Previsão de Preço Amaterasu - Projeção AMA
Previsão de Preço Amaterasu até $0.002163 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000724 | $0.002163 |
| 2027 | $0.000697 | $0.001833 |
| 2028 | $0.001259 | $0.003084 |
| 2029 | $0.002766 | $0.00910024 |
| 2030 | $0.002352 | $0.0068023 |
| 2031 | $0.002781 | $0.0062098 |
| 2032 | $0.004245 | $0.011518 |
| 2033 | $0.009866 | $0.030682 |
| 2034 | $0.007932 | $0.017769 |
| 2035 | $0.009378 | $0.020936 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Amaterasu hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,956.21, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de Amaterasu para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Amaterasu'
'name_with_ticker' => 'Amaterasu <small>AMA</small>'
'name_lang' => 'Amaterasu'
'name_lang_with_ticker' => 'Amaterasu <small>AMA</small>'
'name_with_lang' => 'Amaterasu'
'name_with_lang_with_ticker' => 'Amaterasu <small>AMA</small>'
'image' => '/uploads/coins/amaterasu.png?1733338536'
'price_for_sd' => 0.002098
'ticker' => 'AMA'
'marketcap' => '$209.8K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$3.05'
'current_supply' => '100M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002098'
'change_24h_pct' => '0%'
'ath_price' => '$0.07146'
'ath_days' => 384
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 de dez. de 2024'
'ath_pct' => '-97.06%'
'fdv' => '$209.8K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.103446'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002115'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001854'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000724'
'current_year_max_price_prediction' => '$0.002163'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002352'
'grand_prediction_max_price' => '$0.0068023'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0021377763754415
107 => 0.0021457580564146
108 => 0.0021637411912016
109 => 0.0020100772733838
110 => 0.0020790678611484
111 => 0.0021195933679162
112 => 0.0019364976540087
113 => 0.0021159741543499
114 => 0.002007402326446
115 => 0.0019705514173613
116 => 0.0020201663117057
117 => 0.0020008313391276
118 => 0.0019842082650927
119 => 0.0019749323041605
120 => 0.002011364006771
121 => 0.0020096644242989
122 => 0.0019500550877393
123 => 0.0018722971381848
124 => 0.001898395258373
125 => 0.0018889135666374
126 => 0.0018545506926252
127 => 0.0018777071207202
128 => 0.0017757379305899
129 => 0.0016003052388679
130 => 0.0017162014486681
131 => 0.0017117395706616
201 => 0.0017094896894407
202 => 0.0017965824879696
203 => 0.0017882105249637
204 => 0.0017730153301297
205 => 0.0018542716209559
206 => 0.001824611981753
207 => 0.0019160160010864
208 => 0.0019762205998607
209 => 0.0019609507661968
210 => 0.0020175734823382
211 => 0.0018989965063513
212 => 0.0019383830212916
213 => 0.0019465005274334
214 => 0.0018532689309401
215 => 0.0017895802816493
216 => 0.0017853329748454
217 => 0.0016749056338116
218 => 0.0017338950280535
219 => 0.0017858032538393
220 => 0.001760943241929
221 => 0.0017530733048299
222 => 0.0017932791066881
223 => 0.0017964034418318
224 => 0.0017251682694513
225 => 0.0017399803175137
226 => 0.0018017490202322
227 => 0.0017384239046874
228 => 0.0016153935492826
301 => 0.0015848803201145
302 => 0.0015808092928731
303 => 0.0014980549953344
304 => 0.0015869193599922
305 => 0.0015481276834022
306 => 0.0016706701249544
307 => 0.0016006745395481
308 => 0.0015976571697596
309 => 0.0015930959727724
310 => 0.0015218659303439
311 => 0.0015374607827304
312 => 0.0015893004472262
313 => 0.0016077974235339
314 => 0.0016058680373638
315 => 0.0015890464045892
316 => 0.0015967472619327
317 => 0.0015719401172726
318 => 0.0015631801981771
319 => 0.001535531483906
320 => 0.0014948955120798
321 => 0.0015005461931972
322 => 0.001420035700029
323 => 0.0013761693103358
324 => 0.0013640276718184
325 => 0.0013477913653589
326 => 0.0013658616058361
327 => 0.0014198076239175
328 => 0.0013547372808252
329 => 0.0012431787417473
330 => 0.0012498836000324
331 => 0.0012649474259087
401 => 0.0012368760860454
402 => 0.0012103089187138
403 => 0.0012334069152462
404 => 0.0011861380915887
405 => 0.0012706596374182
406 => 0.0012683735664724
407 => 0.0012998779719803
408 => 0.0013195783232799
409 => 0.0012741753915988
410 => 0.0012627566770636
411 => 0.0012692612958145
412 => 0.0011617544370795
413 => 0.0012910923680319
414 => 0.0012922108878296
415 => 0.0012826334422482
416 => 0.0013515018976197
417 => 0.0014968358190635
418 => 0.0014421553517729
419 => 0.0014209814221121
420 => 0.0013807297663489
421 => 0.0014343627077466
422 => 0.0014302445346514
423 => 0.0014116205941445
424 => 0.0014003567768157
425 => 0.0014211107056116
426 => 0.0013977851353644
427 => 0.0013935952220042
428 => 0.0013682089057121
429 => 0.0013591471457996
430 => 0.0013524381795195
501 => 0.0013450522668544
502 => 0.0013613437497387
503 => 0.0013244251061998
504 => 0.0012799048412712
505 => 0.0012762034629583
506 => 0.0012864232939087
507 => 0.0012819017794901
508 => 0.0012761818156869
509 => 0.001265260847047
510 => 0.0012620208289412
511 => 0.0012725493159519
512 => 0.0012606632679657
513 => 0.0012782017792359
514 => 0.0012734322746205
515 => 0.0012467902095501
516 => 0.0012135843323166
517 => 0.0012132887303575
518 => 0.0012061345785761
519 => 0.0011970226906485
520 => 0.0011944879718788
521 => 0.0012314616664038
522 => 0.0013079961075408
523 => 0.0012929705654317
524 => 0.001303828059485
525 => 0.0013572361841708
526 => 0.00137421302097
527 => 0.0013621632643283
528 => 0.0013456688142405
529 => 0.0013463944863337
530 => 0.0014027610154931
531 => 0.0014062765267762
601 => 0.0014151590896417
602 => 0.0014265756931357
603 => 0.0013641075612701
604 => 0.0013434522429405
605 => 0.0013336646072024
606 => 0.001303522477421
607 => 0.0013360281801994
608 => 0.0013170884992234
609 => 0.0013196441092587
610 => 0.0013179797648706
611 => 0.0013188886094489
612 => 0.0012706360119236
613 => 0.00128821672238
614 => 0.0012589853814114
615 => 0.0012198478972264
616 => 0.0012197166946561
617 => 0.0012292955384643
618 => 0.001223597667347
619 => 0.0012082648426759
620 => 0.0012104427980515
621 => 0.0011913616172086
622 => 0.0012127595988818
623 => 0.0012133732164305
624 => 0.0012051338279304
625 => 0.0012381003710504
626 => 0.0012516067906648
627 => 0.0012461834486492
628 => 0.0012512262745314
629 => 0.0012935949445426
630 => 0.0013005028864291
701 => 0.001303570937902
702 => 0.0012994601553672
703 => 0.001252000696042
704 => 0.0012541057248762
705 => 0.0012386604199989
706 => 0.0012256107649636
707 => 0.0012261326827286
708 => 0.0012328419017532
709 => 0.0012621414547237
710 => 0.0013238006366473
711 => 0.001326140557529
712 => 0.001328976609898
713 => 0.0013174409596277
714 => 0.0013139616971249
715 => 0.0013185517424399
716 => 0.0013417076892847
717 => 0.0014012710713475
718 => 0.001380217394022
719 => 0.0013631004266363
720 => 0.0013781166217348
721 => 0.0013758049962002
722 => 0.0013562925503506
723 => 0.0013557449009838
724 => 0.0013182942788921
725 => 0.0013044496366141
726 => 0.0012928800172732
727 => 0.0012802462949854
728 => 0.0012727566009271
729 => 0.0012842641750058
730 => 0.0012868960933512
731 => 0.0012617345815101
801 => 0.0012583051604211
802 => 0.0012788525941396
803 => 0.0012698104346456
804 => 0.0012791105199199
805 => 0.0012812682194782
806 => 0.0012809207801533
807 => 0.0012714797271562
808 => 0.0012774971728003
809 => 0.0012632641199651
810 => 0.0012477878127423
811 => 0.0012379148929421
812 => 0.0012292994609637
813 => 0.0012340798033572
814 => 0.0012170387555805
815 => 0.0012115869814282
816 => 0.0012754585976129
817 => 0.001322641247224
818 => 0.0013219551928123
819 => 0.0013177790130198
820 => 0.0013115740569552
821 => 0.0013412537581003
822 => 0.0013309139436857
823 => 0.0013384370225927
824 => 0.0013403519619172
825 => 0.0013461479065095
826 => 0.001348219458523
827 => 0.0013419577895528
828 => 0.0013209428636907
829 => 0.0012685756664813
830 => 0.0012441985948178
831 => 0.0012361537551366
901 => 0.0012364461697797
902 => 0.0012283800685269
903 => 0.0012307558968431
904 => 0.0012275538523954
905 => 0.0012214899548692
906 => 0.0012337053747726
907 => 0.0012351130881219
908 => 0.0012322618631531
909 => 0.0012329334298491
910 => 0.0012093265048811
911 => 0.0012111212881149
912 => 0.0012011277069992
913 => 0.0011992540310144
914 => 0.0011739911281947
915 => 0.0011292342339332
916 => 0.0011540338980109
917 => 0.0011240793911655
918 => 0.0011127351655383
919 => 0.0011664369652684
920 => 0.0011610467940316
921 => 0.0011518211639252
922 => 0.0011381745342082
923 => 0.0011331128665002
924 => 0.001102359775836
925 => 0.0011005427191782
926 => 0.0011157847813147
927 => 0.001108751094086
928 => 0.0010988731333514
929 => 0.0010630961608832
930 => 0.0010228709984804
1001 => 0.001024085143287
1002 => 0.0010368800190315
1003 => 0.0010740828458829
1004 => 0.0010595470578167
1005 => 0.0010490011767956
1006 => 0.0010470262502884
1007 => 0.001071746590315
1008 => 0.0011067310505239
1009 => 0.0011231449765208
1010 => 0.0011068792743562
1011 => 0.0010881941115172
1012 => 0.0010893313908005
1013 => 0.0010968972003622
1014 => 0.0010976922599724
1015 => 0.00108553013983
1016 => 0.00108895370541
1017 => 0.0010837529962365
1018 => 0.0010518362536384
1019 => 0.0010512589809738
1020 => 0.0010434260976133
1021 => 0.0010431889210181
1022 => 0.0010298632324174
1023 => 0.001027998876466
1024 => 0.0010015399129379
1025 => 0.0010189552828572
1026 => 0.0010072739670633
1027 => 0.00098966746881804
1028 => 0.00098663210188426
1029 => 0.00098654085508892
1030 => 0.0010046187920459
1031 => 0.0010187440316384
1101 => 0.0010074771685528
1102 => 0.0010049119222271
1103 => 0.0010323020417533
1104 => 0.0010288163993771
1105 => 0.0010257978555593
1106 => 0.0011035985758251
1107 => 0.0010420132348688
1108 => 0.0010151585110435
1109 => 0.00098192069073594
1110 => 0.00099274309262772
1111 => 0.00099502353172048
1112 => 0.00091509256544821
1113 => 0.00088266458238631
1114 => 0.00087153652062223
1115 => 0.00086513216374931
1116 => 0.00086805070959715
1117 => 0.0008388617214184
1118 => 0.00085847720421583
1119 => 0.00083320200773678
1120 => 0.00082896453879446
1121 => 0.00087415972109501
1122 => 0.00088044836668571
1123 => 0.00085361905086676
1124 => 0.00087084781489421
1125 => 0.00086460042556012
1126 => 0.0008336352784362
1127 => 0.00083245263758027
1128 => 0.00081691541523104
1129 => 0.00079260267085358
1130 => 0.00078149109427505
1201 => 0.00077570408871782
1202 => 0.00077809191999723
1203 => 0.00077688455943352
1204 => 0.00076900571506517
1205 => 0.00077733616557007
1206 => 0.00075605530690985
1207 => 0.00074758109751983
1208 => 0.00074375349373851
1209 => 0.00072486550679705
1210 => 0.00075492469354684
1211 => 0.0007608467320122
1212 => 0.00076678043872275
1213 => 0.00081842930452448
1214 => 0.0008158490731472
1215 => 0.00083917310817412
1216 => 0.00083826677906312
1217 => 0.00083161438644913
1218 => 0.00080354903627616
1219 => 0.00081473538463834
1220 => 0.00078030554312406
1221 => 0.00080610272138821
1222 => 0.00079432996654438
1223 => 0.00080212234113319
1224 => 0.00078811094901242
1225 => 0.00079586543192825
1226 => 0.00076225106702548
1227 => 0.00073086244604615
1228 => 0.0007434941434192
1229 => 0.00075722624307352
1230 => 0.00078700093399801
1231 => 0.00076926737371925
]
'min_raw' => 0.00072486550679705
'max_raw' => 0.0021637411912016
'avg_raw' => 0.0014443033489993
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000724'
'max' => '$0.002163'
'avg' => '$0.001444'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0013731544932029
'max_diff' => 6.5721191201625E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00077564503257565
102 => 0.00075428094301392
103 => 0.00071020072389759
104 => 0.00071045021315069
105 => 0.00070366943177942
106 => 0.00069780984666434
107 => 0.00077130428644145
108 => 0.00076216409108001
109 => 0.00074760038601074
110 => 0.00076709448398459
111 => 0.00077224903290181
112 => 0.00077239577566304
113 => 0.00078661816632926
114 => 0.00079420865877733
115 => 0.00079554651597038
116 => 0.00081792575497877
117 => 0.00082542698070508
118 => 0.00085632346785856
119 => 0.00079356465852493
120 => 0.00079227218214629
121 => 0.00076736880592048
122 => 0.00075157469101128
123 => 0.00076845024248077
124 => 0.00078339967734024
125 => 0.00076783332653296
126 => 0.00076986596332479
127 => 0.00074896940918359
128 => 0.00075643894401481
129 => 0.00076287271366646
130 => 0.00075932036422432
131 => 0.00075400232517378
201 => 0.00078217399416288
202 => 0.00078058443819285
203 => 0.00080681854401937
204 => 0.00082726990553004
205 => 0.00086392240147534
206 => 0.0008256736112186
207 => 0.00082427967327647
208 => 0.00083790564025544
209 => 0.00082542489464053
210 => 0.00083331229504846
211 => 0.00086265161933089
212 => 0.00086327151302067
213 => 0.00085288749502885
214 => 0.00085225562659035
215 => 0.00085424999083439
216 => 0.00086593104450456
217 => 0.00086184932542967
218 => 0.00086657279407961
219 => 0.00087247956395467
220 => 0.00089691246857647
221 => 0.00090280315916357
222 => 0.0008884918350098
223 => 0.00088978398734379
224 => 0.00088443115925564
225 => 0.00087926039439324
226 => 0.00089088351867436
227 => 0.0009121250067512
228 => 0.00091199286455631
301 => 0.0009169204769146
302 => 0.00091999033859128
303 => 0.00090681224499889
304 => 0.00089823379064218
305 => 0.00090152331590378
306 => 0.00090678333843361
307 => 0.00089981756149017
308 => 0.00085682155933346
309 => 0.00086986379979255
310 => 0.00086769293324718
311 => 0.00086460135530019
312 => 0.00087771542893447
313 => 0.00087645054454045
314 => 0.00083856234615555
315 => 0.0008409878256882
316 => 0.00083870984759937
317 => 0.00084607046083483
318 => 0.00082502739737034
319 => 0.00083150010196482
320 => 0.00083555972160864
321 => 0.00083795086876632
322 => 0.00084658933192481
323 => 0.00084557570797793
324 => 0.00084652632363708
325 => 0.0008593348840314
326 => 0.00092411618713873
327 => 0.00092764209053497
328 => 0.00091027925267329
329 => 0.0009172153639322
330 => 0.00090389954707588
331 => 0.00091283854413974
401 => 0.00091895437890493
402 => 0.00089131809760844
403 => 0.00088968165638804
404 => 0.00087631088041886
405 => 0.00088349557806523
406 => 0.0008720642075118
407 => 0.00087486906599325
408 => 0.00086702643715596
409 => 0.00088114160761125
410 => 0.00089692456145601
411 => 0.00090091195888493
412 => 0.00089042283293197
413 => 0.00088282801447494
414 => 0.00086949401515313
415 => 0.00089166875319286
416 => 0.00089815332235857
417 => 0.00089163469251159
418 => 0.00089012418354117
419 => 0.00088726177177166
420 => 0.00089073145772957
421 => 0.00089811800600226
422 => 0.00089463464624499
423 => 0.00089693546673357
424 => 0.00088816711162689
425 => 0.00090681660749621
426 => 0.00093643649518229
427 => 0.00093653172796454
428 => 0.00093304834943067
429 => 0.00093162302598504
430 => 0.00093519718374988
501 => 0.00093713601771769
502 => 0.00094869418854075
503 => 0.00096109656633174
504 => 0.0010189730519009
505 => 0.0010027215663496
506 => 0.0010540730274341
507 => 0.0010946853659993
508 => 0.0011068632305726
509 => 0.0010956601681779
510 => 0.0010573350969032
511 => 0.0010554546860671
512 => 0.0011127285229792
513 => 0.0010965460407436
514 => 0.0010946211859739
515 => 0.0010741439833179
516 => 0.0010862485462385
517 => 0.0010836011007645
518 => 0.0010794219785664
519 => 0.0011025166414078
520 => 0.0011457477885721
521 => 0.0011390098088674
522 => 0.0011339802195837
523 => 0.0011119420234341
524 => 0.0011252139399255
525 => 0.0011204880646697
526 => 0.001140793423883
527 => 0.0011287649789039
528 => 0.0010964234425248
529 => 0.0011015739387922
530 => 0.0011007954516428
531 => 0.0011168166620146
601 => 0.0011120074923319
602 => 0.0010998563840778
603 => 0.0011456000292109
604 => 0.0011426296913355
605 => 0.001146840951329
606 => 0.0011486948782158
607 => 0.0011765382289148
608 => 0.0011879447588084
609 => 0.0011905342407936
610 => 0.0012013695619798
611 => 0.0011902646481318
612 => 0.0012346922211934
613 => 0.0012642339648587
614 => 0.0012985482203301
615 => 0.0013486905703761
616 => 0.0013675445578361
617 => 0.001364138753757
618 => 0.0014021561112952
619 => 0.001470472457713
620 => 0.0013779474406071
621 => 0.0014753765082879
622 => 0.0014445315903328
623 => 0.0013713988447378
624 => 0.0013666899580999
625 => 0.0014162163025055
626 => 0.0015260609676631
627 => 0.001498546124889
628 => 0.001526105972089
629 => 0.0014939559464028
630 => 0.0014923594266458
701 => 0.0015245445171016
702 => 0.0015997467352697
703 => 0.0015640209803311
704 => 0.001512799350312
705 => 0.0015506206048212
706 => 0.0015178563339734
707 => 0.0014440292616114
708 => 0.0014985250848073
709 => 0.0014620852797879
710 => 0.0014727203521392
711 => 0.001549311402278
712 => 0.0015400957644905
713 => 0.0015520216531326
714 => 0.0015309727718342
715 => 0.0015113097975975
716 => 0.0014746073959931
717 => 0.0014637416242846
718 => 0.0014667445326753
719 => 0.0014637401361923
720 => 0.0014432054798071
721 => 0.0014387710227159
722 => 0.0014313800666191
723 => 0.0014336708329639
724 => 0.0014197736732015
725 => 0.0014460004849729
726 => 0.0014508684123475
727 => 0.0014699540988202
728 => 0.0014719356381041
729 => 0.0015250890032627
730 => 0.0014958130229394
731 => 0.0015154538781068
801 => 0.0015136970151537
802 => 0.0013729838530927
803 => 0.001392372885302
804 => 0.0014225361348061
805 => 0.0014089476317898
806 => 0.0013897366677448
807 => 0.0013742227842517
808 => 0.0013507176643837
809 => 0.0013838006692221
810 => 0.0014273013025993
811 => 0.0014730388859535
812 => 0.0015279895955085
813 => 0.0015157252368326
814 => 0.0014720116206613
815 => 0.00147397258155
816 => 0.0014860944701538
817 => 0.0014703955230221
818 => 0.0014657655970331
819 => 0.0014854583894202
820 => 0.0014855940028584
821 => 0.0014675304669023
822 => 0.0014474561522793
823 => 0.001447372040168
824 => 0.0014438000097757
825 => 0.0014945914026742
826 => 0.0015225215331794
827 => 0.0015257236776302
828 => 0.0015223060033445
829 => 0.0015236213305344
830 => 0.0015073694029919
831 => 0.0015445164899947
901 => 0.0015786063304946
902 => 0.0015694695250174
903 => 0.0015557721547336
904 => 0.0015448615395479
905 => 0.001566899330824
906 => 0.0015659180226691
907 => 0.0015783085854771
908 => 0.0015777464779768
909 => 0.0015735799977371
910 => 0.0015694696738155
911 => 0.0015857666435547
912 => 0.0015810733779911
913 => 0.0015763728224898
914 => 0.001566945138813
915 => 0.0015682265176019
916 => 0.0015545315123623
917 => 0.0015481955762976
918 => 0.0014529182999214
919 => 0.0014274570983989
920 => 0.0014354677107084
921 => 0.0014381050122762
922 => 0.0014270242647441
923 => 0.0014429112102946
924 => 0.001440435246659
925 => 0.0014500677727748
926 => 0.0014440497886533
927 => 0.0014442967688208
928 => 0.0014619943769526
929 => 0.0014671320678843
930 => 0.0014645189968102
1001 => 0.0014663491022197
1002 => 0.0015085231089416
1003 => 0.0015025273138346
1004 => 0.0014993421671846
1005 => 0.0015002244745743
1006 => 0.0015110008375127
1007 => 0.0015140176307678
1008 => 0.0015012352657595
1009 => 0.0015072635029914
1010 => 0.0015329309720276
1011 => 0.0015419131335373
1012 => 0.0015705798813943
1013 => 0.0015584017373938
1014 => 0.0015807552477644
1015 => 0.0016494623177702
1016 => 0.0017043502794584
1017 => 0.001653873041549
1018 => 0.0017546677932497
1019 => 0.0018331509655971
1020 => 0.0018301386507218
1021 => 0.0018164532942746
1022 => 0.0017271022891401
1023 => 0.001644880162067
1024 => 0.0017136624626996
1025 => 0.0017138378029291
1026 => 0.0017079293423048
1027 => 0.0016712324008106
1028 => 0.001706652368286
1029 => 0.0017094638766778
1030 => 0.0017078901796188
1031 => 0.0016797547206158
1101 => 0.0016367970750201
1102 => 0.0016451908961434
1103 => 0.0016589401463727
1104 => 0.0016329099472946
1105 => 0.0016245917214637
1106 => 0.0016400568858905
1107 => 0.0016898888679685
1108 => 0.0016804684204137
1109 => 0.001680222414457
1110 => 0.001720527083988
1111 => 0.0016916776388959
1112 => 0.0016452967691085
1113 => 0.0016335849877987
1114 => 0.00159201605415
1115 => 0.0016207278646846
1116 => 0.0016217611516311
1117 => 0.0016060359864289
1118 => 0.0016465727795983
1119 => 0.0016461992259129
1120 => 0.0016846828779219
1121 => 0.0017582491667634
1122 => 0.0017364919951757
1123 => 0.0017111907717928
1124 => 0.0017139417163014
1125 => 0.0017441127876506
1126 => 0.0017258706691743
1127 => 0.0017324306621669
1128 => 0.0017441028583155
1129 => 0.0017511449840562
1130 => 0.0017129284627795
1201 => 0.0017040183635623
1202 => 0.0016857914275839
1203 => 0.001681036360209
1204 => 0.0016958818192459
1205 => 0.0016919705652875
1206 => 0.0016216743078643
1207 => 0.0016143279578389
1208 => 0.001614553259906
1209 => 0.0015960805134673
1210 => 0.001567905141181
1211 => 0.0016419483372853
1212 => 0.0016360016324042
1213 => 0.001629436930454
1214 => 0.0016302410689852
1215 => 0.0016623807108573
1216 => 0.0016437380954807
1217 => 0.0016933025439241
1218 => 0.0016831135833678
1219 => 0.0016726633144197
1220 => 0.0016712187689281
1221 => 0.0016671963069582
1222 => 0.001653401788171
1223 => 0.0016367440778135
1224 => 0.0016257452145693
1225 => 0.0014996640238733
1226 => 0.0015230639594859
1227 => 0.001549983452437
1228 => 0.0015592759535306
1229 => 0.0015433804873885
1230 => 0.0016540294380583
1231 => 0.0016742460675855
]
'min_raw' => 0.00069780984666434
'max_raw' => 0.0018331509655971
'avg_raw' => 0.0012654804061307
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000697'
'max' => '$0.001833'
'avg' => '$0.001265'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.7055660132706E-5
'max_diff' => -0.00033059022560456
'year' => 2027
]
2 => [
'items' => [
101 => 0.0016130085780495
102 => 0.0016015535440676
103 => 0.0016547804281791
104 => 0.0016226781103379
105 => 0.0016371337820962
106 => 0.0016058885265845
107 => 0.0016693764735444
108 => 0.00166889280176
109 => 0.0016441945564523
110 => 0.0016650693442601
111 => 0.0016614418361752
112 => 0.0016335575780519
113 => 0.0016702604542632
114 => 0.0016702786584319
115 => 0.0016465071343094
116 => 0.00161874719839
117 => 0.0016137843775081
118 => 0.0016100455586347
119 => 0.0016362142618471
120 => 0.0016596770393199
121 => 0.001703335451281
122 => 0.0017143122133463
123 => 0.0017571552464516
124 => 0.0017316443062268
125 => 0.0017429529756065
126 => 0.0017552301359271
127 => 0.0017611162580624
128 => 0.0017515251379096
129 => 0.0018180780032181
130 => 0.0018236971041773
131 => 0.0018255811401239
201 => 0.0018031398883973
202 => 0.0018230729723708
203 => 0.001813746942494
204 => 0.0018380106813879
205 => 0.0018418155454614
206 => 0.0018385929609531
207 => 0.0018398006848657
208 => 0.0017830095550549
209 => 0.0017800646353771
210 => 0.0017399104466087
211 => 0.0017562735753366
212 => 0.001725683490485
213 => 0.0017353839215043
214 => 0.0017396597790684
215 => 0.0017374263137297
216 => 0.0017571987220839
217 => 0.0017403881357467
218 => 0.0016960222344865
219 => 0.0016516442457662
220 => 0.0016510871162674
221 => 0.0016394031751739
222 => 0.0016309578257838
223 => 0.0016325846996912
224 => 0.0016383180155374
225 => 0.0016306245950443
226 => 0.0016322663763728
227 => 0.001659530885558
228 => 0.0016649985884335
229 => 0.0016464171976931
301 => 0.0015718102325885
302 => 0.0015535014962144
303 => 0.001566661452842
304 => 0.0015603718411838
305 => 0.0012593418578643
306 => 0.0013300643872044
307 => 0.0012880434617807
308 => 0.0013074086375057
309 => 0.001264516153914
310 => 0.0012849866952717
311 => 0.0012812065337474
312 => 0.0013949262680944
313 => 0.001393150690859
314 => 0.0013940005657201
315 => 0.0013534338242601
316 => 0.0014180577449129
317 => 0.0014498938120276
318 => 0.0014440018032941
319 => 0.001445484694954
320 => 0.0014200037031825
321 => 0.0013942472774191
322 => 0.0013656794373621
323 => 0.0014187549530964
324 => 0.001412853861776
325 => 0.0014263888421193
326 => 0.0014608121079892
327 => 0.0014658810646498
328 => 0.001472693793806
329 => 0.0014702519153666
330 => 0.0015284273665635
331 => 0.0015213819355696
401 => 0.0015383593971561
402 => 0.0015034354705895
403 => 0.0014639157326698
404 => 0.0014714271428508
405 => 0.0014707037336474
406 => 0.001461493904198
407 => 0.0014531796819704
408 => 0.0014393388444791
409 => 0.0014831333023602
410 => 0.0014813553273483
411 => 0.0015101386761212
412 => 0.001505050939639
413 => 0.0014710737902311
414 => 0.0014722872907692
415 => 0.0014804486650767
416 => 0.0015086952747401
417 => 0.001517080791664
418 => 0.0015131962861198
419 => 0.0015223906226134
420 => 0.0015296574512948
421 => 0.0015233032244138
422 => 0.0016132656771701
423 => 0.0015759069946253
424 => 0.0015941153565576
425 => 0.0015984579435886
426 => 0.0015873344982236
427 => 0.0015897467752225
428 => 0.0015934007175698
429 => 0.0016155867399872
430 => 0.0016738092823879
501 => 0.0016995956500829
502 => 0.0017771752095702
503 => 0.0016974544512093
504 => 0.0016927241513255
505 => 0.0017066985726674
506 => 0.0017522459867169
507 => 0.0017891578877529
508 => 0.0018014036948252
509 => 0.0018030221803861
510 => 0.0018259961285396
511 => 0.0018391643671824
512 => 0.0018232064869589
513 => 0.0018096838543292
514 => 0.0017612474627406
515 => 0.0017668541069549
516 => 0.0018054783257499
517 => 0.0018600373097529
518 => 0.0019068545939223
519 => 0.0018904608127532
520 => 0.0020155337908671
521 => 0.0020279342657698
522 => 0.0020262209210936
523 => 0.00205447104836
524 => 0.0019984002987745
525 => 0.0019744289670071
526 => 0.0018126076009921
527 => 0.0018580728042346
528 => 0.0019241591472253
529 => 0.0019154123719194
530 => 0.0018674187031466
531 => 0.0019068181864208
601 => 0.0018937914851146
602 => 0.001883516785316
603 => 0.0019305871769417
604 => 0.0018788313478042
605 => 0.0019236428432385
606 => 0.0018661716368284
607 => 0.0018905356981647
608 => 0.0018767054785932
609 => 0.0018856553256239
610 => 0.0018333347027576
611 => 0.0018615656408449
612 => 0.0018321602029185
613 => 0.0018321462609122
614 => 0.0018314971342402
615 => 0.001866092501557
616 => 0.0018672206552432
617 => 0.0018416546265253
618 => 0.0018379701623707
619 => 0.0018515935574563
620 => 0.0018356441297839
621 => 0.0018431067666073
622 => 0.0018358701654509
623 => 0.0018342410541045
624 => 0.0018212600177256
625 => 0.0018156674303326
626 => 0.0018178604279526
627 => 0.0018103745965077
628 => 0.0018058641122877
629 => 0.0018305998854016
630 => 0.0018173845596651
701 => 0.001828574447198
702 => 0.0018158221580778
703 => 0.0017716171680795
704 => 0.0017461944108721
705 => 0.0016626952825699
706 => 0.0016863755317761
707 => 0.0017020755614988
708 => 0.0016968867017691
709 => 0.0017080343802906
710 => 0.0017087187572141
711 => 0.0017050945332896
712 => 0.0017008981462769
713 => 0.0016988555771539
714 => 0.0017140792139515
715 => 0.0017229170475165
716 => 0.0017036512695207
717 => 0.0016991375672932
718 => 0.0017186163325397
719 => 0.0017304983680875
720 => 0.0018182286426337
721 => 0.0018117293005303
722 => 0.0018280413737784
723 => 0.0018262048846598
724 => 0.001843302536141
725 => 0.0018712499703059
726 => 0.001814425022423
727 => 0.0018242878685167
728 => 0.0018218697264209
729 => 0.0018482703677517
730 => 0.0018483527876722
731 => 0.0018325242843845
801 => 0.0018411051728049
802 => 0.001836315556293
803 => 0.0018449710406855
804 => 0.001811642497854
805 => 0.0018522330654289
806 => 0.0018752453016454
807 => 0.0018755648265676
808 => 0.0018864724438978
809 => 0.001897555214832
810 => 0.0019188276285341
811 => 0.0018969619387594
812 => 0.0018576276914368
813 => 0.0018604674970447
814 => 0.0018374058422313
815 => 0.0018377935128151
816 => 0.0018357240968563
817 => 0.0018419345699271
818 => 0.0018130053474479
819 => 0.0018197949781408
820 => 0.0018102894554106
821 => 0.0018242672053666
822 => 0.0018092294570188
823 => 0.0018218685603195
824 => 0.0018273231783112
825 => 0.00184745083613
826 => 0.0018062565855937
827 => 0.0017222587201446
828 => 0.0017399160898376
829 => 0.0017137994531051
830 => 0.0017162166472678
831 => 0.0017210997641699
901 => 0.0017052719846336
902 => 0.0017082914261785
903 => 0.001708183550479
904 => 0.0017072539359802
905 => 0.001703136519225
906 => 0.0016971654503238
907 => 0.001720952351028
908 => 0.0017249942089758
909 => 0.0017339787585135
910 => 0.0017607106836596
911 => 0.0017580395339553
912 => 0.001762396289948
913 => 0.0017528855160781
914 => 0.00171665782479
915 => 0.0017186251627236
916 => 0.0016940924271669
917 => 0.0017333514013082
918 => 0.0017240543580384
919 => 0.0017180604937615
920 => 0.0017164250123608
921 => 0.0017432232007788
922 => 0.0017512416387636
923 => 0.0017462450863088
924 => 0.0017359970114514
925 => 0.0017556763447491
926 => 0.0017609417041351
927 => 0.0017621204239227
928 => 0.0017969884293883
929 => 0.001764069158093
930 => 0.0017719931538832
1001 => 0.0018338139070339
1002 => 0.001777751014607
1003 => 0.0018074487790772
1004 => 0.0018059952280461
1005 => 0.0018211875994316
1006 => 0.0018047490101604
1007 => 0.0018049527861759
1008 => 0.0018184425827458
1009 => 0.001799498596361
1010 => 0.0017948077989223
1011 => 0.0017883274958568
1012 => 0.0018024770005232
1013 => 0.0018109589886436
1014 => 0.0018793175835606
1015 => 0.0019234803534076
1016 => 0.0019215631310975
1017 => 0.0019390829541218
1018 => 0.0019311901133862
1019 => 0.0019057020486246
1020 => 0.0019492070672342
1021 => 0.0019354402590189
1022 => 0.0019365751779615
1023 => 0.0019365329362217
1024 => 0.0019456866601697
1025 => 0.0019392004078261
1026 => 0.0019264153386567
1027 => 0.0019349026642255
1028 => 0.0019601069868906
1029 => 0.0020383419778061
1030 => 0.0020821233151982
1031 => 0.0020357062863216
1101 => 0.0020677241312919
1102 => 0.0020485248334344
1103 => 0.002045035749884
1104 => 0.0020651453226255
1105 => 0.002085290094512
1106 => 0.0020840069596311
1107 => 0.002069382889687
1108 => 0.0020611221236476
1109 => 0.0021236754116575
1110 => 0.0021697636086958
1111 => 0.0021666207026369
1112 => 0.0021804924678528
1113 => 0.0022212203995639
1114 => 0.0022249440512205
1115 => 0.0022244749566989
1116 => 0.0022152454975452
1117 => 0.002255347435505
1118 => 0.0022888011776776
1119 => 0.0022131091444158
1120 => 0.0022419316798004
1121 => 0.0022548710445387
1122 => 0.002273869870911
1123 => 0.002305924075574
1124 => 0.002340743443796
1125 => 0.0023456672842376
1126 => 0.0023421735838168
1127 => 0.0023192092744796
1128 => 0.0023573090426695
1129 => 0.0023796269933257
1130 => 0.0023929168222042
1201 => 0.0024266176170235
1202 => 0.0022549509536502
1203 => 0.0021334367569279
1204 => 0.0021144605604234
1205 => 0.0021530494022173
1206 => 0.0021632249720581
1207 => 0.0021591232126144
1208 => 0.0020223479366159
1209 => 0.0021137404669016
1210 => 0.0022120711449867
1211 => 0.0022158484267962
1212 => 0.0022650748202432
1213 => 0.0022811049518076
1214 => 0.0023207386507832
1215 => 0.0023182595521212
1216 => 0.0023279097271119
1217 => 0.0023256913189993
1218 => 0.0023991044004917
1219 => 0.002480089931326
1220 => 0.0024772856599115
1221 => 0.0024656430316767
1222 => 0.0024829343199684
1223 => 0.0025665200667263
1224 => 0.0025588248305992
1225 => 0.0025663000970181
1226 => 0.0026648524031319
1227 => 0.002792984419982
1228 => 0.0027334542339109
1229 => 0.0028626176083355
1230 => 0.0029439191058794
1231 => 0.0030845216391499
]
'min_raw' => 0.0012593418578643
'max_raw' => 0.0030845216391499
'avg_raw' => 0.0021719317485071
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001259'
'max' => '$0.003084'
'avg' => '$0.002171'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00056153201119997
'max_diff' => 0.0012513706735529
'year' => 2028
]
3 => [
'items' => [
101 => 0.0030669175095024
102 => 0.0031216530439155
103 => 0.0030354024433405
104 => 0.002837353630298
105 => 0.0028060116475336
106 => 0.0028687590907333
107 => 0.0030230175570338
108 => 0.0028639009426703
109 => 0.0028960900265221
110 => 0.0028868195682073
111 => 0.0028863255848806
112 => 0.0029051789192848
113 => 0.0028778311744077
114 => 0.0027664115420134
115 => 0.0028174745029397
116 => 0.0027977566414813
117 => 0.0028196350788334
118 => 0.0029377039818686
119 => 0.0028855029054256
120 => 0.002830513311864
121 => 0.002899482465358
122 => 0.0029873038981282
123 => 0.0029818081906957
124 => 0.0029711442212492
125 => 0.0030312564586719
126 => 0.003130544263661
127 => 0.0031573813583789
128 => 0.0031771919530394
129 => 0.0031799234993403
130 => 0.0032080601238865
131 => 0.003056762402359
201 => 0.0032968757720243
202 => 0.0033383367179675
203 => 0.0033305437785103
204 => 0.0033766258749829
205 => 0.0033630673532107
206 => 0.0033434231824297
207 => 0.0034164731072818
208 => 0.0033327272632638
209 => 0.003213860580989
210 => 0.0031486479681766
211 => 0.0032345251972794
212 => 0.0032869674243902
213 => 0.0033216284005583
214 => 0.003332116791004
215 => 0.0030685072137918
216 => 0.0029264362721318
217 => 0.0030175021168892
218 => 0.0031286087325221
219 => 0.0030561451994992
220 => 0.0030589856328021
221 => 0.002955671677793
222 => 0.0031377497250858
223 => 0.0031112224851126
224 => 0.0032488458530191
225 => 0.0032160009317717
226 => 0.0033282274457911
227 => 0.0032986744435297
228 => 0.0034213473036305
301 => 0.0034702848287598
302 => 0.0035524585499695
303 => 0.0036129058737986
304 => 0.0036484016985241
305 => 0.003646270662349
306 => 0.0037869228038611
307 => 0.003703985150023
308 => 0.0035997959098981
309 => 0.0035979114552571
310 => 0.0036518725390907
311 => 0.0037649601673055
312 => 0.0037942821439436
313 => 0.0038106691287066
314 => 0.003785571891107
315 => 0.0036955490120609
316 => 0.0036566775893152
317 => 0.0036897971677081
318 => 0.0036492947693314
319 => 0.0037192132718954
320 => 0.0038152263097021
321 => 0.0037953999970717
322 => 0.0038616763876682
323 => 0.0039302654794559
324 => 0.0040283509612412
325 => 0.0040539941382748
326 => 0.0040963813347885
327 => 0.0041400116834699
328 => 0.0041540245755955
329 => 0.0041807795346083
330 => 0.0041806385227677
331 => 0.0042612663925693
401 => 0.0043502014297978
402 => 0.0043837723475006
403 => 0.0044609668216472
404 => 0.0043287739898882
405 => 0.0044290437712992
406 => 0.0045194896240474
407 => 0.0044116563497562
408 => 0.0045602793964361
409 => 0.0045660500925516
410 => 0.0046531807526098
411 => 0.0045648571364261
412 => 0.0045124108550751
413 => 0.0046638213041988
414 => 0.0047370840511452
415 => 0.004715016715533
416 => 0.0045470832019247
417 => 0.0044493386939975
418 => 0.0041935224632444
419 => 0.0044965478390102
420 => 0.0046441426601743
421 => 0.0045467009669942
422 => 0.0045958448891894
423 => 0.0048639581937164
424 => 0.0049660383810294
425 => 0.0049448064156627
426 => 0.0049483942683017
427 => 0.0050034748844894
428 => 0.0052477326701146
429 => 0.0051013677431168
430 => 0.0052132582456175
501 => 0.0052726045646926
502 => 0.0053277287332559
503 => 0.0051923611974369
504 => 0.0050162500222804
505 => 0.0049604682204641
506 => 0.0045370123109733
507 => 0.0045149695919085
508 => 0.0045025963457347
509 => 0.0044245847788392
510 => 0.0043632890564258
511 => 0.0043145444221985
512 => 0.004186623945606
513 => 0.004229793351311
514 => 0.004025914810701
515 => 0.0041563490759715
516 => 0.0038309540023384
517 => 0.0041019526888268
518 => 0.0039544604245695
519 => 0.0040534975132266
520 => 0.0040531519821541
521 => 0.0038707933021988
522 => 0.0037656126213292
523 => 0.0038326378448727
524 => 0.0039044942049802
525 => 0.0039161526576538
526 => 0.004009316304176
527 => 0.0040353162753745
528 => 0.0039565351488205
529 => 0.003824210912697
530 => 0.003854946814754
531 => 0.003764989759255
601 => 0.0036073434796413
602 => 0.0037205677898999
603 => 0.0037592275475436
604 => 0.0037763018989169
605 => 0.0036212748887144
606 => 0.0035725620363086
607 => 0.0035466277224281
608 => 0.0038041988724257
609 => 0.0038183092014565
610 => 0.0037461187631352
611 => 0.0040724263897259
612 => 0.0039985729241165
613 => 0.0040810853397406
614 => 0.0038521578538008
615 => 0.0038609031920555
616 => 0.0037525252514858
617 => 0.0038132096563882
618 => 0.0037703198749529
619 => 0.0038083069561671
620 => 0.0038310762560203
621 => 0.0039394364128363
622 => 0.0041031899877564
623 => 0.0039232510189007
624 => 0.0038448490333968
625 => 0.003893489184254
626 => 0.0040230243157106
627 => 0.0042192766706487
628 => 0.0041030913265786
629 => 0.0041546524093218
630 => 0.0041659162121083
701 => 0.0040802454408063
702 => 0.0042224354741861
703 => 0.0042986362682242
704 => 0.0043768025153747
705 => 0.0044446720776069
706 => 0.0043455811973502
707 => 0.0044516226433446
708 => 0.0043661719567081
709 => 0.0042895138570656
710 => 0.0042896301157597
711 => 0.0042415413700578
712 => 0.0041483633656885
713 => 0.0041311799120757
714 => 0.0042205704078003
715 => 0.00429225312006
716 => 0.0042981572515787
717 => 0.0043378444842764
718 => 0.0043613309797759
719 => 0.0045915305640132
720 => 0.0046841187411043
721 => 0.0047973338114467
722 => 0.0048414374617969
723 => 0.004974173637317
724 => 0.0048669783952794
725 => 0.0048437860303749
726 => 0.0045218114862351
727 => 0.0045745347998006
728 => 0.0046589499118621
729 => 0.004523203460341
730 => 0.0046093033393051
731 => 0.0046263012792574
801 => 0.0045185908478623
802 => 0.0045761236431634
803 => 0.0044233335961286
804 => 0.0041065203932547
805 => 0.0042227881778468
806 => 0.0043084004026197
807 => 0.0041862212019576
808 => 0.0044052226901564
809 => 0.004277286541859
810 => 0.0042367369248668
811 => 0.0040785384119983
812 => 0.0041532020204531
813 => 0.0042541856199681
814 => 0.0041917894960713
815 => 0.0043212708219822
816 => 0.0045046509108803
817 => 0.0046353384827022
818 => 0.0046453710517126
819 => 0.0045613476984185
820 => 0.0046959956583022
821 => 0.0046969764216915
822 => 0.0045450929728895
823 => 0.0044520652061889
824 => 0.0044309291018624
825 => 0.0044837312344473
826 => 0.0045478427712167
827 => 0.0046489287958097
828 => 0.0047100129633719
829 => 0.0048692880758349
830 => 0.004912383354492
831 => 0.0049597320000642
901 => 0.00502300439233
902 => 0.0050989791219536
903 => 0.004932750738781
904 => 0.0049393553023329
905 => 0.0047845657335112
906 => 0.0046191508801557
907 => 0.0047446801346
908 => 0.004908792936329
909 => 0.0048711452782838
910 => 0.0048669091476819
911 => 0.0048740331443497
912 => 0.0048456480396412
913 => 0.0047172632630458
914 => 0.0046527892319708
915 => 0.0047359771811371
916 => 0.0047801878738493
917 => 0.0048487548026685
918 => 0.0048403024814192
919 => 0.0050169235265067
920 => 0.0050855531238845
921 => 0.0050679947360492
922 => 0.0050712259019771
923 => 0.0051954765098528
924 => 0.0053336687398971
925 => 0.0054631039994044
926 => 0.0055947711047489
927 => 0.0054360412702015
928 => 0.0053554480493135
929 => 0.0054385996812235
930 => 0.0053944782548881
1001 => 0.0056480130578767
1002 => 0.005665567257549
1003 => 0.0059190837270856
1004 => 0.0061597010448555
1005 => 0.0060085736186712
1006 => 0.0061510799746342
1007 => 0.0063052122173218
1008 => 0.0066025583205214
1009 => 0.0065024226137258
1010 => 0.006425720231647
1011 => 0.0063532368512057
1012 => 0.0065040632594914
1013 => 0.0066980990242403
1014 => 0.0067398924695157
1015 => 0.0068076138171868
1016 => 0.0067364131006831
1017 => 0.0068221665212102
1018 => 0.0071249137776333
1019 => 0.0070431087965238
1020 => 0.0069269325725414
1021 => 0.0071659224553318
1022 => 0.0072524119648641
1023 => 0.0078594406376689
1024 => 0.0086258394121888
1025 => 0.0083085452870919
1026 => 0.0081115905846268
1027 => 0.0081578796115341
1028 => 0.008437742499753
1029 => 0.0085276255770449
1030 => 0.0082832923884109
1031 => 0.0083695950012441
1101 => 0.0088451308830406
1102 => 0.0091002406266068
1103 => 0.0087537673290343
1104 => 0.0077978612423621
1105 => 0.0069164721746834
1106 => 0.0071502562448988
1107 => 0.0071237523865007
1108 => 0.0076346563671816
1109 => 0.007041157774779
1110 => 0.0070511507689631
1111 => 0.0075726197029079
1112 => 0.0074335007315722
1113 => 0.0072081458150201
1114 => 0.0069181175149669
1115 => 0.0063819733779479
1116 => 0.0059070955643049
1117 => 0.0068384403146879
1118 => 0.0067982790355109
1119 => 0.0067401195516944
1120 => 0.0068695471894145
1121 => 0.0074980110595076
1122 => 0.0074835229331629
1123 => 0.0073913568652651
1124 => 0.0074612640154512
1125 => 0.0071958907535963
1126 => 0.0072642834856132
1127 => 0.0069163325581519
1128 => 0.0070736209090787
1129 => 0.0072076623045812
1130 => 0.0072345730992451
1201 => 0.007295204493722
1202 => 0.0067771158663272
1203 => 0.0070097224497445
1204 => 0.0071463570252128
1205 => 0.0065290370424389
1206 => 0.0071341545939884
1207 => 0.0067680970959674
1208 => 0.00664385168314
1209 => 0.0068111317634237
1210 => 0.0067459425534519
1211 => 0.006689896698757
1212 => 0.0066586221488473
1213 => 0.0067814541777789
1214 => 0.0067757239168132
1215 => 0.0065747468768116
1216 => 0.0063125805210018
1217 => 0.0064005721553288
1218 => 0.0063686039696518
1219 => 0.0062527471407804
1220 => 0.0063308206548329
1221 => 0.0059870244110469
1222 => 0.0053955408425869
1223 => 0.0057862930055433
1224 => 0.005771249472326
1225 => 0.0057636638407079
1226 => 0.0060573032915731
1227 => 0.0060290766337872
1228 => 0.0059778449735095
1229 => 0.006251806231163
1230 => 0.0061518066868206
1231 => 0.0064599817196281
]
'min_raw' => 0.0027664115420134
'max_raw' => 0.0091002406266068
'avg_raw' => 0.0059333260843101
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002766'
'max' => '$0.00910024'
'avg' => '$0.005933'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0015070696841491
'max_diff' => 0.0060157189874568
'year' => 2029
]
4 => [
'items' => [
101 => 0.0066629657277466
102 => 0.006611482417443
103 => 0.0068023898581853
104 => 0.0064025993048656
105 => 0.0065353936898654
106 => 0.0065627624285688
107 => 0.0062484255917695
108 => 0.0060336948640859
109 => 0.0060193747726589
110 => 0.0056470612825727
111 => 0.0058459481437673
112 => 0.006020960351121
113 => 0.0059371430852945
114 => 0.0059106090429034
115 => 0.0060461657109478
116 => 0.0060566996250192
117 => 0.0058165252678572
118 => 0.0058664651220439
119 => 0.0060747226158124
120 => 0.0058612175675346
121 => 0.0054464121345824
122 => 0.0053435346520765
123 => 0.005329808899502
124 => 0.0050507970076298
125 => 0.0053504094173853
126 => 0.0052196205714137
127 => 0.0056327809687472
128 => 0.0053967859656139
129 => 0.0053866126927061
130 => 0.0053712342986112
131 => 0.0051310772374408
201 => 0.0051836563710597
202 => 0.005358437419237
203 => 0.0054208012662761
204 => 0.005414296206098
205 => 0.0053575808967494
206 => 0.0053835448749398
207 => 0.0052999058547389
208 => 0.0052703711759103
209 => 0.0051771516053738
210 => 0.0050401445892488
211 => 0.0050591962551539
212 => 0.0047877495063744
213 => 0.00463985091087
214 => 0.0045989145289065
215 => 0.0045441726880958
216 => 0.0046050977654886
217 => 0.0047869805318406
218 => 0.0045675913270386
219 => 0.004191463923769
220 => 0.0042140698215954
221 => 0.0042648585622601
222 => 0.0041702140800327
223 => 0.0040806410205137
224 => 0.0041585175284734
225 => 0.0039991473893081
226 => 0.0042841176821784
227 => 0.0042764100343762
228 => 0.0043826293371136
301 => 0.0044490504469547
302 => 0.0042959712928605
303 => 0.0042574722995759
304 => 0.0042794030758325
305 => 0.0039169361957183
306 => 0.0043530080600101
307 => 0.0043567792276007
308 => 0.0043244882011471
309 => 0.0045566830066742
310 => 0.0050466864697122
311 => 0.0048623274565737
312 => 0.0047909380744058
313 => 0.0046552268067192
314 => 0.0048360540131738
315 => 0.0048221693050619
316 => 0.0047593773893609
317 => 0.0047214006428223
318 => 0.0047913739627504
319 => 0.0047127301741227
320 => 0.0046986035886984
321 => 0.0046130118509036
322 => 0.0045824594946868
323 => 0.0045598397464682
324 => 0.0045349376262501
325 => 0.0045898654982295
326 => 0.0044653917139608
327 => 0.0043152885324483
328 => 0.0043028090770445
329 => 0.0043372659506194
330 => 0.0043220213490751
331 => 0.0043027360917573
401 => 0.0042659152835104
402 => 0.0042549913362557
403 => 0.0042904888652879
404 => 0.004250414224645
405 => 0.0043095465398922
406 => 0.0042934658220852
407 => 0.0042036402396108
408 => 0.0040916843061576
409 => 0.0040906876635144
410 => 0.0040665669412964
411 => 0.004035845574977
412 => 0.0040272995936766
413 => 0.0041519589861883
414 => 0.0044100001979459
415 => 0.004359340533675
416 => 0.004395947332922
417 => 0.004576016554136
418 => 0.0046332551446896
419 => 0.004592628548885
420 => 0.0045370163588084
421 => 0.0045394630129351
422 => 0.0047295067013817
423 => 0.0047413594931178
424 => 0.0047713076739793
425 => 0.0048097995497413
426 => 0.0045991838817708
427 => 0.004529543033914
428 => 0.0044965433366724
429 => 0.004394917041658
430 => 0.0045045122880509
501 => 0.0044406558313141
502 => 0.0044492722489751
503 => 0.0044436607956698
504 => 0.0044467250286193
505 => 0.0042840380271738
506 => 0.0043433126199235
507 => 0.0042447571129808
508 => 0.0041128023525594
509 => 0.0041123599939332
510 => 0.0041446557346061
511 => 0.0041254449643214
512 => 0.0040737492754392
513 => 0.0040810924040482
514 => 0.0040167588706308
515 => 0.0040889036598013
516 => 0.0040909725142082
517 => 0.0040631928406244
518 => 0.0041743418424038
519 => 0.0042198796791218
520 => 0.0042015945028706
521 => 0.0042185967424115
522 => 0.0043614456714401
523 => 0.0043847362798075
524 => 0.0043950804295531
525 => 0.0043812206392313
526 => 0.0042212077586026
527 => 0.0042283050102858
528 => 0.0041762300865351
529 => 0.004132232263486
530 => 0.0041339919456698
531 => 0.0041566125460336
601 => 0.0042553980345034
602 => 0.0044632862712653
603 => 0.0044711754778861
604 => 0.0044807374264549
605 => 0.0044418441761753
606 => 0.0044301135997327
607 => 0.0044455892579792
608 => 0.0045236611494627
609 => 0.0047244832506702
610 => 0.0046534993076463
611 => 0.004595788257037
612 => 0.0046464164072089
613 => 0.0046386226003265
614 => 0.004572835026829
615 => 0.0045709885887532
616 => 0.0044447212016519
617 => 0.0043980430236098
618 => 0.0043590352442368
619 => 0.0043164397674853
620 => 0.0042911877410538
621 => 0.0043299863304934
622 => 0.0043388600269497
623 => 0.0042540262330566
624 => 0.0042424637004206
625 => 0.0043117408077783
626 => 0.0042812545357411
627 => 0.0043126104225546
628 => 0.0043198852572611
629 => 0.0043187138413197
630 => 0.0042868826719868
701 => 0.0043071709101004
702 => 0.0042591831787467
703 => 0.0042070037284237
704 => 0.0041737164900122
705 => 0.0041446689595868
706 => 0.0041607862177192
707 => 0.0041033311353722
708 => 0.0040849500981871
709 => 0.0043002977115273
710 => 0.0044593773088788
711 => 0.0044570642285308
712 => 0.0044429839467888
713 => 0.004422063504201
714 => 0.004522130688782
715 => 0.0044872692825805
716 => 0.0045126338683601
717 => 0.0045190902199893
718 => 0.0045386316518422
719 => 0.0045456160340868
720 => 0.0045245043799783
721 => 0.0044536510902186
722 => 0.0042770914286663
723 => 0.0041949024296
724 => 0.004167778690942
725 => 0.0041687645873269
726 => 0.0041415691637961
727 => 0.0041495794348393
728 => 0.0041387835184242
729 => 0.0041183386645466
730 => 0.0041595238056044
731 => 0.0041642700094451
801 => 0.0041546569053965
802 => 0.0041569211393994
803 => 0.0040773287436869
804 => 0.0040833799806673
805 => 0.0040496859242063
806 => 0.0040433686948078
807 => 0.0039581930541515
808 => 0.0038072920603223
809 => 0.0038909058592176
810 => 0.0037899121480314
811 => 0.0037516642993007
812 => 0.0039327236664308
813 => 0.003914550327776
814 => 0.0038834454717595
815 => 0.0038374349068912
816 => 0.0038203691408195
817 => 0.0037166829485329
818 => 0.0037105566151483
819 => 0.0037619462918082
820 => 0.0037382317242404
821 => 0.0037049274899663
822 => 0.0035843029294213
823 => 0.0034486809859492
824 => 0.0034527745599335
825 => 0.003495913376816
826 => 0.0036213453049639
827 => 0.0035723368806421
828 => 0.0035367807064898
829 => 0.0035301221038857
830 => 0.0036134684562043
831 => 0.0037314210063358
901 => 0.0037867617038179
902 => 0.0037319207533351
903 => 0.0036689224222669
904 => 0.0036727568387729
905 => 0.0036982654939382
906 => 0.0037009460929231
907 => 0.0036599406557308
908 => 0.0036714834461097
909 => 0.0036539488920293
910 => 0.0035463393660038
911 => 0.0035443930509115
912 => 0.0035179839377869
913 => 0.0035171842803371
914 => 0.00347225579085
915 => 0.0034659699845948
916 => 0.0033767617417539
917 => 0.0034354788773392
918 => 0.0033960945055766
919 => 0.0033367329674962
920 => 0.0033264990159564
921 => 0.0033261913710152
922 => 0.0033871423976268
923 => 0.0034347666291059
924 => 0.0033967796135853
925 => 0.0033881307064986
926 => 0.0034804784067982
927 => 0.0034687263201671
928 => 0.0034585490889374
929 => 0.0037208596491864
930 => 0.0035132203724011
1001 => 0.0034226777960871
1002 => 0.0033106141643296
1003 => 0.0033471026479037
1004 => 0.0033547913075201
1005 => 0.0030852984741313
1006 => 0.0029759652651886
1007 => 0.0029384462280146
1008 => 0.0029168534916796
1009 => 0.002926693572772
1010 => 0.0028282808612172
1011 => 0.002894415830978
1012 => 0.0028091987413911
1013 => 0.0027949118190014
1014 => 0.0029472905315546
1015 => 0.0029684931392228
1016 => 0.0028780362277762
1017 => 0.0029361242085687
1018 => 0.00291506069925
1019 => 0.0028106595438042
1020 => 0.002806672187589
1021 => 0.0027542873576644
1022 => 0.0026723152425342
1023 => 0.0026348517863142
1024 => 0.0026153404930421
1025 => 0.0026233912329137
1026 => 0.0026193205324779
1027 => 0.0025927564586067
1028 => 0.0026208431540974
1029 => 0.0025490932533424
1030 => 0.0025205218647335
1031 => 0.0025076168313501
1101 => 0.0024439346646598
1102 => 0.0025452813114521
1103 => 0.0025652478776016
1104 => 0.0025852537840544
1105 => 0.0027593915411136
1106 => 0.0027506921108791
1107 => 0.0028293307234045
1108 => 0.0028262749715289
1109 => 0.0028038459653756
1110 => 0.0027092216778072
1111 => 0.0027469372323162
1112 => 0.0026308546178361
1113 => 0.0027178316054551
1114 => 0.0026781389405516
1115 => 0.002704411475524
1116 => 0.0026571710887447
1117 => 0.0026833158692961
1118 => 0.0025699826911464
1119 => 0.0024641537640311
1120 => 0.0025067424136413
1121 => 0.0025530411463704
1122 => 0.0026534285956248
1123 => 0.0025936386590274
1124 => 0.0026151413811356
1125 => 0.0025431108615852
1126 => 0.0023944913252518
1127 => 0.0023953324956874
1128 => 0.0023724706178752
1129 => 0.0023527146175565
1130 => 0.002600506252483
1201 => 0.0025696894456738
1202 => 0.0025205868972273
1203 => 0.0025863126095806
1204 => 0.0026036915311341
1205 => 0.0026041862845989
1206 => 0.0026521380677057
1207 => 0.0026777299429456
1208 => 0.0026822406218782
1209 => 0.0027576937886635
1210 => 0.0027829846949186
1211 => 0.0028871543584804
1212 => 0.002675558651132
1213 => 0.0026712009767835
1214 => 0.00258723750514
1215 => 0.0025339865440138
1216 => 0.0025908836440065
1217 => 0.0026412867073715
1218 => 0.0025888036688168
1219 => 0.0025956568456746
1220 => 0.0025252026544368
1221 => 0.0025503867126265
1222 => 0.0025720786161985
1223 => 0.0025601016220372
1224 => 0.0025421714820846
1225 => 0.0026371542309645
1226 => 0.0026317949320323
1227 => 0.0027202450514332
1228 => 0.0027891982446349
1229 => 0.00291277469371
1230 => 0.0027838162269141
1231 => 0.0027791164678206
]
'min_raw' => 0.0023527146175565
'max_raw' => 0.0068023898581853
'avg_raw' => 0.0045775522378709
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002352'
'max' => '$0.0068023'
'avg' => '$0.004577'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00041369692445686
'max_diff' => -0.0022978507684214
'year' => 2030
]
5 => [
'items' => [
101 => 0.0028250573668249
102 => 0.0027829776616064
103 => 0.0028095705827624
104 => 0.0029084901629868
105 => 0.0029105801778415
106 => 0.0028755697361931
107 => 0.002873439347637
108 => 0.0028801634859279
109 => 0.002919546973922
110 => 0.0029057851730845
111 => 0.0029217106774198
112 => 0.0029416257644511
113 => 0.0030240030082344
114 => 0.0030438638828237
115 => 0.0029956122542545
116 => 0.0029999688360637
117 => 0.002981921402442
118 => 0.0029644878076972
119 => 0.0030036759827116
120 => 0.003075293142796
121 => 0.00307484761616
122 => 0.003091461405261
123 => 0.0031018116582348
124 => 0.0030573807956229
125 => 0.0030284579378307
126 => 0.0030395488019175
127 => 0.0030572833351199
128 => 0.00303379773182
129 => 0.0028888337086637
130 => 0.0029328065329517
131 => 0.0029254873048289
201 => 0.0029150638339335
202 => 0.0029592788487869
203 => 0.002955014202741
204 => 0.0028272714966168
205 => 0.0028354491702027
206 => 0.0028277688080329
207 => 0.0028525856294578
208 => 0.0027816374718075
209 => 0.0028034606472576
210 => 0.0028171479383204
211 => 0.0028252098579071
212 => 0.0028543350395641
213 => 0.0028509175356583
214 => 0.002854122602723
215 => 0.0028973075583575
216 => 0.00311572224467
217 => 0.0031276100741412
218 => 0.0030690700540559
219 => 0.0030924556374291
220 => 0.0030475604312174
221 => 0.0030776988839191
222 => 0.0030983188478239
223 => 0.0030051411959292
224 => 0.0029996238201019
225 => 0.0029545433154041
226 => 0.0029787670251384
227 => 0.0029402253612047
228 => 0.0029496821374039
301 => 0.0029232401667241
302 => 0.0029708304494038
303 => 0.0030240437802221
304 => 0.0030374875690449
305 => 0.0030021227485671
306 => 0.0029765162878859
307 => 0.0029315597782223
308 => 0.003006323455714
309 => 0.0030281866333944
310 => 0.0030062086177491
311 => 0.003001115831295
312 => 0.0029914650101669
313 => 0.0030031632986197
314 => 0.0030280675618334
315 => 0.0030163231712113
316 => 0.0030240805481267
317 => 0.0029945174266976
318 => 0.0030573955040872
319 => 0.0031572610234154
320 => 0.0031575821073897
321 => 0.003145837653461
322 => 0.0031410320759511
323 => 0.003153082598395
324 => 0.0031596195124825
325 => 0.0031985886923782
326 => 0.0032404041750069
327 => 0.0034355387869106
328 => 0.0033807457687318
329 => 0.0035538808050227
330 => 0.0036908081399581
331 => 0.0037318666605985
401 => 0.003694094753562
402 => 0.0035648790999884
403 => 0.0035585391635682
404 => 0.003751641903449
405 => 0.0036970815347669
406 => 0.0036905917525218
407 => 0.0036215514340943
408 => 0.0036623628130947
409 => 0.0036534367658405
410 => 0.0036393465635726
411 => 0.0037172118317601
412 => 0.0038629686627268
413 => 0.0038402510937218
414 => 0.0038232934822972
415 => 0.0037489901653211
416 => 0.0037937373583874
417 => 0.0037778037400125
418 => 0.003846264676275
419 => 0.0038057099342285
420 => 0.0036966681863125
421 => 0.0037140334440744
422 => 0.0037114087202978
423 => 0.0037654253496316
424 => 0.0037492108982808
425 => 0.0037082425884389
426 => 0.0038624704817244
427 => 0.003852455780195
428 => 0.0038666543372841
429 => 0.0038729049812197
430 => 0.0039667807820623
501 => 0.0040052386939769
502 => 0.0040139693132821
503 => 0.0040505013551593
504 => 0.0040130603628002
505 => 0.0041628510272117
506 => 0.0042624530785177
507 => 0.0043781459865844
508 => 0.0045472044205918
509 => 0.0046107719556566
510 => 0.0045992890494181
511 => 0.0047274672246453
512 => 0.0049578005562879
513 => 0.004645846001225
514 => 0.004974334905191
515 => 0.0048703391107822
516 => 0.0046237669530432
517 => 0.0046078906129796
518 => 0.004774872140962
519 => 0.0051452210986506
520 => 0.0050524528852127
521 => 0.0051453728342145
522 => 0.0050369767779703
523 => 0.005031594000144
524 => 0.0051401082797073
525 => 0.0053936578087122
526 => 0.0052732059316439
527 => 0.0051005086298546
528 => 0.0052280256300282
529 => 0.0051175586033366
530 => 0.0048686454744264
531 => 0.0050523819471083
601 => 0.0049295226003394
602 => 0.0049653794892886
603 => 0.0052236115622483
604 => 0.0051925403960324
605 => 0.0052327493622282
606 => 0.0051617815893445
607 => 0.0050954864988805
608 => 0.0049717417893914
609 => 0.0049351070814522
610 => 0.0049452315967479
611 => 0.0049351020642452
612 => 0.0048658680365586
613 => 0.0048509169548716
614 => 0.0048259978303712
615 => 0.0048337213090389
616 => 0.0047868660646312
617 => 0.0048752915916161
618 => 0.0048917041486275
619 => 0.0049560528730901
620 => 0.0049627337711325
621 => 0.0051419440528141
622 => 0.0050432380411703
623 => 0.005109458555648
624 => 0.0051035351695415
625 => 0.0046291109193736
626 => 0.0046944823951661
627 => 0.0047961798968001
628 => 0.0047503653101617
629 => 0.0046855942036172
630 => 0.0046332880622755
701 => 0.0045540389095653
702 => 0.0046655805701598
703 => 0.0048122459927083
704 => 0.0049664534482832
705 => 0.0051517236020837
706 => 0.0051103734605377
707 => 0.0049629899516291
708 => 0.004969601468175
709 => 0.005010471261926
710 => 0.0049575411656061
711 => 0.0049419310468832
712 => 0.0050083266713232
713 => 0.0050087839014983
714 => 0.0049478814288665
715 => 0.004880199475571
716 => 0.0048799158857154
717 => 0.0048678725358566
718 => 0.0050391192631557
719 => 0.0051332876481732
720 => 0.0051440839017555
721 => 0.0051325609742871
722 => 0.0051369956917411
723 => 0.0050822011833581
724 => 0.0052074451807148
725 => 0.0053223814580368
726 => 0.0052915760804591
727 => 0.0052453944402276
728 => 0.0052086085393741
729 => 0.0052829104912908
730 => 0.005279601942334
731 => 0.0053213775899227
801 => 0.0053194824052402
802 => 0.0053054348262177
803 => 0.0052915765821424
804 => 0.0053465229534362
805 => 0.0053306992809153
806 => 0.0053148510298604
807 => 0.0052830649361239
808 => 0.0052873851941738
809 => 0.0052412115278536
810 => 0.0052198494770507
811 => 0.0048986154877014
812 => 0.0048127712691238
813 => 0.0048397796078085
814 => 0.0048486714541747
815 => 0.0048113119402374
816 => 0.0048648758863518
817 => 0.0048565280020882
818 => 0.0048890047364091
819 => 0.0048687146827813
820 => 0.0048695473936596
821 => 0.0049292161150836
822 => 0.0049465381987619
823 => 0.0049377280471968
824 => 0.0049438983753587
825 => 0.0050860909835168
826 => 0.0050658757417003
827 => 0.0050551367973901
828 => 0.0050581115583553
829 => 0.0050944448183836
830 => 0.005104616147469
831 => 0.0050615195114073
901 => 0.0050818441341127
902 => 0.0051683837980137
903 => 0.0051986677826582
904 => 0.0052953197245064
905 => 0.005254260261758
906 => 0.0053296266826446
907 => 0.0055612773661436
908 => 0.0057463359611307
909 => 0.0055761484293107
910 => 0.0059159849719345
911 => 0.0061805964670238
912 => 0.0061704402371088
913 => 0.0061242991023658
914 => 0.0058230459502672
915 => 0.0055458283082745
916 => 0.0057777326370842
917 => 0.0057783238089099
918 => 0.0057584030213994
919 => 0.0056346767210531
920 => 0.0057540976143396
921 => 0.0057635768111757
922 => 0.0057582709816694
923 => 0.0056634103172856
924 => 0.0055185756159527
925 => 0.0055468759699079
926 => 0.005593232526998
927 => 0.0055054698934355
928 => 0.0054774244142868
929 => 0.005529566295895
930 => 0.0056975783026289
1001 => 0.0056658166059831
1002 => 0.0056649871797246
1003 => 0.0058008771870307
1004 => 0.0057036092686986
1005 => 0.0055472329280015
1006 => 0.005507745839625
1007 => 0.0053675932775783
1008 => 0.0054643971513902
1009 => 0.0054678809504721
1010 => 0.0054148624580969
1011 => 0.0055515350864562
1012 => 0.0055502756241251
1013 => 0.0056800259437161
1014 => 0.0059280598227794
1015 => 0.0058547039997345
1016 => 0.005769399158624
1017 => 0.0057786741600994
1018 => 0.0058803980336301
1019 => 0.0058188934575633
1020 => 0.005841010931942
1021 => 0.0058803645561837
1022 => 0.0059041075747841
1023 => 0.0057752579051071
1024 => 0.0057452168835133
1025 => 0.005683763496298
1026 => 0.0056677314546554
1027 => 0.0057177839562752
1028 => 0.0057045968904794
1029 => 0.0054675881506492
1030 => 0.0054428194186328
1031 => 0.0054435790402821
1101 => 0.0053812968859378
1102 => 0.0052863016511329
1103 => 0.0055359434563294
1104 => 0.0055158937256373
1105 => 0.0054937603746791
1106 => 0.0054964715838803
1107 => 0.0056048326303703
1108 => 0.0055419777510421
1109 => 0.0057090877494483
1110 => 0.0056747349575623
1111 => 0.0056395011461895
1112 => 0.0056346307602096
1113 => 0.0056210687488386
1114 => 0.0055745595656451
1115 => 0.0055183969321705
1116 => 0.0054813134968265
1117 => 0.0050562219596873
1118 => 0.0051351164763366
1119 => 0.0052258774262802
1120 => 0.005257207742499
1121 => 0.0052036150686148
1122 => 0.0055766757310613
1123 => 0.0056448375089923
1124 => 0.0054383710375566
1125 => 0.0053997495907215
1126 => 0.005579207746686
1127 => 0.0054709725407721
1128 => 0.0055197108473678
1129 => 0.0054143652869362
1130 => 0.0056284193326985
1201 => 0.0056267885995084
1202 => 0.005543516741077
1203 => 0.0056138975456022
1204 => 0.0056016671488294
1205 => 0.0055076534257498
1206 => 0.0056313997354094
1207 => 0.0056314611120351
1208 => 0.0055513137587812
1209 => 0.0054577191966923
1210 => 0.0054409866995956
1211 => 0.005428381010728
1212 => 0.0055166106206491
1213 => 0.0055957170130176
1214 => 0.0057429143970774
1215 => 0.0057799233167537
1216 => 0.0059243715940733
1217 => 0.0058383596779884
1218 => 0.0058764876463481
1219 => 0.0059178809495329
1220 => 0.005937726421268
1221 => 0.0059053892900423
1222 => 0.0061297769220027
1223 => 0.0061487221131995
1224 => 0.0061550742719325
1225 => 0.0060794120249383
1226 => 0.0061466178092386
1227 => 0.0061151744483861
1228 => 0.006196981338107
1229 => 0.0062098097029781
1230 => 0.0061989445343146
1231 => 0.0062030164598066
]
'min_raw' => 0.0027816374718075
'max_raw' => 0.0062098097029781
'avg_raw' => 0.0044957235873928
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002781'
'max' => '$0.0062098'
'avg' => '$0.004495'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00042892285425102
'max_diff' => -0.00059258015520726
'year' => 2031
]
6 => [
'items' => [
101 => 0.0060115412006193
102 => 0.006001612198318
103 => 0.0058662295474095
104 => 0.0059213989783528
105 => 0.0058182623715441
106 => 0.0058509680519879
107 => 0.0058653844042963
108 => 0.0058578541199712
109 => 0.0059245181752027
110 => 0.0058678401096892
111 => 0.0057182573760623
112 => 0.0055686338887196
113 => 0.0055667554877167
114 => 0.0055273622645733
115 => 0.0054988881794693
116 => 0.0055043732984328
117 => 0.0055237035730953
118 => 0.0054977646687654
119 => 0.00550330004914
120 => 0.0055952242454052
121 => 0.0056136589873929
122 => 0.0055510105312003
123 => 0.005299467939458
124 => 0.0052377387564976
125 => 0.0052821084690666
126 => 0.0052609026042341
127 => 0.0042459589982303
128 => 0.0044844049435896
129 => 0.0043427284597163
130 => 0.0044080195017067
131 => 0.0042634044986197
201 => 0.0043324223580145
202 => 0.004319677279513
203 => 0.0047030913035223
204 => 0.0046971048209061
205 => 0.0046999702333368
206 => 0.004563196632225
207 => 0.0047810806926041
208 => 0.0048884182156042
209 => 0.0048685528967926
210 => 0.004873552569556
211 => 0.0047876416267724
212 => 0.004700802039055
213 => 0.0046044835717597
214 => 0.004783431378672
215 => 0.0047635354372843
216 => 0.004809169568494
217 => 0.0049252300127301
218 => 0.0049423203540146
219 => 0.0049652899460141
220 => 0.0049570569823692
221 => 0.0051531995777599
222 => 0.0051294454152675
223 => 0.0051866861123351
224 => 0.005068937655605
225 => 0.0049356941000288
226 => 0.0049610193438838
227 => 0.0049585803192479
228 => 0.0049275287362496
229 => 0.0048994967555288
301 => 0.0048528314055904
302 => 0.005000487477968
303 => 0.0049944929110811
304 => 0.005091537981058
305 => 0.0050743843222941
306 => 0.0049598279908562
307 => 0.0049639193926445
308 => 0.0049914360359313
309 => 0.0050866714525265
310 => 0.0051149438082936
311 => 0.0051018469266437
312 => 0.0051328462740603
313 => 0.0051573468943131
314 => 0.0051359231747458
315 => 0.0054392378651918
316 => 0.0053132804586922
317 => 0.0053746712222141
318 => 0.0053893125575787
319 => 0.0053518090849164
320 => 0.0053599422452382
321 => 0.0053722617669721
322 => 0.0054470634905311
323 => 0.0056433648572029
324 => 0.0057303053962333
325 => 0.0059918702974768
326 => 0.0057230861947375
327 => 0.0057071376584202
328 => 0.0057542533956374
329 => 0.005907819682124
330 => 0.0060322707335736
331 => 0.0060735583270928
401 => 0.0060790151641603
402 => 0.0061564734343497
403 => 0.006200871070311
404 => 0.0061470679629939
405 => 0.0061014754629628
406 => 0.0059381687870009
407 => 0.0059570719794129
408 => 0.0060872962297369
409 => 0.0062712456534897
410 => 0.0064290933957452
411 => 0.0063738206179566
412 => 0.006795512895984
413 => 0.0068373219628919
414 => 0.0068315453016942
415 => 0.0069267925781338
416 => 0.0067377461311717
417 => 0.006656925112493
418 => 0.0061113330789664
419 => 0.0062646221859775
420 => 0.0064874369053718
421 => 0.0064579465417476
422 => 0.006296132536669
423 => 0.0064289706453122
424 => 0.006385050212363
425 => 0.0063504083446356
426 => 0.0065091094563514
427 => 0.0063346110649375
428 => 0.0064856961504331
429 => 0.0062919279655099
430 => 0.0063740730993497
501 => 0.0063274435484692
502 => 0.0063576185825917
503 => 0.0061812159496887
504 => 0.0062763985284713
505 => 0.0061772560414801
506 => 0.0061772090350325
507 => 0.0061750204591372
508 => 0.0062916611554173
509 => 0.0062954648043354
510 => 0.0062092671535502
511 => 0.0061968447254116
512 => 0.0062427769530979
513 => 0.0061890023441468
514 => 0.0062141631452217
515 => 0.0061897644391796
516 => 0.0061842717765342
517 => 0.0061405053060758
518 => 0.0061216495072181
519 => 0.0061290433518043
520 => 0.0061038043484436
521 => 0.0060885969359841
522 => 0.006171995322034
523 => 0.0061274389286488
524 => 0.0061651664157191
525 => 0.0061221711826141
526 => 0.0059731309725407
527 => 0.0058874163716559
528 => 0.0056058932308621
529 => 0.0056857328443628
530 => 0.0057386665907139
531 => 0.0057211719878606
601 => 0.005758757164302
602 => 0.0057610645888813
603 => 0.0057488452648847
604 => 0.005734696853089
605 => 0.0057278101886831
606 => 0.0057791377430264
607 => 0.0058089351159288
608 => 0.0057439792003224
609 => 0.0057287609381256
610 => 0.0057944349551181
611 => 0.0058344960675449
612 => 0.0061302848133095
613 => 0.0061083718276382
614 => 0.0061633691214669
615 => 0.0061571772701841
616 => 0.0062148231958726
617 => 0.0063090499213873
618 => 0.006117460642209
619 => 0.0061507139164155
620 => 0.0061425609815103
621 => 0.006231572586991
622 => 0.0062318504715073
623 => 0.0061784835675622
624 => 0.00620741463197
625 => 0.0061912661054998
626 => 0.0062204486754357
627 => 0.0061080791663549
628 => 0.0062449330988764
629 => 0.0063225204599435
630 => 0.0063235977605272
701 => 0.0063603735539016
702 => 0.0063977398898803
703 => 0.0064694613178695
704 => 0.0063957396181806
705 => 0.006263121457103
706 => 0.0062726960599787
707 => 0.006194942080662
708 => 0.0061962491391018
709 => 0.0061892719587145
710 => 0.0062102110022742
711 => 0.0061126741089116
712 => 0.0061355658228299
713 => 0.0061035172892906
714 => 0.0061506442491626
715 => 0.0060999434307059
716 => 0.0061425570499183
717 => 0.0061609476753065
718 => 0.0062288094789107
719 => 0.0060899201871368
720 => 0.0058067155192314
721 => 0.0058662485739498
722 => 0.0057781945098007
723 => 0.0057863442486832
724 => 0.0058028080182471
725 => 0.0057494435544803
726 => 0.0057596238124595
727 => 0.0057592601020071
728 => 0.0057561258418207
729 => 0.0057422436837615
730 => 0.0057221118080746
731 => 0.005802311004547
801 => 0.0058159384108115
802 => 0.0058462304468592
803 => 0.0059363589988527
804 => 0.005927353031131
805 => 0.0059420421381392
806 => 0.0059099759000161
807 => 0.0057878317095015
808 => 0.0057944647266999
809 => 0.0057117508959493
810 => 0.0058441152682409
811 => 0.0058127696377579
812 => 0.0057925609058701
813 => 0.0057870467661419
814 => 0.005877398729383
815 => 0.0059044334528783
816 => 0.0058875872274289
817 => 0.0058530351275492
818 => 0.0059193853737295
819 => 0.0059371379005152
820 => 0.0059411120365745
821 => 0.0060586719514083
822 => 0.005947682329886
823 => 0.0059743986349284
824 => 0.0061828316203634
825 => 0.0059938116643597
826 => 0.0060939397507029
827 => 0.0060890390019178
828 => 0.0061402611427413
829 => 0.006084837291308
830 => 0.0060855243363714
831 => 0.0061310061273343
901 => 0.0060671351546112
902 => 0.0060513198035454
903 => 0.0060294710093198
904 => 0.0060771770521893
905 => 0.0061057746673309
906 => 0.0063362504427381
907 => 0.0064851483046234
908 => 0.0064786842557488
909 => 0.0065377535622703
910 => 0.0065111422986695
911 => 0.0064252075088059
912 => 0.0065718877164719
913 => 0.0065254719614058
914 => 0.0065292984198583
915 => 0.0065291559988836
916 => 0.0065600184182668
917 => 0.0065381495656346
918 => 0.0064950438123049
919 => 0.0065236594230264
920 => 0.0066086375566014
921 => 0.0068724122906656
922 => 0.0070200241263983
923 => 0.0068635258728076
924 => 0.0069714762725394
925 => 0.0069067444993606
926 => 0.0068949808105706
927 => 0.006962781639074
928 => 0.0070307011439524
929 => 0.0070263749651158
930 => 0.0069770688922792
1001 => 0.0069492171428292
1002 => 0.0071601199206857
1003 => 0.0073155094947753
1004 => 0.0073049129675673
1005 => 0.0073516825924882
1006 => 0.0074889996577857
1007 => 0.007501554209323
1008 => 0.0074999726243924
1009 => 0.0074688548584752
1010 => 0.0076040613421348
1011 => 0.0077168529695354
1012 => 0.007461651994744
1013 => 0.0075588291851185
1014 => 0.0076024551567312
1015 => 0.007666511026301
1016 => 0.0077745840152757
1017 => 0.0078919799462468
1018 => 0.0079085810180669
1019 => 0.0078968017631761
1020 => 0.0078193759909287
1021 => 0.0079478320194219
1022 => 0.0080230785482487
1023 => 0.0080678861341789
1024 => 0.0081815107168265
1025 => 0.0076027245758798
1026 => 0.0071930309777801
1027 => 0.0071290514063895
1028 => 0.0072591563806846
1029 => 0.0072934640248385
1030 => 0.0072796346564982
1031 => 0.0068184872641246
1101 => 0.0071266235608053
1102 => 0.0074581523071981
1103 => 0.0074708876765404
1104 => 0.0076368578989238
1105 => 0.0076909046066811
1106 => 0.0078245323899141
1107 => 0.0078161739356899
1108 => 0.0078487101744247
1109 => 0.0078412306565887
1110 => 0.0080887479863782
1111 => 0.0083617963578153
1112 => 0.0083523415609531
1113 => 0.0083130876269973
1114 => 0.008371386412712
1115 => 0.0086532015936768
1116 => 0.0086272565678098
1117 => 0.0086524599504475
1118 => 0.0089847359312126
1119 => 0.0094167419719143
1120 => 0.009216031793311
1121 => 0.0096515151280821
1122 => 0.0099256288033408
1123 => 0.010399680060818
1124 => 0.01034032650863
1125 => 0.010524871184417
1126 => 0.010234071262754
1127 => 0.0095663358622543
1128 => 0.0094606641791368
1129 => 0.0096722215647712
1130 => 0.010192314753885
1201 => 0.0096558419793914
1202 => 0.009764369722968
1203 => 0.0097331137255169
1204 => 0.0097314482262421
1205 => 0.0097950135594835
1206 => 0.0097028087282721
1207 => 0.0093271496585841
1208 => 0.0094993119964493
1209 => 0.0094328318498851
1210 => 0.0095065965289214
1211 => 0.0099046740788124
1212 => 0.009728674505022
1213 => 0.0095432732510782
1214 => 0.0097758075673556
1215 => 0.010071903659437
1216 => 0.01005337449813
1217 => 0.010017420180607
1218 => 0.01022009278598
1219 => 0.010554848552554
1220 => 0.010645331691101
1221 => 0.010712124494131
1222 => 0.010721334093195
1223 => 0.010816198687289
1224 => 0.010306087855889
1225 => 0.011115646845896
1226 => 0.011255435319854
1227 => 0.011229160880389
1228 => 0.011384529885995
1229 => 0.011338816383214
1230 => 0.011272584689914
1231 => 0.011518877611736
]
'min_raw' => 0.0042459589982303
'max_raw' => 0.011518877611736
'avg_raw' => 0.007882418304983
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.004245'
'max' => '$0.011518'
'avg' => '$0.007882'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0014643215264227
'max_diff' => 0.0053090679087575
'year' => 2032
]
7 => [
'items' => [
101 => 0.011236522651681
102 => 0.010835755333385
103 => 0.010615886456289
104 => 0.010905427529965
105 => 0.011082240160069
106 => 0.011199102061172
107 => 0.011234464401835
108 => 0.010345686307631
109 => 0.0098666842087483
110 => 0.010173719062362
111 => 0.010548322774185
112 => 0.010304006913356
113 => 0.010313583632549
114 => 0.0099652534200859
115 => 0.010579142268817
116 => 0.010489703827174
117 => 0.010953710620628
118 => 0.010842971675483
119 => 0.011221351202904
120 => 0.011121711192456
121 => 0.011535311305031
122 => 0.011700307587713
123 => 0.011977362025958
124 => 0.012181164398545
125 => 0.012300841049846
126 => 0.012293656112598
127 => 0.012767874627725
128 => 0.012488244537287
129 => 0.012136963239946
130 => 0.012130609669555
131 => 0.012312543231143
201 => 0.012693826065195
202 => 0.012792687156626
203 => 0.012847937019857
204 => 0.012763319931057
205 => 0.012459801509156
206 => 0.012328743793453
207 => 0.012440408764339
208 => 0.012303852100425
209 => 0.012539587213374
210 => 0.012863301873755
211 => 0.012796456076493
212 => 0.013019911554659
213 => 0.013251164466359
214 => 0.013581866516308
215 => 0.013668324278026
216 => 0.013811235670451
217 => 0.013958338437204
218 => 0.014005583881355
219 => 0.014095790093638
220 => 0.014095314662372
221 => 0.014367157154666
222 => 0.014667007841928
223 => 0.01478019453481
224 => 0.015040461093941
225 => 0.014594763732257
226 => 0.014932830300897
227 => 0.015237774808165
228 => 0.014874207395213
301 => 0.015375300373624
302 => 0.015394756678475
303 => 0.01568852378213
304 => 0.015390734543608
305 => 0.015213908244351
306 => 0.015724399144711
307 => 0.015971409611083
308 => 0.015897008048374
309 => 0.0153308084825
310 => 0.01500125604972
311 => 0.014138753767217
312 => 0.015160424978168
313 => 0.015658051222464
314 => 0.015329519750745
315 => 0.015495211915546
316 => 0.016399174640832
317 => 0.016743345119368
318 => 0.016671760065766
319 => 0.016683856761434
320 => 0.016869564904517
321 => 0.017693097082286
322 => 0.01719961751204
323 => 0.017576864153167
324 => 0.017776954411356
325 => 0.017962809394314
326 => 0.017506408296241
327 => 0.016912637173511
328 => 0.016724564934126
329 => 0.015296853770531
330 => 0.01522253520423
331 => 0.015180817940883
401 => 0.014917796496501
402 => 0.014711133688854
403 => 0.014546787751314
404 => 0.01411549493336
405 => 0.014261043598686
406 => 0.013573652864675
407 => 0.014013421096664
408 => 0.012916328887551
409 => 0.013830019879571
410 => 0.013332739413046
411 => 0.013666649872002
412 => 0.013665484889867
413 => 0.013050649868522
414 => 0.012696025859489
415 => 0.012922006080218
416 => 0.013164274815171
417 => 0.013203582102327
418 => 0.013517689841055
419 => 0.01360535055921
420 => 0.013339734490711
421 => 0.012893594090038
422 => 0.012997222329735
423 => 0.012693925836519
424 => 0.01216241039829
425 => 0.012544154065395
426 => 0.012674498137429
427 => 0.012732065505178
428 => 0.012209381116639
429 => 0.012045142333731
430 => 0.011957702983807
501 => 0.012826122099067
502 => 0.012873696058546
503 => 0.01263030095557
504 => 0.013730469900692
505 => 0.013481467785105
506 => 0.013759664155215
507 => 0.012987819153162
508 => 0.013017304671668
509 => 0.012651900878331
510 => 0.012856502586309
511 => 0.012711896693731
512 => 0.012839972790218
513 => 0.012916741074375
514 => 0.013282084908545
515 => 0.013834191519297
516 => 0.013227514722863
517 => 0.012963176954885
518 => 0.013127170619446
519 => 0.013563907359006
520 => 0.014225585875582
521 => 0.013833858876248
522 => 0.014007700666597
523 => 0.014045677364105
524 => 0.013756832377318
525 => 0.014236236002249
526 => 0.014493152299518
527 => 0.014756695259179
528 => 0.014985522226747
529 => 0.014651430405657
530 => 0.015008956544404
531 => 0.014720853588433
601 => 0.014462395453391
602 => 0.014462787427695
603 => 0.014300652864112
604 => 0.0139864967169
605 => 0.013928561503334
606 => 0.014229947800715
607 => 0.014471631069825
608 => 0.014491537261454
609 => 0.014625345537368
610 => 0.01470453189672
611 => 0.015480665866997
612 => 0.01579283337036
613 => 0.016174545884443
614 => 0.016323244420818
615 => 0.016770773703928
616 => 0.016409357461265
617 => 0.01633116278375
618 => 0.015245603128638
619 => 0.015423363461348
620 => 0.015707974905339
621 => 0.01525029626652
622 => 0.01554058801975
623 => 0.015597897761057
624 => 0.015234744521506
625 => 0.015428720357676
626 => 0.014913578046637
627 => 0.013845420213956
628 => 0.014237425167266
629 => 0.014526072760343
630 => 0.014114137055031
701 => 0.014852515862689
702 => 0.014421170206488
703 => 0.014284454341715
704 => 0.013751077010511
705 => 0.014002810579263
706 => 0.014343283835477
707 => 0.014132910947401
708 => 0.014569466277807
709 => 0.015187745050716
710 => 0.015628367323429
711 => 0.015662192830299
712 => 0.015378902228344
713 => 0.015832877225913
714 => 0.015836183938154
715 => 0.015324098286355
716 => 0.015010448675932
717 => 0.01493918682452
718 => 0.015117212901057
719 => 0.0153333694234
720 => 0.015674188012916
721 => 0.015880137548612
722 => 0.016417144710515
723 => 0.016562443451323
724 => 0.016722082715647
725 => 0.016935410003708
726 => 0.01719156410902
727 => 0.016631113509459
728 => 0.01665338125659
729 => 0.016131497418245
730 => 0.015573789691261
731 => 0.015997020336792
801 => 0.016550338105812
802 => 0.016423406398237
803 => 0.016409123988155
804 => 0.016433143040302
805 => 0.016337440677993
806 => 0.015904582440163
807 => 0.01568720374296
808 => 0.015967677721571
809 => 0.016116737158743
810 => 0.016347915346447
811 => 0.016319417755233
812 => 0.016914907940033
813 => 0.017146297419157
814 => 0.017087098088683
815 => 0.017097992190202
816 => 0.017516911789555
817 => 0.017982836541423
818 => 0.018419236555733
819 => 0.018863161394106
820 => 0.018327992674766
821 => 0.018056267003703
822 => 0.018336618536149
823 => 0.0181878600668
824 => 0.019042670356311
825 => 0.019101855566101
826 => 0.019956604043098
827 => 0.020767862129324
828 => 0.020258325460564
829 => 0.020738795589169
830 => 0.02125846320656
831 => 0.022260986353539
901 => 0.021923371826826
902 => 0.021664764390458
903 => 0.021420381612672
904 => 0.021928903378571
905 => 0.022583108506566
906 => 0.022724018025238
907 => 0.022952345277064
908 => 0.022712287090297
909 => 0.023001410734716
910 => 0.024022144246885
911 => 0.023746333041633
912 => 0.023354636791312
913 => 0.02416040786688
914 => 0.024452013286773
915 => 0.026498652838523
916 => 0.029082619815071
917 => 0.028012840519538
918 => 0.027348793989239
919 => 0.027504860675253
920 => 0.028448437942286
921 => 0.028751485012812
922 => 0.027927698608534
923 => 0.028218673893157
924 => 0.029821976319489
925 => 0.030682096631116
926 => 0.029513937718357
927 => 0.02629103360791
928 => 0.023319368829612
929 => 0.024107588144625
930 => 0.024018228535596
1001 => 0.025740776976639
1002 => 0.023739755035605
1003 => 0.023773447113185
1004 => 0.025531616031778
1005 => 0.025062566706943
1006 => 0.02430276687201
1007 => 0.023324916209252
1008 => 0.021517268818904
1009 => 0.019916185115296
1010 => 0.023056278965627
1011 => 0.02292087240891
1012 => 0.022724783648657
1013 => 0.02316115796558
1014 => 0.025280067781545
1015 => 0.025231220052045
1016 => 0.024920475719298
1017 => 0.025156172556912
1018 => 0.024261448076799
1019 => 0.024492038947822
1020 => 0.023318898102728
1021 => 0.0238492067594
1022 => 0.024301136682808
1023 => 0.024391868305869
1024 => 0.024596291285497
1025 => 0.022849519306442
1026 => 0.023633768642507
1027 => 0.024094441653219
1028 => 0.022013104231392
1029 => 0.0240533003044
1030 => 0.022819111892504
1031 => 0.022400209808618
1101 => 0.022964206278417
1102 => 0.022744416305632
1103 => 0.022555453793531
1104 => 0.022450009464991
1105 => 0.022864146226393
1106 => 0.022844826251473
1107 => 0.022167218129339
1108 => 0.021283305956855
1109 => 0.021579975895369
1110 => 0.021472192925411
1111 => 0.021081573538006
1112 => 0.021344803841552
1113 => 0.020185670802541
1114 => 0.018191442655414
1115 => 0.019508890854266
1116 => 0.019458170531718
1117 => 0.019432595045106
1118 => 0.02042262095495
1119 => 0.020327452807502
1120 => 0.020154721687995
1121 => 0.021078401195538
1122 => 0.020741245750043
1123 => 0.021780279389247
1124 => 0.02246465414451
1125 => 0.022291074569371
1126 => 0.022934732334565
1127 => 0.021586810571563
1128 => 0.022034536111998
1129 => 0.022126811725361
1130 => 0.021067003133794
1201 => 0.020343023493389
1202 => 0.020294742305346
1203 => 0.019039461379422
1204 => 0.019710022317777
1205 => 0.020300088193832
1206 => 0.020017492430163
1207 => 0.019928031053694
1208 => 0.02038506982427
1209 => 0.020420585651016
1210 => 0.019610821037406
1211 => 0.019779196742486
1212 => 0.020481351422801
1213 => 0.019761504246086
1214 => 0.018362958768097
1215 => 0.018016100153152
1216 => 0.017969822820045
1217 => 0.01702911474661
1218 => 0.018039278904371
1219 => 0.017598315178792
1220 => 0.01899131430434
1221 => 0.018195640674631
1222 => 0.018161340774747
1223 => 0.018109491445371
1224 => 0.017299785146404
1225 => 0.017477059366358
1226 => 0.018066345873111
1227 => 0.018276609937508
1228 => 0.018254677672949
1229 => 0.018063458047744
1230 => 0.01815099741296
1231 => 0.017869002616863
]
'min_raw' => 0.0098666842087483
'max_raw' => 0.030682096631116
'avg_raw' => 0.020274390419932
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.009866'
'max' => '$0.030682'
'avg' => '$0.020274'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.005620725210518
'max_diff' => 0.01916321901938
'year' => 2033
]
8 => [
'items' => [
101 => 0.017769424385147
102 => 0.0174551280947
103 => 0.01699319937431
104 => 0.017057433396054
105 => 0.016142231730737
106 => 0.015643581290044
107 => 0.015505561420167
108 => 0.015320995481921
109 => 0.015526408634003
110 => 0.016139639079409
111 => 0.015399953058154
112 => 0.014131813257653
113 => 0.014208030620468
114 => 0.014379268405576
115 => 0.014060167925879
116 => 0.01375816610192
117 => 0.01402073218567
118 => 0.013483404634607
119 => 0.014444201873009
120 => 0.014418215000314
121 => 0.014776340795487
122 => 0.015000284204691
123 => 0.014484167149017
124 => 0.014354365105244
125 => 0.014428306248551
126 => 0.013206223855616
127 => 0.014676470591641
128 => 0.014689185346468
129 => 0.014580313896292
130 => 0.01536317489445
131 => 0.017015255781032
201 => 0.0163936764967
202 => 0.016152982210474
203 => 0.01569542219641
204 => 0.016305093747924
205 => 0.016258280485126
206 => 0.016046573157348
207 => 0.015918531904942
208 => 0.01615445183846
209 => 0.015889298814368
210 => 0.015841670045323
211 => 0.015553091525524
212 => 0.015450082123442
213 => 0.015373818063062
214 => 0.015289858826136
215 => 0.015475051981457
216 => 0.015055379927313
217 => 0.014549296570974
218 => 0.014507221215792
219 => 0.014623394970752
220 => 0.014571996732301
221 => 0.014506975140801
222 => 0.014382831215049
223 => 0.014346000364194
224 => 0.014465682761685
225 => 0.014330568312835
226 => 0.014529937042177
227 => 0.014475719779371
228 => 0.014172866556637
301 => 0.013795399310486
302 => 0.013792039060231
303 => 0.013710714361218
304 => 0.013607135129775
305 => 0.013578321757159
306 => 0.013998619602453
307 => 0.014868623563756
308 => 0.014697820968722
309 => 0.014821243348188
310 => 0.015428359299543
311 => 0.015621343203865
312 => 0.015484367799652
313 => 0.015296867418089
314 => 0.015305116483297
315 => 0.015945862047322
316 => 0.015985824562195
317 => 0.016086796944885
318 => 0.016216574991434
319 => 0.015506469562155
320 => 0.015271670581437
321 => 0.015160409798221
322 => 0.014817769649259
323 => 0.015187277674169
324 => 0.014971981171965
325 => 0.015001032025688
326 => 0.01498211261909
327 => 0.014992443894417
328 => 0.0144439333106
329 => 0.014643781738475
330 => 0.014311494965893
331 => 0.013866600278345
401 => 0.013865108835352
402 => 0.013973996179847
403 => 0.013909225726579
404 => 0.013734930102235
405 => 0.013759687973021
406 => 0.013542782973481
407 => 0.013786024167157
408 => 0.013792999454233
409 => 0.01369933834523
410 => 0.014074084964905
411 => 0.01422761896075
412 => 0.014165969212389
413 => 0.014223293450059
414 => 0.014704918587673
415 => 0.014783444499882
416 => 0.014818320522955
417 => 0.014771591272225
418 => 0.014232096673443
419 => 0.014256025553007
420 => 0.014080451311827
421 => 0.013932109579587
422 => 0.013938042470926
423 => 0.014014309404373
424 => 0.014347371575731
425 => 0.015048281280267
426 => 0.015074880291196
427 => 0.01510711906839
428 => 0.014975987759632
429 => 0.014936437302153
430 => 0.014988614564407
501 => 0.015251839397349
502 => 0.015928925132522
503 => 0.015689597812676
504 => 0.01549502097629
505 => 0.015665717319339
506 => 0.015639439955289
507 => 0.0154176325581
508 => 0.015411407163214
509 => 0.014985687851894
510 => 0.014828309115659
511 => 0.014696791664067
512 => 0.014553178040278
513 => 0.014468039070123
514 => 0.01459885122325
515 => 0.014628769510394
516 => 0.014342746451377
517 => 0.014303762565325
518 => 0.014537335169555
519 => 0.014434548574897
520 => 0.014540267136487
521 => 0.014564794749613
522 => 0.014560845238981
523 => 0.014453524229194
524 => 0.014521927440474
525 => 0.014360133453818
526 => 0.014184206794001
527 => 0.014071976545656
528 => 0.013974040768793
529 => 0.014028381229857
530 => 0.013834667408339
531 => 0.013772694458146
601 => 0.014498753971613
602 => 0.015035101940666
603 => 0.015027303228779
604 => 0.014979830575832
605 => 0.014909295843028
606 => 0.015246679342311
607 => 0.015129141677357
608 => 0.015214660149212
609 => 0.015236428189498
610 => 0.015302313491329
611 => 0.015325861823701
612 => 0.015254682407905
613 => 0.015015795594662
614 => 0.014420512368736
615 => 0.014143406420131
616 => 0.014051956841527
617 => 0.014055280860022
618 => 0.013963589590864
619 => 0.013990596778945
620 => 0.013954197593005
621 => 0.013885266340742
622 => 0.014024124919273
623 => 0.014040127076892
624 => 0.014007715825426
625 => 0.014015349848451
626 => 0.013746998529343
627 => 0.013767400697306
628 => 0.013653798833504
629 => 0.013632499853532
630 => 0.013345324234286
701 => 0.01283655099802
702 => 0.013118460758724
703 => 0.012777953410304
704 => 0.012648998117929
705 => 0.01325945241537
706 => 0.013198179735273
707 => 0.013093307541542
708 => 0.012938179709733
709 => 0.012880641287929
710 => 0.012531056051496
711 => 0.012510400690762
712 => 0.012683664573534
713 => 0.012603709253281
714 => 0.012491421702198
715 => 0.012084727574583
716 => 0.011627468723345
717 => 0.011641270493837
718 => 0.011786716026813
719 => 0.012209618529941
720 => 0.012044383205681
721 => 0.011924503082074
722 => 0.011902053138505
723 => 0.012183061184404
724 => 0.012580746442356
725 => 0.012767331467682
726 => 0.012582431374256
727 => 0.012370028102656
728 => 0.012382956105617
729 => 0.012468960317464
730 => 0.012477998144095
731 => 0.012339745449693
801 => 0.012378662773347
802 => 0.012319543800042
803 => 0.01195673076999
804 => 0.011950168632769
805 => 0.011861128464043
806 => 0.011858432363121
807 => 0.011706952824009
808 => 0.011685759789358
809 => 0.011384987970299
810 => 0.011582956892425
811 => 0.011450169733298
812 => 0.01125002816317
813 => 0.011215523681042
814 => 0.011214486434643
815 => 0.011419987076329
816 => 0.011580555497778
817 => 0.011452479622782
818 => 0.011423319228692
819 => 0.011734675947763
820 => 0.011695052967181
821 => 0.011660739721539
822 => 0.012545138089357
823 => 0.011845067770764
824 => 0.01153979715324
825 => 0.011161966794737
826 => 0.011284990264652
827 => 0.011310913117354
828 => 0.010402299214194
829 => 0.010033674666843
830 => 0.0099071766135154
831 => 0.0098343751954053
901 => 0.0098675517158207
902 => 0.0095357463878579
903 => 0.0097587250558025
904 => 0.0094714096885929
905 => 0.0094232403322751
906 => 0.00993699580039
907 => 0.010008481872462
908 => 0.0097035000800202
909 => 0.0098993477628353
910 => 0.0098283306705601
911 => 0.0094763348859186
912 => 0.009462891236051
913 => 0.009286272124568
914 => 0.0090098974152961
915 => 0.0088835867570354
916 => 0.0088178030695338
917 => 0.0088449467010955
918 => 0.008831222050369
919 => 0.0087416594206677
920 => 0.0088363556754653
921 => 0.0085944458756516
922 => 0.0084981154441661
923 => 0.0084546052231131
924 => 0.00823989635197
925 => 0.0085815936474271
926 => 0.0086489123192213
927 => 0.0087163636295947
928 => 0.0093034812354297
929 => 0.0092741504990193
930 => 0.0095392860715212
1001 => 0.0095289833907268
1002 => 0.0094533624305377
1003 => 0.0091343300385443
1004 => 0.0092614906637873
1005 => 0.0088701100244381
1006 => 0.0091633590107351
1007 => 0.0090295324197596
1008 => 0.0091181121057088
1009 => 0.0089588378434638
1010 => 0.0090469867964633
1011 => 0.0086648760736618
1012 => 0.0083080664571527
1013 => 0.008451657062758
1014 => 0.0086077564726285
1015 => 0.0089462197666177
1016 => 0.0087446338209793
1017 => 0.0088171317498394
1018 => 0.0085742758241647
1019 => 0.0080731946811322
1020 => 0.0080760307459845
1021 => 0.0079989503287751
1022 => 0.0079323415943809
1023 => 0.0087677883917949
1024 => 0.0086638873760771
1025 => 0.0084983347057594
1026 => 0.0087199335337812
1027 => 0.0087785277811564
1028 => 0.0087801958770054
1029 => 0.0089418686616365
1030 => 0.0090281534557755
1031 => 0.0090433615247222
1101 => 0.009297757144511
1102 => 0.0093830272007048
1103 => 0.009734242494297
1104 => 0.0090208327938312
1105 => 0.0090061405905223
1106 => 0.0087230518837339
1107 => 0.0085435125504333
1108 => 0.0087353450954876
1109 => 0.0089052825426519
1110 => 0.0087283323139161
1111 => 0.0087514382781658
1112 => 0.0085138970534528
1113 => 0.0085988068639342
1114 => 0.0086719426313075
1115 => 0.0086315613592857
1116 => 0.0085711086405934
1117 => 0.0088913496099256
1118 => 0.0088732803594014
1119 => 0.0091714961123516
1120 => 0.0094039766173894
1121 => 0.0098206232432782
1122 => 0.0093858307688834
1123 => 0.0093699852029729
1124 => 0.0095248781514568
1125 => 0.0093830034874014
1126 => 0.0094726633777375
1127 => 0.0098061776488086
1128 => 0.0098132242798114
1129 => 0.0096951841314428
1130 => 0.0096880013776871
1201 => 0.009710672279399
1202 => 0.0098434564588384
1203 => 0.0097970575864966
1204 => 0.0098507515362463
1205 => 0.0099178966425992
1206 => 0.01019563727141
1207 => 0.01026259959673
1208 => 0.010099915862188
1209 => 0.010114604381924
1210 => 0.010053756199437
1211 => 0.0099949776175803
1212 => 0.010127103285672
1213 => 0.010368565541047
1214 => 0.010367063416889
1215 => 0.01042307796678
1216 => 0.010457974567313
1217 => 0.010308172811953
1218 => 0.010210657377577
1219 => 0.010248051000185
1220 => 0.010307844217063
1221 => 0.010228660865825
1222 => 0.0097399045406884
1223 => 0.0098881619878599
1224 => 0.0098634846992318
1225 => 0.0098283412393645
1226 => 0.0099774152489364
1227 => 0.0099630366970447
1228 => 0.009532343244636
1229 => 0.0095599148420777
1230 => 0.0095340199647964
1231 => 0.0096176916108858
]
'min_raw' => 0.0079323415943809
'max_raw' => 0.017769424385147
'avg_raw' => 0.012850882989764
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.007932'
'max' => '$0.017769'
'avg' => '$0.01285'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0019343426143673
'max_diff' => -0.012912672245969
'year' => 2034
]
9 => [
'items' => [
101 => 0.0093784849439256
102 => 0.0094520633036011
103 => 0.0094982109610352
104 => 0.009525392285787
105 => 0.0096235898691991
106 => 0.0096120675161779
107 => 0.0096228736235572
108 => 0.0097684747165565
109 => 0.010504875080685
110 => 0.010544955727729
111 => 0.010347583962878
112 => 0.01042643008995
113 => 0.010275062767724
114 => 0.010376676665207
115 => 0.010446198313152
116 => 0.010132043354333
117 => 0.010113441136521
118 => 0.0099614490675118
119 => 0.010043120996126
120 => 0.009913175085281
121 => 0.0099450592664875
122 => 0.0098559083162212
123 => 0.010016362276923
124 => 0.010195774737013
125 => 0.010241101409645
126 => 0.010121866448311
127 => 0.010035532478338
128 => 0.0098839584672442
129 => 0.010136029425741
130 => 0.010209742655728
131 => 0.010135642241524
201 => 0.010118471556427
202 => 0.010085933139195
203 => 0.010125374735462
204 => 0.010209341197647
205 => 0.010169744164698
206 => 0.010195898702571
207 => 0.010096224574641
208 => 0.010308222402568
209 => 0.01064492597337
210 => 0.010646008530407
211 => 0.010606411284015
212 => 0.010590208943926
213 => 0.010630838121686
214 => 0.010652877783925
215 => 0.010784265094684
216 => 0.010925248913831
217 => 0.011583158881727
218 => 0.011398420395411
219 => 0.011982157258168
220 => 0.012443817327864
221 => 0.012582248996818
222 => 0.012454898375094
223 => 0.012019238777522
224 => 0.011997863239241
225 => 0.012648922608751
226 => 0.012464968516456
227 => 0.012443087762515
228 => 0.012210313508696
301 => 0.012347911922355
302 => 0.012317817130841
303 => 0.012270311030148
304 => 0.012532839218222
305 => 0.013024268550243
306 => 0.012947674680252
307 => 0.012890500909392
308 => 0.012639982088515
309 => 0.012790850374087
310 => 0.012737129067287
311 => 0.012967949893685
312 => 0.012831216749434
313 => 0.012463574883283
314 => 0.012522123062231
315 => 0.012513273622766
316 => 0.012695394459886
317 => 0.012640726305099
318 => 0.012502598788151
319 => 0.013022588898211
320 => 0.012988823632801
321 => 0.013036695059338
322 => 0.013057769541773
323 => 0.013374278358513
324 => 0.013503941893579
325 => 0.013533377786119
326 => 0.013656548115893
327 => 0.013530313196108
328 => 0.014035342879222
329 => 0.014371158149193
330 => 0.014761224866161
331 => 0.0153312171797
401 => 0.015545539562314
402 => 0.01550682414222
403 => 0.015938985809113
404 => 0.016715570718106
405 => 0.01566379415574
406 => 0.016771317429824
407 => 0.01642068834822
408 => 0.015589353103285
409 => 0.01553582491431
410 => 0.016098814794181
411 => 0.017347472161966
412 => 0.017034697653491
413 => 0.017347983749014
414 => 0.016982518877415
415 => 0.016964370466161
416 => 0.017330233935933
417 => 0.018185093875236
418 => 0.017778981962019
419 => 0.017196720951695
420 => 0.017626653420733
421 => 0.017254206127681
422 => 0.016414978135001
423 => 0.017034458480719
424 => 0.016620229615322
425 => 0.016741123619862
426 => 0.017611771083033
427 => 0.017507012476817
428 => 0.017642579813646
429 => 0.017403307012557
430 => 0.017179788486482
501 => 0.01676257455886
502 => 0.016639058083289
503 => 0.01667319359348
504 => 0.016639041167426
505 => 0.016405613809315
506 => 0.016355205193556
507 => 0.016271188625505
508 => 0.016297228873069
509 => 0.01613925314522
510 => 0.016437385983123
511 => 0.016492722064975
512 => 0.016709678282185
513 => 0.016732203396381
514 => 0.017336423373132
515 => 0.017003629163442
516 => 0.017226896251372
517 => 0.017206925141556
518 => 0.015607370658872
519 => 0.015827775153597
520 => 0.016170655380649
521 => 0.016016188303125
522 => 0.015797807995236
523 => 0.015621454187804
524 => 0.015354260136443
525 => 0.015730330632727
526 => 0.016224823344702
527 => 0.016744744547593
528 => 0.017369395806281
529 => 0.017229980917084
530 => 0.016733067126811
531 => 0.016755358316447
601 => 0.016893153679516
602 => 0.016714696164312
603 => 0.016662065559174
604 => 0.016885923042568
605 => 0.016887464626026
606 => 0.016682127687473
607 => 0.016453933256534
608 => 0.016452977113537
609 => 0.016412372118648
610 => 0.016989742415801
611 => 0.017307237700515
612 => 0.017343638023238
613 => 0.017304787668773
614 => 0.017319739628291
615 => 0.017134996117648
616 => 0.017557264998992
617 => 0.017944780682578
618 => 0.017840918201312
619 => 0.017685213576972
620 => 0.017561187343935
621 => 0.017811701562419
622 => 0.017800546558616
623 => 0.017941396071143
624 => 0.017935006323669
625 => 0.017887643930224
626 => 0.017840919892772
627 => 0.018026175419822
628 => 0.017972824803145
629 => 0.017919391318223
630 => 0.017812222283957
701 => 0.017826788335603
702 => 0.017671110595862
703 => 0.017599086950129
704 => 0.016516024127197
705 => 0.016226594350811
706 => 0.016317654850348
707 => 0.016347634331181
708 => 0.016221674121583
709 => 0.016402268705623
710 => 0.016374123230997
711 => 0.016483620808214
712 => 0.016415211475801
713 => 0.016418019018666
714 => 0.016619196278884
715 => 0.016677598893394
716 => 0.016647894852287
717 => 0.016668698544484
718 => 0.01714811085046
719 => 0.017079953751292
720 => 0.017043746650781
721 => 0.017053776265066
722 => 0.017176276387959
723 => 0.01721056973411
724 => 0.017065266416717
725 => 0.017133792301188
726 => 0.017425566820037
727 => 0.017527671388626
728 => 0.01785354015859
729 => 0.017715105313254
730 => 0.017969208463188
731 => 0.01875023491594
801 => 0.019374172889317
802 => 0.018800373743672
803 => 0.019946156373758
804 => 0.020838312504036
805 => 0.020804070065792
806 => 0.020648502008535
807 => 0.019632805973411
808 => 0.018698147338715
809 => 0.01948002897434
810 => 0.019482022151425
811 => 0.019414857825508
812 => 0.018997705965596
813 => 0.019400341845012
814 => 0.019432301618962
815 => 0.01941441264434
816 => 0.01909458329141
817 => 0.01860626298383
818 => 0.018701679603058
819 => 0.018857973971798
820 => 0.018562076125351
821 => 0.018467518834328
822 => 0.0186433188286
823 => 0.019209783039527
824 => 0.019102696261755
825 => 0.019099899793216
826 => 0.019558062440386
827 => 0.0192301168627
828 => 0.018702883112192
829 => 0.01856974963683
830 => 0.01809721548875
831 => 0.018423596507938
901 => 0.018435342379774
902 => 0.018256586831098
903 => 0.018717388139789
904 => 0.018713141774607
905 => 0.019150604035986
906 => 0.019986867576421
907 => 0.019739543297485
908 => 0.019451932069887
909 => 0.019483203384921
910 => 0.019826172526664
911 => 0.019618805554342
912 => 0.019693376163403
913 => 0.019826059655116
914 => 0.019906110900012
915 => 0.019471685242699
916 => 0.019370399840999
917 => 0.019163205455464
918 => 0.019109152307744
919 => 0.01927790781151
920 => 0.019233446698487
921 => 0.018434355184728
922 => 0.018350845675437
923 => 0.018353406792863
924 => 0.01814341816109
925 => 0.01782313509459
926 => 0.018664819870244
927 => 0.018597220803388
928 => 0.018522596665331
929 => 0.018531737696444
930 => 0.018897084530212
1001 => 0.018685164916169
1002 => 0.019248587943043
1003 => 0.019132765106764
1004 => 0.019013971851774
1005 => 0.018997551005404
1006 => 0.018951825737197
1007 => 0.018795016778893
1008 => 0.018605660538983
1009 => 0.018480631147638
1010 => 0.01704740535123
1011 => 0.017313403722352
1012 => 0.017619410601814
1013 => 0.017725042950359
1014 => 0.017544351508637
1015 => 0.018802151578339
1016 => 0.019031963771537
1017 => 0.018335847648063
1018 => 0.018205632743595
1019 => 0.018810688445798
1020 => 0.018445765892318
1021 => 0.018610090495805
1022 => 0.018254910583818
1023 => 0.018976608743882
1024 => 0.018971110613077
1025 => 0.01869035372852
1026 => 0.018927647524808
1027 => 0.018886411888189
1028 => 0.018569438056998
1029 => 0.018986657379707
1030 => 0.018986864315286
1031 => 0.01871664191808
1101 => 0.018401081317434
1102 => 0.018344666535247
1103 => 0.018302165575129
1104 => 0.018599637864973
1105 => 0.018866350589875
1106 => 0.019362636847226
1107 => 0.019487415003794
1108 => 0.019974432455834
1109 => 0.019684437275594
1110 => 0.019812988382928
1111 => 0.019952548794604
1112 => 0.020019459188125
1113 => 0.019910432292492
1114 => 0.02066697085989
1115 => 0.020730845894721
1116 => 0.020752262641383
1117 => 0.020497162093073
1118 => 0.020723751086999
1119 => 0.02061773760058
1120 => 0.020893555240848
1121 => 0.020936806968659
1122 => 0.020900174293928
1123 => 0.020913903075017
1124 => 0.020268330870292
1125 => 0.020234854545812
1126 => 0.019778402486159
1127 => 0.019964410074391
1128 => 0.019616677803768
1129 => 0.019726947288821
1130 => 0.019775553027147
1201 => 0.019750164147797
1202 => 0.019974926664346
1203 => 0.019783832609331
1204 => 0.019279503979375
1205 => 0.018775037945421
1206 => 0.018768704785294
1207 => 0.018635887783119
1208 => 0.018539885417193
1209 => 0.018558378878738
1210 => 0.018623552249359
1211 => 0.018536097422414
1212 => 0.018554760343815
1213 => 0.018864689189466
1214 => 0.01892684320915
1215 => 0.018715619565121
1216 => 0.017867526154919
1217 => 0.017659401904774
1218 => 0.017808997488495
1219 => 0.017737500434666
1220 => 0.014315547205924
1221 => 0.015119484358467
1222 => 0.014641812201552
1223 => 0.014861945508098
1224 => 0.014374365928493
1225 => 0.014607064460116
1226 => 0.014564093538115
1227 => 0.015856800689174
1228 => 0.015836616845071
1229 => 0.015846277783138
1230 => 0.015385136037762
1231 => 0.016119747359509
]
'min_raw' => 0.0093784849439256
'max_raw' => 0.020936806968659
'avg_raw' => 0.015157645956292
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.009378'
'max' => '$0.020936'
'avg' => '$0.015157'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0014461433495447
'max_diff' => 0.0031673825835123
'year' => 2035
]
10 => [
'items' => [
101 => 0.016481643312371
102 => 0.016414666003045
103 => 0.016431522748833
104 => 0.016141868007127
105 => 0.015849082274192
106 => 0.015524337836965
107 => 0.016127672861707
108 => 0.016060592306228
109 => 0.016214450965674
110 => 0.016605756856498
111 => 0.016663378135348
112 => 0.01674082171846
113 => 0.016713063706724
114 => 0.017374372161323
115 => 0.017294283344017
116 => 0.017487274350598
117 => 0.017090277207798
118 => 0.016641037257405
119 => 0.016726423085214
120 => 0.016718199743367
121 => 0.016613507163336
122 => 0.016518995383205
123 => 0.016361659897817
124 => 0.016859492654856
125 => 0.01683928155407
126 => 0.017166475782967
127 => 0.017108641024814
128 => 0.016722406355304
129 => 0.016736200802086
130 => 0.016828975086078
131 => 0.017150067942253
201 => 0.017245390163635
202 => 0.017201233112757
203 => 0.017305749576877
204 => 0.017388355128638
205 => 0.017316123562361
206 => 0.018338770217955
207 => 0.017914096027876
208 => 0.018121079273256
209 => 0.018170443557664
210 => 0.018043997981174
211 => 0.018071419499038
212 => 0.018112955626685
213 => 0.018365154860154
214 => 0.019026998623212
215 => 0.019320124720547
216 => 0.020202009046968
217 => 0.019295784678676
218 => 0.019242013074991
219 => 0.019400867072534
220 => 0.01991862652908
221 => 0.020338221937937
222 => 0.020477425942095
223 => 0.020495824049252
224 => 0.020756980015159
225 => 0.020906669744546
226 => 0.020725268811814
227 => 0.020571550514793
228 => 0.020020950655079
229 => 0.020084684088074
301 => 0.020523744240009
302 => 0.02114394256513
303 => 0.021676137248722
304 => 0.021489781219385
305 => 0.022911546176369
306 => 0.023052508364465
307 => 0.023033031947924
308 => 0.023354164790392
309 => 0.022716781495658
310 => 0.022444287788439
311 => 0.020604786155385
312 => 0.021121611081977
313 => 0.021872846464842
314 => 0.021773417644931
315 => 0.021227850429316
316 => 0.021675723387067
317 => 0.021527642580952
318 => 0.021410845105291
319 => 0.021945916983599
320 => 0.021357583473858
321 => 0.02186697738803
322 => 0.021213674424099
323 => 0.02149063247803
324 => 0.021333417691665
325 => 0.021435154925963
326 => 0.020840401133092
327 => 0.021161315842893
328 => 0.020827050026094
329 => 0.020826891540575
330 => 0.020819512604142
331 => 0.021212774855244
401 => 0.021225599123134
402 => 0.020934977725383
403 => 0.020893094641608
404 => 0.021047958354138
405 => 0.020866653505636
406 => 0.020951484903131
407 => 0.020869222962247
408 => 0.020850704066652
409 => 0.020703142355824
410 => 0.020639568713506
411 => 0.02066449757675
412 => 0.020579402514788
413 => 0.020528129661934
414 => 0.02080931314319
415 => 0.020659088152064
416 => 0.020786289008771
417 => 0.020641327578526
418 => 0.020138828104608
419 => 0.019849835343323
420 => 0.018900660418818
421 => 0.01916984524996
422 => 0.019348315071499
423 => 0.019289330796545
424 => 0.01941605184303
425 => 0.019423831486098
426 => 0.019382633182118
427 => 0.019334930823938
428 => 0.019311711954082
429 => 0.019484766387126
430 => 0.019585230310252
501 => 0.019366226905708
502 => 0.019314917472207
503 => 0.01953634200571
504 => 0.019671410843235
505 => 0.020668683250891
506 => 0.020594802089784
507 => 0.020780229305716
508 => 0.020759353046815
509 => 0.020953710309984
510 => 0.021271402293757
511 => 0.020625445662671
512 => 0.020737561398327
513 => 0.020710073209075
514 => 0.021010182051544
515 => 0.021011118958593
516 => 0.020831188715984
517 => 0.020928731819537
518 => 0.020874285935088
519 => 0.020972677007089
520 => 0.020593815361835
521 => 0.021055227950167
522 => 0.021316819154982
523 => 0.021320451349114
524 => 0.02144444350408
525 => 0.021570426714667
526 => 0.021812240516562
527 => 0.021563682658976
528 => 0.021116551269799
529 => 0.021148832711872
530 => 0.020886679741996
531 => 0.020891086580782
601 => 0.020867562529975
602 => 0.020938159977254
603 => 0.020609307531473
604 => 0.020686488543197
605 => 0.020578434674812
606 => 0.02073732651032
607 => 0.020566385161075
608 => 0.020710059953438
609 => 0.020772065230926
610 => 0.021000866039738
611 => 0.020532591095582
612 => 0.01957774678502
613 => 0.019778466635468
614 => 0.019481586210451
615 => 0.01950906362409
616 => 0.019564572372638
617 => 0.019384650357261
618 => 0.0194189738078
619 => 0.019417747532617
620 => 0.019407180155571
621 => 0.019360375490453
622 => 0.019292499466012
623 => 0.019562896656248
624 => 0.019608842407904
625 => 0.019710974122361
626 => 0.020014848827982
627 => 0.019984484579031
628 => 0.02003400992887
629 => 0.019925896368245
630 => 0.01951407870209
701 => 0.019536442382677
702 => 0.019257566927406
703 => 0.019703842649972
704 => 0.019598158668317
705 => 0.019530023517829
706 => 0.01951143221075
707 => 0.01981606016299
708 => 0.019907209620759
709 => 0.01985041139549
710 => 0.019733916578395
711 => 0.019957621065818
712 => 0.020017474949318
713 => 0.020030874026507
714 => 0.020427235487141
715 => 0.02005302622913
716 => 0.020143102116854
717 => 0.020845848479574
718 => 0.020208554500956
719 => 0.020546143334781
720 => 0.020529620118093
721 => 0.020702319142095
722 => 0.020515453757418
723 => 0.020517770177817
724 => 0.020671115211486
725 => 0.020455769767621
726 => 0.02040244720731
727 => 0.020328782472144
728 => 0.020489626726409
729 => 0.02058604558248
730 => 0.02136311075057
731 => 0.021865130287633
801 => 0.021843336295547
802 => 0.022042492586572
803 => 0.021952770853403
804 => 0.021663035709602
805 => 0.022157578270633
806 => 0.022001084311783
807 => 0.022013985483611
808 => 0.022013505301351
809 => 0.022117560103047
810 => 0.022043827739563
811 => 0.021898493682664
812 => 0.02199497321209
813 => 0.022281482922421
814 => 0.023170817854483
815 => 0.023668501464585
816 => 0.023140856676245
817 => 0.023504818985797
818 => 0.023286571293096
819 => 0.023246909195026
820 => 0.023475504422028
821 => 0.023704499774714
822 => 0.023689913760722
823 => 0.023523674893714
824 => 0.023429770775896
825 => 0.024140844216201
826 => 0.024664751014198
827 => 0.02462902408289
828 => 0.024786711138661
829 => 0.025249685211484
830 => 0.025292013758522
831 => 0.025286681334506
901 => 0.025181765614143
902 => 0.025637623713617
903 => 0.026017908560258
904 => 0.025157480656186
905 => 0.025485120338228
906 => 0.025632208347388
907 => 0.025848177183881
908 => 0.026212552811624
909 => 0.026608361389215
910 => 0.026664333061907
911 => 0.026624618481641
912 => 0.026363572084814
913 => 0.026796670553393
914 => 0.027050369478877
915 => 0.027201441383206
916 => 0.027584534596618
917 => 0.025633116712858
918 => 0.024251806142971
919 => 0.024036094551117
920 => 0.024474752555592
921 => 0.02459042317314
922 => 0.024543796492245
923 => 0.022989005862575
924 => 0.024027908900223
925 => 0.025145681215284
926 => 0.025188619402177
927 => 0.025748199594613
928 => 0.025930421843238
929 => 0.026380957244002
930 => 0.026352776132016
1001 => 0.026462474332518
1002 => 0.026437256615931
1003 => 0.027271778574424
1004 => 0.028192380222353
1005 => 0.028160502714619
1006 => 0.028028155335665
1007 => 0.028224713761993
1008 => 0.029174873320324
1009 => 0.029087397854189
1010 => 0.029172372818396
1011 => 0.030292664486314
1012 => 0.031749203014239
1013 => 0.03107249463394
1014 => 0.032540757101596
1015 => 0.033464950495737
1016 => 0.035063247407522
1017 => 0.034863132762388
1018 => 0.035485338021302
1019 => 0.034504885782412
1020 => 0.032253569259832
1021 => 0.03189728980244
1022 => 0.032610570298571
1023 => 0.034364100797417
1024 => 0.032555345382877
1025 => 0.03292125424751
1026 => 0.03281587246988
1027 => 0.032810257122794
1028 => 0.033024572081807
1029 => 0.032713697055842
1030 => 0.03144713627471
1031 => 0.032027593616813
1101 => 0.031803451161176
1102 => 0.032052153926633
1103 => 0.033394300178977
1104 => 0.032800905328045
1105 => 0.032175812056071
1106 => 0.032959817738428
1107 => 0.03395812638565
1108 => 0.03389565402464
1109 => 0.033774431532859
1110 => 0.034457756372023
1111 => 0.035586408810929
1112 => 0.035891479029872
1113 => 0.03611667562861
1114 => 0.036147726434849
1115 => 0.036467569037071
1116 => 0.034747694754206
1117 => 0.037477179410617
1118 => 0.037948486010288
1119 => 0.037859899903207
1120 => 0.038383737353127
1121 => 0.038229611086887
1122 => 0.038006306308776
1123 => 0.03883670009032
1124 => 0.037884720629102
1125 => 0.036533505634785
1126 => 0.035792202364901
1127 => 0.036768410309914
1128 => 0.037364546436971
1129 => 0.037758554495577
1130 => 0.037877781096045
1201 => 0.034881203698931
1202 => 0.033266214679688
1203 => 0.034301404125136
1204 => 0.035564406693541
1205 => 0.034740678711168
1206 => 0.034772967288554
1207 => 0.033598547657595
1208 => 0.035668316771442
1209 => 0.035366768821053
1210 => 0.036931200121101
1211 => 0.036557836035999
1212 => 0.037833569030315
1213 => 0.037497625778443
1214 => 0.038892107434629
1215 => 0.039448403921365
1216 => 0.040382512303229
1217 => 0.041069646231434
1218 => 0.041473144416853
1219 => 0.041448919899284
1220 => 0.043047780731914
1221 => 0.042104988358855
1222 => 0.040920618939192
1223 => 0.040899197433028
1224 => 0.041512599138116
1225 => 0.042798120833441
1226 => 0.043131437905458
1227 => 0.043317716676765
1228 => 0.043032424254098
1229 => 0.042009090703681
1230 => 0.04156722046503
1231 => 0.041943706710574
]
'min_raw' => 0.015524337836965
'max_raw' => 0.043317716676765
'avg_raw' => 0.029421027256865
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.015524'
'max' => '$0.043317'
'avg' => '$0.029421'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0061458528930391
'max_diff' => 0.022380909708106
'year' => 2036
]
11 => [
'items' => [
101 => 0.041483296384105
102 => 0.042278093775912
103 => 0.043369520354424
104 => 0.04314414508193
105 => 0.043897540827729
106 => 0.044677226165087
107 => 0.045792211215369
108 => 0.04608370959529
109 => 0.046565545332608
110 => 0.047061512581103
111 => 0.047220803894627
112 => 0.047524940437337
113 => 0.047523337487631
114 => 0.048439873429838
115 => 0.049450840956847
116 => 0.049832457794341
117 => 0.050709964669683
118 => 0.049207264897168
119 => 0.050347079936391
120 => 0.051375221633192
121 => 0.05014942871696
122 => 0.051838898678866
123 => 0.051904496969066
124 => 0.052894953269202
125 => 0.051890936060547
126 => 0.051294753846983
127 => 0.053015909558884
128 => 0.053848722591977
129 => 0.053597872528752
130 => 0.051688891161617
131 => 0.050577782125883
201 => 0.047669795462438
202 => 0.051114431280963
203 => 0.052792212906763
204 => 0.051684546112529
205 => 0.052243188814411
206 => 0.055290962255374
207 => 0.056451357052976
208 => 0.056210003046847
209 => 0.056250787900858
210 => 0.056876915870989
211 => 0.05965351210552
212 => 0.057989711280792
213 => 0.059261624669869
214 => 0.05993624294521
215 => 0.060562865996232
216 => 0.059024077829171
217 => 0.057022137033112
218 => 0.056388038347242
219 => 0.051574410479569
220 => 0.05132384024453
221 => 0.051183187578548
222 => 0.050296392415243
223 => 0.049599614330525
224 => 0.049045510527844
225 => 0.04759137668021
226 => 0.04808210416724
227 => 0.04576451831543
228 => 0.047247227613218
301 => 0.043548304633664
302 => 0.046628877605127
303 => 0.044952261793225
304 => 0.046078064218479
305 => 0.046074136399875
306 => 0.044001177198998
307 => 0.042805537593486
308 => 0.043567445685108
309 => 0.044384271639665
310 => 0.04451679890266
311 => 0.045575835074083
312 => 0.04587138930562
313 => 0.044975846185953
314 => 0.043471652676554
315 => 0.043821042521786
316 => 0.042798457219424
317 => 0.041006415810211
318 => 0.042293491236349
319 => 0.042732955375545
320 => 0.042927047775133
321 => 0.041164780866518
322 => 0.040611038343155
323 => 0.040316230470066
324 => 0.043244166148252
325 => 0.043404565074144
326 => 0.042583941491158
327 => 0.046293237900978
328 => 0.045453709883506
329 => 0.046391668368381
330 => 0.043789339055463
331 => 0.043888751539717
401 => 0.042656767138805
402 => 0.043346596082088
403 => 0.0428590472192
404 => 0.043290864720493
405 => 0.043549694350318
406 => 0.044781476594714
407 => 0.046642942579719
408 => 0.044597489403719
409 => 0.043706256163507
410 => 0.044259172253248
411 => 0.04573166066266
412 => 0.047962555978215
413 => 0.046641821050454
414 => 0.047227940783861
415 => 0.047355981870958
416 => 0.046382120831492
417 => 0.047998463623841
418 => 0.048864674857406
419 => 0.049753228345884
420 => 0.050524734443227
421 => 0.049398320542876
422 => 0.050603744881341
423 => 0.049632385650578
424 => 0.048760976003312
425 => 0.048762297572045
426 => 0.048215649571051
427 => 0.047156450187045
428 => 0.046961117569601
429 => 0.047977262513338
430 => 0.048792114528932
501 => 0.048859229643814
502 => 0.049310373588255
503 => 0.049577355927423
504 => 0.052194145796158
505 => 0.053246640328584
506 => 0.054533610720133
507 => 0.055034958217318
508 => 0.05654383444082
509 => 0.055325294345407
510 => 0.055061655530788
511 => 0.051401615362223
512 => 0.052000946734786
513 => 0.052960534089136
514 => 0.051417438604258
515 => 0.052396177517793
516 => 0.052589401311849
517 => 0.051365004810154
518 => 0.052019007884759
519 => 0.050282169617006
520 => 0.046680800907724
521 => 0.04800247297672
522 => 0.048975668489509
523 => 0.047586798498618
524 => 0.050076294200598
525 => 0.048621982205124
526 => 0.048161035121845
527 => 0.046362716210475
528 => 0.047211453512999
529 => 0.04835938286741
530 => 0.047650095987496
531 => 0.049121972763279
601 => 0.051206542812987
602 => 0.052692131568702
603 => 0.052806176626737
604 => 0.051851042583529
605 => 0.053381650983353
606 => 0.053392799794543
607 => 0.051666267266822
608 => 0.050608775706966
609 => 0.050368511399586
610 => 0.050968738746014
611 => 0.051697525552659
612 => 0.052846619222407
613 => 0.053540992460944
614 => 0.055351549599941
615 => 0.055841434449012
616 => 0.056379669374335
617 => 0.057098917220071
618 => 0.057962558670239
619 => 0.056072960344406
620 => 0.056148037608543
621 => 0.054388469810798
622 => 0.052508119271359
623 => 0.053935070941789
624 => 0.055800620431451
625 => 0.055372661317273
626 => 0.055324507174517
627 => 0.055405489085788
628 => 0.055082821889536
629 => 0.053623410119494
630 => 0.05289050266498
701 => 0.053836140265936
702 => 0.054338704565357
703 => 0.055118137965545
704 => 0.055022056347129
705 => 0.057029793080979
706 => 0.057809938864946
707 => 0.057610344189087
708 => 0.057647074412959
709 => 0.059059491090212
710 => 0.060630388920961
711 => 0.062101742037683
712 => 0.0635984656241
713 => 0.061794106922558
714 => 0.060877964851289
715 => 0.061823189616451
716 => 0.061321640051054
717 => 0.064203692623089
718 => 0.064403239690076
719 => 0.067285083856905
720 => 0.070020297134846
721 => 0.068302358681407
722 => 0.069922297265353
723 => 0.071674392919421
724 => 0.075054469703392
725 => 0.073916178755086
726 => 0.073044265727976
727 => 0.072220312130411
728 => 0.073934828767994
729 => 0.076140527032174
730 => 0.076615613312363
731 => 0.077385434583196
801 => 0.076576061646181
802 => 0.077550862199311
803 => 0.080992336500926
804 => 0.080062419765896
805 => 0.078741788510578
806 => 0.081458501948998
807 => 0.082441669981406
808 => 0.089342058121942
809 => 0.098054083190185
810 => 0.094447247605692
811 => 0.09220836836654
812 => 0.092734558094666
813 => 0.095915894728929
814 => 0.096937639085276
815 => 0.094160185708323
816 => 0.095141229195675
817 => 0.10054687526505
818 => 0.10344683094739
819 => 0.09950830161477
820 => 0.088642055390418
821 => 0.078622880115376
822 => 0.08128041656766
823 => 0.080979134406928
824 => 0.086786826740395
825 => 0.080040241559309
826 => 0.080153836751177
827 => 0.086081626011647
828 => 0.084500193464989
829 => 0.081938475273981
830 => 0.078641583493137
831 => 0.072546974110669
901 => 0.067148808619862
902 => 0.077735854270602
903 => 0.077279321610849
904 => 0.076618194665177
905 => 0.078089461141363
906 => 0.085233513523448
907 => 0.085068819993
908 => 0.084021123779668
909 => 0.08481579212351
910 => 0.08179916607114
911 => 0.082576619292134
912 => 0.078621293026823
913 => 0.08040926568776
914 => 0.081932978977269
915 => 0.082238886979099
916 => 0.082928113327271
917 => 0.077038749644163
918 => 0.079682901035245
919 => 0.081236092254025
920 => 0.074218717821997
921 => 0.081097381324083
922 => 0.076936228925092
923 => 0.075523871302463
924 => 0.077425424777365
925 => 0.076684387538874
926 => 0.076047287236387
927 => 0.075691774320826
928 => 0.077088065325996
929 => 0.077022926681676
930 => 0.074738323588812
1001 => 0.071758151986507
1002 => 0.072758395397039
1003 => 0.072394997588661
1004 => 0.071077997051848
1005 => 0.071965496398409
1006 => 0.068057398429296
1007 => 0.061333718998695
1008 => 0.065775587582421
1009 => 0.065604580473771
1010 => 0.065518350935034
1011 => 0.068856292411474
1012 => 0.068535426357927
1013 => 0.067953051328809
1014 => 0.071067301277734
1015 => 0.069930558153804
1016 => 0.073433732611393
1017 => 0.07574114988028
1018 => 0.075155914223761
1019 => 0.077326051317865
1020 => 0.07278143898501
1021 => 0.074290976903785
1022 => 0.074602090576715
1023 => 0.071028871916777
1024 => 0.068587924012505
1025 => 0.068425140616133
1026 => 0.064192873333466
1027 => 0.066453716354199
1028 => 0.068443164652403
1029 => 0.067490373304988
1030 => 0.067188748028228
1031 => 0.068729686152653
1101 => 0.068849430242163
1102 => 0.066119252311417
1103 => 0.06668694275671
1104 => 0.069054306284265
1105 => 0.066627291269845
1106 => 0.061911997547478
1107 => 0.060742539510295
1108 => 0.060586512250747
1109 => 0.05741484930302
1110 => 0.060820688288321
1111 => 0.059333948300427
1112 => 0.064030542108304
1113 => 0.061347872913583
1114 => 0.061232228406381
1115 => 0.061057414772385
1116 => 0.05832743345353
1117 => 0.058925125862996
1118 => 0.060911946463183
1119 => 0.061620866436466
1120 => 0.061546920275243
1121 => 0.060902209958336
1122 => 0.061197355039965
1123 => 0.060246589896675
1124 => 0.059910854936115
1125 => 0.058851183049409
1126 => 0.057293758117781
1127 => 0.057510327606766
1128 => 0.054424661294811
1129 => 0.052743426519351
1130 => 0.052278082891822
1201 => 0.051655805945041
1202 => 0.052348370728777
1203 => 0.054415919989842
1204 => 0.051922016925952
1205 => 0.047646395049872
1206 => 0.04790336720993
1207 => 0.04848070735786
1208 => 0.047404837811679
1209 => 0.046386617577106
1210 => 0.047271877460249
1211 => 0.045460240106826
1212 => 0.048699635076822
1213 => 0.048612018521183
1214 => 0.049819464643156
1215 => 0.050574505482514
1216 => 0.048834380795167
1217 => 0.048396744142097
1218 => 0.048646041869163
1219 => 0.044525705758316
1220 => 0.049482745278174
1221 => 0.049525613961787
1222 => 0.049158546266358
1223 => 0.051798016779257
1224 => 0.057368122832972
1225 => 0.055272424878568
1226 => 0.054460907287816
1227 => 0.052918211754582
1228 => 0.05497376195642
1229 => 0.054815927772497
1230 => 0.054102141735962
1231 => 0.053670441713917
]
'min_raw' => 0.040316230470066
'max_raw' => 0.10344683094739
'avg_raw' => 0.071881530708726
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.040316'
'max' => '$0.103446'
'avg' => '$0.071881'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.024791892633102
'max_diff' => 0.060129114270621
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0012654804061307
]
1 => [
'year' => 2028
'avg' => 0.0021719317485071
]
2 => [
'year' => 2029
'avg' => 0.0059333260843101
]
3 => [
'year' => 2030
'avg' => 0.0045775522378709
]
4 => [
'year' => 2031
'avg' => 0.0044957235873928
]
5 => [
'year' => 2032
'avg' => 0.007882418304983
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0012654804061307
'min' => '$0.001265'
'max_raw' => 0.007882418304983
'max' => '$0.007882'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.007882418304983
]
1 => [
'year' => 2033
'avg' => 0.020274390419932
]
2 => [
'year' => 2034
'avg' => 0.012850882989764
]
3 => [
'year' => 2035
'avg' => 0.015157645956292
]
4 => [
'year' => 2036
'avg' => 0.029421027256865
]
5 => [
'year' => 2037
'avg' => 0.071881530708726
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.007882418304983
'min' => '$0.007882'
'max_raw' => 0.071881530708726
'max' => '$0.071881'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.071881530708726
]
]
]
]
'prediction_2025_max_price' => '$0.002163'
'last_price' => 0.00209802
'sma_50day_nextmonth' => '$0.00212'
'sma_200day_nextmonth' => '$0.006033'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001997'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002002'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002091'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002484'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.004069'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.005886'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.006922'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002032'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002034'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002142'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.002578'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.003813'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00531'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.008482'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.005453'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.008761'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002115'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.002368'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.003269'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.005169'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.010477'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006268'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.003134'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '26.44'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 62.1
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002219'
'vwma_10_action' => 'SELL'
'hma_9' => '0.001956'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 18.14
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -59.63
'cci_20_action' => 'NEUTRAL'
'adx_14' => 52.01
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.001127'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -81.86
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 29.45
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.000896'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 19
'buy_signals' => 13
'sell_pct' => 59.38
'buy_pct' => 40.63
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767682034
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Amaterasu para 2026
A previsão de preço para Amaterasu em 2026 sugere que o preço médio poderia variar entre $0.000724 na extremidade inferior e $0.002163 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Amaterasu poderia potencialmente ganhar 3.13% até 2026 se AMA atingir a meta de preço prevista.
Previsão de preço de Amaterasu 2027-2032
A previsão de preço de AMA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.001265 na extremidade inferior e $0.007882 na extremidade superior. Considerando a volatilidade de preços no mercado, se Amaterasu atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Amaterasu | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000697 | $0.001265 | $0.001833 |
| 2028 | $0.001259 | $0.002171 | $0.003084 |
| 2029 | $0.002766 | $0.005933 | $0.00910024 |
| 2030 | $0.002352 | $0.004577 | $0.0068023 |
| 2031 | $0.002781 | $0.004495 | $0.0062098 |
| 2032 | $0.004245 | $0.007882 | $0.011518 |
Previsão de preço de Amaterasu 2032-2037
A previsão de preço de Amaterasu para 2032-2037 é atualmente estimada entre $0.007882 na extremidade inferior e $0.071881 na extremidade superior. Comparado ao preço atual, Amaterasu poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Amaterasu | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.004245 | $0.007882 | $0.011518 |
| 2033 | $0.009866 | $0.020274 | $0.030682 |
| 2034 | $0.007932 | $0.01285 | $0.017769 |
| 2035 | $0.009378 | $0.015157 | $0.020936 |
| 2036 | $0.015524 | $0.029421 | $0.043317 |
| 2037 | $0.040316 | $0.071881 | $0.103446 |
Amaterasu Histograma de preços potenciais
Previsão de preço de Amaterasu baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Amaterasu é Baixista, com 13 indicadores técnicos mostrando sinais de alta e 19 indicando sinais de baixa. A previsão de preço de AMA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Amaterasu
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Amaterasu está projetado para aumentar no próximo mês, alcançando $0.006033 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Amaterasu é esperado para alcançar $0.00212 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 26.44, sugerindo que o mercado de AMA está em um estado BUY.
Médias Móveis e Osciladores Populares de AMA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001997 | BUY |
| SMA 5 | $0.002002 | BUY |
| SMA 10 | $0.002091 | BUY |
| SMA 21 | $0.002484 | SELL |
| SMA 50 | $0.004069 | SELL |
| SMA 100 | $0.005886 | SELL |
| SMA 200 | $0.006922 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.002032 | BUY |
| EMA 5 | $0.002034 | BUY |
| EMA 10 | $0.002142 | SELL |
| EMA 21 | $0.002578 | SELL |
| EMA 50 | $0.003813 | SELL |
| EMA 100 | $0.00531 | SELL |
| EMA 200 | $0.008482 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.005453 | SELL |
| SMA 50 | $0.008761 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.005169 | SELL |
| EMA 50 | $0.010477 | SELL |
| EMA 100 | $0.006268 | SELL |
| EMA 200 | $0.003134 | SELL |
Osciladores de Amaterasu
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 26.44 | BUY |
| Stoch RSI (14) | 62.1 | NEUTRAL |
| Estocástico Rápido (14) | 18.14 | BUY |
| Índice de Canal de Commodities (20) | -59.63 | NEUTRAL |
| Índice Direcional Médio (14) | 52.01 | SELL |
| Oscilador Impressionante (5, 34) | -0.001127 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -81.86 | BUY |
| Oscilador Ultimate (7, 14, 28) | 29.45 | BUY |
| VWMA (10) | 0.002219 | SELL |
| Média Móvel de Hull (9) | 0.001956 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000896 | SELL |
Previsão do preço de Amaterasu com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Amaterasu
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Amaterasu por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.002948 | $0.004142 | $0.00582 | $0.008179 | $0.011493 | $0.01615 |
| Amazon.com stock | $0.004377 | $0.009134 | $0.019059 | $0.039767 | $0.082978 | $0.173138 |
| Apple stock | $0.002975 | $0.004221 | $0.005987 | $0.008492 | $0.012045 | $0.017086 |
| Netflix stock | $0.00331 | $0.005223 | $0.008241 | $0.0130036 | $0.020517 | $0.032373 |
| Google stock | $0.002716 | $0.003518 | $0.004556 | $0.00590041 | $0.007641 | $0.009895 |
| Tesla stock | $0.004756 | $0.010781 | $0.024441 | $0.0554061 | $0.1256014 | $0.284729 |
| Kodak stock | $0.001573 | $0.001179 | $0.000884 | $0.000663 | $0.000497 | $0.000373 |
| Nokia stock | $0.001389 | $0.00092 | $0.0006099 | $0.000404 | $0.000267 | $0.000177 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Amaterasu
Você pode fazer perguntas como: 'Devo investir em Amaterasu agora?', 'Devo comprar AMA hoje?', 'Amaterasu será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Amaterasu regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Amaterasu, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Amaterasu para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Amaterasu é de $0.002098 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Amaterasu com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Amaterasu tiver 1% da média anterior do crescimento anual do Bitcoin | $0.002152 | $0.0022085 | $0.002265 | $0.002324 |
| Se Amaterasu tiver 2% da média anterior do crescimento anual do Bitcoin | $0.002207 | $0.002321 | $0.002442 | $0.002569 |
| Se Amaterasu tiver 5% da média anterior do crescimento anual do Bitcoin | $0.00237 | $0.002678 | $0.003026 | $0.00342 |
| Se Amaterasu tiver 10% da média anterior do crescimento anual do Bitcoin | $0.002643 | $0.00333 | $0.004196 | $0.005286 |
| Se Amaterasu tiver 20% da média anterior do crescimento anual do Bitcoin | $0.003188 | $0.004846 | $0.007365 | $0.011195 |
| Se Amaterasu tiver 50% da média anterior do crescimento anual do Bitcoin | $0.004824 | $0.011095 | $0.025515 | $0.058676 |
| Se Amaterasu tiver 100% da média anterior do crescimento anual do Bitcoin | $0.007551 | $0.02718 | $0.097829 | $0.352121 |
Perguntas Frequentes sobre Amaterasu
AMA é um bom investimento?
A decisão de adquirir Amaterasu depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Amaterasu experimentou uma queda de 0% nas últimas 24 horas, e Amaterasu registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Amaterasu dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Amaterasu pode subir?
Parece que o valor médio de Amaterasu pode potencialmente subir para $0.002163 até o final deste ano. Observando as perspectivas de Amaterasu em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.0068023. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Amaterasu na próxima semana?
Com base na nossa nova previsão experimental de Amaterasu, o preço de Amaterasu aumentará 0.86% na próxima semana e atingirá $0.002115 até 13 de janeiro de 2026.
Qual será o preço de Amaterasu no próximo mês?
Com base na nossa nova previsão experimental de Amaterasu, o preço de Amaterasu diminuirá -11.62% no próximo mês e atingirá $0.001854 até 5 de fevereiro de 2026.
Até onde o preço de Amaterasu pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Amaterasu em 2026, espera-se que AMA fluctue dentro do intervalo de $0.000724 e $0.002163. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Amaterasu não considera flutuações repentinas e extremas de preço.
Onde estará Amaterasu em 5 anos?
O futuro de Amaterasu parece seguir uma tendência de alta, com um preço máximo de $0.0068023 projetada após um período de cinco anos. Com base na previsão de Amaterasu para 2030, o valor de Amaterasu pode potencialmente atingir seu pico mais alto de aproximadamente $0.0068023, enquanto seu pico mais baixo está previsto para cerca de $0.002352.
Quanto será Amaterasu em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Amaterasu, espera-se que o valor de AMA em 2026 aumente 3.13% para $0.002163 se o melhor cenário ocorrer. O preço ficará entre $0.002163 e $0.000724 durante 2026.
Quanto será Amaterasu em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Amaterasu, o valor de AMA pode diminuir -12.62% para $0.001833 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.001833 e $0.000697 ao longo do ano.
Quanto será Amaterasu em 2028?
Nosso novo modelo experimental de previsão de preços de Amaterasu sugere que o valor de AMA em 2028 pode aumentar 47.02%, alcançando $0.003084 no melhor cenário. O preço é esperado para variar entre $0.003084 e $0.001259 durante o ano.
Quanto será Amaterasu em 2029?
Com base no nosso modelo de previsão experimental, o valor de Amaterasu pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.00910024 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.00910024 e $0.002766.
Quanto será Amaterasu em 2030?
Usando nossa nova simulação experimental para previsões de preços de Amaterasu, espera-se que o valor de AMA em 2030 aumente 224.23%, alcançando $0.0068023 no melhor cenário. O preço está previsto para variar entre $0.0068023 e $0.002352 ao longo de 2030.
Quanto será Amaterasu em 2031?
Nossa simulação experimental indica que o preço de Amaterasu poderia aumentar 195.98% em 2031, potencialmente atingindo $0.0062098 sob condições ideais. O preço provavelmente oscilará entre $0.0062098 e $0.002781 durante o ano.
Quanto será Amaterasu em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Amaterasu, AMA poderia ver um 449.04% aumento em valor, atingindo $0.011518 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.011518 e $0.004245 ao longo do ano.
Quanto será Amaterasu em 2033?
De acordo com nossa previsão experimental de preços de Amaterasu, espera-se que o valor de AMA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.030682. Ao longo do ano, o preço de AMA poderia variar entre $0.030682 e $0.009866.
Quanto será Amaterasu em 2034?
Os resultados da nossa nova simulação de previsão de preços de Amaterasu sugerem que AMA pode aumentar 746.96% em 2034, atingindo potencialmente $0.017769 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.017769 e $0.007932.
Quanto será Amaterasu em 2035?
Com base em nossa previsão experimental para o preço de Amaterasu, AMA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.020936 em 2035. A faixa de preço esperada para o ano está entre $0.020936 e $0.009378.
Quanto será Amaterasu em 2036?
Nossa recente simulação de previsão de preços de Amaterasu sugere que o valor de AMA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.043317 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.043317 e $0.015524.
Quanto será Amaterasu em 2037?
De acordo com a simulação experimental, o valor de Amaterasu poderia aumentar 4830.69% em 2037, com um pico de $0.103446 sob condições favoráveis. O preço é esperado para cair entre $0.103446 e $0.040316 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Amaterasu?
Traders de Amaterasu utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Amaterasu
Médias móveis são ferramentas populares para a previsão de preço de Amaterasu. Uma média móvel simples (SMA) calcula o preço médio de fechamento de AMA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de AMA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de AMA.
Como ler gráficos de Amaterasu e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Amaterasu em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de AMA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Amaterasu?
A ação de preço de Amaterasu é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de AMA. A capitalização de mercado de Amaterasu pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de AMA, grandes detentores de Amaterasu, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Amaterasu.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


