => 0.066817097965574
713 => 0.066828525894291
714 => 0.067647405427111
715 => 0.067885129639251
716 => 0.067764221186287
717 => 0.067848901322243
718 => 0.069800319314117
719 => 0.069522890078508
720 => 0.069375511326459
721 => 0.069416336247981
722 => 0.069914965383779
723 => 0.07005455431766
724 => 0.069463106196063
725 => 0.069742036549329
726 => 0.070929686592004
727 => 0.07134529689177
728 => 0.07267172546436
729 => 0.072108235031336
730 => 0.073142546108447
731 => 0.076321665736855
801 => 0.078861366474372
802 => 0.076525752718579
803 => 0.081189589694092
804 => 0.084821055767208
805 => 0.084681674050798
806 => 0.084048443943627
807 => 0.079914116366905
808 => 0.076109646491454
809 => 0.079292247088593
810 => 0.079300360192022
811 => 0.079026971978219
812 => 0.077328981262026
813 => 0.078967885581904
814 => 0.07909797585519
815 => 0.079025159895946
816 => 0.07772331439499
817 => 0.075735636936297
818 => 0.076124024353898
819 => 0.076760210866818
820 => 0.075555777075452
821 => 0.075170887499893
822 => 0.075886470449094
823 => 0.078192227809047
824 => 0.077756337736491
825 => 0.077744954885126
826 => 0.079609877461679
827 => 0.078274995372349
828 => 0.076128923163023
829 => 0.075587011626953
830 => 0.073663590749258
831 => 0.074992104400472
901 => 0.075039915241672
902 => 0.074312301891983
903 => 0.076187964976244
904 => 0.076170680410719
905 => 0.077951343353617
906 => 0.08135530211398
907 => 0.080348584009903
908 => 0.07917788038548
909 => 0.079305168329545
910 => 0.080701202902525
911 => 0.079857128531332
912 => 0.080160663560308
913 => 0.080700743465904
914 => 0.08102658708238
915 => 0.079258284447583
916 => 0.078846008515719
917 => 0.078002636648315
918 => 0.07778261667039
919 => 0.07846952545886
920 => 0.078288549261944
921 => 0.075035896925602
922 => 0.074695976658868
923 => 0.074706401528154
924 => 0.073851655855123
925 => 0.072547963541283
926 => 0.07597398910263
927 => 0.075698831302857
928 => 0.07539507838743
929 => 0.07543228638638
930 => 0.076919407963781
1001 => 0.076056802347448
1002 => 0.078350180756748
1003 => 0.077878731101061
1004 => 0.077395190540649
1005 => 0.077328350506194
1006 => 0.077142228644177
1007 => 0.076503947526427
1008 => 0.075733184721994
1009 => 0.075224260356177
1010 => 0.069390403839216
1011 => 0.070473133674782
1012 => 0.07171871565667
1013 => 0.072148685565462
1014 => 0.071413192283462
1015 => 0.076532989284084
1016 => 0.077468425531689
1017 => 0.074634928120697
1018 => 0.074104896446037
1019 => 0.076567738072434
1020 => 0.075082343501573
1021 => 0.07575121658588
1022 => 0.074305478831624
1023 => 0.077243106332412
1024 => 0.077220726532728
1025 => 0.076077923085595
1026 => 0.077043812733532
1027 => 0.076875965637826
1028 => 0.075585743360614
1029 => 0.077284008679928
1030 => 0.077284850998338
1031 => 0.076184927527162
1101 => 0.074900457717038
1102 => 0.074670824852811
1103 => 0.07449782733645
1104 => 0.075708669801796
1105 => 0.076794307370018
1106 => 0.078814409732103
1107 => 0.07932231146238
1108 => 0.081304685728581
1109 => 0.080124278373109
1110 => 0.080647537664956
1111 => 0.081215609645801
1112 => 0.081487964243573
1113 => 0.081044177041856
1114 => 0.084123620255068
1115 => 0.084383619613966
1116 => 0.084470795150018
1117 => 0.083432424224815
1118 => 0.084354740640137
1119 => 0.083923219333317
1120 => 0.08504591789359
1121 => 0.085221971363176
1122 => 0.085072860337721
1123 => 0.085128742487782
1124 => 0.082500980956314
1125 => 0.082364717658361
1126 => 0.080506757921969
1127 => 0.081263890247894
1128 => 0.079848467654875
1129 => 0.08029731273959
1130 => 0.080495159376179
1201 => 0.080391815520922
1202 => 0.08130669737361
1203 => 0.080528860900811
1204 => 0.07847602256094
1205 => 0.076422624926635
1206 => 0.076396846191998
1207 => 0.075856222840365
1208 => 0.075465451177239
1209 => 0.075540727662927
1210 => 0.075806011816956
1211 => 0.075450032379947
1212 => 0.075525998641449
1213 => 0.076787544742924
1214 => 0.07704053881664
1215 => 0.076180766102988
1216 => 0.072728654593065
1217 => 0.071881497769564
1218 => 0.072490417294447
1219 => 0.072199392980993
1220 => 0.058270545067245
1221 => 0.061542921275059
1222 => 0.059598586451772
1223 => 0.060494625392886
1224 => 0.058509963021372
1225 => 0.059457147930126
1226 => 0.059282237463134
1227 => 0.064544121568646
1228 => 0.064461964485824
1229 => 0.064501288733715
1230 => 0.062624239923088
1231 => 0.065614429645845
]
'min_raw' => 0.038174540010692
'max_raw' => 0.085221971363176
'avg_raw' => 0.061698255686934
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.038174'
'max' => '$0.085221'
'avg' => '$0.061698'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.005886436614066
'max_diff' => 0.012892633926098
'year' => 2035
]
10 => [
'items' => [
101 => 0.067087504627019
102 => 0.066814877652625
103 => 0.066883491988563
104 => 0.065704470366986
105 => 0.064512704240225
106 => 0.063190852194155
107 => 0.065646689909903
108 => 0.065373642678459
109 => 0.065999914788097
110 => 0.067592701093665
111 => 0.067827244927567
112 => 0.068142474218839
113 => 0.068029486957467
114 => 0.070721301915897
115 => 0.070395305363264
116 => 0.0711808632595
117 => 0.069564911066522
118 => 0.067736307772576
119 => 0.06808386547721
120 => 0.068050392875371
121 => 0.0676242482359
122 => 0.0672395439096
123 => 0.066599119596081
124 => 0.068625516889018
125 => 0.068543248859561
126 => 0.06987507263035
127 => 0.069639659842217
128 => 0.068067515627784
129 => 0.068123665065966
130 => 0.068501297022236
131 => 0.069808285534613
201 => 0.07019628871165
202 => 0.070016550180793
203 => 0.070441977951396
204 => 0.070778218715194
205 => 0.070484204614475
206 => 0.074646824259779
207 => 0.07291821436622
208 => 0.07376072680075
209 => 0.073961661052014
210 => 0.073446972192594
211 => 0.073558589776576
212 => 0.073727660002337
213 => 0.074754221305818
214 => 0.077448215204059
215 => 0.078641366762953
216 => 0.082231022096948
217 => 0.078542292135459
218 => 0.078323418165026
219 => 0.078970023487884
220 => 0.081077531172546
221 => 0.082785468202833
222 => 0.08335208944903
223 => 0.083426977800612
224 => 0.084489996926747
225 => 0.085099299665714
226 => 0.084360918444656
227 => 0.083735217671545
228 => 0.081494035167101
229 => 0.081753458144528
301 => 0.083540625201609
302 => 0.086065103933352
303 => 0.088231369312432
304 => 0.087472818678649
305 => 0.093260024561123
306 => 0.093833802385755
307 => 0.093754524842849
308 => 0.095061676116948
309 => 0.092467247034589
310 => 0.091358078337185
311 => 0.083870501280697
312 => 0.085974205019271
313 => 0.089032061949477
314 => 0.088627343118389
315 => 0.086406645678923
316 => 0.08822968471429
317 => 0.087626930997496
318 => 0.087151514132786
319 => 0.089329490954115
320 => 0.086934715972707
321 => 0.08900817223713
322 => 0.086348943130849
323 => 0.087476283674048
324 => 0.086836350658402
325 => 0.087250465746766
326 => 0.084829557401952
327 => 0.086135820780586
328 => 0.084775212550806
329 => 0.084774567445348
330 => 0.084744531943264
331 => 0.08634528149174
401 => 0.086397481877047
402 => 0.085214525542125
403 => 0.085044043053012
404 => 0.085674406168753
405 => 0.084936416052582
406 => 0.085281716983084
407 => 0.084946874866003
408 => 0.084871494852594
409 => 0.084270854080899
410 => 0.084012081521491
411 => 0.084113552909783
412 => 0.083767178749458
413 => 0.083558475788962
414 => 0.084703015671444
415 => 0.084091534182841
416 => 0.084609297363437
417 => 0.084019240872225
418 => 0.081973847998311
419 => 0.080797520926886
420 => 0.076933963396082
421 => 0.07802966351909
422 => 0.078756113834228
423 => 0.078516022009408
424 => 0.079031832152323
425 => 0.079063498705861
426 => 0.078895803570338
427 => 0.078701634086479
428 => 0.078607123119982
429 => 0.079311530432865
430 => 0.079720462587254
501 => 0.078829022842003
502 => 0.078620170982258
503 => 0.079521465782444
504 => 0.080071255089897
505 => 0.084130590436198
506 => 0.083829861762263
507 => 0.084584631718817
508 => 0.084499656204598
509 => 0.08529077536335
510 => 0.086583920836007
511 => 0.083954594520935
512 => 0.084410954653968
513 => 0.084299065688243
514 => 0.085520640077168
515 => 0.085524453699071
516 => 0.084792058830744
517 => 0.085189101970614
518 => 0.084967483382247
519 => 0.085367978124974
520 => 0.083825845347477
521 => 0.085703996607522
522 => 0.086768787346574
523 => 0.086783571967019
524 => 0.087288274326627
525 => 0.087801081154379
526 => 0.088785369204187
527 => 0.087773629894893
528 => 0.085953609368311
529 => 0.0860850089717
530 => 0.085017931602884
531 => 0.085035869366237
601 => 0.08494011617965
602 => 0.08522747870056
603 => 0.083888905261021
604 => 0.084203065771778
605 => 0.083763239216996
606 => 0.084409998556934
607 => 0.08371419242031
608 => 0.084299011731996
609 => 0.084551400359852
610 => 0.08548271983018
611 => 0.08357663577731
612 => 0.07969000136296
613 => 0.080507019037744
614 => 0.079298585721385
615 => 0.079410430825644
616 => 0.079636375736264
617 => 0.078904014356371
618 => 0.079043725828295
619 => 0.079038734351384
620 => 0.078995720499973
621 => 0.078805205019925
622 => 0.078528919881515
623 => 0.079629554836857
624 => 0.07981657416305
625 => 0.080232294958382
626 => 0.081469198059183
627 => 0.08134560227123
628 => 0.081547192129322
629 => 0.081107122600985
630 => 0.079430844388914
701 => 0.079521874360647
702 => 0.078386729154478
703 => 0.080203266743306
704 => 0.079773086665147
705 => 0.079495746770271
706 => 0.079420072010418
707 => 0.080660041154761
708 => 0.081031059356884
709 => 0.080799865711427
710 => 0.080325680799597
711 => 0.081236256010494
712 => 0.081479887522846
713 => 0.081534427633678
714 => 0.083147792321909
715 => 0.081624596797504
716 => 0.08199124509949
717 => 0.084851730487208
718 => 0.082257664960548
719 => 0.083631799324585
720 => 0.083564542598115
721 => 0.084267503240584
722 => 0.083506879307549
723 => 0.083516308152798
724 => 0.084140489580633
725 => 0.083263939336953
726 => 0.083046893169664
727 => 0.082747045444069
728 => 0.083401751983197
729 => 0.083794218943574
730 => 0.086957214408997
731 => 0.089000653729777
801 => 0.088911942639674
802 => 0.089722595943012
803 => 0.089357389205125
804 => 0.088178040311818
805 => 0.090191045066417
806 => 0.089554046134366
807 => 0.089606559552371
808 => 0.08960460500033
809 => 0.090028153602731
810 => 0.08972803060027
811 => 0.089136457355426
812 => 0.089529171282921
813 => 0.090695391249782
814 => 0.094315373810918
815 => 0.096341164010519
816 => 0.094193418697244
817 => 0.095674904654885
818 => 0.094786540987722
819 => 0.094625098882868
820 => 0.095555581545219
821 => 0.096487692894295
822 => 0.096428321430987
823 => 0.095751656456005
824 => 0.095369425581376
825 => 0.098263805820804
826 => 0.10039633587673
827 => 0.10025091162358
828 => 0.10089276698249
829 => 0.10277727416809
830 => 0.10294956988773
831 => 0.10292786458723
901 => 0.1025008116689
902 => 0.10435635372731
903 => 0.10590427955758
904 => 0.10240196125706
905 => 0.10373559821718
906 => 0.10433431081569
907 => 0.10521339854031
908 => 0.10669656688395
909 => 0.10830768109613
910 => 0.1085355103107
911 => 0.10837385458033
912 => 0.10731128144833
913 => 0.10907418184388
914 => 0.11010684755049
915 => 0.11072177634664
916 => 0.11228113345929
917 => 0.10433800826087
918 => 0.098715469446484
919 => 0.097837428820173
920 => 0.099622958961018
921 => 0.10009378901982
922 => 0.099903998013489
923 => 0.093575319399036
924 => 0.097804109637018
925 => 0.1023539323663
926 => 0.10252870958707
927 => 0.10480644597766
928 => 0.10554817031401
929 => 0.10738204665816
930 => 0.10726733719352
1001 => 0.10771385689998
1002 => 0.10761120975211
1003 => 0.11100807951144
1004 => 0.11475533129601
1005 => 0.11462557588224
1006 => 0.11408686410274
1007 => 0.11488694295931
1008 => 0.1187545083809
1009 => 0.11839844493335
1010 => 0.11874433024323
1011 => 0.12330440784172
1012 => 0.12923315738323
1013 => 0.12647865798448
1014 => 0.13245512909393
1015 => 0.1362170008582
1016 => 0.14272276908971
1017 => 0.14190821486554
1018 => 0.14444086269654
1019 => 0.14044999280168
1020 => 0.13128614883522
1021 => 0.12983593544974
1022 => 0.13273929937272
1023 => 0.13987693627126
1024 => 0.13251450978609
1025 => 0.1340039190752
1026 => 0.13357496909974
1027 => 0.13355211217846
1028 => 0.13442446789761
1029 => 0.13315907042797
1030 => 0.12800361349603
1031 => 0.13036632902664
1101 => 0.12945397109335
1102 => 0.13046630024113
1103 => 0.13592942313536
1104 => 0.13351404627923
1105 => 0.13096964297059
1106 => 0.13416088936792
1107 => 0.13822444266296
1108 => 0.13797015280067
1109 => 0.1374767241829
1110 => 0.14025815546619
1111 => 0.1448522650633
1112 => 0.14609403442677
1113 => 0.14701068318402
1114 => 0.14713707356074
1115 => 0.14843897299212
1116 => 0.1414383316287
1117 => 0.15254852926166
1118 => 0.15446695347986
1119 => 0.15410636923737
1120 => 0.15623861701627
1121 => 0.15561125562981
1122 => 0.15470230741082
1123 => 0.15808237368248
1124 => 0.15420740045931
1125 => 0.14870736381458
1126 => 0.1456899349329
1127 => 0.14966352869335
1128 => 0.15209006374354
1129 => 0.15369384905511
1130 => 0.15417915352135
1201 => 0.14198177148947
1202 => 0.13540805907211
1203 => 0.13962173336388
1204 => 0.14476270681209
1205 => 0.14140977326162
1206 => 0.14154120190886
1207 => 0.13676079980133
1208 => 0.14518566632528
1209 => 0.14395823413702
1210 => 0.150326154501
1211 => 0.14880639920038
1212 => 0.15399919105596
1213 => 0.15263175493098
1214 => 0.15830790583344
1215 => 0.16057227610409
1216 => 0.16437450620959
1217 => 0.16717144215306
1218 => 0.16881385643593
1219 => 0.16871525204293
1220 => 0.17522331567918
1221 => 0.17138573792731
1222 => 0.16656483582332
1223 => 0.16647764091401
1224 => 0.16897445442638
1225 => 0.17420709058096
1226 => 0.17556383700408
1227 => 0.17632207316386
1228 => 0.17516080809077
1229 => 0.17099539248279
1230 => 0.16919678714239
1231 => 0.17072925100302
]
'min_raw' => 0.063190852194155
'max_raw' => 0.17632207316386
'avg_raw' => 0.11975646267901
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.06319'
'max' => '$0.176322'
'avg' => '$0.119756'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.025016312183463
'max_diff' => 0.091100101800681
'year' => 2036
]
11 => [
'items' => [
101 => 0.1688551793876
102 => 0.17209035276744
103 => 0.17653293681372
104 => 0.17561556077605
105 => 0.17868221132929
106 => 0.18185587203086
107 => 0.18639434937211
108 => 0.18758087540845
109 => 0.18954215782696
110 => 0.19156096168333
111 => 0.1922093470737
112 => 0.1934473159661
113 => 0.19344079125896
114 => 0.19717149384111
115 => 0.20128657431947
116 => 0.20283992193572
117 => 0.20641175912719
118 => 0.2002951131089
119 => 0.20493465937674
120 => 0.20911964624571
121 => 0.20413013237377
122 => 0.21100701483861
123 => 0.21127402860137
124 => 0.21530561940569
125 => 0.21121882976617
126 => 0.20879210712371
127 => 0.21579796446437
128 => 0.21918787814907
129 => 0.21816680855921
130 => 0.21039641856391
131 => 0.20587371829894
201 => 0.19403693934178
202 => 0.20805811532733
203 => 0.21488742114658
204 => 0.21037873231167
205 => 0.21265265270523
206 => 0.22505842505132
207 => 0.22978173994644
208 => 0.22879932346672
209 => 0.22896533567984
210 => 0.23151395066301
211 => 0.24281591304632
212 => 0.2360435152088
213 => 0.24122075959868
214 => 0.24396675135512
215 => 0.24651738153429
216 => 0.2402538399492
217 => 0.23210506437669
218 => 0.22952400509055
219 => 0.20993043206359
220 => 0.20891050149696
221 => 0.20833798356285
222 => 0.20472833897257
223 => 0.20189214708948
224 => 0.19963670200299
225 => 0.19371774056313
226 => 0.19571521629614
227 => 0.18628162714426
228 => 0.19231690317777
301 => 0.17726066710939
302 => 0.1897999479056
303 => 0.18297538745936
304 => 0.18755789625305
305 => 0.18754190831156
306 => 0.17910405673665
307 => 0.17423728004171
308 => 0.17733857956951
309 => 0.18066341884477
310 => 0.18120286283108
311 => 0.18551360373864
312 => 0.18671663886688
313 => 0.18307138626399
314 => 0.17694866008255
315 => 0.17837082972998
316 => 0.1742084598192
317 => 0.16691406665379
318 => 0.17215302717307
319 => 0.17394183863519
320 => 0.1747318796832
321 => 0.16755868177174
322 => 0.16530470725025
323 => 0.16410471012769
324 => 0.17602269030934
325 => 0.17667558416701
326 => 0.17333528688129
327 => 0.18843374735276
328 => 0.18501650074153
329 => 0.18883440245202
330 => 0.17824178274096
331 => 0.17864643507877
401 => 0.17363171915329
402 => 0.17643962498812
403 => 0.17445508764709
404 => 0.17621277394493
405 => 0.17726632386465
406 => 0.18228021692459
407 => 0.18985719851042
408 => 0.18153130850003
409 => 0.17790359899357
410 => 0.18015420956837
411 => 0.18614788211105
412 => 0.19522860282367
413 => 0.18985263339526
414 => 0.19223839733771
415 => 0.19275958062388
416 => 0.18879553979658
417 => 0.19537476266322
418 => 0.19890062164696
419 => 0.20251742339057
420 => 0.20565779100406
421 => 0.201072793239
422 => 0.20597939808122
423 => 0.20202554071074
424 => 0.19847852190715
425 => 0.19848390127053
426 => 0.19625880456136
427 => 0.19194739930713
428 => 0.19115231002942
429 => 0.19528846486075
430 => 0.19860526934016
501 => 0.1988784572435
502 => 0.20071481062687
503 => 0.2018015456432
504 => 0.21245302614788
505 => 0.21673713972052
506 => 0.22197567270304
507 => 0.22401637652727
508 => 0.23015816340539
509 => 0.22519817168977
510 => 0.22412504628228
511 => 0.20922708027913
512 => 0.21166662137755
513 => 0.21557256205682
514 => 0.20929148780229
515 => 0.21327538371278
516 => 0.21406188915597
517 => 0.2090780593026
518 => 0.21174013816586
519 => 0.20467044595642
520 => 0.19001129848135
521 => 0.1953910824849
522 => 0.19935241432723
523 => 0.19369910535953
524 => 0.20383244287086
525 => 0.19791275629129
526 => 0.19603649984063
527 => 0.1887165544929
528 => 0.19217128692649
529 => 0.19684386200993
530 => 0.19395675385352
531 => 0.19994793677954
601 => 0.20843304959291
602 => 0.21448004628092
603 => 0.21494425960077
604 => 0.21105644584769
605 => 0.21728669219869
606 => 0.21733207274164
607 => 0.21030432940641
608 => 0.20599987574422
609 => 0.20502189481552
610 => 0.20746508291986
611 => 0.21043156431594
612 => 0.21510887867259
613 => 0.21793528177878
614 => 0.22530504207135
615 => 0.22729908789894
616 => 0.22948993970653
617 => 0.23241759335516
618 => 0.23593299219532
619 => 0.22824149966481
620 => 0.22854709700179
621 => 0.22138488565335
622 => 0.21373103566253
623 => 0.21953935373969
624 => 0.2271329569774
625 => 0.22539097600448
626 => 0.22519496755959
627 => 0.22552459939569
628 => 0.22421120262989
629 => 0.21827075773494
630 => 0.21528750349785
701 => 0.21913666257302
702 => 0.22118231931512
703 => 0.22435495452209
704 => 0.22396386026663
705 => 0.23213622784365
706 => 0.23531176276451
707 => 0.23449932504295
708 => 0.23464883313612
709 => 0.24039798742703
710 => 0.24679222940227
711 => 0.25278128080663
712 => 0.25887360113088
713 => 0.25152907119268
714 => 0.2477999718377
715 => 0.25164745049043
716 => 0.24960592416011
717 => 0.2613371400102
718 => 0.2621493839428
719 => 0.27387975149247
720 => 0.28501326712328
721 => 0.27802050543322
722 => 0.28461436474604
723 => 0.2917461611981
724 => 0.30550455364639
725 => 0.30087121109589
726 => 0.29732214331594
727 => 0.29396829141286
728 => 0.30094712481418
729 => 0.30992528249539
730 => 0.31185909166819
731 => 0.3149926013001
801 => 0.31169809906948
802 => 0.31566596412875
803 => 0.32967427135623
804 => 0.32588910308861
805 => 0.32051355565244
806 => 0.33157176883641
807 => 0.33557369319997
808 => 0.36366129420751
809 => 0.39912305072045
810 => 0.38444165066965
811 => 0.37532843189229
812 => 0.37747025447341
813 => 0.39041968749572
814 => 0.39457863438803
815 => 0.38327318305977
816 => 0.38726645959475
817 => 0.40926980591273
818 => 0.42107389526045
819 => 0.40504235642553
820 => 0.36081197660004
821 => 0.32002954642095
822 => 0.33084688336121
823 => 0.32962053305323
824 => 0.35326038369855
825 => 0.32579882807727
826 => 0.32626121024485
827 => 0.35038990796647
828 => 0.34395278508494
829 => 0.33352547042128
830 => 0.32010567735755
831 => 0.29529794869865
901 => 0.27332505161076
902 => 0.31641896285609
903 => 0.314560675042
904 => 0.31186959890437
905 => 0.31785829764381
906 => 0.34693771880075
907 => 0.34626734402218
908 => 0.34200276170915
909 => 0.34523740980728
910 => 0.33295842097038
911 => 0.33612299598103
912 => 0.32002308627565
913 => 0.3273009178541
914 => 0.33350309808715
915 => 0.33474827759379
916 => 0.33755373060267
917 => 0.31358144180522
918 => 0.32434429568586
919 => 0.3306664639977
920 => 0.30210267756234
921 => 0.33010184977945
922 => 0.31316413759079
923 => 0.30741522367806
924 => 0.31515537889974
925 => 0.3121390328823
926 => 0.30954575570229
927 => 0.30809866247769
928 => 0.31378217822273
929 => 0.31351703541995
930 => 0.3042177005382
1001 => 0.29208709727433
1002 => 0.29615852590316
1003 => 0.29467933771246
1004 => 0.28931856889028
1005 => 0.29293107981473
1006 => 0.27702340995339
1007 => 0.24965509076567
1008 => 0.26773544073536
1009 => 0.26703936692917
1010 => 0.26668837495165
1011 => 0.2802752582497
1012 => 0.27896919292333
1013 => 0.27659867156692
1014 => 0.28927503240658
1015 => 0.28464799017899
1016 => 0.29890744405617
1017 => 0.30829964262333
1018 => 0.3059174772609
1019 => 0.31475088540976
1020 => 0.29625232339564
1021 => 0.30239680366324
1022 => 0.30366317253051
1023 => 0.28911860808152
1024 => 0.2791828813631
1025 => 0.27852028166656
1026 => 0.2612931007643
1027 => 0.27049572174935
1028 => 0.27859364738585
1029 => 0.27471536943038
1030 => 0.27348762248994
1031 => 0.27975991534284
1101 => 0.28024732621607
1102 => 0.26913430665302
1103 => 0.27144505532374
1104 => 0.28108126141063
1105 => 0.27120224765431
1106 => 0.2520089376535
1107 => 0.24724873140503
1108 => 0.24661363214348
1109 => 0.2337035752609
1110 => 0.24756683114837
1111 => 0.24151514844133
1112 => 0.26063234160257
1113 => 0.24971270339643
1114 => 0.24924197961817
1115 => 0.24853041158716
1116 => 0.2374181923206
1117 => 0.2398510621216
1118 => 0.24793829187666
1119 => 0.25082390656243
1120 => 0.25052291330956
1121 => 0.24789866003889
1122 => 0.24910002974785
1123 => 0.24522999933033
1124 => 0.24386341104218
1125 => 0.23955008249507
1126 => 0.23321068111825
1127 => 0.2340922137615
1128 => 0.22153220083941
1129 => 0.21468883918911
1130 => 0.21279468687837
1201 => 0.21026174724636
1202 => 0.2130807891497
1203 => 0.22149661990088
1204 => 0.21134534249686
1205 => 0.19394168941697
1206 => 0.19498767862146
1207 => 0.19733770580695
1208 => 0.19295844569377
1209 => 0.18881384352009
1210 => 0.1924172388479
1211 => 0.18504308160965
1212 => 0.19822883747874
1213 => 0.19787219973513
1214 => 0.20278703412145
1215 => 0.20586038092578
1216 => 0.19877731154966
1217 => 0.19699593875622
1218 => 0.19801068965824
1219 => 0.18123911763339
1220 => 0.2014164388763
1221 => 0.20159093318829
1222 => 0.20009680695046
1223 => 0.21084060760741
1224 => 0.23351337806903
1225 => 0.22498296981129
1226 => 0.22167973790094
1227 => 0.21540029162471
1228 => 0.22376728095116
1229 => 0.22312482671625
1230 => 0.22021940502248
1231 => 0.21846219691662
]
'min_raw' => 0.16410471012769
'max_raw' => 0.42107389526045
'avg_raw' => 0.29258930269407
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.1641047'
'max' => '$0.421073'
'avg' => '$0.292589'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.10091385793354
'max_diff' => 0.2447518220966
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0051510593326562
]
1 => [
'year' => 2028
'avg' => 0.0088407131780469
]
2 => [
'year' => 2029
'avg' => 0.024151235018902
]
3 => [
'year' => 2030
'avg' => 0.018632641849984
]
4 => [
'year' => 2031
'avg' => 0.018299563414568
]
5 => [
'year' => 2032
'avg' => 0.032084893750294
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0051510593326562
'min' => '$0.005151'
'max_raw' => 0.032084893750294
'max' => '$0.032084'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.032084893750294
]
1 => [
'year' => 2033
'avg' => 0.082525645976473
]
2 => [
'year' => 2034
'avg' => 0.052308720416852
]
3 => [
'year' => 2035
'avg' => 0.061698255686934
]
4 => [
'year' => 2036
'avg' => 0.11975646267901
]
5 => [
'year' => 2037
'avg' => 0.29258930269407
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.032084893750294
'min' => '$0.032084'
'max_raw' => 0.29258930269407
'max' => '$0.292589'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.29258930269407
]
]
]
]
'prediction_2025_max_price' => '$0.0088073'
'last_price' => 0.0085398624494712
'sma_50day_nextmonth' => '$0.009387'
'sma_200day_nextmonth' => '$0.009782'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.011196'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.011877'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.010877'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.011614'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.010716'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.010211'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010559'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.010455'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.010881'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.011186'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.011413'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.011049'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.010712'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011284'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.011071'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.012119'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.014678'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.029959'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.009886'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.010435'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.011119'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.011351'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.01247'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.019377'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.075928'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '43.35'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 30.66
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.011859'
'vwma_10_action' => 'SELL'
'hma_9' => '0.012199'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 6.58
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -102.63
'cci_20_action' => 'BUY'
'adx_14' => 12.82
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000011'
'ao_5_34_action' => 'BUY'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -93.42
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 41.41
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000124'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 32
'buy_signals' => 2
'sell_pct' => 94.12
'buy_pct' => 5.88
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767705524
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Bismuth para 2026
A previsão de preço para Bismuth em 2026 sugere que o preço médio poderia variar entre $0.00295 na extremidade inferior e $0.0088073 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Bismuth poderia potencialmente ganhar 3.13% até 2026 se BIS atingir a meta de preço prevista.
Previsão de preço de Bismuth 2027-2032
A previsão de preço de BIS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.005151 na extremidade inferior e $0.032084 na extremidade superior. Considerando a volatilidade de preços no mercado, se Bismuth atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Bismuth | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00284 | $0.005151 | $0.007461 |
| 2028 | $0.005126 | $0.00884 | $0.012555 |
| 2029 | $0.01126 | $0.024151 | $0.037041 |
| 2030 | $0.009576 | $0.018632 | $0.027688 |
| 2031 | $0.011322 | $0.018299 | $0.025276 |
| 2032 | $0.017282 | $0.032084 | $0.046886 |
Previsão de preço de Bismuth 2032-2037
A previsão de preço de Bismuth para 2032-2037 é atualmente estimada entre $0.032084 na extremidade inferior e $0.292589 na extremidade superior. Comparado ao preço atual, Bismuth poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Bismuth | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.017282 | $0.032084 | $0.046886 |
| 2033 | $0.040161 | $0.082525 | $0.124889 |
| 2034 | $0.032288 | $0.0523087 | $0.072329 |
| 2035 | $0.038174 | $0.061698 | $0.085221 |
| 2036 | $0.06319 | $0.119756 | $0.176322 |
| 2037 | $0.1641047 | $0.292589 | $0.421073 |
Bismuth Histograma de preços potenciais
Previsão de preço de Bismuth baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Bismuth é Baixista, com 2 indicadores técnicos mostrando sinais de alta e 32 indicando sinais de baixa. A previsão de preço de BIS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Bismuth
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Bismuth está projetado para aumentar no próximo mês, alcançando $0.009782 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Bismuth é esperado para alcançar $0.009387 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 43.35, sugerindo que o mercado de BIS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BIS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.011196 | SELL |
| SMA 5 | $0.011877 | SELL |
| SMA 10 | $0.010877 | SELL |
| SMA 21 | $0.011614 | SELL |
| SMA 50 | $0.010716 | SELL |
| SMA 100 | $0.010211 | SELL |
| SMA 200 | $0.010559 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.010455 | SELL |
| EMA 5 | $0.010881 | SELL |
| EMA 10 | $0.011186 | SELL |
| EMA 21 | $0.011413 | SELL |
| EMA 50 | $0.011049 | SELL |
| EMA 100 | $0.010712 | SELL |
| EMA 200 | $0.011284 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.011071 | SELL |
| SMA 50 | $0.012119 | SELL |
| SMA 100 | $0.014678 | SELL |
| SMA 200 | $0.029959 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.011351 | SELL |
| EMA 50 | $0.01247 | SELL |
| EMA 100 | $0.019377 | SELL |
| EMA 200 | $0.075928 | SELL |
Osciladores de Bismuth
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 43.35 | NEUTRAL |
| Stoch RSI (14) | 30.66 | NEUTRAL |
| Estocástico Rápido (14) | 6.58 | BUY |
| Índice de Canal de Commodities (20) | -102.63 | BUY |
| Índice Direcional Médio (14) | 12.82 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000011 | BUY |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | SELL |
| Williams Percent Range (14) | -93.42 | BUY |
| Oscilador Ultimate (7, 14, 28) | 41.41 | NEUTRAL |
| VWMA (10) | 0.011859 | SELL |
| Média Móvel de Hull (9) | 0.012199 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.000124 | NEUTRAL |
Previsão do preço de Bismuth com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Bismuth
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Bismuth por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.011999 | $0.016861 | $0.023693 | $0.033293 | $0.046783 | $0.065738 |
| Amazon.com stock | $0.017818 | $0.03718 | $0.077578 | $0.161872 | $0.337757 | $0.70475 |
| Apple stock | $0.012113 | $0.017181 | $0.02437 | $0.034568 | $0.049032 | $0.069548 |
| Netflix stock | $0.013474 | $0.02126 | $0.033546 | $0.05293 | $0.083516 | $0.131775 |
| Google stock | $0.011059 | $0.014321 | $0.018546 | $0.024017 | $0.0311022 | $0.040277 |
| Tesla stock | $0.019359 | $0.043885 | $0.099485 | $0.225527 | $0.511253 | $1.15 |
| Kodak stock | $0.0064039 | $0.0048023 | $0.0036012 | $0.00270053 | $0.002025 | $0.001518 |
| Nokia stock | $0.005657 | $0.003747 | $0.002482 | $0.001644 | $0.001089 | $0.000721 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Bismuth
Você pode fazer perguntas como: 'Devo investir em Bismuth agora?', 'Devo comprar BIS hoje?', 'Bismuth será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Bismuth regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Bismuth, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Bismuth para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Bismuth é de $0.008539 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Bismuth com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Bismuth tiver 1% da média anterior do crescimento anual do Bitcoin | $0.008761 | $0.008989 | $0.009223 | $0.009462 |
| Se Bismuth tiver 2% da média anterior do crescimento anual do Bitcoin | $0.008983 | $0.00945 | $0.009942 | $0.010459 |
| Se Bismuth tiver 5% da média anterior do crescimento anual do Bitcoin | $0.009649 | $0.0109038 | $0.012321 | $0.013922 |
| Se Bismuth tiver 10% da média anterior do crescimento anual do Bitcoin | $0.010759 | $0.013556 | $0.01708 | $0.021519 |
| Se Bismuth tiver 20% da média anterior do crescimento anual do Bitcoin | $0.012979 | $0.019726 | $0.029982 | $0.045569 |
| Se Bismuth tiver 50% da média anterior do crescimento anual do Bitcoin | $0.019638 | $0.045162 | $0.103858 | $0.238839 |
| Se Bismuth tiver 100% da média anterior do crescimento anual do Bitcoin | $0.030737 | $0.110634 | $0.39821 | $1.43 |
Perguntas Frequentes sobre Bismuth
BIS é um bom investimento?
A decisão de adquirir Bismuth depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Bismuth experimentou uma escalada de 41.1765% nas últimas 24 horas, e Bismuth registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Bismuth dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Bismuth pode subir?
Parece que o valor médio de Bismuth pode potencialmente subir para $0.0088073 até o final deste ano. Observando as perspectivas de Bismuth em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.027688. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Bismuth na próxima semana?
Com base na nossa nova previsão experimental de Bismuth, o preço de Bismuth aumentará 0.86% na próxima semana e atingirá $0.008612 até 13 de janeiro de 2026.
Qual será o preço de Bismuth no próximo mês?
Com base na nossa nova previsão experimental de Bismuth, o preço de Bismuth diminuirá -11.62% no próximo mês e atingirá $0.007547 até 5 de fevereiro de 2026.
Até onde o preço de Bismuth pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Bismuth em 2026, espera-se que BIS fluctue dentro do intervalo de $0.00295 e $0.0088073. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Bismuth não considera flutuações repentinas e extremas de preço.
Onde estará Bismuth em 5 anos?
O futuro de Bismuth parece seguir uma tendência de alta, com um preço máximo de $0.027688 projetada após um período de cinco anos. Com base na previsão de Bismuth para 2030, o valor de Bismuth pode potencialmente atingir seu pico mais alto de aproximadamente $0.027688, enquanto seu pico mais baixo está previsto para cerca de $0.009576.
Quanto será Bismuth em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Bismuth, espera-se que o valor de BIS em 2026 aumente 3.13% para $0.0088073 se o melhor cenário ocorrer. O preço ficará entre $0.0088073 e $0.00295 durante 2026.
Quanto será Bismuth em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Bismuth, o valor de BIS pode diminuir -12.62% para $0.007461 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.007461 e $0.00284 ao longo do ano.
Quanto será Bismuth em 2028?
Nosso novo modelo experimental de previsão de preços de Bismuth sugere que o valor de BIS em 2028 pode aumentar 47.02%, alcançando $0.012555 no melhor cenário. O preço é esperado para variar entre $0.012555 e $0.005126 durante o ano.
Quanto será Bismuth em 2029?
Com base no nosso modelo de previsão experimental, o valor de Bismuth pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.037041 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.037041 e $0.01126.
Quanto será Bismuth em 2030?
Usando nossa nova simulação experimental para previsões de preços de Bismuth, espera-se que o valor de BIS em 2030 aumente 224.23%, alcançando $0.027688 no melhor cenário. O preço está previsto para variar entre $0.027688 e $0.009576 ao longo de 2030.
Quanto será Bismuth em 2031?
Nossa simulação experimental indica que o preço de Bismuth poderia aumentar 195.98% em 2031, potencialmente atingindo $0.025276 sob condições ideais. O preço provavelmente oscilará entre $0.025276 e $0.011322 durante o ano.
Quanto será Bismuth em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Bismuth, BIS poderia ver um 449.04% aumento em valor, atingindo $0.046886 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.046886 e $0.017282 ao longo do ano.
Quanto será Bismuth em 2033?
De acordo com nossa previsão experimental de preços de Bismuth, espera-se que o valor de BIS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.124889. Ao longo do ano, o preço de BIS poderia variar entre $0.124889 e $0.040161.
Quanto será Bismuth em 2034?
Os resultados da nossa nova simulação de previsão de preços de Bismuth sugerem que BIS pode aumentar 746.96% em 2034, atingindo potencialmente $0.072329 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.072329 e $0.032288.
Quanto será Bismuth em 2035?
Com base em nossa previsão experimental para o preço de Bismuth, BIS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.085221 em 2035. A faixa de preço esperada para o ano está entre $0.085221 e $0.038174.
Quanto será Bismuth em 2036?
Nossa recente simulação de previsão de preços de Bismuth sugere que o valor de BIS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.176322 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.176322 e $0.06319.
Quanto será Bismuth em 2037?
De acordo com a simulação experimental, o valor de Bismuth poderia aumentar 4830.69% em 2037, com um pico de $0.421073 sob condições favoráveis. O preço é esperado para cair entre $0.421073 e $0.1641047 ao longo do ano.
Previsões relacionadas
Previsão de Preço do MetaWars
Previsão de Preço do Bomb Money
Previsão de Preço do Billionaire Token
Previsão de Preço do VELO Token
Previsão de Preço do Youcoin
Previsão de Preço do Zenith Chain
Previsão de Preço do ACA Token
Previsão de Preço do BillionHappiness
Previsão de Preço do Fancy Games
Previsão de Preço do Gourmet Galaxy
Previsão de Preço do Savix
Previsão de Preço do TaleCraft
Previsão de Preço do Zero ExchangePrevisão de Preço do Yellow Road
Previsão de Preço do LlamaSwap Token
Previsão de Preço do Lympo Market TokenPrevisão de Preço do Lightcoin
Previsão de Preço do ALL BEST ICOPrevisão de Preço do CryptoTycoon
Previsão de Preço do Yellow Token
Previsão de Preço do BSCstarter
Previsão de Preço do Minerva Wallet
Previsão de Preço do KingDeFi
Previsão de Preço do DaVinci Token
Previsão de Preço do veDAO
Como ler e prever os movimentos de preço de Bismuth?
Traders de Bismuth utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Bismuth
Médias móveis são ferramentas populares para a previsão de preço de Bismuth. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BIS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BIS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BIS.
Como ler gráficos de Bismuth e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Bismuth em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BIS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Bismuth?
A ação de preço de Bismuth é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BIS. A capitalização de mercado de Bismuth pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BIS, grandes detentores de Bismuth, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Bismuth.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


