Previsão de Preço AmonD - Projeção AMON
Previsão de Preço AmonD até $0.000711 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000238 | $0.000711 |
| 2027 | $0.000229 | $0.0006028 |
| 2028 | $0.000414 | $0.001014 |
| 2029 | $0.0009097 | $0.002992 |
| 2030 | $0.000773 | $0.002237 |
| 2031 | $0.000914 | $0.002042 |
| 2032 | $0.001396 | $0.003788 |
| 2033 | $0.003244 | $0.01009 |
| 2034 | $0.0026086 | $0.005843 |
| 2035 | $0.003084 | $0.006885 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em AmonD hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,956.08, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de AmonD para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'AmonD'
'name_with_ticker' => 'AmonD <small>AMON</small>'
'name_lang' => 'AmonD'
'name_lang_with_ticker' => 'AmonD <small>AMON</small>'
'name_with_lang' => 'AmonD'
'name_with_lang_with_ticker' => 'AmonD <small>AMON</small>'
'image' => '/uploads/coins/amond.png?1717163392'
'price_for_sd' => 0.0006899
'ticker' => 'AMON'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$1.34K'
'current_supply' => '0'
'max_supply' => '7.6B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0006899'
'change_24h_pct' => '0%'
'ath_price' => '$0.1425'
'ath_days' => 1955
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '30 de ago. de 2020'
'ath_pct' => '-99.52%'
'fdv' => '$5.24M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.034019'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000695'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000609'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000238'
'current_year_max_price_prediction' => '$0.000711'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000773'
'grand_prediction_max_price' => '$0.002237'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0007030241895863
107 => 0.00070564902671243
108 => 0.00071156291878512
109 => 0.00066102935852431
110 => 0.00068371744349403
111 => 0.00069704456782767
112 => 0.00063683213524336
113 => 0.00069585436163321
114 => 0.00066014968166719
115 => 0.00064803097702043
116 => 0.00066434721630937
117 => 0.0006579887619904
118 => 0.00065252213634793
119 => 0.00064947166531087
120 => 0.00066145251068705
121 => 0.00066089358993005
122 => 0.00064129060151274
123 => 0.00061571930224239
124 => 0.00062430186962681
125 => 0.00062118374243405
126 => 0.00060988324724109
127 => 0.00061749841657415
128 => 0.00058396506478035
129 => 0.00052627267593107
130 => 0.00056438603517057
131 => 0.0005629187122992
201 => 0.00056217882156967
202 => 0.00059081995766227
203 => 0.0005880667732904
204 => 0.0005830697166962
205 => 0.000609791472378
206 => 0.00060003767209581
207 => 0.00063009658628114
208 => 0.00064989533125228
209 => 0.0006448737291053
210 => 0.00066349454444629
211 => 0.00062449959464499
212 => 0.00063745215276315
213 => 0.00064012165703983
214 => 0.0006094617300608
215 => 0.00058851722830285
216 => 0.00058712046882039
217 => 0.00055080558910224
218 => 0.00057020470472421
219 => 0.00058727512368159
220 => 0.00057909971771903
221 => 0.00057651162842459
222 => 0.00058973361534181
223 => 0.00059076107696394
224 => 0.00056733484309392
225 => 0.00057220589892784
226 => 0.00059251901150095
227 => 0.00057169406060908
228 => 0.00053123458276258
301 => 0.00052120007286061
302 => 0.00051986128426697
303 => 0.0004926468975658
304 => 0.00052187062679413
305 => 0.00050911368583871
306 => 0.00054941270946527
307 => 0.00052639412329778
308 => 0.00052540183805476
309 => 0.00052390185337335
310 => 0.00050047730652749
311 => 0.00050560579357912
312 => 0.00052265366562937
313 => 0.00052873653843492
314 => 0.0005281020449658
315 => 0.00052257012175589
316 => 0.00052510260787335
317 => 0.00051694458771234
318 => 0.00051406382099899
319 => 0.00050497132883431
320 => 0.00049160787721732
321 => 0.00049346614712747
322 => 0.00046698965273688
323 => 0.00045256385337897
324 => 0.00044857098224568
325 => 0.00044323154809268
326 => 0.00044917408554096
327 => 0.00046691464815487
328 => 0.00044551576577218
329 => 0.00040882888288412
330 => 0.0004110338270571
331 => 0.00041598768195998
401 => 0.00040675620612149
402 => 0.0003980193889794
403 => 0.00040561534264407
404 => 0.00039007062672977
405 => 0.00041786618661247
406 => 0.0004171143946138
407 => 0.00042747486047218
408 => 0.00043395347239158
409 => 0.00041902236939287
410 => 0.00041526723736669
411 => 0.00041740633123004
412 => 0.00038205187455936
413 => 0.00042458564709755
414 => 0.00042495348092871
415 => 0.00042180386434789
416 => 0.00044445178514158
417 => 0.0004922459620799
418 => 0.00047426387019939
419 => 0.00046730066071165
420 => 0.00045406359438539
421 => 0.00047170119932591
422 => 0.00047034690645597
423 => 0.00046422228049782
424 => 0.00046051808760833
425 => 0.00046734317658397
426 => 0.00045967238355433
427 => 0.00045829449834691
428 => 0.00044994601314385
429 => 0.00044696598375823
430 => 0.0004447596886395
501 => 0.00044233077449987
502 => 0.00044768835384421
503 => 0.00043554737420167
504 => 0.00042090654294767
505 => 0.00041968931624489
506 => 0.00042305018619094
507 => 0.00042156325142715
508 => 0.00041968219737331
509 => 0.00041609075290993
510 => 0.00041502524805672
511 => 0.0004184876219202
512 => 0.00041457880369727
513 => 0.00042034647790955
514 => 0.00041877798966378
515 => 0.00041001654182472
516 => 0.00039909653391379
517 => 0.00039899932293789
518 => 0.00039664662514589
519 => 0.00039365011077728
520 => 0.0003928165490309
521 => 0.00040497563261327
522 => 0.00043014457173802
523 => 0.00042520330674616
524 => 0.00042877387710398
525 => 0.0004463375493411
526 => 0.00045192051258723
527 => 0.00044795785751486
528 => 0.00044253353084588
529 => 0.00044277217369039
530 => 0.00046130873997364
531 => 0.00046246484287531
601 => 0.0004653859419349
602 => 0.00046914037972898
603 => 0.00044859725450583
604 => 0.00044180459433979
605 => 0.00043858585511068
606 => 0.00042867338409387
607 => 0.00043936313425446
608 => 0.00043313467461663
609 => 0.00043397510661625
610 => 0.00043342777417396
611 => 0.00043372665469791
612 => 0.00041785841718701
613 => 0.00042363996892597
614 => 0.00041402701780954
615 => 0.00040115635536905
616 => 0.00040111320839552
617 => 0.00040426328479397
618 => 0.00040238949608967
619 => 0.0003973471788659
620 => 0.00039806341622847
621 => 0.00039178842327199
622 => 0.0003988253139858
623 => 0.00039902710683227
624 => 0.00039631752060543
625 => 0.00040715882165385
626 => 0.00041160051153904
627 => 0.00040981700383957
628 => 0.00041147537588438
629 => 0.00042540863861505
630 => 0.00042768036839102
701 => 0.00042868932069546
702 => 0.00042733745826808
703 => 0.00041173005034945
704 => 0.00041242230525846
705 => 0.00040734299805447
706 => 0.00040305151871129
707 => 0.00040322315537918
708 => 0.00040542953361483
709 => 0.0004150649167723
710 => 0.00043534201259035
711 => 0.00043611151355428
712 => 0.00043704417117049
713 => 0.0004332505839292
714 => 0.00043210640171748
715 => 0.00043361587339322
716 => 0.00044123088446343
717 => 0.00046081876039134
718 => 0.00045389509680817
719 => 0.00044826605054181
720 => 0.00045320424169738
721 => 0.00045244404587581
722 => 0.00044602722810764
723 => 0.00044584712940477
724 => 0.00043353120452692
725 => 0.00042897828751963
726 => 0.0004251735292884
727 => 0.00042101883262562
728 => 0.00041855578917724
729 => 0.00042234014334718
730 => 0.00042320566992101
731 => 0.00041493111338923
801 => 0.00041380332190949
802 => 0.00042056050339205
803 => 0.00041758691975469
804 => 0.00042064532426704
805 => 0.00042135490034841
806 => 0.00042124064225639
807 => 0.00041813587942508
808 => 0.00042011476266839
809 => 0.00041543411386447
810 => 0.00041034461130091
811 => 0.00040709782575258
812 => 0.00040426457473805
813 => 0.00040583662707043
814 => 0.00040023254755092
815 => 0.0003984396897248
816 => 0.00041944436155184
817 => 0.00043496073846875
818 => 0.00043473512420322
819 => 0.00043336175538508
820 => 0.00043132120789901
821 => 0.00044108160570504
822 => 0.00043768127827473
823 => 0.00044015530058714
824 => 0.00044078504310004
825 => 0.00044269108402027
826 => 0.0004433723298195
827 => 0.0004413131318586
828 => 0.00043440221199196
829 => 0.00041718085675483
830 => 0.00040916426940378
831 => 0.00040651866205111
901 => 0.00040661482485366
902 => 0.00040396222546979
903 => 0.00040474353486951
904 => 0.00040369051794559
905 => 0.00040169635864385
906 => 0.00040571349335294
907 => 0.00040617643070596
908 => 0.00040523878346368
909 => 0.00040545963333256
910 => 0.00039769631464081
911 => 0.0003982865428999
912 => 0.0003950000769507
913 => 0.00039438390420416
914 => 0.00038607600446989
915 => 0.00037135735584132
916 => 0.00037951291595534
917 => 0.0003696621461829
918 => 0.00036593151040655
919 => 0.00038359175993887
920 => 0.0003818191607049
921 => 0.00037878524134671
922 => 0.00037429744229174
923 => 0.00037263287396775
924 => 0.00036251948376949
925 => 0.00036192193072373
926 => 0.0003669343999905
927 => 0.00036462131789242
928 => 0.00036137287459403
929 => 0.00034960734225667
930 => 0.00033637898847558
1001 => 0.00033677826932577
1002 => 0.00034098596254126
1003 => 0.00035322039805004
1004 => 0.00034844019243887
1005 => 0.00034497209842144
1006 => 0.00034432262866249
1007 => 0.0003524521024527
1008 => 0.00036395701104326
1009 => 0.00036935485674613
1010 => 0.0003640057555896
1011 => 0.00035786099619703
1012 => 0.00035823499922918
1013 => 0.00036072307384578
1014 => 0.0003609845353085
1015 => 0.00035698492863542
1016 => 0.00035811079448606
1017 => 0.0003564005013076
1018 => 0.00034590443522835
1019 => 0.00034571459467636
1020 => 0.00034313869078859
1021 => 0.00034306069344259
1022 => 0.00033867843834015
1023 => 0.00033806533055822
1024 => 0.00032936409706843
1025 => 0.00033509127530117
1026 => 0.000331249784833
1027 => 0.00032545975258148
1028 => 0.00032446154883893
1029 => 0.00032443154162906
1030 => 0.00033037661012385
1031 => 0.00033502180371442
1101 => 0.00033131660920438
1102 => 0.00033047300823662
1103 => 0.00033948045953217
1104 => 0.00033833417925007
1105 => 0.00033734150791849
1106 => 0.00036292687266592
1107 => 0.00034267406001742
1108 => 0.00033384267771254
1109 => 0.00032291216507624
1110 => 0.00032647119510705
1111 => 0.00032722113502757
1112 => 0.00030093522251027
1113 => 0.0002902710310757
1114 => 0.00028661148244693
1115 => 0.00028450536047265
1116 => 0.00028546514670335
1117 => 0.00027586612362734
1118 => 0.0002823168258876
1119 => 0.000274004883289
1120 => 0.00027261135906295
1121 => 0.00028747414208135
1122 => 0.00028954221151124
1123 => 0.00028071918482451
1124 => 0.00028638499627566
1125 => 0.0002843304942828
1126 => 0.00027414736768813
1127 => 0.00027375844715423
1128 => 0.00026864891218323
1129 => 0.00026065347935455
1130 => 0.00025699935200574
1201 => 0.00025509625075589
1202 => 0.00025588150742228
1203 => 0.0002554844576225
1204 => 0.00025289343910411
1205 => 0.00025563297177104
1206 => 0.0002486345978601
1207 => 0.00024584778897904
1208 => 0.00024458905206094
1209 => 0.00023837759240361
1210 => 0.00024826278696706
1211 => 0.00025021029482646
1212 => 0.00025216163987796
1213 => 0.00026914676631141
1214 => 0.00026829823739426
1215 => 0.00027596852555492
1216 => 0.00027567047226175
1217 => 0.0002734827818279
1218 => 0.0002642532757451
1219 => 0.00026793199236958
1220 => 0.00025660947439893
1221 => 0.00026509307471892
1222 => 0.0002612215138165
1223 => 0.00026378409608338
1224 => 0.00025917634210881
1225 => 0.00026172646340783
1226 => 0.00025067212118771
1227 => 0.00024034973196135
1228 => 0.00024450376271536
1229 => 0.00024901966921601
1230 => 0.000258811305141
1231 => 0.00025297948756332
]
'min_raw' => 0.00023837759240361
'max_raw' => 0.00071156291878512
'avg_raw' => 0.00047497025559437
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000238'
'max' => '$0.000711'
'avg' => '$0.000474'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00045157240759639
'max_diff' => 2.1612918785122E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00025507682968969
102 => 0.00024805108465718
103 => 0.00023355496585025
104 => 0.00023363701230842
105 => 0.00023140710024509
106 => 0.00022948013064988
107 => 0.00025364934196541
108 => 0.00025064351847964
109 => 0.00024585413214751
110 => 0.00025226491607571
111 => 0.00025396002909915
112 => 0.00025400828658388
113 => 0.00025868542905162
114 => 0.00026118162082507
115 => 0.00026162158544426
116 => 0.00026898117017359
117 => 0.0002714480058996
118 => 0.00028160855313534
119 => 0.00026096983639302
120 => 0.00026054479560339
121 => 0.00025235512895246
122 => 0.00024716111288893
123 => 0.000252710767676
124 => 0.00025762700421393
125 => 0.00025250789012565
126 => 0.00025317633835518
127 => 0.00024630434593866
128 => 0.00024876075987027
129 => 0.00025087655446286
130 => 0.00024970833704949
131 => 0.00024795945903931
201 => 0.00025722392888184
202 => 0.00025670119118557
203 => 0.00026532847849218
204 => 0.00027205406589091
205 => 0.000284107520852
206 => 0.00027152911223929
207 => 0.0002710707050348
208 => 0.00027555170898954
209 => 0.00027144731988124
210 => 0.00027404115211899
211 => 0.00028368961437801
212 => 0.00028389347118169
213 => 0.00028047860706531
214 => 0.00028027081227348
215 => 0.00028092667428155
216 => 0.00028476807854831
217 => 0.00028342577386307
218 => 0.00028497912282782
219 => 0.00028692160949396
220 => 0.00029495655794241
221 => 0.00029689375681114
222 => 0.00029218736788258
223 => 0.00029261230210763
224 => 0.00029085198345508
225 => 0.00028915153769345
226 => 0.00029297389143544
227 => 0.00029995931802747
228 => 0.00029991586205118
301 => 0.00030153634524324
302 => 0.00030254589284709
303 => 0.00029821217549737
304 => 0.0002953910848579
305 => 0.00029647287051973
306 => 0.00029820266935123
307 => 0.00029591192007233
308 => 0.00028177235434463
309 => 0.00028606139534746
310 => 0.0002853474892012
311 => 0.00028433080003497
312 => 0.00028864346392948
313 => 0.00028822749697605
314 => 0.00027576767177149
315 => 0.00027656530935528
316 => 0.00027581617875482
317 => 0.00027823677298262
318 => 0.00027131659984922
319 => 0.00027344519849698
320 => 0.00027478023561448
321 => 0.00027556658273292
322 => 0.00027840740772801
323 => 0.00027807406970352
324 => 0.00027838668696838
325 => 0.00028259888048611
326 => 0.00030390270984851
327 => 0.00030506223027645
328 => 0.00029935232761458
329 => 0.00030163332110515
330 => 0.00029725431240169
331 => 0.00030019397028113
401 => 0.00030220520954303
402 => 0.00029311680605759
403 => 0.00029257864978643
404 => 0.00028818156735636
405 => 0.0002905443103908
406 => 0.00028678501633577
407 => 0.00028770741560235
408 => 0.00028512830683967
409 => 0.00028977018911707
410 => 0.00029496053477878
411 => 0.00029627182106589
412 => 0.00029282239138874
413 => 0.000290324776974
414 => 0.00028593978882704
415 => 0.00029323212184127
416 => 0.00029536462224445
417 => 0.00029322092072448
418 => 0.0002927241782415
419 => 0.00029178285213385
420 => 0.00029292388502517
421 => 0.00029535300818927
422 => 0.00029420747856395
423 => 0.00029496412106311
424 => 0.00029208058010266
425 => 0.00029821361013814
426 => 0.00030795433782854
427 => 0.00030798565586083
428 => 0.00030684012006067
429 => 0.00030637139149216
430 => 0.00030754678074005
501 => 0.00030818438119004
502 => 0.00031198537448818
503 => 0.00031606399173534
504 => 0.00033509711878773
505 => 0.00032975269287371
506 => 0.00034664001548038
507 => 0.00035999569511787
508 => 0.00036400047946806
509 => 0.00036031626630555
510 => 0.00034771277209388
511 => 0.00034709438453971
512 => 0.00036592932594995
513 => 0.00036060759230659
514 => 0.00035997458902332
515 => 0.00035324050356535
516 => 0.00035722118210372
517 => 0.00035635054931435
518 => 0.00035497621286351
519 => 0.00036257107021826
520 => 0.00037678796518875
521 => 0.0003745721287824
522 => 0.00037291810969476
523 => 0.00036567067953041
524 => 0.00037003525126148
525 => 0.00036848111086591
526 => 0.00037515868428713
527 => 0.00037120303771876
528 => 0.00036056727494017
529 => 0.00036226105521859
530 => 0.00036200504373692
531 => 0.00036727374188854
601 => 0.00036569220948055
602 => 0.00036169622415157
603 => 0.00037673937338731
604 => 0.00037576255495034
605 => 0.00037714746016219
606 => 0.00037775713826606
607 => 0.00038691363811583
608 => 0.00039066476312897
609 => 0.00039151633417964
610 => 0.0003950796128197
611 => 0.000391427676561
612 => 0.00040603802538222
613 => 0.00041575305481084
614 => 0.00042703756142302
615 => 0.00044352725857286
616 => 0.00044972753723942
617 => 0.00044860751239485
618 => 0.00046110981257954
619 => 0.00048357616810092
620 => 0.00045314860518341
621 => 0.00048518890281944
622 => 0.0004750453145109
623 => 0.0004509950491067
624 => 0.00044944649554867
625 => 0.00046573361450972
626 => 0.00050185687678821
627 => 0.00049280840929409
628 => 0.0005018716768395
629 => 0.00049129889382398
630 => 0.00049077386603285
701 => 0.00050135818036733
702 => 0.00052608900773078
703 => 0.00051434031867161
704 => 0.00049749569200854
705 => 0.00050993350220513
706 => 0.00049915871994785
707 => 0.00047488011985052
708 => 0.00049280149010153
709 => 0.00048081798018592
710 => 0.00048431540545772
711 => 0.00050950296088776
712 => 0.00050647232758041
713 => 0.00051039424770921
714 => 0.0005034721613364
715 => 0.00049700584115137
716 => 0.00048493597433077
717 => 0.00048136268180243
718 => 0.00048235021130367
719 => 0.00048136219243186
720 => 0.00047460921287353
721 => 0.00047315090758087
722 => 0.00047072033486994
723 => 0.00047147367098667
724 => 0.000466903483201
725 => 0.00047552837180153
726 => 0.00047712922712805
727 => 0.0004834057017955
728 => 0.00048405734621688
729 => 0.0005015372388257
730 => 0.00049190960771442
731 => 0.00049836865387355
801 => 0.00049779089599018
802 => 0.00045151629128479
803 => 0.0004578925235289
804 => 0.00046781193992883
805 => 0.00046334325628611
806 => 0.00045702558312624
807 => 0.00045192372331745
808 => 0.00044419388401517
809 => 0.00045507348439471
810 => 0.00046937900197729
811 => 0.00048442015775047
812 => 0.00050249112087639
813 => 0.00049845789227588
814 => 0.00048408233366473
815 => 0.00048472721072268
816 => 0.00048871358694512
817 => 0.00048355086753659
818 => 0.00048202828079475
819 => 0.0004885044069077
820 => 0.00048854900442902
821 => 0.00048260867181402
822 => 0.00047600707918185
823 => 0.00047597941826767
824 => 0.0004748047286226
825 => 0.00049150786850225
826 => 0.00050069290655815
827 => 0.00050174595636883
828 => 0.00050062202791563
829 => 0.00050105458337014
830 => 0.00049571001210392
831 => 0.00050792611713512
901 => 0.00051913682315933
902 => 0.00051613211446304
903 => 0.00051162762898279
904 => 0.00050803958933236
905 => 0.00051528688635094
906 => 0.000514964175623
907 => 0.00051903890742221
908 => 0.00051885405405101
909 => 0.00051748387500535
910 => 0.00051613216339645
911 => 0.00052149154713519
912 => 0.0005199481306875
913 => 0.00051840231688777
914 => 0.00051530195066015
915 => 0.00051572334192211
916 => 0.00051121963420479
917 => 0.00050913601293912
918 => 0.00047780334840982
919 => 0.00046943023662325
920 => 0.00047206458804171
921 => 0.00047293188492957
922 => 0.00046928789594962
923 => 0.00047451244008291
924 => 0.0004736982004139
925 => 0.00047686593065175
926 => 0.000474886870326
927 => 0.00047496809165209
928 => 0.00048078808608997
929 => 0.00048247765523531
930 => 0.00048161832673149
1001 => 0.00048222017095951
1002 => 0.00049608941717156
1003 => 0.00049411765387373
1004 => 0.00049307019392046
1005 => 0.00049336034748598
1006 => 0.00049690423725315
1007 => 0.00049789633289875
1008 => 0.00049369275393502
1009 => 0.00049567518607492
1010 => 0.0005041161305185
1011 => 0.00050706998335767
1012 => 0.00051649726369051
1013 => 0.00051249238744858
1014 => 0.00051984351111764
1015 => 0.00054243835909359
1016 => 0.00056048868710134
1017 => 0.00054388885950406
1018 => 0.00057703598819488
1019 => 0.00060284578255388
1020 => 0.00060185515965792
1021 => 0.00059735462502013
1022 => 0.00056797086033129
1023 => 0.00054093148197736
1024 => 0.00056355107012307
1025 => 0.00056360873210501
1026 => 0.00056166568942298
1027 => 0.00054959761820158
1028 => 0.00056124574670353
1029 => 0.00056217033284423
1030 => 0.00056165281047274
1031 => 0.00055240024856238
1101 => 0.00053827329668455
1102 => 0.00054103366926633
1103 => 0.00054555521586537
1104 => 0.00053699498485996
1105 => 0.00053425947237104
1106 => 0.00053934531054048
1107 => 0.00055573294079888
1108 => 0.00055263495422561
1109 => 0.00055255405327624
1110 => 0.00056580855358746
1111 => 0.00055632119186482
1112 => 0.00054106848640453
1113 => 0.00053721697711733
1114 => 0.00052354671383534
1115 => 0.00053298881337602
1116 => 0.00053332861772904
1117 => 0.00052815727630653
1118 => 0.00054148811226007
1119 => 0.00054136526625991
1120 => 0.00055402091096472
1121 => 0.00057821375039723
1122 => 0.00057105873731971
1123 => 0.00056273823557376
1124 => 0.00056364290481604
1125 => 0.00057356489348981
1126 => 0.00056756583264068
1127 => 0.00056972313674897
1128 => 0.00057356162815167
1129 => 0.0005758774853193
1130 => 0.00056330968860863
1201 => 0.00056037953400817
1202 => 0.00055438546604013
1203 => 0.00055282172559185
1204 => 0.00055770376888148
1205 => 0.0005564175229598
1206 => 0.00053330005848896
1207 => 0.0005308841548274
1208 => 0.00053095824714358
1209 => 0.00052488334251663
1210 => 0.00051561765481636
1211 => 0.0005399673288672
1212 => 0.00053801170926745
1213 => 0.00053585285658226
1214 => 0.00053611730371795
1215 => 0.0005466866719364
1216 => 0.00054055590460381
1217 => 0.0005568555543705
1218 => 0.00055350483639079
1219 => 0.00055006818513832
1220 => 0.00054959313525227
1221 => 0.00054827031772137
1222 => 0.00054373388420921
1223 => 0.00053825586814588
1224 => 0.00053463880744324
1225 => 0.00049317603896596
1226 => 0.00050087128761751
1227 => 0.00050972396974714
1228 => 0.00051277988014339
1229 => 0.00050755253394804
1230 => 0.00054394029169805
1231 => 0.00055058868568014
]
'min_raw' => 0.00022948013064988
'max_raw' => 0.00060284578255388
'avg_raw' => 0.00041616295660188
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000229'
'max' => '$0.0006028'
'avg' => '$0.000416'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.8974617537302E-6
'max_diff' => -0.00010871713623124
'year' => 2027
]
2 => [
'items' => [
101 => 0.00053045026664439
102 => 0.00052668319068904
103 => 0.00054418726057054
104 => 0.00053363016664648
105 => 0.00053838402539406
106 => 0.00052810878300349
107 => 0.00054898728225755
108 => 0.00054882822307429
109 => 0.00054070601530217
110 => 0.00054757084969269
111 => 0.00054637791578206
112 => 0.00053720796321145
113 => 0.00054927798611019
114 => 0.00054928397269096
115 => 0.00054146652430232
116 => 0.00053233745604389
117 => 0.00053070539425825
118 => 0.00052947585493942
119 => 0.00053808163409376
120 => 0.00054579754877397
121 => 0.00056015495305637
122 => 0.00056376474561648
123 => 0.00057785400629608
124 => 0.00056946453755503
125 => 0.00057318348038613
126 => 0.00057722091890587
127 => 0.00057915661540412
128 => 0.00057600250183542
129 => 0.0005978889230419
130 => 0.00059973680757434
131 => 0.00060035638727393
201 => 0.00059297640918567
202 => 0.00059953155703342
203 => 0.00059646462043914
204 => 0.00060444393743795
205 => 0.00060569519622839
206 => 0.00060463542454771
207 => 0.00060503259383757
208 => 0.00058635639436712
209 => 0.00058538793489977
210 => 0.00057218292134379
211 => 0.00057756406197439
212 => 0.00056750427749027
213 => 0.00057069433877745
214 => 0.00057210048739681
215 => 0.00057136599515629
216 => 0.00057786830359184
217 => 0.00057234001308777
218 => 0.00055774994551242
219 => 0.00054315590288291
220 => 0.00054297268656575
221 => 0.00053913033274765
222 => 0.00053635301469936
223 => 0.00053688802468611
224 => 0.00053877346966187
225 => 0.00053624342920982
226 => 0.00053678334161657
227 => 0.0005457494849862
228 => 0.00054754758109537
229 => 0.00054143694795491
301 => 0.00051690187413581
302 => 0.00051088090547903
303 => 0.00051520865834852
304 => 0.00051314027121988
305 => 0.00041414424783057
306 => 0.00043740189509712
307 => 0.00042358299084641
308 => 0.00042995137770235
309 => 0.00041584585485028
310 => 0.00042257774968908
311 => 0.00042133461452179
312 => 0.00045873222308259
313 => 0.00045814831086364
314 => 0.0004584277987429
315 => 0.00044508711406386
316 => 0.00046633918699664
317 => 0.00047680872232315
318 => 0.00047487108997187
319 => 0.00047535875029004
320 => 0.00046697913032801
321 => 0.00045850893178108
322 => 0.00044911417803832
323 => 0.00046656846926571
324 => 0.00046462785003591
325 => 0.00046907893233631
326 => 0.00048039928785577
327 => 0.00048206625320786
328 => 0.00048430667154576
329 => 0.00048350364105546
330 => 0.00050263508525204
331 => 0.0005003181411265
401 => 0.00050590130983873
402 => 0.00049441630820164
403 => 0.00048141993868292
404 => 0.0004838901236451
405 => 0.00048365222496927
406 => 0.00048062350177855
407 => 0.00047788930590534
408 => 0.00047333764013134
409 => 0.00048773978416004
410 => 0.00048715508341388
411 => 0.00049662070885397
412 => 0.00049494756761325
413 => 0.00048377392092064
414 => 0.0004841729898982
415 => 0.00048685692055829
416 => 0.00049614603521745
417 => 0.00049890367689944
418 => 0.00049762622739932
419 => 0.0005006498556125
420 => 0.00050303960806895
421 => 0.00050094997172776
422 => 0.00053053481566597
423 => 0.0005182491258147
424 => 0.00052423708556493
425 => 0.00052566517868225
426 => 0.00052200714819179
427 => 0.00052280044402092
428 => 0.00052400207104188
429 => 0.00053129811501043
430 => 0.00055044504551125
501 => 0.00055892509069249
502 => 0.00058443772501833
503 => 0.00055822094098812
504 => 0.0005566653455196
505 => 0.00056126094136943
506 => 0.00057623955850531
507 => 0.00058837832082397
508 => 0.00059240544858707
509 => 0.0005929377000016
510 => 0.00060049285940356
511 => 0.00060482333587739
512 => 0.00059957546433175
513 => 0.00059512844267187
514 => 0.00057919976307083
515 => 0.00058104355110701
516 => 0.00059374542227963
517 => 0.00061168756344744
518 => 0.00062708378713104
519 => 0.00062169256620961
520 => 0.00066282377623128
521 => 0.000666901767699
522 => 0.00066633832113541
523 => 0.00067562859258538
524 => 0.00065718929568807
525 => 0.00064930613901992
526 => 0.00059608993923057
527 => 0.0006110415207108
528 => 0.0006327745224679
529 => 0.00062989807819077
530 => 0.00061411499138997
531 => 0.0006270718142444
601 => 0.00062278788341141
602 => 0.00061940896942298
603 => 0.00063488842943869
604 => 0.00061786812729025
605 => 0.00063260473193412
606 => 0.0006137048840477
607 => 0.00062171719285266
608 => 0.00061716901886319
609 => 0.00062011224483762
610 => 0.00060290620593112
611 => 0.00061219016687208
612 => 0.00060251996263315
613 => 0.00060251537769724
614 => 0.0006023019074027
615 => 0.00061367885980555
616 => 0.00061404986181496
617 => 0.00060564227679963
618 => 0.00060443061244776
619 => 0.00060891077061562
620 => 0.00060366567875634
621 => 0.00060611982422508
622 => 0.00060374001232251
623 => 0.00060320426653673
624 => 0.00059893535296603
625 => 0.00059709618762355
626 => 0.00059781737174379
627 => 0.00059535559854551
628 => 0.00059387229114732
629 => 0.00060200684022689
630 => 0.00059766087880045
701 => 0.00060134075930843
702 => 0.00059714707103164
703 => 0.00058260992036131
704 => 0.00057424945128322
705 => 0.00054679012126153
706 => 0.00055457755319249
707 => 0.0005597406286194
708 => 0.0005580342322216
709 => 0.00056170023197181
710 => 0.00056192529458245
711 => 0.00056073344069322
712 => 0.00055935342657542
713 => 0.00055868171202245
714 => 0.00056368812197491
715 => 0.00056659451146033
716 => 0.00056025881231152
717 => 0.00055877444664681
718 => 0.00056518018828979
719 => 0.00056908768699153
720 => 0.00059793846197135
721 => 0.00059580110337407
722 => 0.0006011654540178
723 => 0.00060056151045798
724 => 0.00060618420454069
725 => 0.00061537493303809
726 => 0.00059668761223476
727 => 0.00059993108496729
728 => 0.00059913586035599
729 => 0.00060781791414298
730 => 0.00060784501856722
731 => 0.00060263969362118
801 => 0.00060546158472118
802 => 0.00060388648252369
803 => 0.00060673290508239
804 => 0.00059577255764691
805 => 0.00060912107772692
806 => 0.00061668882845266
807 => 0.00061679390667883
808 => 0.00062038096046144
809 => 0.00062402561485272
810 => 0.00063102121157429
811 => 0.00062383051145702
812 => 0.00061089514194661
813 => 0.00061182903384428
814 => 0.00060424503143319
815 => 0.00060437251988388
816 => 0.00060369197654264
817 => 0.00060573433833863
818 => 0.00059622074120916
819 => 0.00059845356343994
820 => 0.00059532759924146
821 => 0.00059992428973161
822 => 0.00059497901062437
823 => 0.00059913547687461
824 => 0.00060092926991917
825 => 0.00060754840487121
826 => 0.0005940013590101
827 => 0.00056637801544491
828 => 0.00057218477716298
829 => 0.00056359612047067
830 => 0.00056439103334687
831 => 0.00056599688386623
901 => 0.00056079179693138
902 => 0.00056178476348741
903 => 0.00056174928773463
904 => 0.00056144357686273
905 => 0.00056008953272098
906 => 0.00055812590082598
907 => 0.00056594840592165
908 => 0.00056727760196892
909 => 0.00057023224012945
910 => 0.00057902323914498
911 => 0.0005781448110373
912 => 0.00057957756372656
913 => 0.00057644987265046
914 => 0.00056453611796545
915 => 0.00056518309216365
916 => 0.00055711531354505
917 => 0.00057002592889133
918 => 0.00056696852476554
919 => 0.00056499739643605
920 => 0.00056445955580897
921 => 0.00057327234601069
922 => 0.0005759092709626
923 => 0.00057426611629002
924 => 0.00057089595811807
925 => 0.00057736765810603
926 => 0.00057909921200371
927 => 0.00057948684306415
928 => 0.00059095345461743
929 => 0.00058012769927181
930 => 0.00058273356618226
1001 => 0.00060306379594002
1002 => 0.00058462708292966
1003 => 0.00059439342099901
1004 => 0.00059391540957209
1005 => 0.0005989115376535
1006 => 0.00059350558124336
1007 => 0.00059357259455204
1008 => 0.00059800881782131
1009 => 0.00059177894231671
1010 => 0.00059023633753083
1011 => 0.00058810524006749
1012 => 0.00059275841341406
1013 => 0.0005955477803904
1014 => 0.00061802802965539
1015 => 0.00063255129590449
1016 => 0.00063192080261423
1017 => 0.00063768233105325
1018 => 0.00063508670972192
1019 => 0.00062670476375274
1020 => 0.00064101172345272
1021 => 0.00063648440277503
1022 => 0.000636857629591
1023 => 0.00063684373807027
1024 => 0.00063985401053569
1025 => 0.00063772095660652
1026 => 0.00063351648835863
1027 => 0.0006363076105959
1028 => 0.00064459624579612
1029 => 0.00067032442378401
1030 => 0.00068472225303905
1031 => 0.0006694576563844
1101 => 0.00067998697075568
1102 => 0.00067367313411124
1103 => 0.00067252572217257
1104 => 0.00067913890970795
1105 => 0.00068576367275268
1106 => 0.00068534170398636
1107 => 0.00068053246620124
1108 => 0.00067781584980632
1109 => 0.00069838697928194
1110 => 0.00071354343705953
1111 => 0.00071250986824928
1112 => 0.00071707170484314
1113 => 0.000730465398175
1114 => 0.00073168994963804
1115 => 0.00073153568429969
1116 => 0.00072850050572983
1117 => 0.0007416883362059
1118 => 0.00075268985640685
1119 => 0.00072779794958564
1120 => 0.00073727646184417
1121 => 0.00074153167137562
1122 => 0.00074777958143155
1123 => 0.00075832085296723
1124 => 0.00076977146978917
1125 => 0.00077139071255741
1126 => 0.00077024178232544
1127 => 0.00076268979272228
1128 => 0.00077521919428311
1129 => 0.00078255862386682
1130 => 0.00078692908622406
1201 => 0.00079801185158643
1202 => 0.00074155795010103
1203 => 0.00070159707268872
1204 => 0.00069535660463872
1205 => 0.00070804684181268
1206 => 0.0007113931561527
1207 => 0.00071004426103816
1208 => 0.00066506466042657
1209 => 0.00069511979635024
1210 => 0.0007274565954965
1211 => 0.00072869878364747
1212 => 0.00074488726143068
1213 => 0.00075015889338501
1214 => 0.00076319273987278
1215 => 0.00076237746922624
1216 => 0.00076555100343221
1217 => 0.00076482146287621
1218 => 0.00078896391889461
1219 => 0.00081559663307233
1220 => 0.0008146744268672
1221 => 0.00081084565910018
1222 => 0.00081653203213612
1223 => 0.00084401984730262
1224 => 0.00084148920976535
1225 => 0.00084394750857362
1226 => 0.0008763571918003
1227 => 0.00091849439021866
1228 => 0.00089891743104778
1229 => 0.00094139379933035
1230 => 0.00096813042158869
1231 => 0.0010143686451662
]
'min_raw' => 0.00041414424783057
'max_raw' => 0.0010143686451662
'avg_raw' => 0.00071425644649836
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000414'
'max' => '$0.001014'
'avg' => '$0.000714'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00018466411718068
'max_diff' => 0.00041152286261227
'year' => 2028
]
3 => [
'items' => [
101 => 0.0010085793918462
102 => 0.0010265795929731
103 => 0.00099821542014986
104 => 0.00093308554600248
105 => 0.00092277849411151
106 => 0.00094341347301335
107 => 0.00099414255511172
108 => 0.0009418158336886
109 => 0.00095240146128203
110 => 0.00094935279982299
111 => 0.00094919034960981
112 => 0.00095539041351395
113 => 0.00094639689744742
114 => 0.00090975569508972
115 => 0.00092654814220229
116 => 0.00092006377193258
117 => 0.00092725866418865
118 => 0.00096608653029536
119 => 0.00094891980514886
120 => 0.00093083605471854
121 => 0.00095351709086364
122 => 0.00098239784392596
123 => 0.00098059053830303
124 => 0.00097708360999938
125 => 0.00099685198123023
126 => 0.0010295035389143
127 => 0.0010383291237517
128 => 0.0010448439900475
129 => 0.0010457422800402
130 => 0.0010549952252483
131 => 0.0010052398068215
201 => 0.0010842029336747
202 => 0.0010978376843699
203 => 0.0010952749163417
204 => 0.0011104293679014
205 => 0.0011059705438212
206 => 0.0010995104072971
207 => 0.0011235334364635
208 => 0.0010959929720827
209 => 0.0010569027501422
210 => 0.0010354570812688
211 => 0.0010636984680141
212 => 0.0010809444974109
213 => 0.0010923430257887
214 => 0.0010957922135886
215 => 0.0010091021783184
216 => 0.00096238105735757
217 => 0.00099232876023475
218 => 0.0010288670246249
219 => 0.0010050368349179
220 => 0.0010059709332379
221 => 0.0009719953451794
222 => 0.0010318731102768
223 => 0.0010231494235534
224 => 0.0010684079257064
225 => 0.0010576066209454
226 => 0.0010945131725263
227 => 0.0010847944406218
228 => 0.0011251363533903
301 => 0.0011412298346073
302 => 0.0011682532943211
303 => 0.0011881318612918
304 => 0.0011998049360333
305 => 0.0011991041284105
306 => 0.0012453586660394
307 => 0.0012180839812101
308 => 0.0011838205489148
309 => 0.0011832008315243
310 => 0.0012009463486266
311 => 0.0012381360842282
312 => 0.0012477788415811
313 => 0.0012531678274521
314 => 0.0012449144079986
315 => 0.0012153096924107
316 => 0.0012025265263191
317 => 0.0012134181541931
318 => 0.0012000986292315
319 => 0.0012230918661139
320 => 0.0012546664914438
321 => 0.0012481464561728
322 => 0.0012699419565455
323 => 0.0012924980064778
324 => 0.0013247541709366
325 => 0.0013331871267684
326 => 0.0013471264820818
327 => 0.0013614746575391
328 => 0.0013660829048017
329 => 0.0013748814786813
330 => 0.0013748351058539
331 => 0.0014013502004524
401 => 0.0014305971708987
402 => 0.0014416372251733
403 => 0.0014670232212255
404 => 0.0014235505926175
405 => 0.0014565250807942
406 => 0.0014862688945346
407 => 0.0014508070935998
408 => 0.0014996829246485
409 => 0.0015015806624131
410 => 0.0015302342495606
411 => 0.0015011883496235
412 => 0.0014839409869587
413 => 0.0015337334767218
414 => 0.0015578264940695
415 => 0.0015505694811689
416 => 0.0014953432546725
417 => 0.0014631992220873
418 => 0.001379072088691
419 => 0.0014787243122206
420 => 0.0015272620034067
421 => 0.0014952175537782
422 => 0.0015113789102565
423 => 0.0015995500308646
424 => 0.001633119884935
425 => 0.0016261375899593
426 => 0.0016273174828718
427 => 0.0016454311667922
428 => 0.0017257572166832
429 => 0.0016776239856453
430 => 0.001714420037256
501 => 0.0017339365303523
502 => 0.0017520645368061
503 => 0.0017075478823708
504 => 0.00164963236903
505 => 0.0016312880948271
506 => 0.0014920313647897
507 => 0.0014847824472299
508 => 0.0014807134101389
509 => 0.001455058706857
510 => 0.001434901137492
511 => 0.0014188710899304
512 => 0.0013768034581514
513 => 0.0013910000489686
514 => 0.00132395302411
515 => 0.0013668473346138
516 => 0.0012598386640325
517 => 0.0013489586646724
518 => 0.0013004547001133
519 => 0.0013330238078048
520 => 0.0013329101772563
521 => 0.0012729401239512
522 => 0.0012383506487479
523 => 0.00126039240859
524 => 0.0012840229248177
525 => 0.0012878568965731
526 => 0.0013184944776819
527 => 0.0013270447680168
528 => 0.0013011369891272
529 => 0.0012576211471842
530 => 0.0012677288847768
531 => 0.0012381458157682
601 => 0.0011863026252269
602 => 0.0012235373097689
603 => 0.0012362508681651
604 => 0.0012418658998283
605 => 0.0011908840761616
606 => 0.0011748644802962
607 => 0.001166335781875
608 => 0.0012510400339511
609 => 0.0012556803240889
610 => 0.0012319399436731
611 => 0.0013392487143075
612 => 0.0013149614345879
613 => 0.0013420962765627
614 => 0.0012668117135346
615 => 0.0012696876852264
616 => 0.0012340467666002
617 => 0.0012540032995038
618 => 0.0012398986652767
619 => 0.0012523910088595
620 => 0.0012598788680952
621 => 0.0012955139383973
622 => 0.0013493655599339
623 => 0.0012901912472191
624 => 0.0012644081517775
625 => 0.0012804038391798
626 => 0.0013230024626193
627 => 0.0013875415577135
628 => 0.0013493331144474
629 => 0.0013662893727474
630 => 0.0013699935608546
701 => 0.0013418200693436
702 => 0.0013885803545318
703 => 0.001413639571244
704 => 0.0014393451423164
705 => 0.0014616645694249
706 => 0.0014290777719525
707 => 0.0014639503163819
708 => 0.0014358492014046
709 => 0.00141063959623
710 => 0.001410677828795
711 => 0.0013948634752154
712 => 0.0013642211724182
713 => 0.0013585702616451
714 => 0.001387967013118
715 => 0.0014115404239165
716 => 0.0014134820429389
717 => 0.0014265334944026
718 => 0.0014342572089381
719 => 0.0015099601112672
720 => 0.0015404084448313
721 => 0.0015776400907559
722 => 0.0015921439151041
723 => 0.0016357952264835
724 => 0.0016005432473585
725 => 0.0015929162599294
726 => 0.0014870324567582
727 => 0.0015043709235958
728 => 0.0015321314819159
729 => 0.0014874902181401
730 => 0.0015158048250034
731 => 0.0015213947281835
801 => 0.0014859733250792
802 => 0.0015048934269457
803 => 0.0014546472458074
804 => 0.0013504607893757
805 => 0.001388696343841
806 => 0.001416850581876
807 => 0.0013766710128076
808 => 0.0014486913351986
809 => 0.001406618549659
810 => 0.0013932834964928
811 => 0.0013412586998018
812 => 0.0013658124012219
813 => 0.0013990216339677
814 => 0.0013785021891185
815 => 0.0014210831181908
816 => 0.0014813890696761
817 => 0.0015243666819861
818 => 0.0015276659694041
819 => 0.0015000342439652
820 => 0.0015443142603243
821 => 0.0015446367919019
822 => 0.0014946887525596
823 => 0.0014640958565743
824 => 0.0014571450862384
825 => 0.0014745094733162
826 => 0.0014955930448713
827 => 0.0015288359608912
828 => 0.0015489239588176
829 => 0.0016013028035587
830 => 0.0016154750171265
831 => 0.0016310459830909
901 => 0.0016518535955273
902 => 0.0016768384692195
903 => 0.0016221729879705
904 => 0.0016243449494498
905 => 0.0015734412102059
906 => 0.0015190432644891
907 => 0.0015603245244885
908 => 0.0016142942805217
909 => 0.0016019135588564
910 => 0.0016005204747539
911 => 0.001602863255805
912 => 0.001593528595986
913 => 0.0015513082755829
914 => 0.0015301054949897
915 => 0.0015574624913612
916 => 0.0015720015174128
917 => 0.0015945502788825
918 => 0.0015917706680848
919 => 0.0016498538560706
920 => 0.0016724232265775
921 => 0.001666649015804
922 => 0.0016677116095505
923 => 0.0017085723767995
924 => 0.0017540179536382
925 => 0.0017965837334196
926 => 0.0018398834728561
927 => 0.0017876839469478
928 => 0.0017611802469108
929 => 0.0017885253000735
930 => 0.0017740156299559
1001 => 0.0018573924982994
1002 => 0.0018631653317632
1003 => 0.0019465361710101
1004 => 0.0020256650250703
1005 => 0.0019759656095758
1006 => 0.0020228299198763
1007 => 0.0020735174923696
1008 => 0.0021713020434713
1009 => 0.0021383716467623
1010 => 0.0021131474789682
1011 => 0.0020893107622851
1012 => 0.0021389111857304
1013 => 0.0022027213381067
1014 => 0.0022164654337625
1015 => 0.0022387361193735
1016 => 0.0022153212165834
1017 => 0.0022435218879272
1018 => 0.0023430826497736
1019 => 0.0023161804530756
1020 => 0.0022779750090204
1021 => 0.002356568668581
1022 => 0.0023850114084508
1023 => 0.002584637452436
1024 => 0.0028366735791078
1025 => 0.0027323289677072
1026 => 0.0026675589002313
1027 => 0.0026827814024547
1028 => 0.0027748164639539
1029 => 0.0028043752046606
1030 => 0.0027240243579108
1031 => 0.0027524056353649
1101 => 0.0029087892645227
1102 => 0.0029926840641783
1103 => 0.0028787436576711
1104 => 0.00256438659506
1105 => 0.002274535026798
1106 => 0.0023514167148873
1107 => 0.0023427007173746
1108 => 0.0025107154176495
1109 => 0.0023155388445815
1110 => 0.0023188251175137
1111 => 0.0024903141838597
1112 => 0.0024445638410255
1113 => 0.0023704541448952
1114 => 0.0022750761095945
1115 => 0.0020987609899406
1116 => 0.0019425937715523
1117 => 0.0022488736499742
1118 => 0.0022356663046829
1119 => 0.002216540111482
1120 => 0.0022591033847802
1121 => 0.0024657785581202
1122 => 0.0024610140264324
1123 => 0.0024307045067205
1124 => 0.0024536940102861
1125 => 0.0023664239737676
1126 => 0.0023889154492802
1127 => 0.0022744891128287
1128 => 0.0023262145957707
1129 => 0.0023702951387717
1130 => 0.0023791449604027
1201 => 0.0023990840604206
1202 => 0.0022287066338607
1203 => 0.0023052010963676
1204 => 0.0023501344265286
1205 => 0.0021471240061728
1206 => 0.0023461215632464
1207 => 0.0022257407419199
1208 => 0.0021848816831024
1209 => 0.0022398930230285
1210 => 0.002218455050359
1211 => 0.0022000239403378
1212 => 0.0021897390642592
1213 => 0.0022301333209209
1214 => 0.0022282488805661
1215 => 0.0021621560364802
1216 => 0.0020759406156591
1217 => 0.0021048773408114
1218 => 0.0020943643572803
1219 => 0.0020562639487619
1220 => 0.0020819390238425
1221 => 0.0019688789870458
1222 => 0.0017743650700865
1223 => 0.0019028669217522
1224 => 0.0018979197402462
1225 => 0.001895425146994
1226 => 0.0019919907369905
1227 => 0.0019827081836596
1228 => 0.0019658602584689
1229 => 0.0020559545234035
1230 => 0.0020230689047635
1231 => 0.0021244146325857
]
'min_raw' => 0.00090975569508972
'max_raw' => 0.0029926840641783
'avg_raw' => 0.001951219879634
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0009097'
'max' => '$0.002992'
'avg' => '$0.001951'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00049561144725915
'max_diff' => 0.0019783154190121
'year' => 2029
]
4 => [
'items' => [
101 => 0.0021911674835601
102 => 0.0021742368013245
103 => 0.0022370181803105
104 => 0.0021055439845149
105 => 0.002149214438529
106 => 0.0021582148585767
107 => 0.0020548427741591
108 => 0.0019842269241838
109 => 0.0019795176520701
110 => 0.0018570794996764
111 => 0.0019224849723989
112 => 0.0019800390817323
113 => 0.0019524751297409
114 => 0.00194374920599
115 => 0.0019883280580111
116 => 0.0019917922166052
117 => 0.001912809033545
118 => 0.0019292321383753
119 => 0.0019977192156318
120 => 0.0019275064397482
121 => 0.0017910944853982
122 => 0.0017572624346766
123 => 0.0017527486154619
124 => 0.0016609934106511
125 => 0.00175952325408
126 => 0.0017165123369877
127 => 0.0018523833087326
128 => 0.0017747745383625
129 => 0.0017714289793866
130 => 0.0017663716763076
131 => 0.0016873941811671
201 => 0.0017046852333212
202 => 0.0017621633241831
203 => 0.0017826721545396
204 => 0.0017805329155095
205 => 0.0017618816501808
206 => 0.0017704201039383
207 => 0.0017429147693907
208 => 0.0017332020632879
209 => 0.0017025460911372
210 => 0.0016574902810041
211 => 0.0016637555677465
212 => 0.0015744882183788
213 => 0.0015258506286664
214 => 0.0015123883848672
215 => 0.0014943861098329
216 => 0.0015144217897345
217 => 0.0015742353351939
218 => 0.0015020875092184
219 => 0.0013783951221649
220 => 0.0013858292453884
221 => 0.0014025315130606
222 => 0.00137140694775
223 => 0.0013419501587704
224 => 0.0013675604468834
225 => 0.0013151503518809
226 => 0.0014088650226494
227 => 0.0014063303034375
228 => 0.0014412613374236
301 => 0.0014631044298321
302 => 0.0014127631736157
303 => 0.0014001024838144
304 => 0.0014073145881215
305 => 0.001288114569087
306 => 0.0014315201528126
307 => 0.0014327603302557
308 => 0.0014221411780543
309 => 0.0014985002242375
310 => 0.001659641628668
311 => 0.0015990137504233
312 => 0.0015755368034796
313 => 0.0015309071101781
314 => 0.0015903735266533
315 => 0.0015858074336887
316 => 0.001565157829663
317 => 0.0015526688847176
318 => 0.0015756801487115
319 => 0.0015498175344544
320 => 0.0015451718982767
321 => 0.0015170243975419
322 => 0.0015069770204093
323 => 0.0014995383423779
324 => 0.0014913490887748
325 => 0.0015094125415885
326 => 0.0014684783810675
327 => 0.0014191157963045
328 => 0.001415011831492
329 => 0.0014263432391635
330 => 0.001421329934793
331 => 0.0014149878297194
401 => 0.0014028790239645
402 => 0.0013992865999607
403 => 0.0014109602351767
404 => 0.0013977813816331
405 => 0.0014172274979259
406 => 0.001411939230297
407 => 0.0013823993972028
408 => 0.0013455818281205
409 => 0.0013452540745282
410 => 0.0013373217896624
411 => 0.0013272188322587
412 => 0.0013244084206333
413 => 0.0013654036198514
414 => 0.0014502624553497
415 => 0.0014336026354415
416 => 0.0014456410626922
417 => 0.0015048582098961
418 => 0.0015236815602704
419 => 0.0015103211920302
420 => 0.0014920326959513
421 => 0.0014928372969631
422 => 0.0015553346243688
423 => 0.0015592325060184
424 => 0.0015690811954424
425 => 0.0015817395445916
426 => 0.0015124769636266
427 => 0.0014895750356284
428 => 0.0014787228315922
429 => 0.0014453022434924
430 => 0.0014813434824934
501 => 0.0014603437959672
502 => 0.0014631773711311
503 => 0.0014613320015883
504 => 0.001462339698142
505 => 0.001408838827489
506 => 0.001428331732832
507 => 0.0013959209969882
508 => 0.0013525266599691
509 => 0.0013523811869354
510 => 0.0013630018894441
511 => 0.0013566842800038
512 => 0.0013396837554405
513 => 0.0013420985997145
514 => 0.0013209420228557
515 => 0.0013446673911974
516 => 0.0013453477498679
517 => 0.0013362121907269
518 => 0.0013727643941271
519 => 0.0013877398616839
520 => 0.0013817266409546
521 => 0.0013873179580875
522 => 0.0014342949261733
523 => 0.0014419542217201
524 => 0.0014453559748573
525 => 0.0014407980762994
526 => 0.0013881766108273
527 => 0.0013905105965847
528 => 0.0013733853577206
529 => 0.0013589163354935
530 => 0.0013594950205026
531 => 0.0013669339787685
601 => 0.0013994203458049
602 => 0.001467785990057
603 => 0.0014703804162818
604 => 0.0014735249365509
605 => 0.0014607345923071
606 => 0.0014568769020961
607 => 0.0014619661912388
608 => 0.0014876407327251
609 => 0.0015536826239978
610 => 0.0015303390088324
611 => 0.0015113602863379
612 => 0.0015280097425924
613 => 0.0015254466893048
614 => 0.0015038119401915
615 => 0.0015032047248407
616 => 0.0014616807242446
617 => 0.00144633024668
618 => 0.0014335022386637
619 => 0.0014194943887935
620 => 0.0014111900658431
621 => 0.0014239492801422
622 => 0.001426867463415
623 => 0.001398969218357
624 => 0.0013951667906432
625 => 0.001417949099783
626 => 0.0014079234549406
627 => 0.001418235079285
628 => 0.0014206274645844
629 => 0.0014202422354499
630 => 0.0014097743107965
701 => 0.0014164462538126
702 => 0.0014006651195776
703 => 0.0013835055063469
704 => 0.0013725587421874
705 => 0.0013630062385806
706 => 0.0013683065227764
707 => 0.0013494119774121
708 => 0.001343367232078
709 => 0.0014141859496422
710 => 0.0014665004977364
711 => 0.0014657398234883
712 => 0.0014611094146323
713 => 0.0014542295663166
714 => 0.0014871374289688
715 => 0.0014756729876343
716 => 0.0014840143265913
717 => 0.0014861375474407
718 => 0.0014925638974788
719 => 0.001494860765254
720 => 0.0014879180355602
721 => 0.0014646173867248
722 => 0.0014065543851862
723 => 0.0013795259012319
724 => 0.001370606051332
725 => 0.0013709302709346
726 => 0.0013619868469133
727 => 0.0013646210861037
728 => 0.0013610707660255
729 => 0.0013543473187119
730 => 0.001367891368851
731 => 0.001369452194458
801 => 0.0013662908513161
802 => 0.0013670354620683
803 => 0.0013408608910815
804 => 0.0013428508868654
805 => 0.001331770337464
806 => 0.0013296928680292
807 => 0.0013016822040361
808 => 0.0012520572525616
809 => 0.0012795542928891
810 => 0.0012463417348425
811 => 0.0012337636358579
812 => 0.0012933064001553
813 => 0.0012873299580791
814 => 0.0012771008871414
815 => 0.0012619699592995
816 => 0.0012563577509787
817 => 0.0012222597498309
818 => 0.0012202450580173
819 => 0.0012371449481097
820 => 0.0012293462303218
821 => 0.0012183938769422
822 => 0.0011787255632235
823 => 0.0011341252448764
824 => 0.0011354714481397
825 => 0.0011496579795875
826 => 0.0011909072330864
827 => 0.001174790436125
828 => 0.0011630975150106
829 => 0.0011609077823738
830 => 0.0011883168708393
831 => 0.0012271064733994
901 => 0.0012453056870522
902 => 0.0012272708190406
903 => 0.0012065533337352
904 => 0.0012078143110701
905 => 0.0012162030283518
906 => 0.001217084563928
907 => 0.0012035996107861
908 => 0.001207395546107
909 => 0.001201629173247
910 => 0.0011662409536488
911 => 0.0011656008929736
912 => 0.0011569160531721
913 => 0.0011566530796744
914 => 0.0011418780006373
915 => 0.0011398108649447
916 => 0.0011104740487331
917 => 0.0011297836300036
918 => 0.0011168317766859
919 => 0.0010973102787028
920 => 0.0010939447650924
921 => 0.0010938435936893
922 => 0.0011138878071909
923 => 0.0011295494016986
924 => 0.0011170570797195
925 => 0.0011142128201584
926 => 0.0011445820710815
927 => 0.0011407173070797
928 => 0.0011373704463791
929 => 0.0012236332899382
930 => 0.0011553495180876
1001 => 0.0011255738960593
1002 => 0.001088720909562
1003 => 0.0011007204277944
1004 => 0.0011032489025956
1005 => 0.0010146241133197
1006 => 0.00097866904734793
1007 => 0.00096633062364452
1008 => 0.0009592296863635
1009 => 0.00096246567265041
1010 => 0.00093010189616726
1011 => 0.0009518508892114
1012 => 0.00092382659441891
1013 => 0.00091912823019801
1014 => 0.00096923914083092
1015 => 0.00097621178130179
1016 => 0.00094646433082344
1017 => 0.00096556700970532
1018 => 0.00095864011279565
1019 => 0.00092430699051853
1020 => 0.00092299571778489
1021 => 0.00090576856389383
1022 => 0.00087881140388864
1023 => 0.0008664912584091
1024 => 0.00086007481967495
1025 => 0.00086272236735056
1026 => 0.00086138368622947
1027 => 0.0008526478863956
1028 => 0.00086188441205019
1029 => 0.00083828890579862
1030 => 0.00082889298508733
1031 => 0.00082464906568574
1101 => 0.0008037066957808
1102 => 0.00083703531941373
1103 => 0.00084360147813235
1104 => 0.00085018057421204
1105 => 0.00090744711384607
1106 => 0.00090458623935951
1107 => 0.00093044715141558
1108 => 0.00092944224392825
1109 => 0.00092206629289086
1110 => 0.00089094836874916
1111 => 0.00090335141868837
1112 => 0.00086517675883738
1113 => 0.00089377980962229
1114 => 0.00088072657173602
1115 => 0.00088936649676257
1116 => 0.0008738311325342
1117 => 0.00088242904453764
1118 => 0.00084515855795297
1119 => 0.00081035590199009
1120 => 0.00082436150670241
1121 => 0.00083958720075989
1122 => 0.00087260038491118
1123 => 0.00085293800478353
1124 => 0.00086000934019434
1125 => 0.00083632155029537
1126 => 0.00078744687365111
1127 => 0.00078772349901314
1128 => 0.00078020519480413
1129 => 0.00077370828227716
1130 => 0.00085519646566793
1201 => 0.00084506212192574
1202 => 0.00082891437152268
1203 => 0.00085052877712327
1204 => 0.00085624396903081
1205 => 0.0008564066725098
1206 => 0.00087217598488743
1207 => 0.00088059206973018
1208 => 0.00088207544116111
1209 => 0.00090688879490586
1210 => 0.00091520590378505
1211 => 0.00094946289817713
1212 => 0.00087987802373119
1213 => 0.00087844496903357
1214 => 0.00085083293613568
1215 => 0.00083332094834287
1216 => 0.00085203199692201
1217 => 0.00086860743165029
1218 => 0.00085134798109653
1219 => 0.00085360170097197
1220 => 0.00083043229875246
1221 => 0.00083871426982423
1222 => 0.00084584781901323
1223 => 0.0008419090924417
1224 => 0.00083601262812762
1225 => 0.00086724843502634
1226 => 0.000865485988387
1227 => 0.00089457348987919
1228 => 0.00091724927735954
1229 => 0.00095788834230619
1230 => 0.00091547935947199
1231 => 0.00091393380757707
]
'min_raw' => 0.00077370828227716
'max_raw' => 0.0022370181803105
'avg_raw' => 0.0015053632312938
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000773'
'max' => '$0.002237'
'avg' => '$0.0015053'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00013604741281256
'max_diff' => -0.00075566588386782
'year' => 2030
]
5 => [
'items' => [
101 => 0.00092904182526421
102 => 0.00091520359082626
103 => 0.00092394887731143
104 => 0.00095647934145182
105 => 0.00095716665889828
106 => 0.00094565320611169
107 => 0.00094495261146328
108 => 0.00094716389601432
109 => 0.00096011545869795
110 => 0.00095558978473497
111 => 0.00096082700922098
112 => 0.00096737623863597
113 => 0.00099446662831209
114 => 0.0010009980295489
115 => 0.0009851301106867
116 => 0.00098656280609441
117 => 0.00098062776885582
118 => 0.00097489459724915
119 => 0.00098778192975848
120 => 0.0010113337832204
121 => 0.0010111872683624
122 => 0.0010166508405829
123 => 0.0010200546008137
124 => 0.0010054431701986
125 => 0.00099593166614537
126 => 0.0009995789820321
127 => 0.0010054111195632
128 => 0.00099768769843436
129 => 0.00095001516539047
130 => 0.00096447596658279
131 => 0.00096206898216733
201 => 0.00095864114366042
202 => 0.00097318159108136
203 => 0.00097177912945596
204 => 0.00092976995886159
205 => 0.00093245924966462
206 => 0.00092993350354253
207 => 0.00093809470598204
208 => 0.00091476285911174
209 => 0.00092193957806666
210 => 0.00092644074891762
211 => 0.00092909197312846
212 => 0.00093867001293948
213 => 0.00093754614051698
214 => 0.00093860015145171
215 => 0.00095280185598268
216 => 0.0010246292040639
217 => 0.0010285386081418
218 => 0.0010092872726646
219 => 0.001016977801472
220 => 0.0010022136678957
221 => 0.0010121249296765
222 => 0.0010189059632683
223 => 0.00098826377638504
224 => 0.00098644934494396
225 => 0.00097162427453648
226 => 0.00097959042763855
227 => 0.00096691570526648
228 => 0.00097002563879362
301 => 0.00096132999353261
302 => 0.00097698042371673
303 => 0.00099448003649356
304 => 0.00099890112976164
305 => 0.00098727113677365
306 => 0.00097885025539646
307 => 0.00096406596170889
308 => 0.0009886525716008
309 => 0.00099584244559655
310 => 0.00098861480625352
311 => 0.0009869400042907
312 => 0.00098376625759746
313 => 0.00098761332965494
314 => 0.00099580328799866
315 => 0.00099194105488855
316 => 0.00099449212790157
317 => 0.000984770068231
318 => 0.0010054480071901
319 => 0.0010382895506742
320 => 0.0010383951416066
321 => 0.0010345328876776
322 => 0.0010329525365833
323 => 0.0010369154434956
324 => 0.0010390651579286
325 => 0.0010518804722102
326 => 0.0010656318150189
327 => 0.0011298033317266
328 => 0.0011117842266215
329 => 0.0011687210138251
330 => 0.0012137506201867
331 => 0.0012272530302285
401 => 0.0012148314483275
402 => 0.001172337887645
403 => 0.0011702529508317
404 => 0.0012337562708099
405 => 0.0012158136742798
406 => 0.0012136794595154
407 => 0.001190975020235
408 => 0.0012043961558492
409 => 0.0012014607566142
410 => 0.0011968270853171
411 => 0.0012224336771446
412 => 0.0012703669311295
413 => 0.0012628960839808
414 => 0.0012573194431468
415 => 0.0012328842263483
416 => 0.0012475996846643
417 => 0.001242359791814
418 => 0.001264873696817
419 => 0.0012515369582373
420 => 0.001215677741464
421 => 0.0012213884399287
422 => 0.0012205252793441
423 => 0.001238289063011
424 => 0.0012329568160784
425 => 0.001219484072551
426 => 0.0012702031004784
427 => 0.0012669096889189
428 => 0.0012715789935316
429 => 0.0012736345658252
430 => 0.0013045063443551
501 => 0.0013171535242321
502 => 0.0013200246554842
503 => 0.0013320384981993
504 => 0.0013197257401331
505 => 0.0013689855512458
506 => 0.0014017404512461
507 => 0.0014397869531481
508 => 0.0014953831183627
509 => 0.0015162877907767
510 => 0.0015125115488156
511 => 0.001554663926771
512 => 0.0016304108129621
513 => 0.0015278221602011
514 => 0.0016358482606632
515 => 0.0016016484444782
516 => 0.0015205612955321
517 => 0.0015153402390946
518 => 0.0015702533978021
519 => 0.0016920454986197
520 => 0.0016615379587194
521 => 0.0016920953980259
522 => 0.0016564485219209
523 => 0.0016546783540669
524 => 0.0016903641088188
525 => 0.0017737458199259
526 => 0.0017341342944956
527 => 0.0016773414596468
528 => 0.0017192764051048
529 => 0.0016829484744531
530 => 0.0016010914791472
531 => 0.0016615146301786
601 => 0.0016211113898362
602 => 0.0016329032033225
603 => 0.0017178248049938
604 => 0.0017076068132061
605 => 0.00172082984074
606 => 0.0016974915432495
607 => 0.0016756898932816
608 => 0.0016349954946047
609 => 0.0016229478893661
610 => 0.0016262774140267
611 => 0.0016229462394191
612 => 0.0016001780973602
613 => 0.0015952613192504
614 => 0.0015870664736583
615 => 0.0015896063989721
616 => 0.0015741976917724
617 => 0.0016032771058596
618 => 0.0016086745013611
619 => 0.0016298360739118
620 => 0.0016320331385749
621 => 0.0016909678169127
622 => 0.0016585075864413
623 => 0.0016802847115229
624 => 0.0016783367604814
625 => 0.0015223186999275
626 => 0.0015438166121128
627 => 0.0015772606170567
628 => 0.0015621941381617
629 => 0.0015408936620174
630 => 0.0015236923854715
701 => 0.0014976306925838
702 => 0.0015343120248528
703 => 0.0015825440761618
704 => 0.0016332563829911
705 => 0.0016941838968445
706 => 0.0016805855850268
707 => 0.0016321173854999
708 => 0.0016342916335246
709 => 0.0016477319792785
710 => 0.0016303255103431
711 => 0.0016251920028394
712 => 0.0016470267141779
713 => 0.0016471770778347
714 => 0.0016271488316825
715 => 0.0016048911012146
716 => 0.0016047978405112
717 => 0.0016008372923586
718 => 0.0016571530946389
719 => 0.0016881210917232
720 => 0.0016916715226815
721 => 0.0016878821194314
722 => 0.0016893405103463
723 => 0.0016713209151762
724 => 0.0017125083661901
725 => 0.0017503060442572
726 => 0.0017401754591056
727 => 0.0017249882718158
728 => 0.0017128909456255
729 => 0.0017373257135137
730 => 0.0017362376717636
731 => 0.0017499759145133
801 => 0.0017493526684662
802 => 0.0017447330141509
803 => 0.001740175624088
804 => 0.0017582451605434
805 => 0.0017530414242321
806 => 0.0017478296050811
807 => 0.001737376503884
808 => 0.0017387972539443
809 => 0.0017236126889365
810 => 0.0017165876143655
811 => 0.0016109473483282
812 => 0.0015827168173478
813 => 0.0015915987170797
814 => 0.0015945228690898
815 => 0.0015822369058287
816 => 0.0015998518211401
817 => 0.0015971065552477
818 => 0.0016077867789084
819 => 0.0016011142388466
820 => 0.0016013880822182
821 => 0.0016210105998046
822 => 0.00162670710014
823 => 0.001623809814093
824 => 0.0016258389739272
825 => 0.0016726001058509
826 => 0.0016659521682282
827 => 0.0016624205838644
828 => 0.0016633988568685
829 => 0.001675347328645
830 => 0.00167869224838
831 => 0.0016645195884193
901 => 0.001671203496788
902 => 0.0016996627303074
903 => 0.0017096218513861
904 => 0.00174140658522
905 => 0.0017279038653587
906 => 0.001752688692048
907 => 0.0018288687995209
908 => 0.0018897267406327
909 => 0.0018337592629255
910 => 0.0019455171215652
911 => 0.0020325366452289
912 => 0.0020291966909721
913 => 0.0020140228242235
914 => 0.0019149534100661
915 => 0.0018237882581167
916 => 0.0019000517787992
917 => 0.0019002461901971
918 => 0.0018936950861357
919 => 0.001853006741447
920 => 0.0018922792199377
921 => 0.0018953965266636
922 => 0.0018936516638558
923 => 0.0018624560053818
924 => 0.0018148260008134
925 => 0.001824132789696
926 => 0.0018393774997389
927 => 0.0018105160832479
928 => 0.0018012931119042
929 => 0.0018184403703743
930 => 0.0018736924099383
1001 => 0.001863247331912
1002 => 0.0018629745687129
1003 => 0.0019076630419118
1004 => 0.0018756757394775
1005 => 0.0018242501781082
1006 => 0.0018112645456427
1007 => 0.0017651742985601
1008 => 0.0017970089963879
1009 => 0.0017981546704885
1010 => 0.0017807191318309
1011 => 0.0018256649759776
1012 => 0.0018252507921112
1013 => 0.0018679201818223
1014 => 0.0019494880290592
1015 => 0.0019253644029212
1016 => 0.0018973112503659
1017 => 0.0019003614058782
1018 => 0.001933814083423
1019 => 0.0019135878309291
1020 => 0.0019208613323483
1021 => 0.0019338030741075
1022 => 0.0019416111482361
1023 => 0.0018992379441705
1024 => 0.0018893587233582
1025 => 0.0018691493047115
1026 => 0.0018638770446133
1027 => 0.0018803371944176
1028 => 0.0018760005264899
1029 => 0.0017980583810166
1030 => 0.0017899129931486
1031 => 0.0017901628005656
1101 => 0.0017696808354795
1102 => 0.0017384409224884
1103 => 0.0018205375485908
1104 => 0.0018139440405732
1105 => 0.0018066653180188
1106 => 0.0018075569199999
1107 => 0.0018431922828781
1108 => 0.0018225219727798
1109 => 0.0018774773799734
1110 => 0.0018661802003652
1111 => 0.0018545932907281
1112 => 0.0018529916268704
1113 => 0.0018485316552088
1114 => 0.0018332367528989
1115 => 0.0018147672392785
1116 => 0.0018025720665844
1117 => 0.0016627774478252
1118 => 0.001688722515919
1119 => 0.0017185699517936
1120 => 0.0017288731670514
1121 => 0.0017112488043921
1122 => 0.0018339326701584
1123 => 0.0018563481946451
1124 => 0.0017884501088465
1125 => 0.0017757491492542
1126 => 0.0018347653429548
1127 => 0.0017991713637171
1128 => 0.0018151993303884
1129 => 0.0017805556332741
1130 => 0.0018509489511994
1201 => 0.0018504126720579
1202 => 0.0018230280814797
1203 => 0.0018461733499148
1204 => 0.0018421512899471
1205 => 0.0018112341546297
1206 => 0.0018519290795349
1207 => 0.0018519492637099
1208 => 0.0018255921906708
1209 => 0.0017948128996663
1210 => 0.0017893102894091
1211 => 0.0017851648117519
1212 => 0.0018141797970071
1213 => 0.0018401945420594
1214 => 0.0018886015329995
1215 => 0.0019007722006436
1216 => 0.0019482751267056
1217 => 0.0019199894471111
1218 => 0.0019325281225145
1219 => 0.0019461406283687
1220 => 0.0019526669642586
1221 => 0.0019420326501486
1222 => 0.0020158242473073
1223 => 0.0020220545190237
1224 => 0.0020241434752385
1225 => 0.0019992613638603
1226 => 0.0020213625024948
1227 => 0.0020110221116405
1228 => 0.0020379249360001
1229 => 0.0020421436423722
1230 => 0.0020385705481599
1231 => 0.0020399096321501
]
'min_raw' => 0.00091476285911174
'max_raw' => 0.0020421436423722
'avg_raw' => 0.001478453250742
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000914'
'max' => '$0.002042'
'avg' => '$0.001478'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00014105457683458
'max_diff' => -0.00019487453793827
'year' => 2031
]
6 => [
'items' => [
101 => 0.0019769415217049
102 => 0.0019736762929951
103 => 0.0019291546678465
104 => 0.0019472975591817
105 => 0.0019133802934418
106 => 0.0019241358077945
107 => 0.0019288767360389
108 => 0.0019264003441693
109 => 0.0019483233310365
110 => 0.0019296843136291
111 => 0.0018804928821528
112 => 0.0018312880485039
113 => 0.0018306703218988
114 => 0.0018177155577365
115 => 0.0018083516360306
116 => 0.0018101554595541
117 => 0.0018165123689274
118 => 0.0018079821609016
119 => 0.0018098025132764
120 => 0.0018400324916432
121 => 0.0018460948982144
122 => 0.0018254924719505
123 => 0.0017427707575853
124 => 0.0017224706413883
125 => 0.0017370619623419
126 => 0.0017300882507275
127 => 0.0013963162461888
128 => 0.001474731027745
129 => 0.0014281396272587
130 => 0.0014496110881701
131 => 0.0014020533330582
201 => 0.0014247503865131
202 => 0.0014205590695036
203 => 0.001546647717784
204 => 0.0015446790169704
205 => 0.0015456213298685
206 => 0.0015006422800563
207 => 0.0015722951277215
208 => 0.0016075938970344
209 => 0.0016010610342809
210 => 0.001602705215091
211 => 0.0015744527413426
212 => 0.0015458948755713
213 => 0.0015142198074068
214 => 0.0015730681688996
215 => 0.0015665252356766
216 => 0.0015815323704171
217 => 0.0016196997394129
218 => 0.0016253200294813
219 => 0.0016328737563286
220 => 0.0016301662829647
221 => 0.0016946692827883
222 => 0.0016868575439051
223 => 0.0017056815870228
224 => 0.0016669591021462
225 => 0.0016231409349362
226 => 0.001631469335999
227 => 0.0016306672440039
228 => 0.0016204556923077
229 => 0.0016112371600257
301 => 0.0015958909010815
302 => 0.0016444487351999
303 => 0.0016424773758117
304 => 0.0016743913928518
305 => 0.0016687502803437
306 => 0.0016310775504005
307 => 0.0016324230393204
308 => 0.001641472098927
309 => 0.0016727909975456
310 => 0.0016820885790089
311 => 0.0016777815688305
312 => 0.0016879759424543
313 => 0.0016960331597083
314 => 0.0016889878048903
315 => 0.0017887351717758
316 => 0.0017473131106828
317 => 0.0017675019350467
318 => 0.001772316850698
319 => 0.0017599835455039
320 => 0.0017626581977779
321 => 0.001766709567174
322 => 0.0017913086888075
323 => 0.001855863901787
324 => 0.0018844549661734
325 => 0.0019704725940382
326 => 0.001882080876283
327 => 0.0018768360775527
328 => 0.0018923304498146
329 => 0.0019428319032619
330 => 0.0019837585879206
331 => 0.0019973363303389
401 => 0.0019991308531436
402 => 0.0020246036005517
403 => 0.0020392041043274
404 => 0.0020215105390166
405 => 0.0020065170950092
406 => 0.0019528124396294
407 => 0.0019590288997225
408 => 0.0020018541451974
409 => 0.0020623473268249
410 => 0.0021142567699042
411 => 0.0020960798921646
412 => 0.002234756638442
413 => 0.0022485058713917
414 => 0.002246606171964
415 => 0.0022779289707836
416 => 0.0022157595939037
417 => 0.0021891809808126
418 => 0.0020097588477864
419 => 0.0020601691486331
420 => 0.0021334434814069
421 => 0.0021237453486996
422 => 0.0020705315696108
423 => 0.002114216402481
424 => 0.0020997728305831
425 => 0.0020883805861628
426 => 0.0021405706663472
427 => 0.0020831855293342
428 => 0.0021328710207678
429 => 0.0020691488640735
430 => 0.002096162922611
501 => 0.0020808284364621
502 => 0.0020907517283244
503 => 0.0020327403668639
504 => 0.0020640418893618
505 => 0.0020314381206181
506 => 0.0020314226621866
507 => 0.0020307029321845
508 => 0.0020690611215242
509 => 0.0020703119807014
510 => 0.0020419652208234
511 => 0.0020378800098654
512 => 0.002052985175923
513 => 0.0020353009825188
514 => 0.0020435753053096
515 => 0.0020355516033269
516 => 0.0020337452990056
517 => 0.002019352358856
518 => 0.0020131514844974
519 => 0.0020155830071102
520 => 0.0020072829668967
521 => 0.0020022818924425
522 => 0.0020297080926003
523 => 0.0020150553802258
524 => 0.0020274623542795
525 => 0.0020133230414603
526 => 0.0019643100230238
527 => 0.0019361221178177
528 => 0.0018435410695004
529 => 0.0018697969399568
530 => 0.001887204609233
531 => 0.0018814513746411
601 => 0.0018938115487508
602 => 0.001894570363056
603 => 0.0018905519444558
604 => 0.0018858991305082
605 => 0.0018836343979952
606 => 0.0019005138586863
607 => 0.001910312953754
608 => 0.0018889517017295
609 => 0.0018839470592558
610 => 0.0019055444644397
611 => 0.0019187188691255
612 => 0.0020159912712667
613 => 0.0020087850175303
614 => 0.0020268713002527
615 => 0.0020248350623748
616 => 0.0020437923680386
617 => 0.0020747795508437
618 => 0.0020117739440482
619 => 0.002022709538818
620 => 0.0020200283835202
621 => 0.0020493005340247
622 => 0.0020493919184834
623 => 0.0020318418020036
624 => 0.0020413560048654
625 => 0.0020360454378364
626 => 0.002045642350224
627 => 0.0020086887736182
628 => 0.0020536942410319
629 => 0.0020792094409672
630 => 0.0020795637195431
701 => 0.0020916577218112
702 => 0.0021039459285531
703 => 0.0021275320713168
704 => 0.0021032881238328
705 => 0.0020596756224098
706 => 0.002062824304145
707 => 0.0020372543105179
708 => 0.0020376841467304
709 => 0.0020353896473413
710 => 0.0020422756127297
711 => 0.0020101998557895
712 => 0.0020177279718313
713 => 0.0020071885652883
714 => 0.0020226866282065
715 => 0.0020060132744281
716 => 0.0020200270905859
717 => 0.0020260749890743
718 => 0.0020483918646984
719 => 0.0020027170537531
720 => 0.0019095830223228
721 => 0.0019291609248704
722 => 0.0019002036691914
723 => 0.0019028837734526
724 => 0.0019082980105955
725 => 0.0018907486965871
726 => 0.0018940965526575
727 => 0.0018939769436801
728 => 0.0018929462181315
729 => 0.0018883809637712
730 => 0.0018817604417408
731 => 0.0019081345638207
801 => 0.0019126160410956
802 => 0.0019225778099401
803 => 0.0019522172768889
804 => 0.0019492555951939
805 => 0.0019540862209174
806 => 0.0019435409920859
807 => 0.0019033729363736
808 => 0.0019055542550531
809 => 0.0018783531761662
810 => 0.0019218822171966
811 => 0.0019115739657253
812 => 0.0019049281689427
813 => 0.0019031148017176
814 => 0.0019328277391721
815 => 0.0019417183157517
816 => 0.0019361783050517
817 => 0.001924815581478
818 => 0.0019466353698271
819 => 0.0019524734246864
820 => 0.0019537803498702
821 => 0.0019924408312953
822 => 0.0019559410413175
823 => 0.0019647269035418
824 => 0.0020332716925814
825 => 0.0019711110274568
826 => 0.0020040389181216
827 => 0.002002427269222
828 => 0.002019272063867
829 => 0.0020010455043984
830 => 0.0020012714444474
831 => 0.0020162284809269
901 => 0.0019952240207071
902 => 0.0019900230209703
903 => 0.0019828378770842
904 => 0.0019985263758963
905 => 0.0020079309214044
906 => 0.0020837246513223
907 => 0.0021326908574632
908 => 0.0021305651053154
909 => 0.0021499905007047
910 => 0.0021412391821656
911 => 0.0021129788661217
912 => 0.0021612157796302
913 => 0.0021459516018779
914 => 0.0021472099621459
915 => 0.0021471631259138
916 => 0.0021573124697015
917 => 0.0021501207294542
918 => 0.0021359450712099
919 => 0.0021453555347028
920 => 0.0021733012469743
921 => 0.0022600455953445
922 => 0.0023085888819022
923 => 0.002257123228541
924 => 0.002292623547077
925 => 0.0022713360060123
926 => 0.0022674674265513
927 => 0.0022897642500449
928 => 0.0023121001011763
929 => 0.0023106774040198
930 => 0.002294462723057
1001 => 0.0022853034612134
1002 => 0.0023546604604709
1003 => 0.0024057615160581
1004 => 0.0024022767666529
1005 => 0.0024176573172263
1006 => 0.0024628150894125
1007 => 0.0024669437501656
1008 => 0.0024664236338069
1009 => 0.0024561903173492
1010 => 0.0025006540085442
1011 => 0.0025377464020033
1012 => 0.0024538216002582
1013 => 0.0024857790661064
1014 => 0.0025001258021309
1015 => 0.0025211910670997
1016 => 0.0025567317000503
1017 => 0.002595338254122
1018 => 0.002600797644167
1019 => 0.0025969239456742
1020 => 0.002571461885464
1021 => 0.0026137056376013
1022 => 0.0026384510368653
1023 => 0.0026531863558387
1024 => 0.0026905526730319
1025 => 0.0025002144026884
1026 => 0.0023654835145134
1027 => 0.0023444433407872
1028 => 0.0023872293614233
1029 => 0.0023985116938529
1030 => 0.0023939637997974
1031 => 0.00224231193596
1101 => 0.0023436449251092
1102 => 0.0024526707011141
1103 => 0.0024568588251919
1104 => 0.0025114394082814
1105 => 0.002529213083469
1106 => 0.0025731576068966
1107 => 0.0025704088649914
1108 => 0.0025811086571359
1109 => 0.0025786489602165
1110 => 0.002660046936255
1111 => 0.0027498409915419
1112 => 0.0027467317089349
1113 => 0.0027338227510924
1114 => 0.0027529947547929
1115 => 0.0028456718427647
1116 => 0.0028371396216244
1117 => 0.0028454279476894
1118 => 0.00295469945746
1119 => 0.0030967679638527
1120 => 0.0030307628791884
1121 => 0.0031739749204584
1122 => 0.0032641193090938
1123 => 0.0034200147081349
1124 => 0.0034004958363739
1125 => 0.0034611847712073
1126 => 0.0033655529822103
1127 => 0.0031459630642998
1128 => 0.0031112121192341
1129 => 0.0031807843912898
1130 => 0.0033518210333759
1201 => 0.0031753978387628
1202 => 0.003211088021259
1203 => 0.0032008092462991
1204 => 0.0032002615340634
1205 => 0.0032211654823909
1206 => 0.0031908432150653
1207 => 0.0030673048431093
1208 => 0.0031239217509605
1209 => 0.0031020592438719
1210 => 0.0031263173254446
1211 => 0.0032572281868984
1212 => 0.0031993493745245
1213 => 0.0031383787473815
1214 => 0.0032148494442841
1215 => 0.0033122229196236
1216 => 0.0033061294625338
1217 => 0.0032943056089121
1218 => 0.0033609560527005
1219 => 0.0034710430590912
1220 => 0.0035007991345532
1221 => 0.0035227644611231
1222 => 0.0035257931085498
1223 => 0.0035569900593392
1224 => 0.0033892361923007
1225 => 0.0036554658875157
1226 => 0.0037014364014325
1227 => 0.0036927958500987
1228 => 0.0037438901415822
1229 => 0.0037288569048907
1230 => 0.0037070761035673
1231 => 0.0037880714236361
]
'min_raw' => 0.0013963162461888
'max_raw' => 0.0037880714236361
'avg_raw' => 0.0025921938349124
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001396'
'max' => '$0.003788'
'avg' => '$0.002592'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00048155338707704
'max_diff' => 0.0017459277812639
'year' => 2032
]
7 => [
'items' => [
101 => 0.0036952168251625
102 => 0.0035634214126981
103 => 0.0034911158428024
104 => 0.003586333649965
105 => 0.0036444798421556
106 => 0.0036829107764012
107 => 0.0036945399538833
108 => 0.0034022584474649
109 => 0.0032447349261808
110 => 0.0033457056973131
111 => 0.0034688970067247
112 => 0.0033885518583568
113 => 0.0033917012360594
114 => 0.0032771501688202
115 => 0.0034790322343782
116 => 0.0034496197155218
117 => 0.0036022119153784
118 => 0.0035657945622537
119 => 0.0036902275776417
120 => 0.0036574601944856
121 => 0.003793475769967
122 => 0.0038477360655012
123 => 0.0039388475466438
124 => 0.0040058695230627
125 => 0.004045226109542
126 => 0.0040428632877127
127 => 0.0041988136907173
128 => 0.0041068551865575
129 => 0.0039913336323776
130 => 0.0039892442119283
131 => 0.0040490744617912
201 => 0.0041744622518763
202 => 0.0042069734815273
203 => 0.0042251428236386
204 => 0.0041973158437157
205 => 0.0040975014781757
206 => 0.0040544021412059
207 => 0.0040911240250122
208 => 0.0040462163166645
209 => 0.0041237396201501
210 => 0.00423019567392
211 => 0.0042082129197893
212 => 0.0042816979710093
213 => 0.0043577472681691
214 => 0.0044665011786953
215 => 0.0044949334780525
216 => 0.0045419309877064
217 => 0.004590306863018
218 => 0.0046058438904017
219 => 0.0046355088965336
220 => 0.0046353525473083
221 => 0.004724750039972
222 => 0.00482335824279
223 => 0.0048605805565686
224 => 0.0049461712146523
225 => 0.0047996002121384
226 => 0.0049107760012315
227 => 0.0050110593459039
228 => 0.0048914974081884
301 => 0.0050562856849706
302 => 0.0050626840403398
303 => 0.0051592916099372
304 => 0.0050613613303794
305 => 0.0050032106429824
306 => 0.0051710894986195
307 => 0.0052523207887278
308 => 0.005227853263065
309 => 0.0050416541846604
310 => 0.0049332783345747
311 => 0.0046496378307602
312 => 0.0049856222598864
313 => 0.0051492704745135
314 => 0.005041230375319
315 => 0.0050957195170355
316 => 0.005392994606077
317 => 0.0055061777128474
318 => 0.0054826364178488
319 => 0.0054866145091809
320 => 0.0055476860591755
321 => 0.0058185109445685
322 => 0.0056562263955693
323 => 0.0057802868525931
324 => 0.0058460880716653
325 => 0.0059072079110813
326 => 0.0057571169025992
327 => 0.0055618507058388
328 => 0.0055000017046074
329 => 0.0050304879166917
330 => 0.0050060476850357
331 => 0.0049923286423923
401 => 0.0049058320191231
402 => 0.0048378693666526
403 => 0.0047838229421165
404 => 0.0046419889845054
405 => 0.0046898537816197
406 => 0.004463800056235
407 => 0.004608421218884
408 => 0.0042476340149121
409 => 0.0045481083192295
410 => 0.0043845738162797
411 => 0.0044943828367642
412 => 0.0044939997234363
413 => 0.0042918065017428
414 => 0.0041751856711349
415 => 0.0042495010033489
416 => 0.0043291729386407
417 => 0.0043420994420933
418 => 0.0044453961858494
419 => 0.0044742240866757
420 => 0.0043868742013261
421 => 0.0042401575020359
422 => 0.0042742364450294
423 => 0.0041744950624429
424 => 0.0039997021259568
425 => 0.004125241464533
426 => 0.004168106114298
427 => 0.0041870375855794
428 => 0.0040151488076498
429 => 0.0039611376217373
430 => 0.0039323825195553
501 => 0.0042179688192921
502 => 0.0042336138814663
503 => 0.0041535715313942
504 => 0.004515370543647
505 => 0.0044334842843888
506 => 0.0045249712986009
507 => 0.0042711441381513
508 => 0.0042808406775041
509 => 0.0041606748319866
510 => 0.0042279596759917
511 => 0.0041804049169407
512 => 0.0042225237255179
513 => 0.0042477695657167
514 => 0.0043679156932014
515 => 0.004549480195012
516 => 0.0043499698682755
517 => 0.0042630403618758
518 => 0.0043169709387361
519 => 0.0044605951718032
520 => 0.004678193236889
521 => 0.004549370802789
522 => 0.0046065400114958
523 => 0.0046190289403172
524 => 0.0045240400466776
525 => 0.0046816956128883
526 => 0.0047661845116121
527 => 0.0048528526391886
528 => 0.0049281041459775
529 => 0.0048182354831616
530 => 0.0049358107014288
531 => 0.0048410658303254
601 => 0.0047560698864009
602 => 0.004756198790163
603 => 0.0047028795929466
604 => 0.0045995669296885
605 => 0.0045805144894831
606 => 0.0046796276894896
607 => 0.0047591070898399
608 => 0.0047656533939334
609 => 0.0048096572737663
610 => 0.0048356983165755
611 => 0.0050909359371859
612 => 0.0051935946196318
613 => 0.0053191237132972
614 => 0.0053680243697119
615 => 0.0055151978136647
616 => 0.0053963433048301
617 => 0.0053706283842139
618 => 0.0050136337492511
619 => 0.005072091600727
620 => 0.0051656882612837
621 => 0.0050151771237099
622 => 0.0051106417976121
623 => 0.0051294885464587
624 => 0.0050100628128489
625 => 0.0050738532572512
626 => 0.0049044447494673
627 => 0.0045531728375417
628 => 0.0046820866789427
629 => 0.0047770106581436
630 => 0.0046415424357816
701 => 0.0048843639810212
702 => 0.0047425126471464
703 => 0.0046975525843729
704 => 0.0045221473500739
705 => 0.0046049318686964
706 => 0.0047168991154935
707 => 0.0046477163745624
708 => 0.0047912809498351
709 => 0.004994606675695
710 => 0.0051395086961991
711 => 0.0051506324740778
712 => 0.0050574701825751
713 => 0.005206763349262
714 => 0.0052078507869942
715 => 0.0050394474850909
716 => 0.0049363014003487
717 => 0.004912866392874
718 => 0.0049714116362496
719 => 0.0050424963697556
720 => 0.0051545771820628
721 => 0.0052223052695708
722 => 0.0053989042015898
723 => 0.005446686809106
724 => 0.0054991854079848
725 => 0.0055693397260553
726 => 0.0056535779720968
727 => 0.005469269485444
728 => 0.0054765924052127
729 => 0.0053049668943663
730 => 0.0051215604224389
731 => 0.0052607430726923
801 => 0.0054427058732065
802 => 0.0054009634057175
803 => 0.0053962665254038
804 => 0.0054041653752855
805 => 0.0053726929179804
806 => 0.0052303441600128
807 => 0.0051588575049119
808 => 0.0052510935281829
809 => 0.0053001128695983
810 => 0.0053761375931978
811 => 0.0053667659413269
812 => 0.0055625974648599
813 => 0.005638691673267
814 => 0.0056192235185017
815 => 0.0056228061275058
816 => 0.0057605710570936
817 => 0.005913793992314
818 => 0.006057307490695
819 => 0.0062032955852963
820 => 0.0060273012392421
821 => 0.005937942164138
822 => 0.0060301379200466
823 => 0.0059812175542123
824 => 0.0062623284870194
825 => 0.0062817919980892
826 => 0.0065628826033763
827 => 0.0068296710594403
828 => 0.0066621060101982
829 => 0.0068201123043379
830 => 0.0069910089938923
831 => 0.0073206964350313
901 => 0.0072096693033997
902 => 0.0071246242605869
903 => 0.0070442571060634
904 => 0.0072114883967002
905 => 0.0074266287805194
906 => 0.0074729679586051
907 => 0.0075480551300323
908 => 0.0074691101504991
909 => 0.0075641906828426
910 => 0.0078998667425184
911 => 0.0078091641080995
912 => 0.0076803517860485
913 => 0.007945335796491
914 => 0.0080412324797709
915 => 0.0087142856245122
916 => 0.0095640430221866
917 => 0.0092122378797415
918 => 0.0089938610751448
919 => 0.0090451848041921
920 => 0.0093554874397196
921 => 0.0094551467977377
922 => 0.0091842383080037
923 => 0.0092799277664577
924 => 0.0098071860905194
925 => 0.010090043264906
926 => 0.0097058852293021
927 => 0.0086460084449994
928 => 0.0076687536458139
929 => 0.0079279656249151
930 => 0.0078985790307692
1001 => 0.0084650523231579
1002 => 0.0078070008802659
1003 => 0.0078180807788972
1004 => 0.0083962681390669
1005 => 0.0082420176640144
1006 => 0.0079921516493376
1007 => 0.0076705779442394
1008 => 0.0070761192083978
1009 => 0.0065495905283546
1010 => 0.0075822345222324
1011 => 0.0075377050354751
1012 => 0.0074732197397504
1013 => 0.007616724787348
1014 => 0.0083135445638635
1015 => 0.0082974806126293
1016 => 0.0081952899507773
1017 => 0.0082728006671249
1018 => 0.0079785636460031
1019 => 0.0080543952259986
1020 => 0.0076685988436608
1021 => 0.0078429949207576
1022 => 0.0079916155490907
1023 => 0.0080214533405945
1024 => 0.0080886794084081
1025 => 0.0075142400193896
1026 => 0.0077721464404045
1027 => 0.0079236423001871
1028 => 0.0072391784942227
1029 => 0.0079101126514621
1030 => 0.0075042403076391
1031 => 0.0073664811381475
1101 => 0.0075519557114774
1102 => 0.0074796760898708
1103 => 0.0074175343156152
1104 => 0.0073828581378494
1105 => 0.0075190501944212
1106 => 0.0075126966721974
1107 => 0.0072898600339068
1108 => 0.0069991787232401
1109 => 0.0070967409123886
1110 => 0.0070612956544206
1111 => 0.0069328374670151
1112 => 0.0070194027752257
1113 => 0.006638212967566
1114 => 0.0059823957160097
1115 => 0.0064156486806135
1116 => 0.0063989689127648
1117 => 0.0063905582174482
1118 => 0.0067161358461156
1119 => 0.0066848390694731
1120 => 0.0066280351134081
1121 => 0.0069317942178157
1122 => 0.0068209180585704
1123 => 0.0071626122556558
1124 => 0.0073876741532513
1125 => 0.0073305911760314
1126 => 0.0075422629785386
1127 => 0.0070989885481787
1128 => 0.0072462265328609
1129 => 0.0072765720774409
1130 => 0.0069280458776186
1201 => 0.0066899596091856
1202 => 0.0066740819694633
1203 => 0.0062612731903091
1204 => 0.0064817923080572
1205 => 0.0066758400059744
1206 => 0.0065829062173817
1207 => 0.0065534861562313
1208 => 0.0067037868682163
1209 => 0.0067154665207761
1210 => 0.006449169204659
1211 => 0.006504540849219
1212 => 0.0067354498118042
1213 => 0.0064987225358132
1214 => 0.0060388001077437
1215 => 0.0059247329866574
1216 => 0.0059095143300303
1217 => 0.0056001552508668
1218 => 0.0059323554971215
1219 => 0.0057873411872182
1220 => 0.0062454396546645
1221 => 0.0059837762668906
1222 => 0.0059724964812236
1223 => 0.0059554454308032
1224 => 0.0056891672919046
1225 => 0.0057474652814648
1226 => 0.0059412566777977
1227 => 0.0060104036312256
1228 => 0.0060031910374787
1229 => 0.0059403069942331
1230 => 0.0059690949872126
1231 => 0.0058763588314241
]
'min_raw' => 0.0032447349261808
'max_raw' => 0.010090043264906
'avg_raw' => 0.0066673890955435
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003244'
'max' => '$0.01009'
'avg' => '$0.006667'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.001848418679992
'max_diff' => 0.00630197184127
'year' => 2033
]
8 => [
'items' => [
101 => 0.005843611764679
102 => 0.0057402530142413
103 => 0.0055883442046813
104 => 0.0056094680563615
105 => 0.005308496955521
106 => 0.0051445119260378
107 => 0.0050991230311648
108 => 0.0050384271040082
109 => 0.0051059787976429
110 => 0.0053076443422074
111 => 0.0050643929097306
112 => 0.0046473553908532
113 => 0.0046724200563351
114 => 0.004728732917907
115 => 0.0046237942729147
116 => 0.0045244786522625
117 => 0.0046108255266886
118 => 0.0044341212322318
119 => 0.0047500867876773
120 => 0.0047415408048857
121 => 0.004859313224777
122 => 0.0049329587358683
123 => 0.0047632296758201
124 => 0.0047205432762142
125 => 0.0047448593894184
126 => 0.004342968202964
127 => 0.0048264701407532
128 => 0.004830651485589
129 => 0.0047948482725364
130 => 0.0050522981279615
131 => 0.0055955976235323
201 => 0.005391186499127
202 => 0.0053120323333983
203 => 0.0051615602064868
204 => 0.0053620553814456
205 => 0.0053466604802207
206 => 0.0052770388985389
207 => 0.0052349315487052
208 => 0.0053125156318556
209 => 0.0052253180222178
210 => 0.0052096549354968
211 => 0.0051147536715738
212 => 0.0050808782380857
213 => 0.0050557982157509
214 => 0.0050281875754725
215 => 0.0050890897677839
216 => 0.0049510773876556
217 => 0.0047846479867415
218 => 0.0047708111828465
219 => 0.0048090158149447
220 => 0.0047921131092416
221 => 0.0047707302591945
222 => 0.004729904575182
223 => 0.0047177924668382
224 => 0.004757150942996
225 => 0.0047127175181556
226 => 0.0047782814569215
227 => 0.0047604516933953
228 => 0.0046608560837131
301 => 0.0045367230790316
302 => 0.0045356180349121
303 => 0.0045088737826724
304 => 0.0044748109564199
305 => 0.0044653354574084
306 => 0.0046035536337655
307 => 0.0048896611223027
308 => 0.0048334913763309
309 => 0.0048740797743026
310 => 0.0050737345205097
311 => 0.0051371987605012
312 => 0.0050921533461881
313 => 0.0050304924047962
314 => 0.0050332051732829
315 => 0.0052439192760553
316 => 0.0052570612561781
317 => 0.0052902668001847
318 => 0.0053329453081189
319 => 0.0050994216806364
320 => 0.0050222062314289
321 => 0.0049856172678444
322 => 0.0048729374217149
323 => 0.0049944529753256
324 => 0.0049236510660515
325 => 0.0049332046625502
326 => 0.0049269828702973
327 => 0.0049303803895831
328 => 0.0047499984688652
329 => 0.0048157201601802
330 => 0.0047064451014373
331 => 0.0045601380644817
401 => 0.0045596475919919
402 => 0.0045954560320138
403 => 0.0045741557707044
404 => 0.0045168373152006
405 => 0.0045249791312694
406 => 0.004453648255285
407 => 0.0045336399911011
408 => 0.0045359338678602
409 => 0.0045051326923916
410 => 0.0046283709981488
411 => 0.0046788618325704
412 => 0.0046585878390519
413 => 0.0046774393551388
414 => 0.0048358254828672
415 => 0.0048616493325582
416 => 0.0048731185807632
417 => 0.0048577513075527
418 => 0.0046803343628002
419 => 0.0046882035587351
420 => 0.0046304646202585
421 => 0.0045816813016252
422 => 0.0045836323785358
423 => 0.0046087133457008
424 => 0.0047182434002897
425 => 0.0049487429430227
426 => 0.0049574902321764
427 => 0.0049680922018072
428 => 0.0049249686631958
429 => 0.004911962191314
430 => 0.0049291210849814
501 => 0.0050156845941417
502 => 0.0052383494414655
503 => 0.0051596448131361
504 => 0.0050956567251939
505 => 0.0051517915293839
506 => 0.005143150016278
507 => 0.0050702069491526
508 => 0.0050681596802028
509 => 0.0049281586130801
510 => 0.0048764034062348
511 => 0.0048331528815849
512 => 0.0047859244377506
513 => 0.004757925833134
514 => 0.0048009444149634
515 => 0.0048107832736087
516 => 0.0047167223926024
517 => 0.0047039022420882
518 => 0.004780714387963
519 => 0.004746912226409
520 => 0.0047816785878206
521 => 0.0047897446818884
522 => 0.0047884458549656
523 => 0.0047531525161496
524 => 0.0047756474378484
525 => 0.0047224402419718
526 => 0.0046645854079184
527 => 0.0046276776282759
528 => 0.0045954706954313
529 => 0.0046133409736514
530 => 0.0045496366947805
531 => 0.0045292564138558
601 => 0.0047680266645286
602 => 0.0049444088159134
603 => 0.0049418441495772
604 => 0.0049262324028347
605 => 0.0049030365139024
606 => 0.005013987670388
607 => 0.0049753345060068
608 => 0.0050034579126741
609 => 0.0050106165000066
610 => 0.0050322833878335
611 => 0.0050400274378996
612 => 0.0050166195400111
613 => 0.0049380597756632
614 => 0.0047422963121464
615 => 0.004651167891426
616 => 0.0046210939947244
617 => 0.004622187123751
618 => 0.0045920337452533
619 => 0.0046009152666005
620 => 0.0045889451145812
621 => 0.0045662765425474
622 => 0.0046119412532067
623 => 0.0046172036857139
624 => 0.0046065449965934
625 => 0.0046090555037315
626 => 0.0045208061101991
627 => 0.0045275155199218
628 => 0.0044901566739955
629 => 0.0044831523407519
630 => 0.004388712431457
701 => 0.0042213984428574
702 => 0.0043141066341035
703 => 0.0042021281758226
704 => 0.0041597202369212
705 => 0.0043604728238931
706 => 0.0043403228321711
707 => 0.004305834805334
708 => 0.0042548198257072
709 => 0.0042358978735218
710 => 0.0041209340820056
711 => 0.0041141414078948
712 => 0.0041711205672538
713 => 0.0041448266457428
714 => 0.0041079000216546
715 => 0.0039741555323989
716 => 0.0038237824451969
717 => 0.003828321263488
718 => 0.0038761521447362
719 => 0.0040152268828385
720 => 0.0039608879766445
721 => 0.0039214644767337
722 => 0.0039140816402665
723 => 0.0040064932956691
724 => 0.0041372751489041
725 => 0.004198635068363
726 => 0.0041378292517077
727 => 0.0040679788035518
728 => 0.0040722302766753
729 => 0.004100513422672
730 => 0.0041034855814141
731 => 0.0040580201204067
801 => 0.0040708183813648
802 => 0.0040513766526719
803 => 0.0039320627995703
804 => 0.003929904790316
805 => 0.003900623246569
806 => 0.0038997366130616
807 => 0.0038499214025247
808 => 0.0038429519102143
809 => 0.003744040786126
810 => 0.0038091443875314
811 => 0.0037654763098012
812 => 0.0036996582164035
813 => 0.0036883111522934
814 => 0.0036879700458443
815 => 0.0037555505111073
816 => 0.0038083546704475
817 => 0.0037662359347092
818 => 0.003756646315019
819 => 0.0038590383648196
820 => 0.0038460080431582
821 => 0.003834723868636
822 => 0.0041255650683749
823 => 0.0038953415641597
824 => 0.0037949509756237
825 => 0.0036706985586547
826 => 0.0037111557721549
827 => 0.0037196807014795
828 => 0.0034208760368506
829 => 0.0032996510216244
830 => 0.0032580511646671
831 => 0.0032341098588526
901 => 0.0032450202125483
902 => 0.0031359034805686
903 => 0.0032092317290831
904 => 0.0031147458625965
905 => 0.0030989049995964
906 => 0.0032678574334273
907 => 0.0032913661775891
908 => 0.0031910705714006
909 => 0.0032554765869573
910 => 0.0032321220704059
911 => 0.0031163655515865
912 => 0.0031119445040149
913 => 0.0030538619519097
914 => 0.0029629740048634
915 => 0.002921435774214
916 => 0.0028998023030404
917 => 0.0029087286948746
918 => 0.0029042152380111
919 => 0.0028747618789572
920 => 0.0029059034700752
921 => 0.0028263495733624
922 => 0.0027946705706821
923 => 0.0027803619001186
924 => 0.0027097532378346
925 => 0.0028221230193432
926 => 0.0028442612818976
927 => 0.0028664431636681
928 => 0.0030595213002663
929 => 0.003049875662195
930 => 0.0031370675327433
1001 => 0.0031336794169893
1002 => 0.0031088108830943
1003 => 0.0030038946292665
1004 => 0.0030457123780898
1005 => 0.0029170038471326
1006 => 0.0030134410298551
1007 => 0.0029694311269736
1008 => 0.0029985612374209
1009 => 0.0029461826722805
1010 => 0.0029751711328871
1011 => 0.0028495110852246
1012 => 0.0027321715008019
1013 => 0.0027793923749296
1014 => 0.0028307268654684
1015 => 0.0029420331207414
1016 => 0.0028757400333575
1017 => 0.0028995815343999
1018 => 0.0028197164969268
1019 => 0.0026549321122998
1020 => 0.0026558647740212
1021 => 0.0026305162864693
1022 => 0.0026086114922847
1023 => 0.0028833545919099
1024 => 0.0028491859444259
1025 => 0.002794742676542
1026 => 0.002867617154094
1027 => 0.0028868863226322
1028 => 0.0028874348887713
1029 => 0.0029406022264307
1030 => 0.0029689776440703
1031 => 0.0029739789344154
1101 => 0.0030576388889788
1102 => 0.003085680602247
1103 => 0.0032011804505869
1104 => 0.0029665701881316
1105 => 0.0029617385441659
1106 => 0.0028686426474401
1107 => 0.0028095997579487
1108 => 0.0028726853645969
1109 => 0.0029285706000432
1110 => 0.0028703791574849
1111 => 0.0028779777313946
1112 => 0.0027998604741755
1113 => 0.0028277837178728
1114 => 0.0028518349770119
1115 => 0.002838555285383
1116 => 0.00281867494427
1117 => 0.0029239886480435
1118 => 0.0029180464361488
1119 => 0.0030161169782542
1120 => 0.0030925699789172
1121 => 0.0032295874237137
1122 => 0.0030866025771876
1123 => 0.0030813916410669
1124 => 0.0031323293775072
1125 => 0.0030856728039449
1126 => 0.0031151581479061
1127 => 0.0032248368789599
1128 => 0.0032271542177176
1129 => 0.003188335807804
1130 => 0.0031859737040329
1201 => 0.0031934292042837
1202 => 0.0032370963021208
1203 => 0.0032218376763822
1204 => 0.0032394953443881
1205 => 0.0032615765286133
1206 => 0.003352913668797
1207 => 0.0033749347440748
1208 => 0.0033214349477681
1209 => 0.0033262653803628
1210 => 0.0033062549879419
1211 => 0.0032869251995927
1212 => 0.0033303757409127
1213 => 0.0034097824591975
1214 => 0.0034092884741243
1215 => 0.0034277092893204
1216 => 0.0034391853045812
1217 => 0.003389921846125
1218 => 0.0033578531461376
1219 => 0.0033701503262971
1220 => 0.00338981378517
1221 => 0.0033637737316021
1222 => 0.0032030424580547
1223 => 0.0032517980588955
1224 => 0.0032436827428885
1225 => 0.0032321255460384
1226 => 0.0032811496796997
1227 => 0.0032764211824129
1228 => 0.0031347843307674
1229 => 0.0031438514624701
1230 => 0.0031353357330775
1231 => 0.0031628517968993
]
'min_raw' => 0.0026086114922847
'max_raw' => 0.005843611764679
'avg_raw' => 0.0042261116284819
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0026086'
'max' => '$0.005843'
'avg' => '$0.004226'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00063612343389613
'max_diff' => -0.0042464315002271
'year' => 2034
]
9 => [
'items' => [
101 => 0.0030841868461985
102 => 0.0031083836552176
103 => 0.0031235596670033
104 => 0.0031324984545327
105 => 0.0031647914844729
106 => 0.0031610022701342
107 => 0.0031645559415893
108 => 0.0032124379799469
109 => 0.0034546088988279
110 => 0.0034677897276226
111 => 0.0034028825059759
112 => 0.0034288116607854
113 => 0.003379033353634
114 => 0.0034124498647104
115 => 0.0034353125929016
116 => 0.0033320003204556
117 => 0.0033258828381725
118 => 0.0032758990782403
119 => 0.003302757519603
120 => 0.0032600238082047
121 => 0.0032705091662201
122 => 0.003241191191112
123 => 0.0032939577091559
124 => 0.0033529588754169
125 => 0.0033678649000411
126 => 0.003328653566702
127 => 0.0033002619772116
128 => 0.0032504156988375
129 => 0.0033333111706704
130 => 0.003357552332828
131 => 0.0033331838421653
201 => 0.0033275371304168
202 => 0.0033168366218566
203 => 0.0033298072938924
204 => 0.0033574203102529
205 => 0.0033443985216696
206 => 0.0033529996424432
207 => 0.0033202210394914
208 => 0.0033899381543796
209 => 0.0035006657111595
210 => 0.0035010217183603
211 => 0.0034879998595848
212 => 0.0034826715955336
213 => 0.0034960328128698
214 => 0.0035032807251689
215 => 0.0035464884520059
216 => 0.0035928520643738
217 => 0.0038092108132657
218 => 0.0037484581423504
219 => 0.0039404244956069
220 => 0.0040922449573216
221 => 0.0041377692754857
222 => 0.0040958890448594
223 => 0.0039526190382127
224 => 0.0039455895281809
225 => 0.0041596954051477
226 => 0.0040992006882342
227 => 0.0040920050341499
228 => 0.0040154554319427
301 => 0.0040607057276999
302 => 0.004050808824236
303 => 0.0040351860779452
304 => 0.0041215204900869
305 => 0.00428313080249
306 => 0.0042579423197301
307 => 0.0042391402858098
308 => 0.0041567552463613
309 => 0.0042063694414741
310 => 0.0041887027768917
311 => 0.0042646099794798
312 => 0.004219644234217
313 => 0.0040987423812554
314 => 0.0041179963998372
315 => 0.0041150861936623
316 => 0.0041749780305231
317 => 0.0041569999877043
318 => 0.0041115756922647
319 => 0.0042825784360115
320 => 0.0042714744689998
321 => 0.0042872173555021
322 => 0.0042941478610054
323 => 0.0043982342177177
324 => 0.0044408750676708
325 => 0.0044505552871434
326 => 0.0044910607966371
327 => 0.0044495474731675
328 => 0.0046156303655441
329 => 0.0047260657977692
330 => 0.004854342235254
331 => 0.0050417885878752
401 => 0.0051122701504364
402 => 0.0050995382870157
403 => 0.0052416579722775
404 => 0.0054970438875497
405 => 0.005151159082255
406 => 0.0055153766221042
407 => 0.0054000695540817
408 => 0.0051266785700858
409 => 0.0051090754137844
410 => 0.005294218962281
411 => 0.0057048495334404
412 => 0.0056019912326983
413 => 0.0057050177727724
414 => 0.0055848318411991
415 => 0.0055788635966899
416 => 0.0056991806103359
417 => 0.0059803078708587
418 => 0.0058467548472821
419 => 0.0056552738394402
420 => 0.0057966604358562
421 => 0.0056741782813288
422 => 0.0053981917065823
423 => 0.0056019125788942
424 => 0.0054656902332156
425 => 0.0055054471556628
426 => 0.0057917662647346
427 => 0.0057573155920247
428 => 0.0058018979525578
429 => 0.0057232112531405
430 => 0.0056497054681312
501 => 0.0055125014618
502 => 0.0054718821196011
503 => 0.005483107844454
504 => 0.0054718765566893
505 => 0.005395112176117
506 => 0.0053785349154412
507 => 0.0053509054213817
508 => 0.005359468956909
509 => 0.0053075174247836
510 => 0.0054055606996385
511 => 0.0054237583954059
512 => 0.0054951061147147
513 => 0.0055025136716203
514 => 0.0057012160543239
515 => 0.0055917741209886
516 => 0.0056651972186318
517 => 0.0056586295656936
518 => 0.0051326037817029
519 => 0.0052050854935721
520 => 0.0053178442912263
521 => 0.005267046605724
522 => 0.0051952305632516
523 => 0.0051372352584225
524 => 0.0050493664412821
525 => 0.005173040114036
526 => 0.0053356578424787
527 => 0.0055066379255737
528 => 0.0057120592923535
529 => 0.0056662116346566
530 => 0.0055027977160099
531 => 0.0055101283450264
601 => 0.0055554434091105
602 => 0.0054967562838139
603 => 0.0054794483048551
604 => 0.0055530655585837
605 => 0.0055535725201508
606 => 0.005486045889921
607 => 0.0054110023976634
608 => 0.0054106879626908
609 => 0.0053973346980777
610 => 0.0055872073573093
611 => 0.0056916181215956
612 => 0.0057035886474547
613 => 0.0056908124098292
614 => 0.0056957294766205
615 => 0.0056349751534165
616 => 0.0057738415201259
617 => 0.0059012790306788
618 => 0.0058671230555453
619 => 0.0058159183932623
620 => 0.0057751314134031
621 => 0.0058575149393194
622 => 0.005853846530594
623 => 0.0059001659751982
624 => 0.0058980646576369
625 => 0.0058824891705789
626 => 0.005867123611795
627 => 0.0059280463155291
628 => 0.0059105015552424
629 => 0.0058929295430969
630 => 0.0058576861825988
701 => 0.0058624763406207
702 => 0.0058112805195445
703 => 0.0057875949901533
704 => 0.0054314214576407
705 => 0.0053362402514475
706 => 0.005366186196508
707 => 0.005376045179168
708 => 0.0053346221962547
709 => 0.0053940121130612
710 => 0.0053847562574364
711 => 0.0054207653771781
712 => 0.0053982684424977
713 => 0.0053991917245442
714 => 0.005465350412587
715 => 0.005484556561185
716 => 0.0054747881589954
717 => 0.0054816296130478
718 => 0.0056392880340867
719 => 0.0056168740482475
720 => 0.0056049670649977
721 => 0.0056082653807316
722 => 0.0056485504875418
723 => 0.0056598281179633
724 => 0.0056120440054022
725 => 0.0056345792691227
726 => 0.0057305315618937
727 => 0.0057641094339342
728 => 0.0058712738831943
729 => 0.0058257485204524
730 => 0.0059093122940567
731 => 0.0061661588451266
801 => 0.0063713456425507
802 => 0.0061826473839365
803 => 0.0065594468070248
804 => 0.0068528392065661
805 => 0.0068415783176011
806 => 0.0067904185664526
807 => 0.0064563991198154
808 => 0.0061490294450704
809 => 0.0064061572296003
810 => 0.0064068127012019
811 => 0.0063847251964754
812 => 0.0062475416015878
813 => 0.006379951504736
814 => 0.0063904617220058
815 => 0.0063845787952271
816 => 0.0062794004546707
817 => 0.0061188125688476
818 => 0.0061501910573443
819 => 0.0062015896616058
820 => 0.0061042813808667
821 => 0.0060731854890539
822 => 0.0061309986681694
823 => 0.0063172847771336
824 => 0.0062820684673159
825 => 0.0062811488271463
826 => 0.006431819134586
827 => 0.0063239717111466
828 => 0.0061505868405721
829 => 0.0061068048740866
830 => 0.0059514083881294
831 => 0.0060587412944833
901 => 0.0060626040147019
902 => 0.0060038188788076
903 => 0.0061553569303665
904 => 0.0061539604805437
905 => 0.0062978233070365
906 => 0.0065728349988806
907 => 0.0064915005090988
908 => 0.00639691734665
909 => 0.0064072011589148
910 => 0.0065199891968483
911 => 0.0064517949744132
912 => 0.0064763180922679
913 => 0.0065199520781724
914 => 0.0065462775452395
915 => 0.0064034133293298
916 => 0.0063701048466158
917 => 0.0063019673806719
918 => 0.0062841915876532
919 => 0.0063396881319296
920 => 0.0063250667532346
921 => 0.0060622793680247
922 => 0.0060348166241351
923 => 0.0060356588672824
924 => 0.0059666024919896
925 => 0.005861274944239
926 => 0.0061380694509465
927 => 0.0061158389783213
928 => 0.0060912982570449
929 => 0.0060943043553738
930 => 0.0062144514692993
1001 => 0.0061447600756479
1002 => 0.0063300460678651
1003 => 0.006291956838072
1004 => 0.0062528907632585
1005 => 0.0062474906417375
1006 => 0.0062324535358952
1007 => 0.0061808857049013
1008 => 0.0061186144502299
1009 => 0.0060774975740521
1010 => 0.0056061702567568
1011 => 0.005693645865262
1012 => 0.0057942785791945
1013 => 0.0058290165887837
1014 => 0.0057695948195843
1015 => 0.0061832320385292
1016 => 0.0062588075443379
1017 => 0.0060298844075752
1018 => 0.005987062235557
1019 => 0.0061860394529976
1020 => 0.0060660318669054
1021 => 0.0061200712755746
1022 => 0.0060032676320079
1023 => 0.0062406036180977
1024 => 0.0062387955155303
1025 => 0.006146466456465
1026 => 0.0062245023449448
1027 => 0.0062109416889526
1028 => 0.0061067024086643
1029 => 0.0062439081892111
1030 => 0.0062439762415665
1031 => 0.006155111529623
1101 => 0.0060513370010598
1102 => 0.0060327845663977
1103 => 0.0060188077990487
1104 => 0.0061166338475981
1105 => 0.0062043443768334
1106 => 0.006367551926456
1107 => 0.0064085861821469
1108 => 0.0065687456139135
1109 => 0.0064733784703177
1110 => 0.0065156534898624
1111 => 0.0065615490037449
1112 => 0.0065835530008517
1113 => 0.0065476986683657
1114 => 0.0067964921901512
1115 => 0.0068174979862265
1116 => 0.0068245410479511
1117 => 0.0067406492722259
1118 => 0.0068151648041845
1119 => 0.0067803014544761
1120 => 0.0068710062050997
1121 => 0.0068852298681739
1122 => 0.0068731829315716
1123 => 0.0068776977467366
1124 => 0.0066653963660774
1125 => 0.0066543874195112
1126 => 0.0065042796519221
1127 => 0.0065654496767552
1128 => 0.0064510952472852
1129 => 0.0064873582148513
1130 => 0.0065033425854282
1201 => 0.0064949932573439
1202 => 0.0065689081381805
1203 => 0.0065060653896568
1204 => 0.0063402130439985
1205 => 0.0061743155119794
1206 => 0.0061722328036021
1207 => 0.0061285549117562
1208 => 0.0060969837959565
1209 => 0.006103065512905
1210 => 0.0061244982766824
1211 => 0.0060957380847631
1212 => 0.0061018755298878
1213 => 0.0062037980125413
1214 => 0.0062242378395595
1215 => 0.0061547753209955
1216 => 0.0058758732855674
1217 => 0.0058074300265006
1218 => 0.005856625683829
1219 => 0.0058331133282321
1220 => 0.0047077777117126
1221 => 0.0049721586224747
1222 => 0.0048150724628273
1223 => 0.0048874649923795
1224 => 0.0047271207006433
1225 => 0.0048036454010242
1226 => 0.0047895140830985
1227 => 0.0052146307640041
1228 => 0.0052079931517606
1229 => 0.0052111702254869
1230 => 0.0050595202187079
1231 => 0.0053011027972532
]
'min_raw' => 0.0030841868461985
'max_raw' => 0.0068852298681739
'avg_raw' => 0.0049847083571862
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003084'
'max' => '$0.006885'
'avg' => '$0.004984'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00047557535391386
'max_diff' => 0.0010416181034949
'year' => 2035
]
10 => [
'items' => [
101 => 0.0054201150624732
102 => 0.0053980890595898
103 => 0.005403632529984
104 => 0.0053083773422167
105 => 0.005212092503922
106 => 0.0051052978001229
107 => 0.0053037091595574
108 => 0.0052816492033831
109 => 0.0053322468059252
110 => 0.0054609307552553
111 => 0.0054798799556169
112 => 0.0055053478730668
113 => 0.0054962194375908
114 => 0.0057136958049516
115 => 0.0056873579819089
116 => 0.0057508245575329
117 => 0.0056202689962537
118 => 0.0054725329862187
119 => 0.0055006127718723
120 => 0.0054979084627105
121 => 0.005463479503219
122 => 0.0054323985780128
123 => 0.005380657594541
124 => 0.0055443737224706
125 => 0.0055377271466575
126 => 0.0056453274832738
127 => 0.0056263080786029
128 => 0.0054992918393732
129 => 0.0055038282492059
130 => 0.0055343377854546
131 => 0.005639931638763
201 => 0.0056712790838027
202 => 0.0056567576982806
203 => 0.0056911287407014
204 => 0.0057182942112105
205 => 0.0056945403055504
206 => 0.0060308455171437
207 => 0.0058911881461726
208 => 0.0059592561770542
209 => 0.0059754900013393
210 => 0.0059339074017935
211 => 0.0059429251786737
212 => 0.0059565846534502
213 => 0.0060395223094933
214 => 0.0062571747171547
215 => 0.0063535714868979
216 => 0.0066435859248031
217 => 0.0063455670770786
218 => 0.0063278838719792
219 => 0.0063801242298429
220 => 0.0065503934060393
221 => 0.0066883805807759
222 => 0.0067341588873071
223 => 0.0067402092462327
224 => 0.0068260923925696
225 => 0.006875319010424
226 => 0.0068156639196533
227 => 0.0067651124763735
228 => 0.0065840434812212
229 => 0.0066050027104446
301 => 0.0067493910155261
302 => 0.0069533480008825
303 => 0.0071283643124259
304 => 0.0070670797000576
305 => 0.0075346380322333
306 => 0.007580994531064
307 => 0.0075745895618106
308 => 0.0076801965649189
309 => 0.0074705881702411
310 => 0.007380976520545
311 => 0.0067760422721938
312 => 0.0069460041210332
313 => 0.0071930536498305
314 => 0.007160355718306
315 => 0.0069809417468405
316 => 0.00712822821084
317 => 0.0070795306997682
318 => 0.0070411209523243
319 => 0.0072170834514608
320 => 0.0070236054555192
321 => 0.0071911235588181
322 => 0.0069762798585843
323 => 0.0070673596430047
324 => 0.0070156583523342
325 => 0.0070491154236699
326 => 0.0068535260682818
327 => 0.006959061336786
328 => 0.0068491354541443
329 => 0.0068490833349631
330 => 0.0068466567150112
331 => 0.0069759840284532
401 => 0.0069802013875015
402 => 0.0068846283074652
403 => 0.0068708547334998
404 => 0.0069217828554721
405 => 0.0068621593627389
406 => 0.0068900568197229
407 => 0.0068630043482913
408 => 0.0068569142671598
409 => 0.0068083874645623
410 => 0.006787480783731
411 => 0.0067956788319838
412 => 0.0067676946669137
413 => 0.0067508331952274
414 => 0.0068433025438957
415 => 0.0067938999011051
416 => 0.0068357308803544
417 => 0.0067880592000094
418 => 0.0066228083863711
419 => 0.0065277708959521
420 => 0.0062156274277479
421 => 0.0063041509281178
422 => 0.0063628421004473
423 => 0.0063434446683425
424 => 0.0063851178583133
425 => 0.0063876762537219
426 => 0.0063741278748545
427 => 0.0063584405877809
428 => 0.0063508048839948
429 => 0.0064077151642013
430 => 0.0064407534973731
501 => 0.0063687325447771
502 => 0.0063518590432641
503 => 0.0064246762027244
504 => 0.00646909462793
505 => 0.0067970553230914
506 => 0.0067727589354947
507 => 0.006833738100437
508 => 0.0068268727822661
509 => 0.0068907886618684
510 => 0.0069952641121521
511 => 0.0067828363099301
512 => 0.0068197064311951
513 => 0.0068106667289163
514 => 0.0069093598280584
515 => 0.0069096679371412
516 => 0.0068504964941196
517 => 0.0068825742933286
518 => 0.0068646693458185
519 => 0.0068970260059681
520 => 0.0067724344424256
521 => 0.0069241735179922
522 => 0.0070101997959884
523 => 0.0070113942709418
524 => 0.0070521700439652
525 => 0.0070936005909306
526 => 0.0071731229179904
527 => 0.0070913827563897
528 => 0.0069443401629144
529 => 0.0069549561632187
530 => 0.0068687451444649
531 => 0.0068701943672654
601 => 0.0068624583023785
602 => 0.006885674815448
603 => 0.0067775291614665
604 => 0.0068029107302975
605 => 0.0067673763852999
606 => 0.0068196291864688
607 => 0.0067634138101085
608 => 0.0068106623696982
609 => 0.0068310532817025
610 => 0.0069062961859835
611 => 0.0067523003719681
612 => 0.0064382924825904
613 => 0.0065043007479153
614 => 0.0064066693386625
615 => 0.0064157054972978
616 => 0.0064339599758352
617 => 0.0063747912384019
618 => 0.0063860787688829
619 => 0.006385675498865
620 => 0.0063822003357147
621 => 0.0063668082619033
622 => 0.0063444867096477
623 => 0.0064334089036226
624 => 0.0064485185171416
625 => 0.0064821053163092
626 => 0.0065820368484886
627 => 0.0065720513318761
628 => 0.0065883381237662
629 => 0.0065527841485165
630 => 0.0064173547442384
701 => 0.0064247092124612
702 => 0.0063329988758753
703 => 0.0064797600768097
704 => 0.0064450050872753
705 => 0.0064225983194278
706 => 0.0064164844252234
707 => 0.0065166636683421
708 => 0.0065466388680005
709 => 0.0065279603351342
710 => 0.0064896501192856
711 => 0.0065632170591135
712 => 0.0065829004686714
713 => 0.0065873068581752
714 => 0.0067176533704887
715 => 0.0065945917802444
716 => 0.0066242139281432
717 => 0.0068553174700346
718 => 0.0066457384476479
719 => 0.0067567571299761
720 => 0.0067513233431894
721 => 0.0068081167444011
722 => 0.0067466646266149
723 => 0.0067474263992646
724 => 0.0067978550920223
725 => 0.0067270370879067
726 => 0.0067095015541719
727 => 0.0066852763399091
728 => 0.0067381712089902
729 => 0.0067698792907752
730 => 0.0070254231429424
731 => 0.0071905161256578
801 => 0.0071833490038764
802 => 0.007248843080669
803 => 0.0072193373992169
804 => 0.0071240557706027
805 => 0.0072866898922904
806 => 0.0072352256512878
807 => 0.007239468300787
808 => 0.0072393103891607
809 => 0.0072735296103454
810 => 0.0072492821559905
811 => 0.0072014879345068
812 => 0.0072332159691906
813 => 0.0073274368892216
814 => 0.0076199015160486
815 => 0.007783568595862
816 => 0.0076100485523374
817 => 0.0077297403548347
818 => 0.0076579679238862
819 => 0.007644924738138
820 => 0.0077201000352611
821 => 0.0077954069167901
822 => 0.0077906101939973
823 => 0.0077359412650584
824 => 0.0077050601742735
825 => 0.0079389021396211
826 => 0.0081111929162952
827 => 0.008099443840378
828 => 0.0081513004404722
829 => 0.0083035530222129
830 => 0.0083174730901957
831 => 0.008315719481579
901 => 0.0082812171406745
902 => 0.0084311295798943
903 => 0.0085561891741499
904 => 0.0082732308456236
905 => 0.0083809776729299
906 => 0.0084293486950937
907 => 0.0085003717066656
908 => 0.0086201994320264
909 => 0.0087503641245026
910 => 0.008768770839202
911 => 0.0087557103942804
912 => 0.0086698632805776
913 => 0.0088122910402728
914 => 0.0088957218815603
915 => 0.0089454030382662
916 => 0.009071386185516
917 => 0.0084296474180591
918 => 0.0079753928219669
919 => 0.0079044544072712
920 => 0.0080487104630702
921 => 0.008086749634564
922 => 0.0080714160922319
923 => 0.0075601112453091
924 => 0.0079017624930691
925 => 0.008269350508806
926 => 0.0082834710615398
927 => 0.0084674933081207
928 => 0.0085274184949342
929 => 0.008675580523779
930 => 0.0086663129485346
1001 => 0.0087023880447855
1002 => 0.008694095004891
1003 => 0.00896853396413
1004 => 0.0092712808907505
1005 => 0.0092607977273579
1006 => 0.0092172742747171
1007 => 0.0092819140237401
1008 => 0.0095943812963448
1009 => 0.0095656143170694
1010 => 0.00959355898707
1011 => 0.0099619755113547
1012 => 0.010440969399564
1013 => 0.010218428648291
1014 => 0.010701278044178
1015 => 0.011005206144142
1016 => 0.011530818366279
1017 => 0.011465009127372
1018 => 0.011669626108329
1019 => 0.011347196854928
1020 => 0.010606834115414
1021 => 0.010489668877891
1022 => 0.010724236650508
1023 => 0.011300898630698
1024 => 0.010706075512586
1025 => 0.010826407454681
1026 => 0.010791751847262
1027 => 0.01078990519722
1028 => 0.010860384318473
1029 => 0.010758150677152
1030 => 0.010341632430928
1031 => 0.010532520288615
1101 => 0.010458809319574
1102 => 0.010540597135242
1103 => 0.010981972244538
1104 => 0.01078682978765
1105 => 0.010581263061404
1106 => 0.010839089355024
1107 => 0.01116739082553
1108 => 0.01114684630952
1109 => 0.01110698136152
1110 => 0.011331697986138
1111 => 0.011702864014214
1112 => 0.011803188700137
1113 => 0.011877246332237
1114 => 0.01188745762849
1115 => 0.011992640326178
1116 => 0.011427046451256
1117 => 0.012324658456238
1118 => 0.012479651253467
1119 => 0.012450519031381
1120 => 0.012622787002407
1121 => 0.012572101395314
1122 => 0.012498665902965
1123 => 0.01277174727949
1124 => 0.012458681517835
1125 => 0.01201432408305
1126 => 0.011770540805933
1127 => 0.012091574290676
1128 => 0.012287618237285
1129 => 0.012417190815256
1130 => 0.01245639939906
1201 => 0.011470951893727
1202 => 0.010939850343777
1203 => 0.011280280348203
1204 => 0.011695628448827
1205 => 0.011424739171586
1206 => 0.011435357518392
1207 => 0.011049140597496
1208 => 0.01172980007648
1209 => 0.011630633715639
1210 => 0.012145108971103
1211 => 0.012022325322465
1212 => 0.012441859921481
1213 => 0.012331382401424
1214 => 0.012789968410464
1215 => 0.012972910785191
1216 => 0.013280099505063
1217 => 0.013506068777885
1218 => 0.013638762256989
1219 => 0.013630795838224
1220 => 0.014156593510064
1221 => 0.013846548992951
1222 => 0.013457060007576
1223 => 0.013450015380653
1224 => 0.01365173724528
1225 => 0.014074490933848
1226 => 0.014184104814478
1227 => 0.014245364019949
1228 => 0.014151543414322
1229 => 0.013815012312087
1230 => 0.013669699888393
1231 => 0.013793510283487
]
'min_raw' => 0.0051052978001229
'max_raw' => 0.014245364019949
'avg_raw' => 0.0096753309100361
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0051052'
'max' => '$0.014245'
'avg' => '$0.009675'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0020211109539243
'max_diff' => 0.0073601341517754
'year' => 2036
]
11 => [
'items' => [
101 => 0.013642100809436
102 => 0.013903476039642
103 => 0.014262400057452
104 => 0.014188283667113
105 => 0.014436043647864
106 => 0.014692449162831
107 => 0.015059120565125
108 => 0.015154982047488
109 => 0.015313437432547
110 => 0.015476540073656
111 => 0.015528924246241
112 => 0.015628941885559
113 => 0.01562841474323
114 => 0.015929824631279
115 => 0.016262289071685
116 => 0.016387786701369
117 => 0.016676361580847
118 => 0.01618218721261
119 => 0.016557024147584
120 => 0.016895136445706
121 => 0.01649202502515
122 => 0.017047620205472
123 => 0.017069192707318
124 => 0.01739491187314
125 => 0.017064733098337
126 => 0.016868673995827
127 => 0.017434689278535
128 => 0.017708566244523
129 => 0.017626072273483
130 => 0.016998289080637
131 => 0.016632892335513
201 => 0.015676578573755
202 => 0.016809373534237
203 => 0.017361124915406
204 => 0.016996860177853
205 => 0.017180574123461
206 => 0.018182857841248
207 => 0.018564462587917
208 => 0.018485091468228
209 => 0.018498503880896
210 => 0.018704410875582
211 => 0.019617515885074
212 => 0.019070362197778
213 => 0.019488640690258
214 => 0.019710494094455
215 => 0.019916563900297
216 => 0.01941052158618
217 => 0.018752167970751
218 => 0.01854363974494
219 => 0.016960641228577
220 => 0.016878239281186
221 => 0.016831984571081
222 => 0.016540355166727
223 => 0.016311214338922
224 => 0.016128993045198
225 => 0.015650789954581
226 => 0.015812169459865
227 => 0.015050013542164
228 => 0.015537613889162
301 => 0.014321194641613
302 => 0.015334264737065
303 => 0.014782896742755
304 => 0.01515312552194
305 => 0.015151833828607
306 => 0.014470125264987
307 => 0.014076929992386
308 => 0.014327489323476
309 => 0.01459610881583
310 => 0.01463969142472
311 => 0.014987963608242
312 => 0.015085158888577
313 => 0.014790652651547
314 => 0.014295987056457
315 => 0.014410886592076
316 => 0.014074601556964
317 => 0.013485274967948
318 => 0.013908539612835
319 => 0.014053060772231
320 => 0.01411688954941
321 => 0.013537354533729
322 => 0.013355252049485
323 => 0.013258302214861
324 => 0.014221176363422
325 => 0.014273924782846
326 => 0.014004056411199
327 => 0.01522388704101
328 => 0.014947801800805
329 => 0.01525625665664
330 => 0.014400460663538
331 => 0.014433153222957
401 => 0.014028005685083
402 => 0.014254861234324
403 => 0.014094527044016
404 => 0.014236533547776
405 => 0.014321651660614
406 => 0.014726732717764
407 => 0.015338890112047
408 => 0.014666227116088
409 => 0.014373138216038
410 => 0.014554968921235
411 => 0.015039208050544
412 => 0.015772855119193
413 => 0.01533852128853
414 => 0.015531271267111
415 => 0.015573378562582
416 => 0.015253116875763
417 => 0.015784663624402
418 => 0.016069523845276
419 => 0.016361731488376
420 => 0.016615447197407
421 => 0.016245017329938
422 => 0.016641430387166
423 => 0.016321991439365
424 => 0.016035421680196
425 => 0.01603585628823
426 => 0.015856086892187
427 => 0.015507761034953
428 => 0.015443524402601
429 => 0.015777691476286
430 => 0.016045661823642
501 => 0.016067733144941
502 => 0.016216095298051
503 => 0.016303894492009
504 => 0.017164445950019
505 => 0.017510566865286
506 => 0.01793379696874
507 => 0.018098668945977
508 => 0.018594874487585
509 => 0.018194148212893
510 => 0.018107448562677
511 => 0.01690381622633
512 => 0.017100910953978
513 => 0.017416478629755
514 => 0.016909019821073
515 => 0.017230885634265
516 => 0.017294428763839
517 => 0.016891776564935
518 => 0.017106850501945
519 => 0.016535677890227
520 => 0.015351340114148
521 => 0.015785982130908
522 => 0.016106024954165
523 => 0.015649284384382
524 => 0.016467974177416
525 => 0.015989712501513
526 => 0.015838126510861
527 => 0.01524673551702
528 => 0.015525849301386
529 => 0.015903354691266
530 => 0.015670100250032
531 => 0.016154138238923
601 => 0.016839665119408
602 => 0.017328212398273
603 => 0.017365716992029
604 => 0.017051613821844
605 => 0.017554966156645
606 => 0.017558632528882
607 => 0.016990849038972
608 => 0.016643084812834
609 => 0.016564072048953
610 => 0.016761461424492
611 => 0.017001128566485
612 => 0.017379016850411
613 => 0.017607366826069
614 => 0.018202782455114
615 => 0.01836388485243
616 => 0.018540887543885
617 => 0.018777417725278
618 => 0.019061432853133
619 => 0.018440023922376
620 => 0.018464713657646
621 => 0.017886066265317
622 => 0.017267698540183
623 => 0.017736962562934
624 => 0.018350462849105
625 => 0.0182097252056
626 => 0.018193889345696
627 => 0.018220520869553
628 => 0.018114409282412
629 => 0.017634470506451
630 => 0.01739344825774
701 => 0.017704428449911
702 => 0.017869700581914
703 => 0.018126023245407
704 => 0.018094426066816
705 => 0.018754685720928
706 => 0.0190112426573
707 => 0.018945604414286
708 => 0.018957683430673
709 => 0.019422167509219
710 => 0.019938769332998
711 => 0.020422635112582
712 => 0.020914844166094
713 => 0.020321466940839
714 => 0.020020186580274
715 => 0.020331031008222
716 => 0.020166092579301
717 => 0.021113877715799
718 => 0.02117950030227
719 => 0.022127216903114
720 => 0.023026712809309
721 => 0.022461755546771
722 => 0.022994484799111
723 => 0.023570674919569
724 => 0.024682239145411
725 => 0.024307903419448
726 => 0.02402116811995
727 => 0.023750204647418
728 => 0.024314036619516
729 => 0.025039397444185
730 => 0.025195633218399
731 => 0.025448794859284
801 => 0.025182626349026
802 => 0.025503197002133
803 => 0.026634952273484
804 => 0.026329142008884
805 => 0.0258948422717
806 => 0.0267882543635
807 => 0.027111576726471
808 => 0.029380822395036
809 => 0.032245838789463
810 => 0.031059703189458
811 => 0.030323430546179
812 => 0.03049647208197
813 => 0.031542679082289
814 => 0.031878687565841
815 => 0.030965300678476
816 => 0.031287924368479
817 => 0.033065612620053
818 => 0.034019285331955
819 => 0.032724069693859
820 => 0.029150621117348
821 => 0.025855738332143
822 => 0.026729689617285
823 => 0.026630610663416
824 => 0.028540514918607
825 => 0.026321848535212
826 => 0.026359205187021
827 => 0.028308604239586
828 => 0.027788537993522
829 => 0.026946097279951
830 => 0.025861889081653
831 => 0.02385762994998
901 => 0.022082401744156
902 => 0.025564033066416
903 => 0.025413898792864
904 => 0.025196482116109
905 => 0.025680319403287
906 => 0.028029695930212
907 => 0.027975535197076
908 => 0.027630992245918
909 => 0.027892325037709
910 => 0.026900284378024
911 => 0.027155955844371
912 => 0.025855216405876
913 => 0.026443204955753
914 => 0.026944289780539
915 => 0.027044889977802
916 => 0.02727154735901
917 => 0.025334784852857
918 => 0.02620433435776
919 => 0.02671511322612
920 => 0.024407395716574
921 => 0.026669497070834
922 => 0.025301070126532
923 => 0.024836605468553
924 => 0.025461945941956
925 => 0.025218250151308
926 => 0.025008734820805
927 => 0.024891821666454
928 => 0.025351002693812
929 => 0.025329581350045
930 => 0.024578272066091
1001 => 0.023598219732457
1002 => 0.023927157464746
1003 => 0.023807651302798
1004 => 0.023374545555296
1005 => 0.023666406535725
1006 => 0.022381198485378
1007 => 0.020170064834058
1008 => 0.021630807452975
1009 => 0.021574570451129
1010 => 0.021546213204653
1011 => 0.022643920910809
1012 => 0.022538401643288
1013 => 0.022346883139489
1014 => 0.023371028167783
1015 => 0.022997201455761
1016 => 0.024149247297562
1017 => 0.024908059198625
1018 => 0.024715599955522
1019 => 0.025429266216128
1020 => 0.023934735525737
1021 => 0.024431158670921
1022 => 0.024533470793131
1023 => 0.023358390377108
1024 => 0.022555665900433
1025 => 0.022502133329568
1026 => 0.021110319709261
1027 => 0.021853815310902
1028 => 0.022508060672408
1029 => 0.022194727915738
1030 => 0.022095536125526
1031 => 0.022602285469644
1101 => 0.022641664233697
1102 => 0.021743824240123
1103 => 0.021930513605682
1104 => 0.022709039294587
1105 => 0.021910896755812
1106 => 0.020360236178817
1107 => 0.019975650916163
1108 => 0.019924340152812
1109 => 0.018881314418651
1110 => 0.02000135074238
1111 => 0.019512424871965
1112 => 0.021056935838374
1113 => 0.020174719457739
1114 => 0.020136688872834
1115 => 0.020079200065875
1116 => 0.019181424729632
1117 => 0.01937798047167
1118 => 0.02003136169449
1119 => 0.020264495475658
1120 => 0.020240177712273
1121 => 0.020028159770047
1122 => 0.020125220498291
1123 => 0.019812554074418
1124 => 0.01970214505256
1125 => 0.019353663809182
1126 => 0.018841492651816
1127 => 0.018912713192576
1128 => 0.017897968112961
1129 => 0.017345081136989
1130 => 0.017192049308973
1201 => 0.01698740875291
1202 => 0.017215164004309
1203 => 0.017895093467646
1204 => 0.017074954279778
1205 => 0.015668883168254
1206 => 0.015753390437885
1207 => 0.015943253182313
1208 => 0.015589445214139
1209 => 0.015254595665115
1210 => 0.015545720180789
1211 => 0.014949949314928
1212 => 0.016015249245123
1213 => 0.01598643586748
1214 => 0.016383513803751
1215 => 0.016631814786161
1216 => 0.016059561410104
1217 => 0.015915641233563
1218 => 0.015997624706928
1219 => 0.01464262051265
1220 => 0.016272781052934
1221 => 0.01628687874898
1222 => 0.016166165716472
1223 => 0.017034175878613
1224 => 0.018865948059889
1225 => 0.018176761682428
1226 => 0.017909887886306
1227 => 0.017402560604796
1228 => 0.018078544085295
1229 => 0.018026639100978
1230 => 0.017791905077514
1231 => 0.017649937207709
]
'min_raw' => 0.013258302214861
'max_raw' => 0.034019285331955
'avg_raw' => 0.023638793773408
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.013258'
'max' => '$0.034019'
'avg' => '$0.023638'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0081530044147379
'max_diff' => 0.019773921312006
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00041616295660188
]
1 => [
'year' => 2028
'avg' => 0.00071425644649836
]
2 => [
'year' => 2029
'avg' => 0.001951219879634
]
3 => [
'year' => 2030
'avg' => 0.0015053632312938
]
4 => [
'year' => 2031
'avg' => 0.001478453250742
]
5 => [
'year' => 2032
'avg' => 0.0025921938349124
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00041616295660188
'min' => '$0.000416'
'max_raw' => 0.0025921938349124
'max' => '$0.002592'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0025921938349124
]
1 => [
'year' => 2033
'avg' => 0.0066673890955435
]
2 => [
'year' => 2034
'avg' => 0.0042261116284819
]
3 => [
'year' => 2035
'avg' => 0.0049847083571862
]
4 => [
'year' => 2036
'avg' => 0.0096753309100361
]
5 => [
'year' => 2037
'avg' => 0.023638793773408
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0025921938349124
'min' => '$0.002592'
'max_raw' => 0.023638793773408
'max' => '$0.023638'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.023638793773408
]
]
]
]
'prediction_2025_max_price' => '$0.000711'
'last_price' => 0.00068994581509525
'sma_50day_nextmonth' => '$0.000614'
'sma_200day_nextmonth' => '$0.000429'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.000696'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000698'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.000769'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.000563'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000313'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.000367'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.000396'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.0007004'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.000714'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0007049'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.000592'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000435'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000393'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.000427'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.000374'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.000447'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.0006075'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.000653'
'weekly_sma200_action' => 'BUY'
'weekly_ema3' => '$0.000633'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000547'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000439'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.0004013'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.000458'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.000612'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.001633'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '59.26'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => -1.22
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0008067'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000653'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 65.02
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 27.57
'cci_20_action' => 'NEUTRAL'
'adx_14' => 29.52
'adx_14_action' => 'BUY'
'ao_5_34' => '0.000319'
'ao_5_34_action' => 'BUY'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -34.98
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 43.07
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0007012'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767710462
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de AmonD para 2026
A previsão de preço para AmonD em 2026 sugere que o preço médio poderia variar entre $0.000238 na extremidade inferior e $0.000711 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, AmonD poderia potencialmente ganhar 3.13% até 2026 se AMON atingir a meta de preço prevista.
Previsão de preço de AmonD 2027-2032
A previsão de preço de AMON para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000416 na extremidade inferior e $0.002592 na extremidade superior. Considerando a volatilidade de preços no mercado, se AmonD atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de AmonD | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000229 | $0.000416 | $0.0006028 |
| 2028 | $0.000414 | $0.000714 | $0.001014 |
| 2029 | $0.0009097 | $0.001951 | $0.002992 |
| 2030 | $0.000773 | $0.0015053 | $0.002237 |
| 2031 | $0.000914 | $0.001478 | $0.002042 |
| 2032 | $0.001396 | $0.002592 | $0.003788 |
Previsão de preço de AmonD 2032-2037
A previsão de preço de AmonD para 2032-2037 é atualmente estimada entre $0.002592 na extremidade inferior e $0.023638 na extremidade superior. Comparado ao preço atual, AmonD poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de AmonD | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001396 | $0.002592 | $0.003788 |
| 2033 | $0.003244 | $0.006667 | $0.01009 |
| 2034 | $0.0026086 | $0.004226 | $0.005843 |
| 2035 | $0.003084 | $0.004984 | $0.006885 |
| 2036 | $0.0051052 | $0.009675 | $0.014245 |
| 2037 | $0.013258 | $0.023638 | $0.034019 |
AmonD Histograma de preços potenciais
Previsão de preço de AmonD baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para AmonD é Altista, com 21 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de AMON foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de AmonD
De acordo com nossos indicadores técnicos, o SMA de 200 dias de AmonD está projetado para aumentar no próximo mês, alcançando $0.000429 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para AmonD é esperado para alcançar $0.000614 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 59.26, sugerindo que o mercado de AMON está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de AMON para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.000696 | SELL |
| SMA 5 | $0.000698 | SELL |
| SMA 10 | $0.000769 | SELL |
| SMA 21 | $0.000563 | BUY |
| SMA 50 | $0.000313 | BUY |
| SMA 100 | $0.000367 | BUY |
| SMA 200 | $0.000396 | BUY |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.0007004 | SELL |
| EMA 5 | $0.000714 | SELL |
| EMA 10 | $0.0007049 | SELL |
| EMA 21 | $0.000592 | BUY |
| EMA 50 | $0.000435 | BUY |
| EMA 100 | $0.000393 | BUY |
| EMA 200 | $0.000427 | BUY |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.000374 | BUY |
| SMA 50 | $0.000447 | BUY |
| SMA 100 | $0.0006075 | BUY |
| SMA 200 | $0.000653 | BUY |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0004013 | BUY |
| EMA 50 | $0.000458 | BUY |
| EMA 100 | $0.000612 | BUY |
| EMA 200 | $0.001633 | SELL |
Osciladores de AmonD
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 59.26 | NEUTRAL |
| Stoch RSI (14) | -1.22 | BUY |
| Estocástico Rápido (14) | 65.02 | NEUTRAL |
| Índice de Canal de Commodities (20) | 27.57 | NEUTRAL |
| Índice Direcional Médio (14) | 29.52 | BUY |
| Oscilador Impressionante (5, 34) | 0.000319 | BUY |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | SELL |
| Williams Percent Range (14) | -34.98 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 43.07 | NEUTRAL |
| VWMA (10) | 0.0008067 | SELL |
| Média Móvel de Hull (9) | 0.000653 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0007012 | NEUTRAL |
Previsão do preço de AmonD com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do AmonD
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de AmonD por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.000969 | $0.001362 | $0.001914 | $0.002689 | $0.003779 | $0.005311 |
| Amazon.com stock | $0.001439 | $0.0030038 | $0.006267 | $0.013077 | $0.027287 | $0.056937 |
| Apple stock | $0.000978 | $0.001388 | $0.001968 | $0.002792 | $0.003961 | $0.005618 |
| Netflix stock | $0.001088 | $0.001717 | $0.00271 | $0.004276 | $0.006747 | $0.010646 |
| Google stock | $0.000893 | $0.001157 | $0.001498 | $0.00194 | $0.002512 | $0.003254 |
| Tesla stock | $0.001564 | $0.003545 | $0.008037 | $0.01822 | $0.041305 | $0.093635 |
| Kodak stock | $0.000517 | $0.000387 | $0.00029 | $0.000218 | $0.000163 | $0.000122 |
| Nokia stock | $0.000457 | $0.0003027 | $0.00020058 | $0.000132 | $0.000088 | $0.000058 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para AmonD
Você pode fazer perguntas como: 'Devo investir em AmonD agora?', 'Devo comprar AMON hoje?', 'AmonD será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para AmonD regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como AmonD, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre AmonD para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de AmonD é de $0.0006899 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de AmonD com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se AmonD tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0007078 | $0.000726 | $0.000745 | $0.000764 |
| Se AmonD tiver 2% da média anterior do crescimento anual do Bitcoin | $0.000725 | $0.000763 | $0.0008032 | $0.000845 |
| Se AmonD tiver 5% da média anterior do crescimento anual do Bitcoin | $0.000779 | $0.00088 | $0.000995 | $0.001124 |
| Se AmonD tiver 10% da média anterior do crescimento anual do Bitcoin | $0.000869 | $0.001095 | $0.001379 | $0.001738 |
| Se AmonD tiver 20% da média anterior do crescimento anual do Bitcoin | $0.001048 | $0.001593 | $0.002422 | $0.003681 |
| Se AmonD tiver 50% da média anterior do crescimento anual do Bitcoin | $0.001586 | $0.003648 | $0.00839 | $0.019296 |
| Se AmonD tiver 100% da média anterior do crescimento anual do Bitcoin | $0.002483 | $0.008938 | $0.032172 | $0.115797 |
Perguntas Frequentes sobre AmonD
AMON é um bom investimento?
A decisão de adquirir AmonD depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de AmonD experimentou uma queda de 0% nas últimas 24 horas, e AmonD registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em AmonD dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
AmonD pode subir?
Parece que o valor médio de AmonD pode potencialmente subir para $0.000711 até o final deste ano. Observando as perspectivas de AmonD em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.002237. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de AmonD na próxima semana?
Com base na nossa nova previsão experimental de AmonD, o preço de AmonD aumentará 0.86% na próxima semana e atingirá $0.000695 até 13 de janeiro de 2026.
Qual será o preço de AmonD no próximo mês?
Com base na nossa nova previsão experimental de AmonD, o preço de AmonD diminuirá -11.62% no próximo mês e atingirá $0.000609 até 5 de fevereiro de 2026.
Até onde o preço de AmonD pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de AmonD em 2026, espera-se que AMON fluctue dentro do intervalo de $0.000238 e $0.000711. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de AmonD não considera flutuações repentinas e extremas de preço.
Onde estará AmonD em 5 anos?
O futuro de AmonD parece seguir uma tendência de alta, com um preço máximo de $0.002237 projetada após um período de cinco anos. Com base na previsão de AmonD para 2030, o valor de AmonD pode potencialmente atingir seu pico mais alto de aproximadamente $0.002237, enquanto seu pico mais baixo está previsto para cerca de $0.000773.
Quanto será AmonD em 2026?
Com base na nossa nova simulação experimental de previsão de preços de AmonD, espera-se que o valor de AMON em 2026 aumente 3.13% para $0.000711 se o melhor cenário ocorrer. O preço ficará entre $0.000711 e $0.000238 durante 2026.
Quanto será AmonD em 2027?
De acordo com nossa última simulação experimental para previsão de preços de AmonD, o valor de AMON pode diminuir -12.62% para $0.0006028 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0006028 e $0.000229 ao longo do ano.
Quanto será AmonD em 2028?
Nosso novo modelo experimental de previsão de preços de AmonD sugere que o valor de AMON em 2028 pode aumentar 47.02%, alcançando $0.001014 no melhor cenário. O preço é esperado para variar entre $0.001014 e $0.000414 durante o ano.
Quanto será AmonD em 2029?
Com base no nosso modelo de previsão experimental, o valor de AmonD pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.002992 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.002992 e $0.0009097.
Quanto será AmonD em 2030?
Usando nossa nova simulação experimental para previsões de preços de AmonD, espera-se que o valor de AMON em 2030 aumente 224.23%, alcançando $0.002237 no melhor cenário. O preço está previsto para variar entre $0.002237 e $0.000773 ao longo de 2030.
Quanto será AmonD em 2031?
Nossa simulação experimental indica que o preço de AmonD poderia aumentar 195.98% em 2031, potencialmente atingindo $0.002042 sob condições ideais. O preço provavelmente oscilará entre $0.002042 e $0.000914 durante o ano.
Quanto será AmonD em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de AmonD, AMON poderia ver um 449.04% aumento em valor, atingindo $0.003788 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.003788 e $0.001396 ao longo do ano.
Quanto será AmonD em 2033?
De acordo com nossa previsão experimental de preços de AmonD, espera-se que o valor de AMON seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.01009. Ao longo do ano, o preço de AMON poderia variar entre $0.01009 e $0.003244.
Quanto será AmonD em 2034?
Os resultados da nossa nova simulação de previsão de preços de AmonD sugerem que AMON pode aumentar 746.96% em 2034, atingindo potencialmente $0.005843 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.005843 e $0.0026086.
Quanto será AmonD em 2035?
Com base em nossa previsão experimental para o preço de AmonD, AMON poderia aumentar 897.93%, com o valor potencialmente atingindo $0.006885 em 2035. A faixa de preço esperada para o ano está entre $0.006885 e $0.003084.
Quanto será AmonD em 2036?
Nossa recente simulação de previsão de preços de AmonD sugere que o valor de AMON pode aumentar 1964.7% em 2036, possivelmente atingindo $0.014245 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.014245 e $0.0051052.
Quanto será AmonD em 2037?
De acordo com a simulação experimental, o valor de AmonD poderia aumentar 4830.69% em 2037, com um pico de $0.034019 sob condições favoráveis. O preço é esperado para cair entre $0.034019 e $0.013258 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de AmonD?
Traders de AmonD utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de AmonD
Médias móveis são ferramentas populares para a previsão de preço de AmonD. Uma média móvel simples (SMA) calcula o preço médio de fechamento de AMON em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de AMON acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de AMON.
Como ler gráficos de AmonD e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de AmonD em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de AMON dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de AmonD?
A ação de preço de AmonD é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de AMON. A capitalização de mercado de AmonD pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de AMON, grandes detentores de AmonD, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de AmonD.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


