Previsão de Preço Alex - Projeção ALEX
Previsão de Preço Alex até $0.011181 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.003745 | $0.011181 |
| 2027 | $0.003606 | $0.009473 |
| 2028 | $0.0065078 | $0.015939 |
| 2029 | $0.014295 | $0.047026 |
| 2030 | $0.012157 | $0.035152 |
| 2031 | $0.014374 | $0.03209 |
| 2032 | $0.021941 | $0.059525 |
| 2033 | $0.050987 | $0.158553 |
| 2034 | $0.040991 | $0.091825 |
| 2035 | $0.048464 | $0.108193 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Alex hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.88, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Alex para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Alex'
'name_with_ticker' => 'Alex <small>ALEX</small>'
'name_lang' => 'Alex'
'name_lang_with_ticker' => 'Alex <small>ALEX</small>'
'name_with_lang' => 'Alex'
'name_with_lang_with_ticker' => 'Alex <small>ALEX</small>'
'image' => '/uploads/coins/alex.png?1666207726'
'price_for_sd' => 0.01084
'ticker' => 'ALEX'
'marketcap' => '$105.52K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$15.8'
'current_supply' => '9.73M'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01084'
'change_24h_pct' => '0%'
'ath_price' => '$0.2194'
'ath_days' => 1757
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 de mar. de 2021'
'ath_pct' => '21.55%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.534575'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.010934'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.009582'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003745'
'current_year_max_price_prediction' => '$0.011181'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.012157'
'grand_prediction_max_price' => '$0.035152'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.011047256596708
107 => 0.011088503042686
108 => 0.01118143339157
109 => 0.010387353735115
110 => 0.010743872187909
111 => 0.010953293377665
112 => 0.010007120823542
113 => 0.010934590588446
114 => 0.010373530574964
115 => 0.010183098379549
116 => 0.010439490243141
117 => 0.01033957408455
118 => 0.010253672038667
119 => 0.01020573722108
120 => 0.010394003108764
121 => 0.010385220280077
122 => 0.010077180746992
123 => 0.0096753557333787
124 => 0.0098102213974036
125 => 0.009761223437291
126 => 0.0095836485089803
127 => 0.0097033125701831
128 => 0.0091763726052413
129 => 0.0082697997835151
130 => 0.008868709558624
131 => 0.0088456521837708
201 => 0.0088340256098011
202 => 0.009284089753145
203 => 0.0092408264705089
204 => 0.0091623031888891
205 => 0.0095822063673346
206 => 0.0094289360587073
207 => 0.0099012790348703
208 => 0.0102123946682
209 => 0.010133485680051
210 => 0.010426091436949
211 => 0.0098133284299124
212 => 0.010016863721065
213 => 0.010058812062484
214 => 0.0095770248272925
215 => 0.0092479048785942
216 => 0.0092259563302582
217 => 0.0086553076947381
218 => 0.0089601435897181
219 => 0.009228386562334
220 => 0.0090999189949465
221 => 0.0090592500009711
222 => 0.0092670190711631
223 => 0.0092831645073388
224 => 0.0089150468515169
225 => 0.0089915901689323
226 => 0.0093107885268224
227 => 0.0089835471892921
228 => 0.0083477707250398
301 => 0.0081900893716079
302 => 0.0081690517724161
303 => 0.007741407436043
304 => 0.008200626393627
305 => 0.0080001650123386
306 => 0.0086334201139324
307 => 0.0082717081961172
308 => 0.0082561155182847
309 => 0.0082325448987922
310 => 0.0078644537527108
311 => 0.0079450423202899
312 => 0.0082129309929084
313 => 0.0083085166892806
314 => 0.0082985463180384
315 => 0.0082116181922664
316 => 0.0082514134431008
317 => 0.0081232190745787
318 => 0.0080779509749185
319 => 0.0079350724004191
320 => 0.0077250803671186
321 => 0.0077542810473051
322 => 0.0073382318819324
323 => 0.0071115462152369
324 => 0.0070488026103647
325 => 0.0069648992396937
326 => 0.0070582797193403
327 => 0.0073370532669207
328 => 0.0070007932234313
329 => 0.0064242989647683
330 => 0.0064589472520124
331 => 0.006536791666281
401 => 0.0063917291152838
402 => 0.006254439584942
403 => 0.0063738016929225
404 => 0.0061295334757375
405 => 0.0065663103133226
406 => 0.0065544967239189
407 => 0.0067173001188722
408 => 0.0068191044227984
409 => 0.0065844784617832
410 => 0.0065254706670839
411 => 0.0065590841886993
412 => 0.0060035275514406
413 => 0.006671899289164
414 => 0.0066776793957065
415 => 0.0066281866142846
416 => 0.00698407393096
417 => 0.0077351071731828
418 => 0.0074525382572164
419 => 0.0073431190322635
420 => 0.0071351130056431
421 => 0.007412268685939
422 => 0.0073909874539944
423 => 0.0072947456524734
424 => 0.0072365383106208
425 => 0.0073437871227188
426 => 0.0072232489959318
427 => 0.0072015970361947
428 => 0.0070704097177521
429 => 0.0070235818137108
430 => 0.0069889122978312
501 => 0.006950744567404
502 => 0.0070349330699206
503 => 0.0068441508472982
504 => 0.0066140861894275
505 => 0.0065949588024597
506 => 0.006647771199575
507 => 0.006624405645272
508 => 0.0065948469371751
509 => 0.0065384113135828
510 => 0.0065216680696193
511 => 0.0065760754898335
512 => 0.0065146526845613
513 => 0.0066052853796138
514 => 0.0065806383014953
515 => 0.0064429617266767
516 => 0.0062713657400563
517 => 0.0062698381758407
518 => 0.0062328681019971
519 => 0.0061857811544696
520 => 0.0061726826428708
521 => 0.0063637493491164
522 => 0.0067592517128995
523 => 0.0066816051353194
524 => 0.0067377127451623
525 => 0.0070137066538471
526 => 0.0071014368179916
527 => 0.0070391680254847
528 => 0.0069539306617293
529 => 0.0069576806731476
530 => 0.0072489625482044
531 => 0.0072671294414581
601 => 0.0073130313198482
602 => 0.0073720282054488
603 => 0.0070492154502122
604 => 0.006942476221406
605 => 0.0068918972531307
606 => 0.0067361336073668
607 => 0.0069041113451574
608 => 0.0068062379108708
609 => 0.0068194443809886
610 => 0.0068108436499992
611 => 0.0068155402306983
612 => 0.006566188225295
613 => 0.0066570389905084
614 => 0.0065059819725454
615 => 0.006303733582439
616 => 0.0063030555749179
617 => 0.0063525555818713
618 => 0.0063231110408
619 => 0.0062438765378653
620 => 0.0062551314250308
621 => 0.0061565267705116
622 => 0.0062671038153844
623 => 0.0062702747693676
624 => 0.0062276965839193
625 => 0.0063980557782374
626 => 0.0064678520791494
627 => 0.0064398262053742
628 => 0.0064658857091341
629 => 0.0066848317011711
630 => 0.0067205294511565
701 => 0.006736384033639
702 => 0.0067151409934421
703 => 0.0064698876399437
704 => 0.0064807656690691
705 => 0.0064009499090324
706 => 0.0063335140025789
707 => 0.0063362110851823
708 => 0.0063708819071536
709 => 0.006522291420119
710 => 0.0068409238140766
711 => 0.00685301568051
712 => 0.006867671375372
713 => 0.0068080592990063
714 => 0.0067900797263637
715 => 0.0068137994236008
716 => 0.0069334609978758
717 => 0.0072412630547119
718 => 0.0071324652504179
719 => 0.0070440109419881
720 => 0.0071216092175913
721 => 0.0071096635712976
722 => 0.007008830294905
723 => 0.0070060002406723
724 => 0.0068124689449265
725 => 0.0067409248313836
726 => 0.0066811372151232
727 => 0.0066158506989619
728 => 0.0065771466637577
729 => 0.0066366136525008
730 => 0.0066502144564191
731 => 0.0065201888462273
801 => 0.0065024668360193
802 => 0.0066086485560996
803 => 0.0065619219399458
804 => 0.0066099814234243
805 => 0.006621131635838
806 => 0.0066193361948282
807 => 0.0065705482410459
808 => 0.006601644227909
809 => 0.0065280929488179
810 => 0.0064481169798512
811 => 0.0063970972943294
812 => 0.0063525758519324
813 => 0.0063772789357757
814 => 0.0062892169524793
815 => 0.0062610441516852
816 => 0.0065911096072417
817 => 0.0068349325080628
818 => 0.0068313872265204
819 => 0.0068098062369034
820 => 0.0067777412638764
821 => 0.0069311152453785
822 => 0.0068776828170328
823 => 0.0069165593730831
824 => 0.0069264550882418
825 => 0.0069564064376286
826 => 0.0069671114706289
827 => 0.0069347534257785
828 => 0.0068261558750584
829 => 0.006555541103809
830 => 0.0064295691972818
831 => 0.0063879963698998
901 => 0.0063895074632171
902 => 0.0063478247637084
903 => 0.0063601021868013
904 => 0.006343555176995
905 => 0.0063122191435735
906 => 0.0063753440240146
907 => 0.0063826185784364
908 => 0.0063678844770553
909 => 0.0063713548913128
910 => 0.0062493628248944
911 => 0.0062586376167513
912 => 0.0062069943971082
913 => 0.0061973119159935
914 => 0.0060667623538253
915 => 0.0058354748809827
916 => 0.0059636305925557
917 => 0.0058088365143955
918 => 0.0057502136514832
919 => 0.0060277251667843
920 => 0.0059998707076194
921 => 0.0059521959815713
922 => 0.0058816751254628
923 => 0.0058555182539493
924 => 0.0056965973828927
925 => 0.0056872074900209
926 => 0.0057659729649409
927 => 0.0057296254084198
928 => 0.0056785796731681
929 => 0.0054936971945094
930 => 0.005285828076012
1001 => 0.0052921023380807
1002 => 0.0053582216371323
1003 => 0.0055504724165271
1004 => 0.0054753567110453
1005 => 0.0054208594048649
1006 => 0.0054106536976003
1007 => 0.005538399491112
1008 => 0.0057191865525022
1009 => 0.005804007796824
1010 => 0.0057199525197606
1011 => 0.0056233943433277
1012 => 0.0056292713921197
1013 => 0.0056683687647684
1014 => 0.0056724773458266
1015 => 0.0056096278993097
1016 => 0.0056273196503615
1017 => 0.0056004442627462
1018 => 0.0054355100585595
1019 => 0.0054325269218177
1020 => 0.005392049408187
1021 => 0.005390823765161
1022 => 0.0053219614168861
1023 => 0.0053123270983395
1024 => 0.005175596726194
1025 => 0.0052655930711979
1026 => 0.0052052282479894
1027 => 0.005114244220792
1028 => 0.0050985585402092
1029 => 0.0050980870097099
1030 => 0.0051915072619854
1031 => 0.0052645014011581
1101 => 0.0052062783199336
1102 => 0.0051930220529458
1103 => 0.0053345643031531
1104 => 0.005316551761628
1105 => 0.0053009530168356
1106 => 0.0057029990540446
1107 => 0.0053847482435502
1108 => 0.0052459727250534
1109 => 0.0050742116681575
1110 => 0.0051301379343772
1111 => 0.0051419224203975
1112 => 0.0047288680408204
1113 => 0.0045612919304686
1114 => 0.0045037861243684
1115 => 0.0044706907199449
1116 => 0.0044857727113266
1117 => 0.0043349345572927
1118 => 0.0044363002914363
1119 => 0.0043056872000747
1120 => 0.0042837894902562
1121 => 0.0045173418774679
1122 => 0.0045498393277551
1123 => 0.0044111951086633
1124 => 0.0045002271417805
1125 => 0.0044679428889343
1126 => 0.0043079261866438
1127 => 0.0043018147256195
1128 => 0.0042215239692691
1129 => 0.0040958844829349
1130 => 0.0040384638663226
1201 => 0.0040085587106423
1202 => 0.0040208981607159
1203 => 0.0040146589571653
1204 => 0.0039739439336378
1205 => 0.0040169926946546
1206 => 0.0039070208992328
1207 => 0.0038632292441928
1208 => 0.00384344956957
1209 => 0.0037458432713927
1210 => 0.0039011782975105
1211 => 0.0039317812545148
1212 => 0.0039624445087982
1213 => 0.0042293472026418
1214 => 0.0042160134983166
1215 => 0.0043365436916394
1216 => 0.0043318601099677
1217 => 0.0042974829463723
1218 => 0.0041524513479325
1219 => 0.0042102583581309
1220 => 0.004032337365944
1221 => 0.0041656478707419
1222 => 0.0041048105235319
1223 => 0.0041450787024534
1224 => 0.0040726728859174
1225 => 0.0041127452543513
1226 => 0.0039390383509154
1227 => 0.0037768332886091
1228 => 0.0038421093407421
1229 => 0.0039130718746327
1230 => 0.004066936729025
1231 => 0.0039752960911064
]
'min_raw' => 0.0037458432713927
'max_raw' => 0.01118143339157
'avg_raw' => 0.0074636383314814
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003745'
'max' => '$0.011181'
'avg' => '$0.007463'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0070959667286073
'max_diff' => 0.00033962339157
'year' => 2026
]
1 => [
'items' => [
101 => 0.0040082535298181
102 => 0.0038978516271426
103 => 0.0036700609671786
104 => 0.003671350237576
105 => 0.0036363096072299
106 => 0.003606029386595
107 => 0.0039858221207538
108 => 0.0039385888906265
109 => 0.003863328920151
110 => 0.0039640673813448
111 => 0.0039907042294188
112 => 0.0039914625430364
113 => 0.0040649587238874
114 => 0.0041041836487825
115 => 0.0041110972118058
116 => 0.0042267450403649
117 => 0.0042655086670662
118 => 0.0044251705594149
119 => 0.0041008556879544
120 => 0.004094176636598
121 => 0.0039654849780826
122 => 0.0038838666937174
123 => 0.0039710734518405
124 => 0.004048326734628
125 => 0.0039678854529215
126 => 0.0039783893861042
127 => 0.0038704035377073
128 => 0.0039090033973028
129 => 0.003942250796349
130 => 0.0039238935367875
131 => 0.0038964118307225
201 => 0.0040419928464243
202 => 0.0040337785949818
203 => 0.0041693469836964
204 => 0.0042750322372879
205 => 0.0044644391052227
206 => 0.0042667831645294
207 => 0.0042595797964393
208 => 0.0043299938749764
209 => 0.0042654978870376
210 => 0.0043062571250891
211 => 0.0044578721618373
212 => 0.0044610755486519
213 => 0.0044074146921758
214 => 0.0044041494241826
215 => 0.0044144555786542
216 => 0.0044748190473017
217 => 0.0044537261965743
218 => 0.0044781353774417
219 => 0.0045086594318831
220 => 0.0046349198629837
221 => 0.0046653608254694
222 => 0.0045914050684587
223 => 0.0045980824452692
224 => 0.0045704209620163
225 => 0.0045437003157913
226 => 0.004603764426268
227 => 0.0047135327687273
228 => 0.0047128499055658
301 => 0.0047383140274247
302 => 0.0047541779643866
303 => 0.0046860783338345
304 => 0.0046417479784379
305 => 0.0046587470575108
306 => 0.00468592895514
307 => 0.0046499323344581
308 => 0.0044277445163521
309 => 0.0044951421069527
310 => 0.004483923852303
311 => 0.0044679476934954
312 => 0.0045357164920144
313 => 0.0045291800260741
314 => 0.0043333874940052
315 => 0.0043459214966609
316 => 0.0043341497282206
317 => 0.0043721867203285
318 => 0.004263443764637
319 => 0.0042968923654127
320 => 0.0043178710142581
321 => 0.0043302275995936
322 => 0.0043748680588153
323 => 0.0043696300161639
324 => 0.0043745424547296
325 => 0.0044407324711111
326 => 0.0047754988602981
327 => 0.0047937194562411
328 => 0.0047039945779477
329 => 0.0047398378970809
330 => 0.0046710265624173
331 => 0.0047172200723729
401 => 0.0047488244986965
402 => 0.0046060101733216
403 => 0.0045975536358302
404 => 0.0045284582923108
405 => 0.0045655862161578
406 => 0.0045065130197251
407 => 0.004521007515837
408 => 0.0044804796411006
409 => 0.0045534217466067
410 => 0.0046349823546198
411 => 0.0046555877851299
412 => 0.0046013837686534
413 => 0.0045621364885056
414 => 0.004493231193424
415 => 0.0046078222347994
416 => 0.0046413321473963
417 => 0.0046076462214941
418 => 0.0045998404564106
419 => 0.004585048545682
420 => 0.0046029786301975
421 => 0.0046411496452157
422 => 0.0046231488994411
423 => 0.0046350387091575
424 => 0.004589727015237
425 => 0.0046861008776458
426 => 0.0048391657647841
427 => 0.0048396578934249
428 => 0.0048216570506196
429 => 0.0048142914935772
430 => 0.004832761450678
501 => 0.0048427806447278
502 => 0.0049025090991807
503 => 0.0049666001104952
504 => 0.0052656848952011
505 => 0.0051817030844628
506 => 0.0054470688980874
507 => 0.0056569388032261
508 => 0.0057198696112785
509 => 0.0056619762289936
510 => 0.0054639260955361
511 => 0.0054542088111406
512 => 0.0057501793251357
513 => 0.0056665540986238
514 => 0.0056566071440234
515 => 0.0055507883527209
516 => 0.005613340364293
517 => 0.0055996593217795
518 => 0.0055780631268725
519 => 0.0056974080075411
520 => 0.0059208109701617
521 => 0.0058859915233775
522 => 0.0058600004215808
523 => 0.0057461149794037
524 => 0.0058146994528287
525 => 0.0057902778354911
526 => 0.0058952086019148
527 => 0.0058330499403865
528 => 0.0056659205552853
529 => 0.0056925364607283
530 => 0.0056885135201643
531 => 0.0057713053519017
601 => 0.0057464532990337
602 => 0.0056836607579807
603 => 0.0059200474031224
604 => 0.0059046977692385
605 => 0.0059264600406711
606 => 0.0059360404655763
607 => 0.0060799248508742
608 => 0.0061388696797439
609 => 0.0061522511878718
610 => 0.0062082442163414
611 => 0.006150858030315
612 => 0.0063804436900778
613 => 0.0065331047571254
614 => 0.0067104284423679
615 => 0.0069695460066205
616 => 0.0070669766077509
617 => 0.0070493766417242
618 => 0.0072458366216726
619 => 0.0075988708385799
620 => 0.0071207349505957
621 => 0.0076242132016477
622 => 0.0074648178003006
623 => 0.0070868941711073
624 => 0.0070625603448142
625 => 0.0073184946142874
626 => 0.0078861321912184
627 => 0.0077439454162893
628 => 0.0078863647578452
629 => 0.0077202250308715
630 => 0.0077119747930917
701 => 0.0078782957221369
702 => 0.0082669136385328
703 => 0.0080822958335779
704 => 0.007817600940032
705 => 0.0080130475303176
706 => 0.0078437336060842
707 => 0.0074622219468028
708 => 0.0077438366887422
709 => 0.0075555289307334
710 => 0.0076104871455114
711 => 0.0080062820441808
712 => 0.0079586589548295
713 => 0.0080202876422294
714 => 0.0079115146220721
715 => 0.0078099034693143
716 => 0.0076202387069485
717 => 0.0075640883211718
718 => 0.0075796062677212
719 => 0.0075640806312481
720 => 0.0074579649398136
721 => 0.0074350492663517
722 => 0.0073968554732898
723 => 0.0074086933268207
724 => 0.0073368778218761
725 => 0.007472408517547
726 => 0.007497564208956
727 => 0.0075961921469432
728 => 0.0076064320266507
729 => 0.0078811094300643
730 => 0.0077298217320303
731 => 0.007831318581423
801 => 0.0078222397478879
802 => 0.0070950849221166
803 => 0.0071952804413666
804 => 0.0073511532262334
805 => 0.0072809327479315
806 => 0.0071816574206739
807 => 0.0071014872711071
808 => 0.0069800212966947
809 => 0.0071509823231327
810 => 0.0073757778932204
811 => 0.0076121332132773
812 => 0.0078960986437116
813 => 0.0078327208653607
814 => 0.0076068246770775
815 => 0.0076169582150667
816 => 0.0076795997595151
817 => 0.0075984732678699
818 => 0.0075745474817065
819 => 0.0076763127239017
820 => 0.0076770135251955
821 => 0.0075836676920936
822 => 0.0074799308807081
823 => 0.0074794962196806
824 => 0.0074610372560733
825 => 0.0077235088394904
826 => 0.0078678416714996
827 => 0.0078843891980855
828 => 0.0078667278911166
829 => 0.0078735250272167
830 => 0.0077895409324275
831 => 0.007981503668406
901 => 0.0081576676580868
902 => 0.0081104519456577
903 => 0.0080396688806173
904 => 0.0079832867599384
905 => 0.0080971701098753
906 => 0.0080920990635716
907 => 0.0081561290193191
908 => 0.0081532242506714
909 => 0.008131693384842
910 => 0.0081104527145927
911 => 0.0081946695711947
912 => 0.0081704164689747
913 => 0.008146125694988
914 => 0.0080974068290263
915 => 0.0081040285320451
916 => 0.008033257688699
917 => 0.0080005158583136
918 => 0.0075081572879529
919 => 0.0073765829896721
920 => 0.0074179789423531
921 => 0.0074316075648211
922 => 0.0073743462615922
923 => 0.0074564442612005
924 => 0.0074436493749248
925 => 0.0074934267926653
926 => 0.0074623280231453
927 => 0.0074636043274941
928 => 0.0075550591776956
929 => 0.0075816089097858
930 => 0.0075681055017621
1001 => 0.0075775628258722
1002 => 0.0077955028683017
1003 => 0.0077645187635984
1004 => 0.0077480590755109
1005 => 0.0077526185215987
1006 => 0.0078083068751266
1007 => 0.0078238965736431
1008 => 0.0077578419255602
1009 => 0.0077889936794535
1010 => 0.0079216338937847
1011 => 0.0079680504620147
1012 => 0.0081161898665881
1013 => 0.0080532576145574
1014 => 0.0081687724868038
1015 => 0.0085238258221675
1016 => 0.008807466994278
1017 => 0.008546618850438
1018 => 0.0090674897415336
1019 => 0.0094730624447431
1020 => 0.0094574958888772
1021 => 0.009386774907007
1022 => 0.0089250411671111
1023 => 0.0085001468955967
1024 => 0.0088555889956823
1025 => 0.0088564950906927
1026 => 0.0088259622990694
1027 => 0.0086363257525822
1028 => 0.0088193633583127
1029 => 0.0088338922187606
1030 => 0.0088257599204456
1031 => 0.0086803660248803
1101 => 0.0084583764196355
1102 => 0.0085017526571323
1103 => 0.0085728038190033
1104 => 0.0084382891467563
1105 => 0.008395303558442
1106 => 0.0084752219454611
1107 => 0.0087327356400938
1108 => 0.0086840541677988
1109 => 0.0086827828978199
1110 => 0.0088910628804551
1111 => 0.0087419793625218
1112 => 0.0085022997703971
1113 => 0.0084417775124001
1114 => 0.0082269642691892
1115 => 0.0083753365414135
1116 => 0.0083806761953488
1117 => 0.0082994142181795
1118 => 0.008508893731984
1119 => 0.0085069633413862
1120 => 0.0087058329628327
1121 => 0.0090859969870196
1122 => 0.008973563778332
1123 => 0.0088428161893267
1124 => 0.008857032077489
1125 => 0.0090129452828275
1126 => 0.0089186765997276
1127 => 0.0089525762754349
1128 => 0.0090128939716082
1129 => 0.0090492851353137
1130 => 0.00885179594906
1201 => 0.0088057517727445
1202 => 0.0087115615473129
1203 => 0.0086869890756416
1204 => 0.0087637050489122
1205 => 0.0087434931003707
1206 => 0.0083802274181117
1207 => 0.0083422641331245
1208 => 0.008343428412876
1209 => 0.0082479679277197
1210 => 0.0081023677747149
1211 => 0.0084849962834782
1212 => 0.0084542658593419
1213 => 0.0084203418494414
1214 => 0.0084244973470865
1215 => 0.0085905834142573
1216 => 0.0084942451077508
1217 => 0.0087503762851361
1218 => 0.0086977234150737
1219 => 0.0086437201975716
1220 => 0.0086362553079345
1221 => 0.0086154686765342
1222 => 0.0085441835830977
1223 => 0.0084581025492031
1224 => 0.0084012643944144
1225 => 0.0077497223146917
1226 => 0.0078706447348423
1227 => 0.0080097549568002
1228 => 0.0080577752479708
1229 => 0.0079756332170204
1230 => 0.0085474270511412
1231 => 0.0086518992945775
]
'min_raw' => 0.003606029386595
'max_raw' => 0.0094730624447431
'avg_raw' => 0.006539545915669
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003606'
'max' => '$0.009473'
'avg' => '$0.006539'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00013981388479775
'max_diff' => -0.0017083709468269
'year' => 2027
]
2 => [
'items' => [
101 => 0.008335446054653
102 => 0.0082762505741638
103 => 0.0085513078969871
104 => 0.0083854147069345
105 => 0.0084601164002574
106 => 0.0082986521989348
107 => 0.0086267349904381
108 => 0.0086242355492559
109 => 0.0084966039332752
110 => 0.0086044773011185
111 => 0.0085857316488225
112 => 0.0084416358687231
113 => 0.0086313030836863
114 => 0.0086313971562586
115 => 0.0085085545008278
116 => 0.0083651011729997
117 => 0.0083394551062004
118 => 0.0083201342399315
119 => 0.0084553646515459
120 => 0.0085766118157448
121 => 0.0088022227285979
122 => 0.0088589466724722
123 => 0.0090803440017405
124 => 0.0089485126718016
125 => 0.009006951792862
126 => 0.0090703957254914
127 => 0.0091008130798674
128 => 0.009051249633197
129 => 0.0093951708163271
130 => 0.009424208301656
131 => 0.0094339443193135
201 => 0.0093179760314128
202 => 0.0094209830137844
203 => 0.0093727894579654
204 => 0.009498175701651
205 => 0.0095178378656728
206 => 0.0095011847122481
207 => 0.0095074257934548
208 => 0.0092139497355075
209 => 0.0091987314536933
210 => 0.008991229101318
211 => 0.0090757878436909
212 => 0.0089177093278307
213 => 0.0089678376535992
214 => 0.0089899337419576
215 => 0.0089783919993411
216 => 0.0090805686681138
217 => 0.0089936976263427
218 => 0.0087644306641872
219 => 0.0085351012384013
220 => 0.0085322221942682
221 => 0.0084718438044594
222 => 0.0084282012874813
223 => 0.0084366083845527
224 => 0.0084662360911874
225 => 0.0084264792713115
226 => 0.0084349634045539
227 => 0.0085758565458631
228 => 0.0086041116605487
229 => 0.008508089740861
301 => 0.0081225478774177
302 => 0.0080279349370702
303 => 0.0080959408423358
304 => 0.0080634383997601
305 => 0.0065078241141705
306 => 0.0068732926158169
307 => 0.0066561436422762
308 => 0.0067562158798276
309 => 0.0065345630082967
310 => 0.0066403473764136
311 => 0.006620812866249
312 => 0.0072084754018973
313 => 0.0071992998597065
314 => 0.0072036917061944
315 => 0.0069940574304351
316 => 0.0073280105239104
317 => 0.0074925278263212
318 => 0.0074620800521312
319 => 0.0074697431009233
320 => 0.00733806653378
321 => 0.007204966623195
322 => 0.0070573383384269
323 => 0.0073316134441186
324 => 0.0073011187343979
325 => 0.007371062626847
326 => 0.0075489496384775
327 => 0.0075751441766672
328 => 0.0076103499016328
329 => 0.0075977311553468
330 => 0.0078983608864938
331 => 0.0078619526424331
401 => 0.0079496860352528
402 => 0.0077692117898741
403 => 0.0075649880504556
404 => 0.007603804306742
405 => 0.007600065989121
406 => 0.0075524729151644
407 => 0.0075095080160266
408 => 0.0074379835642473
409 => 0.0076642975133041
410 => 0.0076551095802702
411 => 0.0078038515362853
412 => 0.0077775599507574
413 => 0.0076019783079594
414 => 0.0076082492406815
415 => 0.0076504242769448
416 => 0.0077963925589984
417 => 0.0078397258833903
418 => 0.0078196521609976
419 => 0.007867165172952
420 => 0.0079047175203392
421 => 0.0078718811696177
422 => 0.0083367746500985
423 => 0.0081437184647425
424 => 0.0082378127062087
425 => 0.008260253628363
426 => 0.0082027716781467
427 => 0.0082152374548743
428 => 0.0082341197098958
429 => 0.0083487690648616
430 => 0.0086496421463501
501 => 0.0087828967860291
502 => 0.0091837999441713
503 => 0.0087718318431979
504 => 0.0087473873609796
505 => 0.0088196021258766
506 => 0.0090549747196152
507 => 0.0092457220994167
508 => 0.0093090040097773
509 => 0.0093173677589019
510 => 0.0094360888296401
511 => 0.0095041375333703
512 => 0.0094216729689783
513 => 0.0093517928850559
514 => 0.009101491098281
515 => 0.0091304642116493
516 => 0.009330060231503
517 => 0.0096120013656933
518 => 0.0098539361898039
519 => 0.0097692190466802
520 => 0.010415551047731
521 => 0.010479632225606
522 => 0.010470778278816
523 => 0.010616764738573
524 => 0.010327011345581
525 => 0.01020313615637
526 => 0.0093669017523726
527 => 0.0096018495103378
528 => 0.0099433598745383
529 => 0.0098981596972382
530 => 0.0096501457421576
531 => 0.009853748048979
601 => 0.0097864307591111
602 => 0.0097333348195953
603 => 0.0099765776116713
604 => 0.0097091221699205
605 => 0.0099406918019141
606 => 0.0096437013536013
607 => 0.009769606027454
608 => 0.0096981364452513
609 => 0.009744386023919
610 => 0.0094740119320619
611 => 0.0096198992290679
612 => 0.0094679425408735
613 => 0.009467870493618
614 => 0.0094645160413039
615 => 0.0096432924110855
616 => 0.0096491223020858
617 => 0.0095170062947011
618 => 0.009497966313997
619 => 0.0095683671019178
620 => 0.0094859462172581
621 => 0.0095245104304395
622 => 0.0094871142879894
623 => 0.0094786956286406
624 => 0.0094116143186327
625 => 0.0093827138458423
626 => 0.0093940464658968
627 => 0.0093553623912845
628 => 0.0093320538370664
629 => 0.0094598793832021
630 => 0.0093915873503696
701 => 0.0094494126497249
702 => 0.009383513422975
703 => 0.0091550779921334
704 => 0.0090237023601955
705 => 0.0085922090073114
706 => 0.0087145799869235
707 => 0.0087957120730083
708 => 0.0087688979190412
709 => 0.0088265050974625
710 => 0.0088300417103515
711 => 0.008811313029411
712 => 0.0087896276161746
713 => 0.0087790723562897
714 => 0.0088577426157096
715 => 0.008903413349222
716 => 0.0088038547632542
717 => 0.0087805295795345
718 => 0.0088811888067282
719 => 0.0089425908771675
720 => 0.0093959492664477
721 => 0.0093623630126415
722 => 0.0094466579187256
723 => 0.0094371676059113
724 => 0.009525522096719
725 => 0.0096699443477958
726 => 0.0093762935302601
727 => 0.009427261158503
728 => 0.0094147650730723
729 => 0.0095511940571556
730 => 0.0095516199735522
731 => 0.0094698239824611
801 => 0.00951416691622
802 => 0.0094894159070805
803 => 0.009534144325895
804 => 0.0093619144477453
805 => 0.0095716718482652
806 => 0.0096905907778916
807 => 0.0096922419673448
808 => 0.0097486085961888
809 => 0.0098058803556292
810 => 0.0099158085105561
811 => 0.0098028145190519
812 => 0.0095995493280792
813 => 0.0096142244183248
814 => 0.0094950501112294
815 => 0.0094970534528622
816 => 0.0094863594582213
817 => 0.0095184529411452
818 => 0.009368957162474
819 => 0.0094040435229202
820 => 0.0093549224128301
821 => 0.0094271543788029
822 => 0.0093494447237879
823 => 0.0094147590470815
824 => 0.009442946543811
825 => 0.009546959013576
826 => 0.0093340819974336
827 => 0.0089000113510121
828 => 0.0089912582634878
829 => 0.008856296912646
830 => 0.0088687880995005
831 => 0.0088940222849043
901 => 0.008812230033899
902 => 0.0088278334178208
903 => 0.0088272759551477
904 => 0.0088224720429975
905 => 0.0088011947195444
906 => 0.0087703383909473
907 => 0.0088932605070011
908 => 0.0089141473698133
909 => 0.0089605762785099
910 => 0.0090987172177613
911 => 0.0090849136803424
912 => 0.0091074278225759
913 => 0.0090582795764917
914 => 0.0088710679456758
915 => 0.0088812344379314
916 => 0.0087544581165967
917 => 0.0089573343229413
918 => 0.0089092905594438
919 => 0.0088783164325738
920 => 0.0088698648550841
921 => 0.0090083482190045
922 => 0.0090497846119502
923 => 0.0090239642325593
924 => 0.0089710058811278
925 => 0.0090727015716075
926 => 0.0090999110481831
927 => 0.0091060022465415
928 => 0.009286187511857
929 => 0.009116072601264
930 => 0.0091570209510406
1001 => 0.009476488286775
1002 => 0.0091867754967427
1003 => 0.009340242822989
1004 => 0.0093327313959747
1005 => 0.0094112400870311
1006 => 0.0093262913918111
1007 => 0.0093273444326984
1008 => 0.0093970548317172
1009 => 0.0092991591486321
1010 => 0.0092749188007901
1011 => 0.0092414309338591
1012 => 0.0093145504661739
1013 => 0.0093583823188845
1014 => 0.0097116348607843
1015 => 0.0099398521131246
1016 => 0.0099299446003203
1017 => 0.010020480721265
1018 => 0.0099796933695634
1019 => 0.0098479802517604
1020 => 0.010072798483146
1021 => 0.010001656587942
1022 => 0.010007521439345
1023 => 0.010007303149283
1024 => 0.010054606290262
1025 => 0.010021087679609
1026 => 0.0099550190573976
1027 => 0.0099988784921149
1028 => 0.010129125333191
1029 => 0.010533415524351
1030 => 0.010759661671456
1031 => 0.010519795222212
1101 => 0.010685251886961
1102 => 0.010586036846349
1103 => 0.010568006522078
1104 => 0.010671925534692
1105 => 0.010776026443781
1106 => 0.010769395665913
1107 => 0.010693823751555
1108 => 0.010651135094701
1109 => 0.010974387906151
1110 => 0.011212555071159
1111 => 0.011196313667199
1112 => 0.011267997942294
1113 => 0.011478465191083
1114 => 0.011497707678651
1115 => 0.011495283567501
1116 => 0.011447589054318
1117 => 0.011654821393377
1118 => 0.011827698256526
1119 => 0.011436549152543
1120 => 0.011585493610822
1121 => 0.011652359576834
1122 => 0.011750538653178
1123 => 0.011916183211695
1124 => 0.012096117137292
1125 => 0.012121561767247
1126 => 0.012103507584657
1127 => 0.011984836323841
1128 => 0.012181722172289
1129 => 0.012297053284768
1130 => 0.012365730322943
1201 => 0.012539883864988
1202 => 0.011652772518277
1203 => 0.01102483101478
1204 => 0.010926768881423
1205 => 0.011126182085706
1206 => 0.011178765757385
1207 => 0.011157569345266
1208 => 0.010450764093136
1209 => 0.010923047698048
1210 => 0.011431185146199
1211 => 0.011450704775037
1212 => 0.011705089006235
1213 => 0.011787926939475
1214 => 0.011992739588492
1215 => 0.011979928501532
1216 => 0.012029797122286
1217 => 0.012018333189979
1218 => 0.012397705493892
1219 => 0.012816209482441
1220 => 0.012801718020078
1221 => 0.01274155312021
1222 => 0.012830908256154
1223 => 0.013262849221949
1224 => 0.013223083019532
1225 => 0.013261712497903
1226 => 0.013770995239702
1227 => 0.014433135248665
1228 => 0.014125504736732
1229 => 0.014792974429332
1230 => 0.015213111219776
1231 => 0.015939694355894
]
'min_raw' => 0.0065078241141705
'max_raw' => 0.015939694355894
'avg_raw' => 0.011223759235032
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0065078'
'max' => '$0.015939'
'avg' => '$0.011223'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0029017947275755
'max_diff' => 0.0064666319111506
'year' => 2028
]
3 => [
'items' => [
101 => 0.015848722568754
102 => 0.016131576051732
103 => 0.01568586408339
104 => 0.014662419310827
105 => 0.01450045525798
106 => 0.014824711393363
107 => 0.015621863461752
108 => 0.014799606237906
109 => 0.01496594780338
110 => 0.014918041421333
111 => 0.014915488693823
112 => 0.015012915920197
113 => 0.014871592646879
114 => 0.014295816207813
115 => 0.014559691156765
116 => 0.014457796366659
117 => 0.014570856233042
118 => 0.015180993702473
119 => 0.014911237383377
120 => 0.014627071014433
121 => 0.014983478702654
122 => 0.015437308164729
123 => 0.015408908332603
124 => 0.015353800788068
125 => 0.015664439131273
126 => 0.016177522665753
127 => 0.016316207083386
128 => 0.016418581085205
129 => 0.016432696730433
130 => 0.016578096649105
131 => 0.015796244640909
201 => 0.017037063857299
202 => 0.017251319059031
203 => 0.017211047961073
204 => 0.017449183600561
205 => 0.017379118054505
206 => 0.017277604071219
207 => 0.017655099712709
208 => 0.017222331422068
209 => 0.016608071317515
210 => 0.01627107607547
211 => 0.016714858594825
212 => 0.01698586109352
213 => 0.017164976506162
214 => 0.017219176721802
215 => 0.015856937586658
216 => 0.015122766246061
217 => 0.015593361658092
218 => 0.01616752053953
219 => 0.015793055159333
220 => 0.01580773349328
221 => 0.015273844268888
222 => 0.016214757889311
223 => 0.016077674689144
224 => 0.016788862574104
225 => 0.016619131877719
226 => 0.017199077989749
227 => 0.01704635874234
228 => 0.017680287799913
301 => 0.017933179263923
302 => 0.01835782339141
303 => 0.018670193340201
304 => 0.018853622948816
305 => 0.018842610523142
306 => 0.019569450016744
307 => 0.019140858161205
308 => 0.018602445779303
309 => 0.018592707597983
310 => 0.018871558999933
311 => 0.019455955039273
312 => 0.019607480429657
313 => 0.019692162451408
314 => 0.019562468987294
315 => 0.019097263245561
316 => 0.018896389764928
317 => 0.019067539790292
318 => 0.018858238016361
319 => 0.019219551597873
320 => 0.019715712317705
321 => 0.019613257091092
322 => 0.019955749552714
323 => 0.020310193219235
324 => 0.020817063581422
325 => 0.020949578263453
326 => 0.021168619993767
327 => 0.021394085885721
328 => 0.021466499453741
329 => 0.021604759423701
330 => 0.021604030725412
331 => 0.022020686450855
401 => 0.022480270618772
402 => 0.022653753002763
403 => 0.023052666178875
404 => 0.022369541344368
405 => 0.022887699378514
406 => 0.023355090895651
407 => 0.02279784746063
408 => 0.023565877714738
409 => 0.023595698589111
410 => 0.024045958387171
411 => 0.023589533822497
412 => 0.023318510372953
413 => 0.024100944916672
414 => 0.02447954034592
415 => 0.024365504321519
416 => 0.023497684545171
417 => 0.022992576212795
418 => 0.021670610278848
419 => 0.023236536032287
420 => 0.023999252788107
421 => 0.023495709293032
422 => 0.023749667342572
423 => 0.025135180114687
424 => 0.025662693673
425 => 0.025552974540469
426 => 0.025571515267736
427 => 0.025856152008754
428 => 0.027118388070741
429 => 0.026362026963995
430 => 0.026940236689792
501 => 0.027246917043465
502 => 0.027531778847438
503 => 0.026832248288378
504 => 0.025922169309187
505 => 0.02563390909396
506 => 0.023445641816205
507 => 0.023331733001234
508 => 0.023267792531601
509 => 0.022864656915123
510 => 0.02254790274871
511 => 0.02229600807525
512 => 0.021634961229974
513 => 0.021858045135021
514 => 0.020804474434851
515 => 0.021478511632567
516 => 0.019796987355741
517 => 0.021197410740245
518 => 0.020435223961498
519 => 0.020947011884479
520 => 0.020945226304629
521 => 0.020002862475912
522 => 0.019459326686139
523 => 0.019805688846112
524 => 0.020177016575865
525 => 0.020237263250721
526 => 0.020718699344991
527 => 0.020853057810468
528 => 0.020445945387477
529 => 0.019762141502649
530 => 0.019920973549188
531 => 0.019456107959785
601 => 0.018641448895153
602 => 0.019226551257955
603 => 0.01942633092975
604 => 0.019514565014012
605 => 0.018713441388172
606 => 0.018461710951693
607 => 0.018327691779534
608 => 0.019658726502633
609 => 0.019731643589405
610 => 0.019358589464041
611 => 0.021044829485131
612 => 0.020663181435075
613 => 0.02108957581303
614 => 0.019906561205764
615 => 0.019951753956902
616 => 0.019391695883172
617 => 0.019705290981366
618 => 0.019483652073604
619 => 0.019679955596439
620 => 0.019797619118637
621 => 0.020357585292348
622 => 0.021203804654463
623 => 0.020273945019222
624 => 0.019868791860312
625 => 0.020120146601432
626 => 0.020789537400175
627 => 0.021803698725754
628 => 0.021203294809112
629 => 0.021469743871798
630 => 0.021527951138501
701 => 0.021085235518531
702 => 0.021820022282145
703 => 0.022213800478163
704 => 0.022617735426361
705 => 0.022968460823881
706 => 0.022456394925331
707 => 0.023004378838543
708 => 0.022562800536676
709 => 0.022166659150376
710 => 0.022167259933339
711 => 0.021918754655011
712 => 0.02143724436457
713 => 0.021348446479319
714 => 0.02181038429233
715 => 0.02218081467269
716 => 0.022211325093059
717 => 0.022416414385026
718 => 0.022537784115425
719 => 0.023727372467481
720 => 0.024205834743468
721 => 0.024790889357719
722 => 0.025018801101841
723 => 0.025704733740765
724 => 0.025150787426109
725 => 0.025030937656447
726 => 0.023367089441272
727 => 0.023639544493297
728 => 0.02407577131959
729 => 0.023374282660966
730 => 0.023819215754431
731 => 0.023907054972053
801 => 0.023350446344774
802 => 0.023647755062242
803 => 0.022858191254537
804 => 0.021221014987842
805 => 0.021821844927342
806 => 0.022264257999984
807 => 0.021632879996185
808 => 0.022764600630292
809 => 0.022103472799302
810 => 0.021893927016611
811 => 0.021076414209868
812 => 0.021462248785697
813 => 0.021984095574125
814 => 0.021661654930077
815 => 0.022330767681183
816 => 0.0232784097826
817 => 0.023953755977133
818 => 0.024005600672143
819 => 0.023571398313739
820 => 0.024267210364123
821 => 0.024272278595275
822 => 0.023487399759966
823 => 0.023006665843562
824 => 0.022897442086283
825 => 0.023170304446546
826 => 0.023501609725077
827 => 0.024023985809334
828 => 0.024339646736645
829 => 0.025162723021452
830 => 0.025385423864675
831 => 0.0256301045727
901 => 0.025957073455357
902 => 0.026349683432087
903 => 0.025490675154299
904 => 0.025524805154568
905 => 0.024724908540071
906 => 0.023870104290703
907 => 0.024518794163119
908 => 0.025366869879706
909 => 0.025172320373281
910 => 0.025150429579522
911 => 0.025187243822624
912 => 0.025040559848172
913 => 0.024377113668088
914 => 0.024043935149843
915 => 0.024473820441285
916 => 0.024702285341693
917 => 0.025056614477993
918 => 0.025012935932963
919 => 0.025925649735901
920 => 0.02628030272069
921 => 0.026189567310724
922 => 0.026206264809828
923 => 0.026848347098354
924 => 0.027562474657488
925 => 0.028231349354049
926 => 0.028911757424228
927 => 0.028091498938849
928 => 0.027675022266483
929 => 0.028104719883455
930 => 0.027876716279458
1001 => 0.029186892618287
1002 => 0.029277606385338
1003 => 0.030587687983505
1004 => 0.031831111421781
1005 => 0.031050139438445
1006 => 0.03178656084298
1007 => 0.032583060633303
1008 => 0.034119637956269
1009 => 0.033602172771336
1010 => 0.033205802549391
1011 => 0.032831234604899
1012 => 0.033610651036399
1013 => 0.034613357824043
1014 => 0.034829331262295
1015 => 0.035179290740467
1016 => 0.034811351140178
1017 => 0.035254493861508
1018 => 0.036818982394583
1019 => 0.036396243782824
1020 => 0.035795886995503
1021 => 0.037030900437289
1022 => 0.037477847000878
1023 => 0.04061475205188
1024 => 0.044575224257854
1025 => 0.042935562758718
1026 => 0.041917771954659
1027 => 0.042156976935933
1028 => 0.04360320731511
1029 => 0.044067690611844
1030 => 0.042805064894328
1031 => 0.043251045643244
1101 => 0.045708443417631
1102 => 0.04702675848083
1103 => 0.045236309551671
1104 => 0.040296531966356
1105 => 0.035741831435451
1106 => 0.036949943117085
1107 => 0.036812980744458
1108 => 0.039453148086421
1109 => 0.036386161606742
1110 => 0.036437801793335
1111 => 0.039132564999944
1112 => 0.038413648376358
1113 => 0.037249095518033
1114 => 0.035750333960088
1115 => 0.032979734601562
1116 => 0.030525737485837
1117 => 0.035338590951558
1118 => 0.03513105195851
1119 => 0.034830504741021
1120 => 0.035499340050937
1121 => 0.038747014463675
1122 => 0.038672145056766
1123 => 0.038195864088712
1124 => 0.038557119005233
1125 => 0.037185765784525
1126 => 0.037539194734634
1127 => 0.035741109947616
1128 => 0.036553919366002
1129 => 0.037246596910626
1130 => 0.037385662182976
1201 => 0.037698983342428
1202 => 0.035021688339818
1203 => 0.036223715194738
1204 => 0.036929793357319
1205 => 0.033739706531436
1206 => 0.036866735597682
1207 => 0.034975082590266
1208 => 0.034333027147875
1209 => 0.035197470216683
1210 => 0.03486059591207
1211 => 0.034570971166887
1212 => 0.034409355582689
1213 => 0.035044107167322
1214 => 0.035014495247207
1215 => 0.033975918454774
1216 => 0.032621137366852
1217 => 0.033075846369132
1218 => 0.032910646325684
1219 => 0.032311940056999
1220 => 0.032715395794022
1221 => 0.030938780912447
1222 => 0.027882207349104
1223 => 0.029901473470429
1224 => 0.029823733921297
1225 => 0.029784534115416
1226 => 0.031301956797176
1227 => 0.031156091619222
1228 => 0.03089134489292
1229 => 0.032307077775753
1230 => 0.031790316229225
1231 => 0.033382853551292
]
'min_raw' => 0.014295816207813
'max_raw' => 0.04702675848083
'avg_raw' => 0.030661287344322
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.014295'
'max' => '$0.047026'
'avg' => '$0.030661'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0077879920936427
'max_diff' => 0.031087064124937
'year' => 2029
]
4 => [
'items' => [
101 => 0.034431801630462
102 => 0.034165754467669
103 => 0.035152295206134
104 => 0.033086321946161
105 => 0.033772555390664
106 => 0.033913987152497
107 => 0.032289607851737
108 => 0.03117995696628
109 => 0.031105955903167
110 => 0.029181974187095
111 => 0.030209749689983
112 => 0.031114149600284
113 => 0.030681012227518
114 => 0.030543893874911
115 => 0.031244401801037
116 => 0.031298837266341
117 => 0.030057702888584
118 => 0.030315774027334
119 => 0.031391973576678
120 => 0.030288656559934
121 => 0.028145091822212
122 => 0.027613458130156
123 => 0.027542528395682
124 => 0.026100695658426
125 => 0.027648984435564
126 => 0.026973114892784
127 => 0.029108178680267
128 => 0.027888641695433
129 => 0.027836069893475
130 => 0.027756599904208
131 => 0.026515554905891
201 => 0.026787264887998
202 => 0.027690470251121
203 => 0.02801274410002
204 => 0.027979128297268
205 => 0.0276860440521
206 => 0.027820216518704
207 => 0.027388000254987
208 => 0.027235375696465
209 => 0.026753650607076
210 => 0.026045647805628
211 => 0.026144099937603
212 => 0.024741361128924
213 => 0.023977074576972
214 => 0.023765530132527
215 => 0.023482644060364
216 => 0.023797482867109
217 => 0.024737387346124
218 => 0.023603663132573
219 => 0.021659972489947
220 => 0.021776791609456
221 => 0.022039249487086
222 => 0.021550160968455
223 => 0.021087279731659
224 => 0.021489717412312
225 => 0.02066615006381
226 => 0.022138773666513
227 => 0.02209894332504
228 => 0.022647846337695
301 => 0.022991086656132
302 => 0.022200028847508
303 => 0.022001079947886
304 => 0.022114410282834
305 => 0.02024131229259
306 => 0.022494774270549
307 => 0.022514262303312
308 => 0.022347393935272
309 => 0.023547292870702
310 => 0.026079453882323
311 => 0.02512675305381
312 => 0.024757838497475
313 => 0.024056531656208
314 => 0.024990981382717
315 => 0.024919230223408
316 => 0.024594744270192
317 => 0.024398494153229
318 => 0.02476009101109
319 => 0.024353688300924
320 => 0.024280687206979
321 => 0.023838380003644
322 => 0.023680496455749
323 => 0.023563605762412
324 => 0.023434920594491
325 => 0.023718768008579
326 => 0.023075532425019
327 => 0.022299853368406
328 => 0.022235364047813
329 => 0.022413424731931
330 => 0.022334646134267
331 => 0.022234986886195
401 => 0.022044710241045
402 => 0.021988259225046
403 => 0.022171697640903
404 => 0.021964606364524
405 => 0.022270180823666
406 => 0.022187081478986
407 => 0.021722895294713
408 => 0.021144347445374
409 => 0.021139197155969
410 => 0.021014549970838
411 => 0.020855793039743
412 => 0.020811630493379
413 => 0.021455825233337
414 => 0.022789289065925
415 => 0.022527498208503
416 => 0.022716668932397
417 => 0.023647201664807
418 => 0.023942990038344
419 => 0.023733046456939
420 => 0.023445662733955
421 => 0.023458306159269
422 => 0.024440383337674
423 => 0.024501634286651
424 => 0.02465639567441
425 => 0.024855307793244
426 => 0.023766922050897
427 => 0.023407043288682
428 => 0.023236512765831
429 => 0.022711344759067
430 => 0.023277693429859
501 => 0.022947706312857
502 => 0.022992232848906
503 => 0.022963234883891
504 => 0.022979069733623
505 => 0.022138362038204
506 => 0.022444671736119
507 => 0.021935372453593
508 => 0.021253477885817
509 => 0.021251191936123
510 => 0.021418084665547
511 => 0.021318810339572
512 => 0.021051665680952
513 => 0.021089612318821
514 => 0.020757159841753
515 => 0.021129978068784
516 => 0.021140669161527
517 => 0.020997113836574
518 => 0.021571491754317
519 => 0.021806814855864
520 => 0.021712323665727
521 => 0.02180018510207
522 => 0.022538376800544
523 => 0.022658734256957
524 => 0.022712189088728
525 => 0.022640566695563
526 => 0.0218136778912
527 => 0.021850353925876
528 => 0.021581249518354
529 => 0.021353884651521
530 => 0.021362978053823
531 => 0.021479873150739
601 => 0.021990360894777
602 => 0.023064652257208
603 => 0.023105420829115
604 => 0.02315483352757
605 => 0.022953847250121
606 => 0.022893227865663
607 => 0.022973200480954
608 => 0.023376647833127
609 => 0.024414423957803
610 => 0.024047604564605
611 => 0.023749374688052
612 => 0.024011002691987
613 => 0.023970727111489
614 => 0.023630760680177
615 => 0.023621218954743
616 => 0.022968714679213
617 => 0.022727498705352
618 => 0.022525920582892
619 => 0.022305802535496
620 => 0.022175309178575
621 => 0.022375806282975
622 => 0.022421662342963
623 => 0.021983271920103
624 => 0.021923520925376
625 => 0.022281520007998
626 => 0.022123977959287
627 => 0.022286013863241
628 => 0.022323607582876
629 => 0.022317554128158
630 => 0.022153062135715
701 => 0.022257904426477
702 => 0.022009921153835
703 => 0.02174027659072
704 => 0.021568260158902
705 => 0.021418153007473
706 => 0.021501441179365
707 => 0.021204534054389
708 => 0.02110954748955
709 => 0.022222386217393
710 => 0.023044452150683
711 => 0.023032498986439
712 => 0.022959737173208
713 => 0.022851627877943
714 => 0.023368738964807
715 => 0.023188587802106
716 => 0.023319662825104
717 => 0.023353026919659
718 => 0.023454009985253
719 => 0.023490102751415
720 => 0.023381005344035
721 => 0.023014861119743
722 => 0.022102464524756
723 => 0.021677741446822
724 => 0.021537575756781
725 => 0.021542670513402
726 => 0.021402134381815
727 => 0.021443528570955
728 => 0.021387739172118
729 => 0.021282087547625
730 => 0.021494917489271
731 => 0.021519444157397
801 => 0.021469767105889
802 => 0.021481467849854
803 => 0.02107016308071
804 => 0.021101433689002
805 => 0.02092731496836
806 => 0.020894669807273
807 => 0.020454512843743
808 => 0.019674710981079
809 => 0.020106796910193
810 => 0.019584897868299
811 => 0.019387246793072
812 => 0.020322896242145
813 => 0.020228982988335
814 => 0.02006824432092
815 => 0.019830478330941
816 => 0.019742288612419
817 => 0.019206475800151
818 => 0.019174817120752
819 => 0.019440380418675
820 => 0.019317832094159
821 => 0.019145727833858
822 => 0.018522383648978
823 => 0.017821538403006
824 => 0.017842692515625
825 => 0.01806561834868
826 => 0.01871380527393
827 => 0.018460547428487
828 => 0.018276805955819
829 => 0.018242396701237
830 => 0.018673100562988
831 => 0.019282636762615
901 => 0.019568617509876
902 => 0.019285219274705
903 => 0.018959666641385
904 => 0.018979481521709
905 => 0.019111301043286
906 => 0.019125153411176
907 => 0.018913252114236
908 => 0.018972901088105
909 => 0.018882288842381
910 => 0.018326201657627
911 => 0.018316143803826
912 => 0.01817967104057
913 => 0.018175538699537
914 => 0.017943364484512
915 => 0.017910881706886
916 => 0.017449885710987
917 => 0.017753314671512
918 => 0.017549790455527
919 => 0.017243031455529
920 => 0.017190146088305
921 => 0.017188556290305
922 => 0.017503529193246
923 => 0.017749634029755
924 => 0.017553330846401
925 => 0.017508636416728
926 => 0.017985855995467
927 => 0.017925125454119
928 => 0.017872533196982
929 => 0.01922805948139
930 => 0.018155054654246
1001 => 0.017687163304637
1002 => 0.017108058909338
1003 => 0.017296618220546
1004 => 0.01733635043793
1005 => 0.015943708758649
1006 => 0.015378714202808
1007 => 0.015184829362614
1008 => 0.015073245895953
1009 => 0.015124095882887
1010 => 0.014615534515378
1011 => 0.014957296165173
1012 => 0.014516925008532
1013 => 0.01444309535103
1014 => 0.015230533530621
1015 => 0.015340100953164
1016 => 0.014872652288666
1017 => 0.015172830004338
1018 => 0.015063981391853
1019 => 0.014524473908071
1020 => 0.014503868690539
1021 => 0.014233162799782
1022 => 0.013809560499738
1023 => 0.01361596288185
1024 => 0.013515135561562
1025 => 0.013556738878998
1026 => 0.01353570296862
1027 => 0.013398429424165
1028 => 0.013543571327502
1029 => 0.013172793741252
1030 => 0.013025147118849
1031 => 0.012958458564885
1101 => 0.012629372115926
1102 => 0.013153095001628
1103 => 0.013256275007798
1104 => 0.013359658310454
1105 => 0.014259539377299
1106 => 0.014214583862237
1107 => 0.014620959824174
1108 => 0.014605168801571
1109 => 0.014489263794372
1110 => 0.014000279634449
1111 => 0.01419518000529
1112 => 0.013595306958085
1113 => 0.014044772632453
1114 => 0.013839655268807
1115 => 0.013975422245475
1116 => 0.013731300979811
1117 => 0.013866407767749
1118 => 0.013280742814987
1119 => 0.012733857122625
1120 => 0.01295393988982
1121 => 0.013193195027278
1122 => 0.013711961126363
1123 => 0.013402988317475
1124 => 0.013514106623107
1125 => 0.013141878900221
1126 => 0.012373866786317
1127 => 0.012378213651476
1128 => 0.012260071719805
1129 => 0.012157979841837
1130 => 0.013438477561335
1201 => 0.013279227428242
1202 => 0.013025483183301
1203 => 0.01336512993855
1204 => 0.013454937931557
1205 => 0.013457494638863
1206 => 0.013705292143941
1207 => 0.013837541716822
1208 => 0.013860851277245
1209 => 0.014250766005505
1210 => 0.014381460279318
1211 => 0.01491977149661
1212 => 0.013826321264539
1213 => 0.013803802376575
1214 => 0.013369909464925
1215 => 0.013094727720782
1216 => 0.013388751394375
1217 => 0.013649216230945
1218 => 0.01337800283344
1219 => 0.013413417577527
1220 => 0.013049335750326
1221 => 0.013179477871908
1222 => 0.013291573799052
1223 => 0.013229681016777
1224 => 0.013137024526067
1225 => 0.013627861084648
1226 => 0.013600166162409
1227 => 0.014057244450043
1228 => 0.014413569661235
1229 => 0.015052168140443
1230 => 0.014385757336498
1231 => 0.01436147067806
]
'min_raw' => 0.012157979841837
'max_raw' => 0.035152295206134
'avg_raw' => 0.023655137523985
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.012157'
'max' => '$0.035152'
'avg' => '$0.023655'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0021378363659763
'max_diff' => -0.011874463274697
'year' => 2030
]
5 => [
'items' => [
101 => 0.014598876660001
102 => 0.0143814239337
103 => 0.014518846550509
104 => 0.01503002723233
105 => 0.015040827674628
106 => 0.014859906350538
107 => 0.014848897271525
108 => 0.014883645190879
109 => 0.015087164839867
110 => 0.015016048820983
111 => 0.015098346078473
112 => 0.015201260059143
113 => 0.015626955917821
114 => 0.015729589748161
115 => 0.015480242749973
116 => 0.01550275599209
117 => 0.015409493370039
118 => 0.015319402845716
119 => 0.015521913187731
120 => 0.015892004818113
121 => 0.015889702497288
122 => 0.015975556561983
123 => 0.016029042933035
124 => 0.015799440274064
125 => 0.015649977385798
126 => 0.01570729096773
127 => 0.015798936633367
128 => 0.015677571513534
129 => 0.014928449772131
130 => 0.015155685454391
131 => 0.015117862325606
201 => 0.015063997590766
202 => 0.015292484826439
203 => 0.01527044667516
204 => 0.014610318483492
205 => 0.014652577748542
206 => 0.014612888409367
207 => 0.014741132783916
208 => 0.014374498316612
209 => 0.014487272609434
210 => 0.014558003588699
211 => 0.014599664678866
212 => 0.01475017310383
213 => 0.014732512677322
214 => 0.014749075306922
215 => 0.014972239568391
216 => 0.016100927822178
217 => 0.016162359833521
218 => 0.015859846141964
219 => 0.015980694394923
220 => 0.01574869217585
221 => 0.015904436819793
222 => 0.016010993349694
223 => 0.015529484880715
224 => 0.015500973074146
225 => 0.015268013299387
226 => 0.015393192686827
227 => 0.015194023280695
228 => 0.015242892486309
301 => 0.01510624992707
302 => 0.015352179328439
303 => 0.015627166612735
304 => 0.015696639260325
305 => 0.015513886634371
306 => 0.015381561689195
307 => 0.015149242676013
308 => 0.015535594372501
309 => 0.015648575382409
310 => 0.015535000931354
311 => 0.015508683249393
312 => 0.015458811289634
313 => 0.015519263821416
314 => 0.015647960063565
315 => 0.015587269292414
316 => 0.015627356615993
317 => 0.015474585076379
318 => 0.015799516282098
319 => 0.016315585235734
320 => 0.016317244481806
321 => 0.016256553383509
322 => 0.016231719893694
323 => 0.01629399264359
324 => 0.016327773055847
325 => 0.016529151710142
326 => 0.016745239029481
327 => 0.01775362426255
328 => 0.017470473724223
329 => 0.018365173092108
330 => 0.019072764129932
331 => 0.019284939742969
401 => 0.019089748162609
402 => 0.018422008310238
403 => 0.018389245807459
404 => 0.019387131059395
405 => 0.019105182769683
406 => 0.019071645917774
407 => 0.018714870474866
408 => 0.018925768949123
409 => 0.018879642359109
410 => 0.018806829280182
411 => 0.019209208877749
412 => 0.019962427563721
413 => 0.019845031367872
414 => 0.019757400553524
415 => 0.019373427833996
416 => 0.019604665174564
417 => 0.019522325986647
418 => 0.019876107391677
419 => 0.019666535124555
420 => 0.019103046734085
421 => 0.019192784117549
422 => 0.019179220492565
423 => 0.019458358933609
424 => 0.019374568502249
425 => 0.019162859066054
426 => 0.019959853144138
427 => 0.019908100781821
428 => 0.019981473799349
429 => 0.020013774870801
430 => 0.02049889112152
501 => 0.020697627727451
502 => 0.020742744416371
503 => 0.020931528821165
504 => 0.020738047288401
505 => 0.02151211136945
506 => 0.022026818815457
507 => 0.022624678000596
508 => 0.023498310959484
509 => 0.023826805033583
510 => 0.023767465519333
511 => 0.024429844058127
512 => 0.025620123568492
513 => 0.024008055039772
514 => 0.025705567114922
515 => 0.025168154390649
516 => 0.023893958489039
517 => 0.023811915294758
518 => 0.024674815553047
519 => 0.02658864527486
520 => 0.026109252636023
521 => 0.026589429389479
522 => 0.026029277700482
523 => 0.026001461447794
524 => 0.026562224072227
525 => 0.027872476509792
526 => 0.027250024690783
527 => 0.026357587376786
528 => 0.027016549201579
529 => 0.026445695484905
530 => 0.025159402289345
531 => 0.026108886053507
601 => 0.025473993300152
602 => 0.025659288758336
603 => 0.026993738892717
604 => 0.026833174322031
605 => 0.027040959744378
606 => 0.026674223912628
607 => 0.026331634816841
608 => 0.025692166828554
609 => 0.025502851882613
610 => 0.025555171722833
611 => 0.025502825955498
612 => 0.025145049493066
613 => 0.025067787700068
614 => 0.024939014660154
615 => 0.024978926809826
616 => 0.024736795820907
617 => 0.025193747023812
618 => 0.025278561193712
619 => 0.025611092172619
620 => 0.025645616641978
621 => 0.026571710684951
622 => 0.02606163364846
623 => 0.02640383736247
624 => 0.026373227441343
625 => 0.023921574177927
626 => 0.024259390366506
627 => 0.024784926343374
628 => 0.024548173098142
629 => 0.024213459401111
630 => 0.023943160144546
701 => 0.023533629131331
702 => 0.024110036168084
703 => 0.02486795012736
704 => 0.025664838590734
705 => 0.026622247865276
706 => 0.026408565260671
707 => 0.025646940490306
708 => 0.025681106421137
709 => 0.025892306761738
710 => 0.025618783131086
711 => 0.025538115672591
712 => 0.025881224291674
713 => 0.025883587092165
714 => 0.025568865098664
715 => 0.025219109196404
716 => 0.025217643706403
717 => 0.025155408021837
718 => 0.026040349290509
719 => 0.026526977510625
720 => 0.02658276865182
721 => 0.026523222322302
722 => 0.026546139341224
723 => 0.02626298110206
724 => 0.026910196868822
725 => 0.027504146059408
726 => 0.027344954988457
727 => 0.027106304942758
728 => 0.026916208686415
729 => 0.027300174351809
730 => 0.027283076965147
731 => 0.027498958431378
801 => 0.027489164801078
802 => 0.027416571983697
803 => 0.027344957580975
804 => 0.027628900592842
805 => 0.02754712956541
806 => 0.027465231524986
807 => 0.027300972466953
808 => 0.027323298000994
809 => 0.02708468916159
810 => 0.026974297794484
811 => 0.025314276499135
812 => 0.024870664566257
813 => 0.025010233910894
814 => 0.025056183763065
815 => 0.024863123281373
816 => 0.025139922418951
817 => 0.025096783566562
818 => 0.025264611605823
819 => 0.025159759933139
820 => 0.02516406308236
821 => 0.025472409494988
822 => 0.025561923770373
823 => 0.025516396087444
824 => 0.02554828211597
825 => 0.026283082185109
826 => 0.026178617112861
827 => 0.026123122125295
828 => 0.02613849461611
829 => 0.026326251788066
830 => 0.026378813545053
831 => 0.026156105687253
901 => 0.02626113600045
902 => 0.026708341743712
903 => 0.026864838444201
904 => 0.027364300789483
905 => 0.027152120307972
906 => 0.027541586764741
907 => 0.028738673873952
908 => 0.029694989888917
909 => 0.028815522160125
910 => 0.030571674735498
911 => 0.031939091420551
912 => 0.031886607690627
913 => 0.03164816696267
914 => 0.030091399421391
915 => 0.028658838719809
916 => 0.029857236576422
917 => 0.029860291539012
918 => 0.029757348100322
919 => 0.02911797524384
920 => 0.029735099310838
921 => 0.029784084378211
922 => 0.029756665766662
923 => 0.029266460096686
924 => 0.028518006643784
925 => 0.028664252656937
926 => 0.028903806609819
927 => 0.028450281000824
928 => 0.028305352088664
929 => 0.028574802510222
930 => 0.029443027910709
1001 => 0.029278894928034
1002 => 0.029274608752543
1003 => 0.029976839255642
1004 => 0.029474193766251
1005 => 0.028666097287507
1006 => 0.028462042269142
1007 => 0.027737784421874
1008 => 0.0282380318967
1009 => 0.028256034912745
1010 => 0.027982054483189
1011 => 0.028688329289374
1012 => 0.028681820842697
1013 => 0.029352323656038
1014 => 0.030634073205789
1015 => 0.030254996792862
1016 => 0.029814172168026
1017 => 0.029862102027487
1018 => 0.030387774284798
1019 => 0.030069940838097
1020 => 0.030184235961544
1021 => 0.030387601285439
1022 => 0.030510296634622
1023 => 0.029844448054913
1024 => 0.029689206899764
1025 => 0.02937163797857
1026 => 0.029288790174735
1027 => 0.029547443434755
1028 => 0.029479297439094
1029 => 0.028254521828958
1030 => 0.028126525963111
1031 => 0.028130451413581
1101 => 0.027808599723039
1102 => 0.027317698641705
1103 => 0.028607757373269
1104 => 0.028504147602764
1105 => 0.028389770434886
1106 => 0.028403780985324
1107 => 0.028963751756549
1108 => 0.028638940430037
1109 => 0.029502504577099
1110 => 0.029324981749578
1111 => 0.029142906131385
1112 => 0.029117737734792
1113 => 0.029047654155749
1114 => 0.028807311486262
1115 => 0.0285170832705
1116 => 0.028325449463317
1117 => 0.026128729852317
1118 => 0.026536428234388
1119 => 0.027005448060085
1120 => 0.027167351824436
1121 => 0.026890404232113
1122 => 0.028818247065222
1123 => 0.029170482527987
1124 => 0.028103538335522
1125 => 0.027903956640156
1126 => 0.028831331607944
1127 => 0.028272011135389
1128 => 0.028523873109933
1129 => 0.027979485282103
1130 => 0.029085639319665
1201 => 0.029077212279214
1202 => 0.02864689337498
1203 => 0.029010595966142
1204 => 0.028947393690646
1205 => 0.028461564707595
1206 => 0.029101040964986
1207 => 0.029101358137231
1208 => 0.028687185547846
1209 => 0.028203522637482
1210 => 0.028117055132717
1211 => 0.028051913483151
1212 => 0.028507852257395
1213 => 0.028916645536698
1214 => 0.029677308481034
1215 => 0.029868557218145
1216 => 0.030615013771241
1217 => 0.030170535238183
1218 => 0.030367566814927
1219 => 0.030581472463301
1220 => 0.030684026697251
1221 => 0.030516920076393
1222 => 0.031676474357126
1223 => 0.031774376266245
1224 => 0.031807201929525
1225 => 0.03141620675022
1226 => 0.031763501983004
1227 => 0.031601014044793
1228 => 0.032023762519567
1229 => 0.032090054878335
1230 => 0.032033907608878
1231 => 0.032054949849904
]
'min_raw' => 0.014374498316612
'max_raw' => 0.032090054878335
'avg_raw' => 0.023232276597473
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.014374'
'max' => '$0.03209'
'avg' => '$0.023232'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0022165184747749
'max_diff' => -0.0030622403277985
'year' => 2031
]
6 => [
'items' => [
101 => 0.031065474830691
102 => 0.031014165331048
103 => 0.030314556662663
104 => 0.030599652366276
105 => 0.030066679613364
106 => 0.03023569076354
107 => 0.03031018926814
108 => 0.03027127547709
109 => 0.030615771249604
110 => 0.030322879467131
111 => 0.029549889897315
112 => 0.028776689727009
113 => 0.028766982828706
114 => 0.028563412871981
115 => 0.028416269078966
116 => 0.028444614193707
117 => 0.028544506075166
118 => 0.028410463181222
119 => 0.028439068028792
120 => 0.028914099091561
121 => 0.029009363183433
122 => 0.028685618577169
123 => 0.027385737266897
124 => 0.027066743132851
125 => 0.027296029790474
126 => 0.027186445536082
127 => 0.021941583362696
128 => 0.023173785932193
129 => 0.022441653007043
130 => 0.022779053542768
131 => 0.022031735411092
201 => 0.022388394793827
202 => 0.022322532828951
203 => 0.024303878097178
204 => 0.024272942116066
205 => 0.024287749533128
206 => 0.023580952936208
207 => 0.024706899106721
208 => 0.02526158067803
209 => 0.025158923881552
210 => 0.025184760385572
211 => 0.024740803646084
212 => 0.024292048004808
213 => 0.023794308935634
214 => 0.02471904660375
215 => 0.024616231560854
216 => 0.024852052277573
217 => 0.02545181075696
218 => 0.025540127471311
219 => 0.025658826031018
220 => 0.025616281046901
221 => 0.026629875174761
222 => 0.026507122237968
223 => 0.026802921497209
224 => 0.026194439978606
225 => 0.02550588538271
226 => 0.025636757100844
227 => 0.025624153101984
228 => 0.025463689730297
229 => 0.02531883057314
301 => 0.025077680890289
302 => 0.025840714170269
303 => 0.025809736412564
304 => 0.026311230302101
305 => 0.026222586385874
306 => 0.025630600618462
307 => 0.025651743505957
308 => 0.025793939585285
309 => 0.026286081839409
310 => 0.026432183168033
311 => 0.026364503211483
312 => 0.02652469664854
313 => 0.026651307009577
314 => 0.026540596960559
315 => 0.028108017787826
316 => 0.027457115380146
317 => 0.027774360684699
318 => 0.027850021820517
319 => 0.027656217412102
320 => 0.027698246648671
321 => 0.027761909489793
322 => 0.028148457794623
323 => 0.029162872395149
324 => 0.029612149716369
325 => 0.03096382270421
326 => 0.029574843489084
327 => 0.029492427210626
328 => 0.029735904332349
329 => 0.030529479465329
330 => 0.031172597573887
331 => 0.031385956952869
401 => 0.031414155916981
402 => 0.031814432295815
403 => 0.032043863251451
404 => 0.031765828215111
405 => 0.031530222633295
406 => 0.030686312683671
407 => 0.03078399755823
408 => 0.031456949474516
409 => 0.03240753369294
410 => 0.033223233843779
411 => 0.032937604080975
412 => 0.035116757547978
413 => 0.035332811713187
414 => 0.035302960013423
415 => 0.035795163554941
416 => 0.034818239760535
417 => 0.03440058591142
418 => 0.03158116323432
419 => 0.032373306003829
420 => 0.033524732040223
421 => 0.03337233648668
422 => 0.032536140121345
423 => 0.033222599513852
424 => 0.032995634571119
425 => 0.032816617904002
426 => 0.033636727960155
427 => 0.03273498326515
428 => 0.033515736447092
429 => 0.032514412415394
430 => 0.032938908813672
501 => 0.032697944127429
502 => 0.032853877810949
503 => 0.031942292683337
504 => 0.032434161890719
505 => 0.031921829307194
506 => 0.031921586394842
507 => 0.031910276624664
508 => 0.032513033637151
509 => 0.032532689521688
510 => 0.032087251178745
511 => 0.032023056554473
512 => 0.032260417726174
513 => 0.031982529959101
514 => 0.03211255189631
515 => 0.031986468191124
516 => 0.031958084093357
517 => 0.031731914773198
518 => 0.031634474811419
519 => 0.031672683531151
520 => 0.031542257472759
521 => 0.031463671054862
522 => 0.031894643808153
523 => 0.031664392451461
524 => 0.031859354485471
525 => 0.031637170641546
526 => 0.030866984637611
527 => 0.030424042522179
528 => 0.028969232557026
529 => 0.029381814858458
530 => 0.029655357351154
531 => 0.029564951558949
601 => 0.029759178183002
602 => 0.029771102120275
603 => 0.02970795706489
604 => 0.029634843180136
605 => 0.029599255384489
606 => 0.029864497656706
607 => 0.030018479723371
608 => 0.029682810999822
609 => 0.029604168514399
610 => 0.029943548126686
611 => 0.030150569494127
612 => 0.031679098956057
613 => 0.031565860556432
614 => 0.031850066717577
615 => 0.031818069465331
616 => 0.032115962799803
617 => 0.032602892502548
618 => 0.031612828269181
619 => 0.031784669186248
620 => 0.03174253776177
621 => 0.032202517606774
622 => 0.032203953613642
623 => 0.031928172718864
624 => 0.032077678015957
625 => 0.031994228260583
626 => 0.032145033247455
627 => 0.031564348188567
628 => 0.032271559909214
629 => 0.032672503383104
630 => 0.032678070483628
701 => 0.032868114508168
702 => 0.033061210243708
703 => 0.033431840692982
704 => 0.033050873561637
705 => 0.03236555077875
706 => 0.032415028870096
707 => 0.032013224373239
708 => 0.032019978779423
709 => 0.03198392322986
710 => 0.032092128648233
711 => 0.031588093192982
712 => 0.031706389306877
713 => 0.031540774054682
714 => 0.031784309171034
715 => 0.031522305643636
716 => 0.031742517444721
717 => 0.031837553557933
718 => 0.032188238861664
719 => 0.031470509139142
720 => 0.030007009648887
721 => 0.030314654984955
722 => 0.029859623367891
723 => 0.029901738276478
724 => 0.029986817094361
725 => 0.029711048809544
726 => 0.02976365670783
727 => 0.029761777183507
728 => 0.029745580458294
729 => 0.029673842476737
730 => 0.029569808210551
731 => 0.029984248706975
801 => 0.03005467022322
802 => 0.030211208530454
803 => 0.030676960351832
804 => 0.030630420761692
805 => 0.03070632876412
806 => 0.030540622021026
807 => 0.029909424937031
808 => 0.029943701975473
809 => 0.029516266756853
810 => 0.030200278050908
811 => 0.030038295147968
812 => 0.029933863716681
813 => 0.029905368633104
814 => 0.030372274963162
815 => 0.030511980654975
816 => 0.030424925443137
817 => 0.030246372663852
818 => 0.03058924678447
819 => 0.03068098543445
820 => 0.030701522334989
821 => 0.031309029537134
822 => 0.030735475239026
823 => 0.03087353545922
824 => 0.031950641886146
825 => 0.030973854987451
826 => 0.031491280792637
827 => 0.031465955492027
828 => 0.031730653025225
829 => 0.031444242568363
830 => 0.031447792969235
831 => 0.031682826446552
901 => 0.031352764316172
902 => 0.031271036291016
903 => 0.03115812960961
904 => 0.031404657217851
905 => 0.031552439369508
906 => 0.032743454977828
907 => 0.033512905377713
908 => 0.033479501506573
909 => 0.033784750359366
910 => 0.033647232955424
911 => 0.033203152982835
912 => 0.033961143346261
913 => 0.033721283479609
914 => 0.033741057235586
915 => 0.033740321255401
916 => 0.033899807097811
917 => 0.033786796761801
918 => 0.033564041789251
919 => 0.033711916935569
920 => 0.034151053253799
921 => 0.035514145859935
922 => 0.036276950540904
923 => 0.035468224060335
924 => 0.036026072757352
925 => 0.035691562320956
926 => 0.03563077182384
927 => 0.035981142030262
928 => 0.036332125513348
929 => 0.036309769382819
930 => 0.036054973397299
1001 => 0.035911045610288
1002 => 0.037000915032883
1003 => 0.03780391225801
1004 => 0.037749153230618
1005 => 0.037990841768936
1006 => 0.038700446792584
1007 => 0.038765324182887
1008 => 0.038757151122899
1009 => 0.038596345741778
1010 => 0.039295044041416
1011 => 0.0398779104554
1012 => 0.038559123942162
1013 => 0.03906130058222
1014 => 0.039286743855063
1015 => 0.039617761465601
1016 => 0.040176243659572
1017 => 0.040782903452311
1018 => 0.04086869179869
1019 => 0.040807820861584
1020 => 0.040407712420382
1021 => 0.041071526804553
1022 => 0.041460373702438
1023 => 0.041691923131525
1024 => 0.042279093957539
1025 => 0.039288136115966
1026 => 0.037170987495451
1027 => 0.036840364166361
1028 => 0.037512699707186
1029 => 0.037689989227526
1030 => 0.037618524044179
1031 => 0.035235480789058
1101 => 0.036827817936805
1102 => 0.03854103882027
1103 => 0.038606850611716
1104 => 0.039464524807738
1105 => 0.039743818683216
1106 => 0.040434358828941
1107 => 0.040391165354812
1108 => 0.040559300891402
1109 => 0.040520649443242
1110 => 0.041799729652813
1111 => 0.04321074506922
1112 => 0.043161886092104
1113 => 0.042959035931619
1114 => 0.043260303011032
1115 => 0.044716622134365
1116 => 0.044582547606527
1117 => 0.044712789589881
1118 => 0.04642987191084
1119 => 0.048662323180199
1120 => 0.047625125431139
1121 => 0.049875546100986
1122 => 0.051292066622982
1123 => 0.053741792394817
1124 => 0.053435074663029
1125 => 0.054388734929087
1126 => 0.052885985909207
1127 => 0.049435370403879
1128 => 0.048889297291736
1129 => 0.049982549491021
1130 => 0.052670203344974
1201 => 0.049897905706612
1202 => 0.050458737908204
1203 => 0.050297218196417
1204 => 0.05028861149739
1205 => 0.05061709419326
1206 => 0.050140612910395
1207 => 0.048199342446656
1208 => 0.049089015260209
1209 => 0.048745469861299
1210 => 0.049126659094396
1211 => 0.051183780171023
1212 => 0.050274277907405
1213 => 0.049316191154647
1214 => 0.050517844559076
1215 => 0.052047962275823
1216 => 0.051952210258994
1217 => 0.05176641132511
1218 => 0.052813750187302
1219 => 0.054543647146149
1220 => 0.055011231342837
1221 => 0.055356392437494
1222 => 0.055403984320902
1223 => 0.055894210298202
1224 => 0.053258141665407
1225 => 0.057441650284697
1226 => 0.058164026656156
1227 => 0.058028249837755
1228 => 0.058831140772386
1229 => 0.05859490989204
1230 => 0.058252648409909
1231 => 0.059525401321099
]
'min_raw' => 0.021941583362696
'max_raw' => 0.059525401321099
'avg_raw' => 0.040733492341897
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.021941'
'max' => '$0.059525'
'avg' => '$0.040733'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0075670850460841
'max_diff' => 0.027435346442763
'year' => 2032
]
7 => [
'items' => [
101 => 0.058066292814283
102 => 0.055995271985512
103 => 0.054859068998701
104 => 0.056355312746614
105 => 0.057269016591754
106 => 0.057872916710913
107 => 0.058055656522084
108 => 0.053462772169446
109 => 0.050987462236418
110 => 0.052574107524003
111 => 0.054509924279264
112 => 0.053247388105589
113 => 0.0532968771333
114 => 0.05149683233831
115 => 0.054669188302056
116 => 0.054207002721851
117 => 0.056604822329544
118 => 0.056032563436464
119 => 0.057987892243716
120 => 0.057472988638562
121 => 0.059610324715683
122 => 0.060462965942911
123 => 0.061894683266437
124 => 0.06294786035776
125 => 0.063566306089853
126 => 0.06352917692783
127 => 0.065979767026821
128 => 0.064534739662543
129 => 0.062719444726208
130 => 0.062686611767992
131 => 0.063626778738448
201 => 0.065597110786311
202 => 0.066107989219156
203 => 0.066393500567799
204 => 0.065956229998631
205 => 0.064387756360751
206 => 0.063710497396256
207 => 0.064287541656087
208 => 0.063581866112292
209 => 0.064800060078469
210 => 0.066472900586219
211 => 0.066127465636497
212 => 0.067282202882917
213 => 0.06847723445106
214 => 0.07018618326573
215 => 0.070632965768077
216 => 0.071371480254838
217 => 0.072131654251087
218 => 0.072375801651418
219 => 0.07284195479314
220 => 0.072839497935984
221 => 0.074244281804288
222 => 0.075793801913563
223 => 0.076378709883341
224 => 0.077723673507832
225 => 0.075420470434038
226 => 0.077167476422801
227 => 0.078743319555062
228 => 0.076864534408394
301 => 0.07945400203228
302 => 0.079554545192255
303 => 0.08107262753755
304 => 0.079533760251207
305 => 0.078619985768814
306 => 0.081258018460798
307 => 0.082534479383198
308 => 0.082149998965187
309 => 0.079224083999989
310 => 0.077521075991847
311 => 0.073063975548829
312 => 0.078343603555995
313 => 0.080915156349425
314 => 0.079217424299496
315 => 0.080073661594304
316 => 0.084745014638904
317 => 0.086523563430577
318 => 0.086153637714903
319 => 0.086216149071356
320 => 0.087175821716399
321 => 0.091431538725896
322 => 0.088881414447057
323 => 0.090830888906896
324 => 0.091864883131041
325 => 0.092825314591551
326 => 0.090466798472018
327 => 0.087398403653989
328 => 0.086426514212667
329 => 0.079048618305772
330 => 0.07866456678324
331 => 0.078448987025691
401 => 0.077089787148705
402 => 0.076021828361574
403 => 0.075172547883279
404 => 0.072943782291616
405 => 0.073695925252702
406 => 0.070143738079121
407 => 0.072416301550994
408 => 0.066746925051401
409 => 0.071468550266695
410 => 0.068898784327966
411 => 0.070624313042189
412 => 0.07061829283506
413 => 0.067441047392797
414 => 0.065608478529121
415 => 0.066776262733703
416 => 0.06802822009984
417 => 0.068231345970405
418 => 0.069854541375033
419 => 0.070307540321996
420 => 0.068934932364199
421 => 0.06662943982484
422 => 0.067164953159047
423 => 0.065597626368496
424 => 0.062850946454409
425 => 0.064823659921137
426 => 0.065497231032766
427 => 0.065794718408161
428 => 0.063093674170976
429 => 0.06224494742913
430 => 0.061793092433278
501 => 0.06628076893208
502 => 0.066526613981042
503 => 0.065268835951569
504 => 0.070954111912194
505 => 0.069667358865613
506 => 0.071104977280794
507 => 0.067116360936953
508 => 0.067268731452672
509 => 0.065380456555085
510 => 0.066437764323159
511 => 0.065690493271304
512 => 0.066352344304018
513 => 0.066749055084112
514 => 0.068637020134369
515 => 0.071490107794889
516 => 0.068355021113947
517 => 0.066989018951792
518 => 0.067836479010505
519 => 0.070093376823838
520 => 0.073512692539511
521 => 0.071488388815691
522 => 0.072386740433416
523 => 0.072582990297007
524 => 0.071090343674859
525 => 0.073567728549559
526 => 0.074895379230149
527 => 0.076257274109837
528 => 0.077439769274441
529 => 0.075713303346179
530 => 0.077560869368589
531 => 0.076072057293833
601 => 0.074736438952214
602 => 0.074738464533919
603 => 0.073900611637951
604 => 0.072277166075754
605 => 0.071977777805961
606 => 0.073535233393993
607 => 0.074784165284002
608 => 0.074887033296443
609 => 0.07557850616319
610 => 0.075987712682993
611 => 0.079998492866355
612 => 0.081611661835017
613 => 0.083584214314171
614 => 0.084352634671768
615 => 0.08666530445419
616 => 0.084797635779028
617 => 0.08439355391297
618 => 0.078783773489337
619 => 0.079702374719441
620 => 0.081173143920673
621 => 0.078808025931747
622 => 0.080308148920602
623 => 0.080604304975551
624 => 0.078727660127507
625 => 0.079730057225885
626 => 0.07706798772262
627 => 0.071548133635463
628 => 0.073573873725092
629 => 0.0750655002878
630 => 0.072936765266587
701 => 0.076752440398689
702 => 0.074523401758038
703 => 0.073816903521675
704 => 0.071060602016819
705 => 0.072361470227337
706 => 0.074120913108701
707 => 0.073033781965207
708 => 0.075289742321519
709 => 0.078484783828708
710 => 0.080761760674742
711 => 0.080936558683646
712 => 0.079472615117247
713 => 0.081818594025164
714 => 0.081835681920345
715 => 0.079189408128609
716 => 0.077568580165685
717 => 0.077200324642257
718 => 0.078120299140528
719 => 0.079237318018089
720 => 0.080998545457295
721 => 0.082062818312466
722 => 0.084837877472047
723 => 0.085588728913448
724 => 0.086413687003615
725 => 0.087516085419731
726 => 0.088839797367431
727 => 0.085943590984827
728 => 0.086058662663612
729 => 0.083361755380838
730 => 0.080479723173567
731 => 0.082666826368499
801 => 0.085526172857728
802 => 0.084870235613801
803 => 0.084796429274278
804 => 0.084920551065185
805 => 0.084425995804173
806 => 0.082189140687686
807 => 0.08106580605164
808 => 0.082515194325369
809 => 0.083285479688005
810 => 0.084480125109512
811 => 0.084332859845405
812 => 0.087410138155653
813 => 0.08860587545495
814 => 0.088299954685306
815 => 0.088356251469315
816 => 0.090521076733833
817 => 0.09292880765825
818 => 0.095183965397046
819 => 0.097478008710227
820 => 0.094712449958152
821 => 0.0933082697798
822 => 0.09475702529595
823 => 0.09398829522637
824 => 0.098405646226323
825 => 0.09871149402537
826 => 0.10312852560057
827 => 0.10732081453576
828 => 0.10468771296822
829 => 0.10717060914892
830 => 0.10985606380183
831 => 0.11503674152661
901 => 0.11329207152735
902 => 0.11195568165037
903 => 0.11069279967402
904 => 0.11332065658994
905 => 0.11670135253123
906 => 0.11742952205708
907 => 0.11860943487113
908 => 0.11736890082003
909 => 0.11886298744424
910 => 0.1241377697626
911 => 0.12271247701838
912 => 0.12068833219436
913 => 0.12485226623923
914 => 0.12635917778318
915 => 0.13693547217435
916 => 0.15028848072813
917 => 0.14476024750628
918 => 0.14132869475051
919 => 0.14213519104564
920 => 0.14701125774161
921 => 0.14857729560574
922 => 0.14432026484542
923 => 0.14582392007777
924 => 0.15410920824415
925 => 0.15855399952155
926 => 0.15251737595174
927 => 0.13586257093859
928 => 0.1205060800996
929 => 0.1245793129819
930 => 0.12411753478018
1001 => 0.13301904330421
1002 => 0.12267848425781
1003 => 0.12285259275231
1004 => 0.13193817504575
1005 => 0.12951429745618
1006 => 0.12558792618785
1007 => 0.12053474695505
1008 => 0.11119347778071
1009 => 0.10291965517243
1010 => 0.11914652665481
1011 => 0.11844679444984
1012 => 0.11743347852254
1013 => 0.11968850346651
1014 => 0.13063826449444
1015 => 0.13038583706183
1016 => 0.12878002252516
1017 => 0.12999801869823
1018 => 0.12537440556978
1019 => 0.1265660159507
1020 => 0.120503647553
1021 => 0.12324409125563
1022 => 0.12557950195853
1023 => 0.12604837023348
1024 => 0.12710475439796
1025 => 0.11807806737389
1026 => 0.12213078483809
1027 => 0.12451137666004
1028 => 0.11375577620182
1029 => 0.12429877302087
1030 => 0.11792093283537
1031 => 0.11575619808447
1101 => 0.11867072824444
1102 => 0.11753493300663
1103 => 0.11655844295729
1104 => 0.11601354473153
1105 => 0.11815365401606
1106 => 0.11805381535995
1107 => 0.11455218119315
1108 => 0.10998444216742
1109 => 0.11151752531538
1110 => 0.11096054183499
1111 => 0.10894196184978
1112 => 0.11030224103554
1113 => 0.10431225992302
1114 => 0.094006808751057
1115 => 0.10081490545976
1116 => 0.10055280114226
1117 => 0.10042063625989
1118 => 0.10553673277451
1119 => 0.10504493814306
1120 => 0.10415232607131
1121 => 0.10892556832909
1122 => 0.10718327069583
1123 => 0.11255262146459
1124 => 0.11608922314872
1125 => 0.11519222656455
1126 => 0.11851841754236
1127 => 0.11155284445471
1128 => 0.11386652842414
1129 => 0.11434337548361
1130 => 0.10886666726056
1201 => 0.10512540182689
1202 => 0.10487590207602
1203 => 0.098389063392167
1204 => 0.10185428025715
1205 => 0.10490352769791
1206 => 0.10344317480494
1207 => 0.10298087070583
1208 => 0.10534268208667
1209 => 0.10552621505851
1210 => 0.10134164385066
1211 => 0.10221174871291
1212 => 0.10584023063137
1213 => 0.10212032027829
1214 => 0.094893142106147
1215 => 0.093100701995901
1216 => 0.092861557443968
1217 => 0.088000317704762
1218 => 0.093220481414954
1219 => 0.090941740063765
1220 => 0.098140256688656
1221 => 0.094028502598937
1222 => 0.093851253098188
1223 => 0.093583314480958
1224 => 0.089399044622138
1225 => 0.090315133796997
1226 => 0.093360353738551
1227 => 0.094446922520556
1228 => 0.094333584494597
1229 => 0.093345430499524
1230 => 0.093797802338301
1231 => 0.092340555028802
]
'min_raw' => 0.050987462236418
'max_raw' => 0.15855399952155
'avg_raw' => 0.10477073087898
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.050987'
'max' => '$0.158553'
'avg' => '$0.10477'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.029045878873722
'max_diff' => 0.099028598200449
'year' => 2033
]
8 => [
'items' => [
101 => 0.091825970673839
102 => 0.090201800901995
103 => 0.087814720025735
104 => 0.088146658262397
105 => 0.083417226432839
106 => 0.080840380962151
107 => 0.080127144098142
108 => 0.079173373955369
109 => 0.080234874973654
110 => 0.083403828546688
111 => 0.079581398206604
112 => 0.073028109500843
113 => 0.07342197331832
114 => 0.074306868376973
115 => 0.072657872289339
116 => 0.071097235882145
117 => 0.072454082619766
118 => 0.069677367804657
119 => 0.074642421096468
120 => 0.074508130319325
121 => 0.076358795149676
122 => 0.07751605384756
123 => 0.07484894721589
124 => 0.074178177110648
125 => 0.074560278247396
126 => 0.068244997597764
127 => 0.075842701988143
128 => 0.075908407251213
129 => 0.075345798897989
130 => 0.07939134193306
131 => 0.087928699573575
201 => 0.084716602214798
202 => 0.083472781031323
203 => 0.081108276052309
204 => 0.084258838546432
205 => 0.084016924503314
206 => 0.082922897457161
207 => 0.082261226486075
208 => 0.08348037553824
209 => 0.082110160426786
210 => 0.081864032141776
211 => 0.080372762524829
212 => 0.079840447120023
213 => 0.079446341986391
214 => 0.079012470958234
215 => 0.079969482332425
216 => 0.077800768653176
217 => 0.075185512557625
218 => 0.074968082310743
219 => 0.075568426339047
220 => 0.075302818796879
221 => 0.074966810684018
222 => 0.074325279690201
223 => 0.074134951148477
224 => 0.0747534265748
225 => 0.074055203877838
226 => 0.075085469501363
227 => 0.074805294258962
228 => 0.073240258130244
301 => 0.071289643663273
302 => 0.071272279102965
303 => 0.070852022415705
304 => 0.070316762338464
305 => 0.070167865230067
306 => 0.072339812772077
307 => 0.076835679183119
308 => 0.075953033029666
309 => 0.076590835332752
310 => 0.079728191407793
311 => 0.08072546256046
312 => 0.080017623117959
313 => 0.079048688831428
314 => 0.079091317022611
315 => 0.082402458796042
316 => 0.082608970646922
317 => 0.083130759470847
318 => 0.083801405567095
319 => 0.080131837048106
320 => 0.078918480675365
321 => 0.078343525111512
322 => 0.07657288451065
323 => 0.078482368595427
324 => 0.077369793991488
325 => 0.07751991831652
326 => 0.0774221496529
327 => 0.077475537954325
328 => 0.074641033262884
329 => 0.075673777795265
330 => 0.073956639706086
331 => 0.071657584562473
401 => 0.071649877323479
402 => 0.072212567812809
403 => 0.071877857491674
404 => 0.07097716062369
405 => 0.071105100362618
406 => 0.069984213625091
407 => 0.071241196306863
408 => 0.071277242072476
409 => 0.070793235271684
410 => 0.072729790523139
411 => 0.073523198789739
412 => 0.073204615145028
413 => 0.073500846111947
414 => 0.075989710962251
415 => 0.076395504529637
416 => 0.076575731227051
417 => 0.076334251327977
418 => 0.073546337992537
419 => 0.073669993804087
420 => 0.072762689505855
421 => 0.071996112983221
422 => 0.072026772023962
423 => 0.072420892004569
424 => 0.074142037074708
425 => 0.077764085407772
426 => 0.077901539494329
427 => 0.078068137857055
428 => 0.077390498590222
429 => 0.07718611610321
430 => 0.077455749359174
501 => 0.078816000274819
502 => 0.082314934934379
503 => 0.081078177739702
504 => 0.080072674889157
505 => 0.080954771970707
506 => 0.080818980039108
507 => 0.079672759480241
508 => 0.07964058888676
509 => 0.077440625165414
510 => 0.076627348668383
511 => 0.075947713954773
512 => 0.075205570589824
513 => 0.074765603126212
514 => 0.075441593111957
515 => 0.075596200019775
516 => 0.074118136101661
517 => 0.073916681451256
518 => 0.075123700353014
519 => 0.07459253633655
520 => 0.075138851699717
521 => 0.075265601550178
522 => 0.075245191904957
523 => 0.07469059566797
524 => 0.075044078771128
525 => 0.074207985853776
526 => 0.073298860383251
527 => 0.072718894973575
528 => 0.072212798232384
529 => 0.072493610118912
530 => 0.071492567017665
531 => 0.071172313182559
601 => 0.074924326649399
602 => 0.077695979338297
603 => 0.077655678410505
604 => 0.077410356877132
605 => 0.077045858840194
606 => 0.078789334973099
607 => 0.078181942750301
608 => 0.078623871341705
609 => 0.078736360715902
610 => 0.079076832171964
611 => 0.079198521452996
612 => 0.078830691927078
613 => 0.077596211111505
614 => 0.07452000229001
615 => 0.073088018779537
616 => 0.072615440369509
617 => 0.072632617697159
618 => 0.072158790317595
619 => 0.07229835371633
620 => 0.072110255863059
621 => 0.071754044034721
622 => 0.072471615042291
623 => 0.072554308416277
624 => 0.072386818768775
625 => 0.072426268643976
626 => 0.071039525898425
627 => 0.071144956937522
628 => 0.0705579035143
629 => 0.07044783807448
630 => 0.068963818141163
701 => 0.066334661717162
702 => 0.067791469594448
703 => 0.066031850536873
704 => 0.06536545613719
705 => 0.068520063579698
706 => 0.068203428487661
707 => 0.067661486848059
708 => 0.066859842212553
709 => 0.066562504419346
710 => 0.064755974113529
711 => 0.064649234665597
712 => 0.065544599865581
713 => 0.065131419633424
714 => 0.064551158103884
715 => 0.062449509664059
716 => 0.060086560985811
717 => 0.060157883553441
718 => 0.060909493563769
719 => 0.063094901037216
720 => 0.062241024529407
721 => 0.061621527325888
722 => 0.061505514121686
723 => 0.062957662262364
724 => 0.065012756115864
725 => 0.065976960171793
726 => 0.06502146323568
727 => 0.063923839803082
728 => 0.063990647055527
729 => 0.064435085775867
730 => 0.06448179000135
731 => 0.06376734998424
801 => 0.0639684606642
802 => 0.063662955151395
803 => 0.061788068383229
804 => 0.061754157626923
805 => 0.061294030177382
806 => 0.061280097701076
807 => 0.060497306125235
808 => 0.060387788172592
809 => 0.058833507986708
810 => 0.059856539911851
811 => 0.059170343808052
812 => 0.058136084422329
813 => 0.057957777714395
814 => 0.057952417599442
815 => 0.059014370732413
816 => 0.059844130371193
817 => 0.059182280483063
818 => 0.059031590092957
819 => 0.060640569221081
820 => 0.060435811960857
821 => 0.060258493494046
822 => 0.06482874500175
823 => 0.061211034312229
824 => 0.059633505959892
825 => 0.057681015059365
826 => 0.05831675594189
827 => 0.058450715886815
828 => 0.053755327233985
829 => 0.051850408642305
830 => 0.051196712366983
831 => 0.050820500918627
901 => 0.050991945199809
902 => 0.049277295042631
903 => 0.050429568305951
904 => 0.048944826205605
905 => 0.048695904360713
906 => 0.051350807160383
907 => 0.05172022137524
908 => 0.05014418556666
909 => 0.051156255692789
910 => 0.050789264996228
911 => 0.048970277847447
912 => 0.048900805917927
913 => 0.047988102107159
914 => 0.04655989737759
915 => 0.045907169492328
916 => 0.04556722314244
917 => 0.045707491631826
918 => 0.045636567591306
919 => 0.045173740252042
920 => 0.045663096312626
921 => 0.044412993793719
922 => 0.04391519289793
923 => 0.043690347782195
924 => 0.042580809843448
925 => 0.044346578117755
926 => 0.044694456712356
927 => 0.045043020735253
928 => 0.04807703257981
929 => 0.047925461922085
930 => 0.04929558685002
1001 => 0.049242346314819
1002 => 0.048851564490819
1003 => 0.047202920255856
1004 => 0.047860040463654
1005 => 0.045837526603204
1006 => 0.047352931505028
1007 => 0.046661363992657
1008 => 0.047119111833441
1009 => 0.046296039942253
1010 => 0.046751561910642
1011 => 0.044776951632581
1012 => 0.042933088338444
1013 => 0.04367511275373
1014 => 0.04448177815393
1015 => 0.046230834276086
1016 => 0.04518911087913
1017 => 0.045563754004598
1018 => 0.044308762248781
1019 => 0.041719355785858
1020 => 0.04173401154523
1021 => 0.041335687774195
1022 => 0.040991477879799
1023 => 0.045308765342583
1024 => 0.044771842400371
1025 => 0.043916325962693
1026 => 0.045061468711397
1027 => 0.045364262630013
1028 => 0.045372882747198
1029 => 0.04620834933624
1030 => 0.046654238004577
1031 => 0.046732827814963
1101 => 0.048047452544271
1102 => 0.048488097413215
1103 => 0.050303051266001
1104 => 0.046616407466319
1105 => 0.046540483463328
1106 => 0.045077583218265
1107 => 0.044149788755309
1108 => 0.045141110098907
1109 => 0.046019285480477
1110 => 0.045104870575275
1111 => 0.045224273857542
1112 => 0.043996746557752
1113 => 0.044435529806899
1114 => 0.044813469051552
1115 => 0.044604793214897
1116 => 0.044292395387399
1117 => 0.045947285113768
1118 => 0.045853909749841
1119 => 0.047394981108786
1120 => 0.048596356436153
1121 => 0.050749435794324
1122 => 0.048502585241507
1123 => 0.048420701076941
1124 => 0.049221131920213
1125 => 0.048487974871423
1126 => 0.048951304818537
1127 => 0.05067478617679
1128 => 0.050711200622064
1129 => 0.05010121174637
1130 => 0.050064093867848
1201 => 0.050181248903972
1202 => 0.050867429609822
1203 => 0.050627656986995
1204 => 0.050905127936431
1205 => 0.051252109607487
1206 => 0.052687372916153
1207 => 0.053033410040811
1208 => 0.05219271922757
1209 => 0.05226862419519
1210 => 0.051954182753559
1211 => 0.051650436260883
1212 => 0.052333214017806
1213 => 0.053581003788612
1214 => 0.053573241353208
1215 => 0.053862704326468
1216 => 0.054043037360768
1217 => 0.053268915965703
1218 => 0.052764991402748
1219 => 0.052958228145738
1220 => 0.053267217905927
1221 => 0.052858026930968
1222 => 0.050332310677821
1223 => 0.051098451645647
1224 => 0.050970928326221
1225 => 0.050789319611993
1226 => 0.051559680279535
1227 => 0.051485377113844
1228 => 0.049259708826955
1229 => 0.049402188889518
1230 => 0.049268373511468
1231 => 0.049700758373999
]
'min_raw' => 0.040991477879799
'max_raw' => 0.091825970673839
'avg_raw' => 0.066408724276819
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.040991'
'max' => '$0.091825'
'avg' => '$0.0664087'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.009995984356619
'max_diff' => -0.066728028847709
'year' => 2034
]
9 => [
'items' => [
101 => 0.04846462466988
102 => 0.04884485107178
103 => 0.04908332550665
104 => 0.049223788780835
105 => 0.049731238443762
106 => 0.04967169508278
107 => 0.049727537144841
108 => 0.050479951033217
109 => 0.054285402283356
110 => 0.054492524598646
111 => 0.05347257856673
112 => 0.053880026888934
113 => 0.053097815209454
114 => 0.053622919150252
115 => 0.053982181930352
116 => 0.05235874250934
117 => 0.052262612962862
118 => 0.051477172817533
119 => 0.051899223862029
120 => 0.051227710303691
121 => 0.05139247624236
122 => 0.050931776313805
123 => 0.051760944460763
124 => 0.052688083288766
125 => 0.052922315170541
126 => 0.052306151932756
127 => 0.051860009141463
128 => 0.051076729368525
129 => 0.05237934108745
130 => 0.052760264450436
131 => 0.052377340259188
201 => 0.052288608357017
202 => 0.052120461562738
203 => 0.052324281494304
204 => 0.052758189859994
205 => 0.052553566687764
206 => 0.052688723898018
207 => 0.05217364398604
208 => 0.053269172232095
209 => 0.055009134740062
210 => 0.055014729004038
211 => 0.054810104728813
212 => 0.054726376884083
213 => 0.054936333808103
214 => 0.0550502268265
215 => 0.055729189019265
216 => 0.05645774250315
217 => 0.05985758371965
218 => 0.058902921910741
219 => 0.06191946329548
220 => 0.064305155881932
221 => 0.065020520774916
222 => 0.06436241873389
223 => 0.062111087201514
224 => 0.062000626135991
225 => 0.065365065933017
226 => 0.064414457589252
227 => 0.064301385751572
228 => 0.06309849243654
301 => 0.063809551366959
302 => 0.063654032348272
303 => 0.063408537969022
304 => 0.064765188875467
305 => 0.067304718263271
306 => 0.066908908792626
307 => 0.066613455383863
308 => 0.065318864551855
309 => 0.066098497390054
310 => 0.065820885069255
311 => 0.067013683776541
312 => 0.066307096246071
313 => 0.064407255796099
314 => 0.064709811649713
315 => 0.064664080941097
316 => 0.065605215683899
317 => 0.06532271039451
318 => 0.064608917249296
319 => 0.067296038427906
320 => 0.06712155172512
321 => 0.067368933976457
322 => 0.067477839294045
323 => 0.069113442603079
324 => 0.069783496945322
325 => 0.069935611011963
326 => 0.070572110813231
327 => 0.069919774317069
328 => 0.072529585409755
329 => 0.074264957499692
330 => 0.076280681483584
331 => 0.079226195999581
401 => 0.080333736705128
402 => 0.080133669389884
403 => 0.08236692487922
404 => 0.086380035351077
405 => 0.080944833755466
406 => 0.086668114233345
407 => 0.084856189712499
408 => 0.080560149268703
409 => 0.080283534911113
410 => 0.083192863377706
411 => 0.089645473904122
412 => 0.088029168152158
413 => 0.089648117601307
414 => 0.087759527073311
415 => 0.087665742635306
416 => 0.089556392974775
417 => 0.09397400054693
418 => 0.091875360780943
419 => 0.088866446068818
420 => 0.091088181868353
421 => 0.089163508706854
422 => 0.084826681391899
423 => 0.088027932193611
424 => 0.08588734694888
425 => 0.086512083523063
426 => 0.091011275319462
427 => 0.090469920659134
428 => 0.09117048371769
429 => 0.089934008256267
430 => 0.088778945201013
501 => 0.086622934232274
502 => 0.085984645674487
503 => 0.086161045668643
504 => 0.085984558259411
505 => 0.084778289937165
506 => 0.084517796407826
507 => 0.08408362911311
508 => 0.084218195712307
509 => 0.08340183417812
510 => 0.08494247706203
511 => 0.085228433957382
512 => 0.086349585369338
513 => 0.086465987028204
514 => 0.089588377751909
515 => 0.087868617410937
516 => 0.089022381124625
517 => 0.088919177638428
518 => 0.080653257491854
519 => 0.081792228357221
520 => 0.083564109594985
521 => 0.082765879499101
522 => 0.081637368900597
523 => 0.080726036085394
524 => 0.079345273681798
525 => 0.081288670249666
526 => 0.083844030079229
527 => 0.086530795170468
528 => 0.089758767383769
529 => 0.089038321563499
530 => 0.086470450475271
531 => 0.086585643296458
601 => 0.087297719990331
602 => 0.086375515972775
603 => 0.086103540004437
604 => 0.087260354668756
605 => 0.087268321015575
606 => 0.086207213841299
607 => 0.085027987397654
608 => 0.085023046395798
609 => 0.084813214440128
610 => 0.087796855712081
611 => 0.089437556731498
612 => 0.089625660459252
613 => 0.089424895851888
614 => 0.0895021621812
615 => 0.088547474408381
616 => 0.09072960755318
617 => 0.092732148717449
618 => 0.092195424907373
619 => 0.091390799616284
620 => 0.090749876815927
621 => 0.092044443864429
622 => 0.091986798831596
623 => 0.092714658267358
624 => 0.092681638359032
625 => 0.092436886606963
626 => 0.092195433648229
627 => 0.093152767337006
628 => 0.092877070608947
629 => 0.092600945647719
630 => 0.092047134765362
701 => 0.092122406862099
702 => 0.091317920500911
703 => 0.090945728299434
704 => 0.08534885060318
705 => 0.083853181999487
706 => 0.084323749789351
707 => 0.084478672924061
708 => 0.083827756030982
709 => 0.084761003648827
710 => 0.084615557996139
711 => 0.085181401947885
712 => 0.084827887212923
713 => 0.084842395580957
714 => 0.085882007039191
715 => 0.08618381066834
716 => 0.086030310906701
717 => 0.086137816878089
718 => 0.088615246613293
719 => 0.08826303532869
720 => 0.088075930103576
721 => 0.088127759529633
722 => 0.08876079594367
723 => 0.088938011577094
724 => 0.088187136485556
725 => 0.088541253519483
726 => 0.090049038905798
727 => 0.090576678457746
728 => 0.092260650626212
729 => 0.091545269318829
730 => 0.092858382669508
731 => 0.096894445436166
801 => 0.10011873164847
802 => 0.097153544798372
803 => 0.1030745358169
804 => 0.10768487664054
805 => 0.1075079240808
806 => 0.1067040045191
807 => 0.10145525406364
808 => 0.09662527564006
809 => 0.1006657576831
810 => 0.10067605770276
811 => 0.10032897671194
812 => 0.098173286486717
813 => 0.10025396336483
814 => 0.1004191199395
815 => 0.10032667617636
816 => 0.098673913534971
817 => 0.09615045046316
818 => 0.096643529107075
819 => 0.097451201984339
820 => 0.095922108729465
821 => 0.095433470783505
822 => 0.096341941692218
823 => 0.099269224247518
824 => 0.098715838437032
825 => 0.098701387297113
826 => 0.10106900646648
827 => 0.099374302105408
828 => 0.096649748407831
829 => 0.095961762666745
830 => 0.093519876768615
831 => 0.095206496056152
901 => 0.095267194481681
902 => 0.094343450334728
903 => 0.096724705154312
904 => 0.096702761471938
905 => 0.098963408520127
906 => 0.10328491661601
907 => 0.10200683402356
908 => 0.10052056302353
909 => 0.10068216189106
910 => 0.10245450260784
911 => 0.10138290495187
912 => 0.1017682589404
913 => 0.10245391932843
914 => 0.10286759526452
915 => 0.10062264028996
916 => 0.10009923389679
917 => 0.099028528107027
918 => 0.098749200952148
919 => 0.099621268476899
920 => 0.099391509494727
921 => 0.095262093014051
922 => 0.094830546015964
923 => 0.094843780946288
924 => 0.093758635500656
925 => 0.092103528231321
926 => 0.096453051313815
927 => 0.096103723738754
928 => 0.095718093131694
929 => 0.095765330680681
930 => 0.097653311231777
1001 => 0.096558187166838
1002 => 0.099469753980783
1003 => 0.098871223373545
1004 => 0.098257342714695
1005 => 0.09817248570838
1006 => 0.097936194028559
1007 => 0.097125861938193
1008 => 0.096147337245666
1009 => 0.095501230485302
1010 => 0.088094836946748
1011 => 0.089469420506495
1012 => 0.091050753594749
1013 => 0.09159662344002
1014 => 0.090662875296641
1015 => 0.097162732006155
1016 => 0.098350318461161
1017 => 0.0947530416246
1018 => 0.094080138004325
1019 => 0.097206847455474
1020 => 0.095321059431746
1021 => 0.096170229663363
1022 => 0.094334788093891
1023 => 0.098064263660741
1024 => 0.098035851305502
1025 => 0.096585001075972
1026 => 0.097811249754977
1027 => 0.097598158870502
1028 => 0.095960152534649
1029 => 0.098116191383247
1030 => 0.098117260751617
1031 => 0.096720848949898
1101 => 0.09509014567934
1102 => 0.094798614450057
1103 => 0.094578984830501
1104 => 0.096116214240493
1105 => 0.097494489322699
1106 => 0.10005911754732
1107 => 0.10070392601705
1108 => 0.10322065640174
1109 => 0.10172206599504
1110 => 0.10238637171234
1111 => 0.10310756954024
1112 => 0.10345333830012
1113 => 0.10288992666088
1114 => 0.10679944487587
1115 => 0.10712952799775
1116 => 0.10724020201332
1117 => 0.10592193446788
1118 => 0.10709286459259
1119 => 0.10654502516437
1120 => 0.10797035116242
1121 => 0.10819386047839
1122 => 0.10800455603934
1123 => 0.10807550142408
1124 => 0.10473941731387
1125 => 0.1045664237535
1126 => 0.10220764428293
1127 => 0.1031688643524
1128 => 0.10137190950499
1129 => 0.10194174239779
1130 => 0.10219291930737
1201 => 0.10206171874397
1202 => 0.10322321029293
1203 => 0.10223570519927
1204 => 0.099629516896229
1205 => 0.097022618538928
1206 => 0.096989891053586
1207 => 0.096303540731687
1208 => 0.095807435160285
1209 => 0.095903002693628
1210 => 0.096239795146196
1211 => 0.095787860170687
1212 => 0.095884303411397
1213 => 0.097485903805131
1214 => 0.097807093342003
1215 => 0.096715565798859
1216 => 0.092332925206461
1217 => 0.091257414212065
1218 => 0.092030470186527
1219 => 0.091660999221915
1220 => 0.07397758021976
1221 => 0.078132037212454
1222 => 0.075663599939424
1223 => 0.076801169402175
1224 => 0.074281534145144
1225 => 0.075484036155197
1226 => 0.075261977942283
1227 => 0.081942221847216
1228 => 0.081837919027016
1229 => 0.081887843267463
1230 => 0.079504829193985
1231 => 0.083301035318919
]
'min_raw' => 0.04846462466988
'max_raw' => 0.10819386047839
'avg_raw' => 0.078329242574136
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.048464'
'max' => '$0.108193'
'avg' => '$0.078329'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0074731467900817
'max_diff' => 0.016367889804554
'year' => 2035
]
10 => [
'items' => [
101 => 0.085171182963219
102 => 0.084825068406626
103 => 0.084912177983775
104 => 0.083415346840522
105 => 0.081902335864841
106 => 0.080224173842091
107 => 0.083341991453266
108 => 0.082995343357825
109 => 0.083790429368719
110 => 0.085812556955771
111 => 0.086110322924281
112 => 0.086510523405601
113 => 0.086367080021258
114 => 0.08978448339022
115 => 0.089370613293485
116 => 0.090367921148062
117 => 0.088316383225268
118 => 0.085994873331858
119 => 0.086436116466719
120 => 0.086393621204579
121 => 0.085852607743742
122 => 0.085364204981644
123 => 0.084551151989376
124 => 0.087123771966113
125 => 0.087019328293213
126 => 0.088710149954971
127 => 0.08841128080249
128 => 0.086415359456534
129 => 0.086486644177872
130 => 0.086966068187143
131 => 0.088625360157195
201 => 0.089117950987119
202 => 0.088889763288348
203 => 0.089429866645733
204 => 0.089856742317623
205 => 0.089483475657829
206 => 0.094768144410789
207 => 0.09257358149874
208 => 0.093643196192402
209 => 0.093898292994305
210 => 0.093244867900339
211 => 0.093386572405822
212 => 0.093601216119462
213 => 0.094904490717136
214 => 0.098324660366977
215 => 0.099839430223009
216 => 0.10439669007231
217 => 0.09971364967308
218 => 0.099435777436137
219 => 0.10025667755106
220 => 0.10293227151755
221 => 0.10510058912162
222 => 0.10581994516414
223 => 0.10591501994043
224 => 0.10726457969807
225 => 0.10803812218335
226 => 0.10710070764655
227 => 0.106306346978
228 => 0.10346104566293
229 => 0.10379039703765
301 => 0.10605930140741
302 => 0.10926426246749
303 => 0.11201445247641
304 => 0.11105143178909
305 => 0.11839859984672
306 => 0.11912704154915
307 => 0.11902639445921
308 => 0.120685893064
309 => 0.11739212628452
310 => 0.11598397717256
311 => 0.10647809677092
312 => 0.10914886142396
313 => 0.11303097469566
314 => 0.11251716244697
315 => 0.10969786801988
316 => 0.11201231378878
317 => 0.11124708563817
318 => 0.11064351844644
319 => 0.11340857675902
320 => 0.110368281562
321 => 0.11300064542536
322 => 0.10962461154228
323 => 0.11105583078647
324 => 0.11024340152318
325 => 0.11076914282412
326 => 0.10769566992153
327 => 0.10935404129543
328 => 0.10762667622016
329 => 0.1076258572242
330 => 0.10758772554442
331 => 0.10961996289517
401 => 0.10968623408222
402 => 0.10818440760948
403 => 0.10796797095182
404 => 0.10876825071423
405 => 0.10783133270605
406 => 0.10826971074519
407 => 0.10784461073027
408 => 0.10774891176293
409 => 0.10698636610938
410 => 0.1066578404752
411 => 0.10678666384142
412 => 0.1063469232795
413 => 0.10608196368483
414 => 0.10753501841211
415 => 0.10675870988738
416 => 0.10741603799686
417 => 0.10666692965469
418 => 0.10407019376975
419 => 0.10257678350234
420 => 0.097671790133244
421 => 0.099062840168095
422 => 0.099985107780347
423 => 0.09968029834
424 => 0.10033514696346
425 => 0.10037534935048
426 => 0.1001624513876
427 => 0.099915942820507
428 => 0.099795956082824
429 => 0.10069023892222
430 => 0.10120940021067
501 => 0.10007766967359
502 => 0.099812521043339
503 => 0.10095676310089
504 => 0.10165475009499
505 => 0.10680829389441
506 => 0.10642650272402
507 => 0.10738472363896
508 => 0.10727684266903
509 => 0.10828121084446
510 => 0.10992292833361
511 => 0.10658485764673
512 => 0.10716423129617
513 => 0.10702218225702
514 => 0.10857303641922
515 => 0.10857787801663
516 => 0.10764806347549
517 => 0.10815213102276
518 => 0.10787077434624
519 => 0.10837922388835
520 => 0.10642140367017
521 => 0.10880581736228
522 => 0.11015762627748
523 => 0.11017639614558
524 => 0.11081714284276
525 => 0.11146817859665
526 => 0.11271778503297
527 => 0.11143332775136
528 => 0.10912271414115
529 => 0.10928953298057
530 => 0.10793482106633
531 => 0.10795759401835
601 => 0.10783603021568
602 => 0.10820085233839
603 => 0.10650146161038
604 => 0.10690030521755
605 => 0.10634192183188
606 => 0.10716301747974
607 => 0.10627965429462
608 => 0.10702211375667
609 => 0.10734253464758
610 => 0.10852489463317
611 => 0.1061050187634
612 => 0.10117072805373
613 => 0.1022079757834
614 => 0.10067380491717
615 => 0.10081579827184
616 => 0.10110264744635
617 => 0.10017287542056
618 => 0.1003502466226
619 => 0.10034390967512
620 => 0.10028930128525
621 => 0.10004743167184
622 => 0.099696672879956
623 => 0.10109398794896
624 => 0.10133141900765
625 => 0.10185919883965
626 => 0.10342951362318
627 => 0.10327260214573
628 => 0.10352853127564
629 => 0.10296983942203
630 => 0.10084171438457
701 => 0.10095728181282
702 => 0.099516154130666
703 => 0.10182234596472
704 => 0.10127620929817
705 => 0.10092411143642
706 => 0.10082803827267
707 => 0.10240224556282
708 => 0.10287327305671
709 => 0.102579760332
710 => 0.10197775717048
711 => 0.10313378120685
712 => 0.10344308447025
713 => 0.10351232606426
714 => 0.10556057901108
715 => 0.10362680065073
716 => 0.10409228032217
717 => 0.10772381984172
718 => 0.10443051461569
719 => 0.10617505184339
720 => 0.10608966582423
721 => 0.106982112038
722 => 0.10601645918614
723 => 0.10602842961057
724 => 0.10682086138885
725 => 0.10570803387208
726 => 0.10543248212919
727 => 0.10505180936994
728 => 0.10588299441313
729 => 0.10638125225526
730 => 0.11039684453277
731 => 0.11299110027729
801 => 0.11287847679356
802 => 0.11390764461255
803 => 0.113443995084
804 => 0.11194674845174
805 => 0.11450236588323
806 => 0.11369366159633
807 => 0.11376033019517
808 => 0.11375784878659
809 => 0.11429556643922
810 => 0.11391454420123
811 => 0.11316351025903
812 => 0.11366208163915
813 => 0.11514266039558
814 => 0.11973842228525
815 => 0.12231027152446
816 => 0.11958359373175
817 => 0.12146441956149
818 => 0.12033659427041
819 => 0.12013163486512
820 => 0.12131293247814
821 => 0.12249629779625
822 => 0.12242092254132
823 => 0.12156186008685
824 => 0.12107659750423
825 => 0.12475116835476
826 => 0.12745852956275
827 => 0.12727390567874
828 => 0.12808877545984
829 => 0.13048125834011
830 => 0.13069999699111
831 => 0.13067244094873
901 => 0.13013027437921
902 => 0.132485984478
903 => 0.13445115928718
904 => 0.13000477848307
905 => 0.13169790208587
906 => 0.13245799982021
907 => 0.13357404880505
908 => 0.13545701051401
909 => 0.13750240636086
910 => 0.13779164776023
911 => 0.1375864171459
912 => 0.13623742360171
913 => 0.13847552014398
914 => 0.13978654460862
915 => 0.14056722967506
916 => 0.14254691710992
917 => 0.13246269392505
918 => 0.12532457953638
919 => 0.12420985989897
920 => 0.12647668611583
921 => 0.12707443011162
922 => 0.12683348025643
923 => 0.11879888354302
924 => 0.12416755941008
925 => 0.12994380323194
926 => 0.13016569228163
927 => 0.13305740071442
928 => 0.13399905951527
929 => 0.13632726382856
930 => 0.13618163401486
1001 => 0.13674851471532
1002 => 0.13661819865929
1003 => 0.14093070688839
1004 => 0.14568804387876
1005 => 0.14552331242618
1006 => 0.14483938894756
1007 => 0.1458551319396
1008 => 0.15076521354087
1009 => 0.15031317190948
1010 => 0.15075229184956
1011 => 0.15654155477754
1012 => 0.16406842009695
1013 => 0.16057143547116
1014 => 0.1681588858789
1015 => 0.17293478371712
1016 => 0.18119420519125
1017 => 0.18016008494418
1018 => 0.18337541711363
1019 => 0.17830879387452
1020 => 0.16667480278402
1021 => 0.16483367916082
1022 => 0.16851965527914
1023 => 0.17758126789375
1024 => 0.16823427285037
1025 => 0.17012515777409
1026 => 0.16958058278885
1027 => 0.16955156470218
1028 => 0.17065906704524
1029 => 0.1690525771332
1030 => 0.16250744822953
1031 => 0.16550704223539
1101 => 0.16434875493739
1102 => 0.16563396105056
1103 => 0.17256968838402
1104 => 0.16950323800281
1105 => 0.16627298162441
1106 => 0.1703244399742
1107 => 0.17548333868562
1108 => 0.17516050407569
1109 => 0.17453406999803
1110 => 0.17806524609478
1111 => 0.18389771446908
1112 => 0.1854742072339
1113 => 0.18663794196291
1114 => 0.18679840132058
1115 => 0.18845123242953
1116 => 0.17956354298963
1117 => 0.19366853438281
1118 => 0.19610407675389
1119 => 0.19564629573102
1120 => 0.19835329857318
1121 => 0.19755682966698
1122 => 0.19640287118404
1123 => 0.20069404648489
1124 => 0.19577456028246
1125 => 0.1887919689642
1126 => 0.18496118126701
1127 => 0.1900058715275
1128 => 0.19308648783415
1129 => 0.19512257924886
1130 => 0.19573869928071
1201 => 0.18025346902084
1202 => 0.17190778876102
1203 => 0.17725727412415
1204 => 0.18378401546892
1205 => 0.17952728661191
1206 => 0.17969414232406
1207 => 0.17362516562263
1208 => 0.18432098524122
1209 => 0.18276269428879
1210 => 0.19084711050655
1211 => 0.18891769969469
1212 => 0.19551022728504
1213 => 0.19377419383084
1214 => 0.20098037163889
1215 => 0.203855111066
1216 => 0.20868224598158
1217 => 0.21223310607545
1218 => 0.21431823903971
1219 => 0.21419305547767
1220 => 0.22245539109116
1221 => 0.2175833804439
1222 => 0.21146298682621
1223 => 0.21135228821526
1224 => 0.21452212679651
1225 => 0.22116523886007
1226 => 0.2228877011648
1227 => 0.22385032261052
1228 => 0.22237603435731
1229 => 0.21708781597987
1230 => 0.21480439009636
1231 => 0.21674993510632
]
'min_raw' => 0.080224173842091
'max_raw' => 0.22385032261052
'avg_raw' => 0.1520372482263
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.080224'
'max' => '$0.22385'
'avg' => '$0.152037'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.03175954917221
'max_diff' => 0.11565646213213
'year' => 2036
]
11 => [
'items' => [
101 => 0.21437070074173
102 => 0.21847792675028
103 => 0.22411802531615
104 => 0.22295336726567
105 => 0.22684664451315
106 => 0.23087577687958
107 => 0.23663761712324
108 => 0.23814397552326
109 => 0.24063392867681
110 => 0.24319690837882
111 => 0.24402006838486
112 => 0.24559173624795
113 => 0.24558345278252
114 => 0.25031977967338
115 => 0.25554409490584
116 => 0.25751615296292
117 => 0.26205079172525
118 => 0.25428538175745
119 => 0.26017553442063
120 => 0.2654885995629
121 => 0.25915414426832
122 => 0.26788471515311
123 => 0.26822370343666
124 => 0.27334202405295
125 => 0.26815362555676
126 => 0.26507277109168
127 => 0.27396708249426
128 => 0.27827075961379
129 => 0.2769744570409
130 => 0.26710953045487
131 => 0.2613677200552
201 => 0.24634029472675
202 => 0.26414092916477
203 => 0.2728110989479
204 => 0.2670870768097
205 => 0.26997394062972
206 => 0.28572373356304
207 => 0.29172023498848
208 => 0.2904730046107
209 => 0.29068376601338
210 => 0.29391936933835
211 => 0.30826781636054
212 => 0.29966989431045
213 => 0.30624268355975
214 => 0.30972886727763
215 => 0.31296702900192
216 => 0.30501512723858
217 => 0.29466981988111
218 => 0.29139302677454
219 => 0.2665179356162
220 => 0.26522307909436
221 => 0.26449623689049
222 => 0.25991359960892
223 => 0.25631290199561
224 => 0.25344949356817
225 => 0.24593505476843
226 => 0.24847095727468
227 => 0.23649451021316
228 => 0.2441566166239
301 => 0.22504191793229
302 => 0.240961206999
303 => 0.23229706172124
304 => 0.23811480225382
305 => 0.23809450470516
306 => 0.22738219986838
307 => 0.22120356599863
308 => 0.22514083197646
309 => 0.22936189364527
310 => 0.23004674669967
311 => 0.23551946333426
312 => 0.23704678091132
313 => 0.23241893734918
314 => 0.22464580828838
315 => 0.22645132888301
316 => 0.2211669771814
317 => 0.21190635408399
318 => 0.21855749526752
319 => 0.22082848729761
320 => 0.22183148675366
321 => 0.21272472752711
322 => 0.20986318606076
323 => 0.20833972539474
324 => 0.22347024003002
325 => 0.22429912377695
326 => 0.22005843733532
327 => 0.23922674216986
328 => 0.23488836443508
329 => 0.23973539529318
330 => 0.22628749681362
331 => 0.22680122464553
401 => 0.22043477399318
402 => 0.22399956095211
403 => 0.22148008442798
404 => 0.22371156139374
405 => 0.22504909948629
406 => 0.23141450546674
407 => 0.2410338897104
408 => 0.23046372608084
409 => 0.22585815441991
410 => 0.22871542517564
411 => 0.23632471372486
412 => 0.24785317538926
413 => 0.24102809405202
414 => 0.24405694925209
415 => 0.24471861936892
416 => 0.23968605706908
417 => 0.24803873313962
418 => 0.25251500010284
419 => 0.25710672377417
420 => 0.26109358878081
421 => 0.25527268836568
422 => 0.26150188620317
423 => 0.25648225234759
424 => 0.25197912185893
425 => 0.25198595124907
426 => 0.24916107171329
427 => 0.24368751165499
428 => 0.24267810320077
429 => 0.24792917345389
430 => 0.2521400345187
501 => 0.25248686120466
502 => 0.25481821025199
503 => 0.25619787860339
504 => 0.26972050401533
505 => 0.27515941582103
506 => 0.28181001422372
507 => 0.28440079710875
508 => 0.29219812474563
509 => 0.28590114941086
510 => 0.28453875918735
511 => 0.26562499282671
512 => 0.2687221210087
513 => 0.27368092205648
514 => 0.26570676162955
515 => 0.27076453102172
516 => 0.27176304183793
517 => 0.26543580270959
518 => 0.2688154545119
519 => 0.25984010132189
520 => 0.24122952788313
521 => 0.24805945202797
522 => 0.25308857512619
523 => 0.24591139637863
524 => 0.25877621148845
525 => 0.25126085208498
526 => 0.24887884395495
527 => 0.2395857809925
528 => 0.24397174898798
529 => 0.24990383350288
530 => 0.24623849495152
531 => 0.25384462279895
601 => 0.26461692831111
602 => 0.27229391472096
603 => 0.27288325841199
604 => 0.2679474704686
605 => 0.27585710214766
606 => 0.2759147151793
607 => 0.26699261833352
608 => 0.26152788369393
609 => 0.26028628448592
610 => 0.2633880427374
611 => 0.26715414987087
612 => 0.27309225114712
613 => 0.27668052138349
614 => 0.28603682708846
615 => 0.28856837514592
616 => 0.29134977894365
617 => 0.29506659217059
618 => 0.29952957942087
619 => 0.28976481739525
620 => 0.29015278959432
621 => 0.2810599783984
622 => 0.27134300559452
623 => 0.2787169767149
624 => 0.28835746303653
625 => 0.28614592482256
626 => 0.28589708159586
627 => 0.28631556687981
628 => 0.28464813928856
629 => 0.27710642609109
630 => 0.27331902493694
701 => 0.27820573869488
702 => 0.28080280957461
703 => 0.2848306400207
704 => 0.28433412490103
705 => 0.29470938357275
706 => 0.29874089536104
707 => 0.29770946212748
708 => 0.29789927066528
709 => 0.30519813018788
710 => 0.31331596310195
711 => 0.32091938486839
712 => 0.32865391206377
713 => 0.319329637646
714 => 0.31459534613796
715 => 0.31947992650953
716 => 0.31688809940893
717 => 0.33178150671487
718 => 0.33281269392296
719 => 0.34770502426604
720 => 0.36183961910732
721 => 0.35296193333508
722 => 0.36133319115856
723 => 0.37038738901331
724 => 0.38785440566579
725 => 0.38197212895429
726 => 0.37746639718031
727 => 0.37320850242543
728 => 0.38206850548857
729 => 0.39346675788729
730 => 0.39592183228287
731 => 0.39989999071431
801 => 0.39571744354972
802 => 0.40075486091701
803 => 0.41853915777691
804 => 0.41373368377903
805 => 0.40690913818356
806 => 0.42094813253242
807 => 0.42602879001206
808 => 0.46168750496518
809 => 0.50670810558154
810 => 0.48806928130517
811 => 0.47649956160572
812 => 0.47921872017251
813 => 0.4956587194741
814 => 0.50093872547027
815 => 0.48658584904546
816 => 0.49165552764319
817 => 0.51958995515649
818 => 0.53457587927364
819 => 0.51422298144442
820 => 0.45807014354124
821 => 0.40629466252165
822 => 0.42002785156835
823 => 0.41847093412092
824 => 0.44848299159316
825 => 0.41361907481346
826 => 0.41420609375853
827 => 0.44483876879598
828 => 0.43666649627299
829 => 0.42342846141133
830 => 0.40639131482623
831 => 0.37489657361836
901 => 0.34700080303472
902 => 0.40171083316153
903 => 0.39935163717873
904 => 0.39593517178237
905 => 0.40353814582179
906 => 0.44045602961538
907 => 0.43960495290241
908 => 0.43419083707764
909 => 0.4382973962129
910 => 0.42270856174
911 => 0.42672615933483
912 => 0.40628646102093
913 => 0.41552605829602
914 => 0.42340005853402
915 => 0.42498088065836
916 => 0.42854255362329
917 => 0.39810844809849
918 => 0.41177246798073
919 => 0.41979879951603
920 => 0.38353554163912
921 => 0.41908199150306
922 => 0.39757865803107
923 => 0.39028010368145
924 => 0.4001066456018
925 => 0.39627723265881
926 => 0.39298492828111
927 => 0.39114776586938
928 => 0.39836329373983
929 => 0.39802668074025
930 => 0.38622067667058
1001 => 0.370820225636
1002 => 0.37598912250578
1003 => 0.37411121381432
1004 => 0.36730543046143
1005 => 0.37189170670786
1006 => 0.35169606717988
1007 => 0.31695051904998
1008 => 0.33990449242951
1009 => 0.33902078942352
1010 => 0.33857518629516
1011 => 0.35582446288865
1012 => 0.3541663429527
1013 => 0.35115683903261
1014 => 0.36725015856186
1015 => 0.36137588044799
1016 => 0.37947902144094
1017 => 0.39140292093665
1018 => 0.3883786343268
1019 => 0.39959311943573
1020 => 0.37610820344995
1021 => 0.38390895048914
1022 => 0.38551667364255
1023 => 0.36705156949697
1024 => 0.35443763188054
1025 => 0.35359642605094
1026 => 0.33172559653173
1027 => 0.34340881712573
1028 => 0.35368956776392
1029 => 0.3487658860267
1030 => 0.34720719547951
1031 => 0.3551702074464
1101 => 0.35578900167481
1102 => 0.34168042769013
1103 => 0.34461404698198
1104 => 0.3568477271026
1105 => 0.34430578963133
1106 => 0.31993885383849
1107 => 0.31389551686262
1108 => 0.31308922430924
1109 => 0.29669921512758
1110 => 0.31429936153669
1111 => 0.30661642597452
1112 => 0.33088672735972
1113 => 0.31702366137273
1114 => 0.31642605230579
1115 => 0.31552267855092
1116 => 0.30141512058551
1117 => 0.30450377919786
1118 => 0.31477095084127
1119 => 0.31843439335161
1120 => 0.31805226628408
1121 => 0.31472063609898
1122 => 0.31624583933702
1123 => 0.31133262829128
1124 => 0.30959767121139
1125 => 0.3041216694297
1126 => 0.29607345959473
1127 => 0.29719261253482
1128 => 0.28124700292308
1129 => 0.27255898850905
1130 => 0.27015426062544
1201 => 0.26693855799897
1202 => 0.27051748279376
1203 => 0.28120183101451
1204 => 0.26831424024936
1205 => 0.24621936984188
1206 => 0.24754730920119
1207 => 0.25053079467284
1208 => 0.24497108923416
1209 => 0.23970929462714
1210 => 0.24428399813505
1211 => 0.23492211027187
1212 => 0.25166213409416
1213 => 0.25120936336314
1214 => 0.25744900904796
1215 => 0.2613507875451
1216 => 0.25235845132499
1217 => 0.25009690308349
1218 => 0.25138518374349
1219 => 0.23009277411444
1220 => 0.25570896492138
1221 => 0.25593049480322
1222 => 0.25403362146026
1223 => 0.2676734522538
1224 => 0.29645774959807
1225 => 0.28562793909148
1226 => 0.28143430913057
1227 => 0.27346221550936
1228 => 0.28408455692354
1229 => 0.28326892683727
1230 => 0.27958033826864
1231 => 0.27734946839323
]
'min_raw' => 0.20833972539474
'max_raw' => 0.53457587927364
'avg_raw' => 0.37145780233419
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.208339'
'max' => '$0.534575'
'avg' => '$0.371457'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.12811555155265
'max_diff' => 0.31072555666312
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.006539545915669
]
1 => [
'year' => 2028
'avg' => 0.011223759235032
]
2 => [
'year' => 2029
'avg' => 0.030661287344322
]
3 => [
'year' => 2030
'avg' => 0.023655137523985
]
4 => [
'year' => 2031
'avg' => 0.023232276597473
]
5 => [
'year' => 2032
'avg' => 0.040733492341897
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.006539545915669
'min' => '$0.006539'
'max_raw' => 0.040733492341897
'max' => '$0.040733'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.040733492341897
]
1 => [
'year' => 2033
'avg' => 0.10477073087898
]
2 => [
'year' => 2034
'avg' => 0.066408724276819
]
3 => [
'year' => 2035
'avg' => 0.078329242574136
]
4 => [
'year' => 2036
'avg' => 0.1520372482263
]
5 => [
'year' => 2037
'avg' => 0.37145780233419
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.040733492341897
'min' => '$0.040733'
'max_raw' => 0.37145780233419
'max' => '$0.371457'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.37145780233419
]
]
]
]
'prediction_2025_max_price' => '$0.011181'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutro'
'overall_action_dir' => 0
'last_updated' => 1767704857
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Alex para 2026
A previsão de preço para Alex em 2026 sugere que o preço médio poderia variar entre $0.003745 na extremidade inferior e $0.011181 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Alex poderia potencialmente ganhar 3.13% até 2026 se ALEX atingir a meta de preço prevista.
Previsão de preço de Alex 2027-2032
A previsão de preço de ALEX para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.006539 na extremidade inferior e $0.040733 na extremidade superior. Considerando a volatilidade de preços no mercado, se Alex atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Alex | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003606 | $0.006539 | $0.009473 |
| 2028 | $0.0065078 | $0.011223 | $0.015939 |
| 2029 | $0.014295 | $0.030661 | $0.047026 |
| 2030 | $0.012157 | $0.023655 | $0.035152 |
| 2031 | $0.014374 | $0.023232 | $0.03209 |
| 2032 | $0.021941 | $0.040733 | $0.059525 |
Previsão de preço de Alex 2032-2037
A previsão de preço de Alex para 2032-2037 é atualmente estimada entre $0.040733 na extremidade inferior e $0.371457 na extremidade superior. Comparado ao preço atual, Alex poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Alex | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.021941 | $0.040733 | $0.059525 |
| 2033 | $0.050987 | $0.10477 | $0.158553 |
| 2034 | $0.040991 | $0.0664087 | $0.091825 |
| 2035 | $0.048464 | $0.078329 | $0.108193 |
| 2036 | $0.080224 | $0.152037 | $0.22385 |
| 2037 | $0.208339 | $0.371457 | $0.534575 |
Alex Histograma de preços potenciais
Previsão de preço de Alex baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Alex é Neutro, com 0 indicadores técnicos mostrando sinais de alta e 0 indicando sinais de baixa. A previsão de preço de ALEX foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Alex
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Alex está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Alex é esperado para alcançar — até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em —, sugerindo que o mercado de ALEX está em um estado —.
Médias Móveis e Osciladores Populares de ALEX para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Osciladores de Alex
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Estocástico Rápido (14) | — | — |
| Índice de Canal de Commodities (20) | — | — |
| Índice Direcional Médio (14) | — | — |
| Oscilador Impressionante (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Williams Percent Range (14) | — | — |
| Oscilador Ultimate (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Média Móvel de Hull (9) | — | — |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | — | — |
Previsão do preço de Alex com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Alex
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Alex por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.015234 | $0.021407 | $0.03008 | $0.042268 | $0.059393 | $0.083458 |
| Amazon.com stock | $0.022622 | $0.0472023 | $0.09849 | $0.2055061 | $0.42880081 | $0.894718 |
| Apple stock | $0.015378 | $0.021812 | $0.030939 | $0.043885 | $0.062248 | $0.088295 |
| Netflix stock | $0.0171066 | $0.026991 | $0.042588 | $0.067198 | $0.106028 | $0.167295 |
| Google stock | $0.01404 | $0.018181 | $0.023545 | $0.030491 | $0.039486 | $0.051134 |
| Tesla stock | $0.024577 | $0.055715 | $0.1263027 | $0.286318 | $0.649063 | $1.47 |
| Kodak stock | $0.00813 | $0.006096 | $0.004571 | $0.003428 | $0.00257 | $0.001927 |
| Nokia stock | $0.007182 | $0.004757 | $0.003151 | $0.002088 | $0.001383 | $0.000916 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Alex
Você pode fazer perguntas como: 'Devo investir em Alex agora?', 'Devo comprar ALEX hoje?', 'Alex será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Alex regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Alex, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Alex para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Alex é de $0.01084 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Alex com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Alex tiver 1% da média anterior do crescimento anual do Bitcoin | $0.011123 | $0.011412 | $0.0117094 | $0.012013 |
| Se Alex tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0114054 | $0.011998 | $0.012622 | $0.013278 |
| Se Alex tiver 5% da média anterior do crescimento anual do Bitcoin | $0.01225 | $0.013843 | $0.015642 | $0.017675 |
| Se Alex tiver 10% da média anterior do crescimento anual do Bitcoin | $0.013659 | $0.01721 | $0.021684 | $0.02732 |
| Se Alex tiver 20% da média anterior do crescimento anual do Bitcoin | $0.016478 | $0.025044 | $0.038064 | $0.057852 |
| Se Alex tiver 50% da média anterior do crescimento anual do Bitcoin | $0.024932 | $0.057336 | $0.131853 | $0.303219 |
| Se Alex tiver 100% da média anterior do crescimento anual do Bitcoin | $0.039023 | $0.140456 | $0.505549 | $1.81 |
Perguntas Frequentes sobre Alex
ALEX é um bom investimento?
A decisão de adquirir Alex depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Alex experimentou uma queda de 0% nas últimas 24 horas, e Alex registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Alex dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Alex pode subir?
Parece que o valor médio de Alex pode potencialmente subir para $0.011181 até o final deste ano. Observando as perspectivas de Alex em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.035152. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Alex na próxima semana?
Com base na nossa nova previsão experimental de Alex, o preço de Alex aumentará 0.86% na próxima semana e atingirá $0.010934 até 13 de janeiro de 2026.
Qual será o preço de Alex no próximo mês?
Com base na nossa nova previsão experimental de Alex, o preço de Alex diminuirá -11.62% no próximo mês e atingirá $0.009582 até 5 de fevereiro de 2026.
Até onde o preço de Alex pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Alex em 2026, espera-se que ALEX fluctue dentro do intervalo de $0.003745 e $0.011181. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Alex não considera flutuações repentinas e extremas de preço.
Onde estará Alex em 5 anos?
O futuro de Alex parece seguir uma tendência de alta, com um preço máximo de $0.035152 projetada após um período de cinco anos. Com base na previsão de Alex para 2030, o valor de Alex pode potencialmente atingir seu pico mais alto de aproximadamente $0.035152, enquanto seu pico mais baixo está previsto para cerca de $0.012157.
Quanto será Alex em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Alex, espera-se que o valor de ALEX em 2026 aumente 3.13% para $0.011181 se o melhor cenário ocorrer. O preço ficará entre $0.011181 e $0.003745 durante 2026.
Quanto será Alex em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Alex, o valor de ALEX pode diminuir -12.62% para $0.009473 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.009473 e $0.003606 ao longo do ano.
Quanto será Alex em 2028?
Nosso novo modelo experimental de previsão de preços de Alex sugere que o valor de ALEX em 2028 pode aumentar 47.02%, alcançando $0.015939 no melhor cenário. O preço é esperado para variar entre $0.015939 e $0.0065078 durante o ano.
Quanto será Alex em 2029?
Com base no nosso modelo de previsão experimental, o valor de Alex pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.047026 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.047026 e $0.014295.
Quanto será Alex em 2030?
Usando nossa nova simulação experimental para previsões de preços de Alex, espera-se que o valor de ALEX em 2030 aumente 224.23%, alcançando $0.035152 no melhor cenário. O preço está previsto para variar entre $0.035152 e $0.012157 ao longo de 2030.
Quanto será Alex em 2031?
Nossa simulação experimental indica que o preço de Alex poderia aumentar 195.98% em 2031, potencialmente atingindo $0.03209 sob condições ideais. O preço provavelmente oscilará entre $0.03209 e $0.014374 durante o ano.
Quanto será Alex em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Alex, ALEX poderia ver um 449.04% aumento em valor, atingindo $0.059525 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.059525 e $0.021941 ao longo do ano.
Quanto será Alex em 2033?
De acordo com nossa previsão experimental de preços de Alex, espera-se que o valor de ALEX seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.158553. Ao longo do ano, o preço de ALEX poderia variar entre $0.158553 e $0.050987.
Quanto será Alex em 2034?
Os resultados da nossa nova simulação de previsão de preços de Alex sugerem que ALEX pode aumentar 746.96% em 2034, atingindo potencialmente $0.091825 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.091825 e $0.040991.
Quanto será Alex em 2035?
Com base em nossa previsão experimental para o preço de Alex, ALEX poderia aumentar 897.93%, com o valor potencialmente atingindo $0.108193 em 2035. A faixa de preço esperada para o ano está entre $0.108193 e $0.048464.
Quanto será Alex em 2036?
Nossa recente simulação de previsão de preços de Alex sugere que o valor de ALEX pode aumentar 1964.7% em 2036, possivelmente atingindo $0.22385 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.22385 e $0.080224.
Quanto será Alex em 2037?
De acordo com a simulação experimental, o valor de Alex poderia aumentar 4830.69% em 2037, com um pico de $0.534575 sob condições favoráveis. O preço é esperado para cair entre $0.534575 e $0.208339 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Cred
Previsão de Preço do Equilibria
Previsão de Preço do Museum of Crypto Art
Previsão de Preço do Unique Utility
Previsão de Preço do PowerTrade FuelPrevisão de Preço do Busy DAO
Previsão de Preço do Spellfire
Previsão de Preço do Robot
Previsão de Preço do 8Pay
Previsão de Preço do LuckysLeprecoin
Previsão de Preço do EXMO Coin
Previsão de Preço do ESports Token
Previsão de Preço do Swapr
Previsão de Preço do MoveZ
Previsão de Preço do Friends With Benefits
Previsão de Preço do CrossSwap
Previsão de Preço do Smartcoin
Previsão de Preço do Shopping.io
Previsão de Preço do Moonft
Previsão de Preço do Button
Previsão de Preço do ApeSwap Finance
Previsão de Preço do humanDAO
Previsão de Preço do Ftribe Fighters
Previsão de Preço do xDAI Stake
Previsão de Preço do Froggies
Como ler e prever os movimentos de preço de Alex?
Traders de Alex utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Alex
Médias móveis são ferramentas populares para a previsão de preço de Alex. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ALEX em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ALEX acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ALEX.
Como ler gráficos de Alex e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Alex em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ALEX dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Alex?
A ação de preço de Alex é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ALEX. A capitalização de mercado de Alex pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ALEX, grandes detentores de Alex, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Alex.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


