Previsão de Preço AIPad - Projeção AIPAD
Previsão de Preço AIPad até $0.004175 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001398 | $0.004175 |
| 2027 | $0.001346 | $0.003537 |
| 2028 | $0.00243 | $0.005952 |
| 2029 | $0.005338 | $0.01756 |
| 2030 | $0.00454 | $0.013126 |
| 2031 | $0.005367 | $0.011983 |
| 2032 | $0.008193 | $0.022228 |
| 2033 | $0.019039 | $0.0592078 |
| 2034 | $0.0153071 | $0.03429 |
| 2035 | $0.018097 | $0.0404021 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em AIPad hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.92, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de AIPad para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'AIPad'
'name_with_ticker' => 'AIPad <small>AIPAD</small>'
'name_lang' => 'AIPad'
'name_lang_with_ticker' => 'AIPad <small>AIPAD</small>'
'name_with_lang' => 'AIPad'
'name_with_lang_with_ticker' => 'AIPad <small>AIPAD</small>'
'image' => '/uploads/coins/aipad.jpeg?1717202193'
'price_for_sd' => 0.004048
'ticker' => 'AIPAD'
'marketcap' => '$783.23K'
'low24h' => '$0.003911'
'high24h' => '$0.004097'
'volume24h' => '$155.42K'
'current_supply' => '192.52M'
'max_supply' => '199.05M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004048'
'change_24h_pct' => '-0.4912%'
'ath_price' => '$0.8623'
'ath_days' => 1042
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 de mar. de 2023'
'ath_pct' => '-99.53%'
'fdv' => '$809.81K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.199623'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0040832'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003578'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001398'
'current_year_max_price_prediction' => '$0.004175'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00454'
'grand_prediction_max_price' => '$0.013126'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0041253086509417
107 => 0.0041407110559572
108 => 0.0041754134609236
109 => 0.0038788852099832
110 => 0.0040120176890434
111 => 0.0040902205476649
112 => 0.0037368971873685
113 => 0.0040832364808531
114 => 0.0038737233128502
115 => 0.0038026113968478
116 => 0.0038983542234625
117 => 0.0038610431508178
118 => 0.0038289652815376
119 => 0.0038110652793115
120 => 0.0038813682444271
121 => 0.0038780885270743
122 => 0.0037630592309275
123 => 0.0036130082032981
124 => 0.0036633702534276
125 => 0.0036450732484688
126 => 0.0035787625421376
127 => 0.0036234479518196
128 => 0.0034266760223481
129 => 0.0030881401450073
130 => 0.003311787315213
131 => 0.0033031771424414
201 => 0.0032988355028897
202 => 0.0034669001701455
203 => 0.0034507446303004
204 => 0.0034214221672861
205 => 0.0035782240121093
206 => 0.0035209892294664
207 => 0.0036973733433611
208 => 0.0038135513285813
209 => 0.0037840848335654
210 => 0.0038933507902019
211 => 0.0036645304933456
212 => 0.0037405354172844
213 => 0.0037561999267699
214 => 0.0035762891016839
215 => 0.003453387876418
216 => 0.0034451917658693
217 => 0.0032320979780903
218 => 0.0033459309594889
219 => 0.0034460992723908
220 => 0.0033981264238859
221 => 0.0033829396531973
222 => 0.0034605255710366
223 => 0.0034665546613312
224 => 0.0033290907636809
225 => 0.0033576738609179
226 => 0.0034768701279406
227 => 0.003354670420815
228 => 0.0031172563510787
301 => 0.0030583743792778
302 => 0.0030505184388295
303 => 0.0028908258613174
304 => 0.0030623091541887
305 => 0.0029874521013838
306 => 0.0032239246342691
307 => 0.0030888527917127
308 => 0.0030830301145447
309 => 0.0030742282840044
310 => 0.0029367742857223
311 => 0.0029668679756888
312 => 0.0030669039845357
313 => 0.0031025979594786
314 => 0.0030988747854599
315 => 0.0030664137535179
316 => 0.0030812742477136
317 => 0.0030334034181699
318 => 0.0030164992319129
319 => 0.0029631449702229
320 => 0.0028847289450297
321 => 0.0028956331742863
322 => 0.0027402705097094
323 => 0.0026556206843272
324 => 0.0026321907283282
325 => 0.0026008592119611
326 => 0.0026357297064719
327 => 0.002739830386801
328 => 0.0026142628801327
329 => 0.0023989861974865
330 => 0.0024119246929272
331 => 0.0024409936507086
401 => 0.0023868238401934
402 => 0.0023355566606683
403 => 0.0023801293138276
404 => 0.002288913745448
405 => 0.0024520166163597
406 => 0.0024476051407921
407 => 0.0025083998048541
408 => 0.0025464159559241
409 => 0.0024588010355827
410 => 0.0024367661200528
411 => 0.0024493182093697
412 => 0.0022418601330854
413 => 0.0024914460540368
414 => 0.0024936044834454
415 => 0.0024751227004279
416 => 0.0026080194982337
417 => 0.0028884731931546
418 => 0.0027829552319017
419 => 0.0027420954880072
420 => 0.0026644210849956
421 => 0.0027679176151589
422 => 0.0027599706964397
423 => 0.0027240317162123
424 => 0.0027022957088343
425 => 0.0027423449688906
426 => 0.0026973331623077
427 => 0.0026892478050037
428 => 0.0026402593366969
429 => 0.0026227726823447
430 => 0.0026098262596261
501 => 0.0025955735203021
502 => 0.0026270115116894
503 => 0.0025557688871935
504 => 0.0024698572660519
505 => 0.0024627146443306
506 => 0.0024824360508889
507 => 0.0024737107965729
508 => 0.0024626728711698
509 => 0.0024415984655752
510 => 0.0024353461396188
511 => 0.00245566316578
512 => 0.0024327264278002
513 => 0.0024665708341182
514 => 0.0024573670282961
515 => 0.0024059553171478
516 => 0.0023418772900037
517 => 0.0023413068611539
518 => 0.0023275013553147
519 => 0.0023099179679568
520 => 0.0023050266718473
521 => 0.0023763755293018
522 => 0.002524065528941
523 => 0.0024950704480896
524 => 0.0025160223655401
525 => 0.0026190850625217
526 => 0.0026518455946888
527 => 0.0026285929449323
528 => 0.0025967632837848
529 => 0.002598163627337
530 => 0.0027069352149719
531 => 0.0027137191654708
601 => 0.002730860019796
602 => 0.0027528908616087
603 => 0.0026323448925571
604 => 0.0025924859230352
605 => 0.0025735985319843
606 => 0.0025154326778877
607 => 0.0025781595647674
608 => 0.0025416112940157
609 => 0.0025465429044068
610 => 0.00254333118667
611 => 0.0025450850017297
612 => 0.0024519710257832
613 => 0.0024858968646916
614 => 0.0024294885774818
615 => 0.0023539642130351
616 => 0.0023537110288833
617 => 0.0023721955100863
618 => 0.0023612002173689
619 => 0.0023316121673813
620 => 0.0023358150102304
621 => 0.0022989936844333
622 => 0.0023402857858537
623 => 0.0023414698955722
624 => 0.0023255701873294
625 => 0.0023891863667795
626 => 0.0024152499674061
627 => 0.0024047844388359
628 => 0.0024145156780227
629 => 0.002496275324604
630 => 0.0025096057144202
701 => 0.0025155261930204
702 => 0.0025075935360092
703 => 0.0024160100942739
704 => 0.0024200722093577
705 => 0.0023902671041283
706 => 0.0023650849309941
707 => 0.0023660920858563
708 => 0.0023790389963007
709 => 0.0024355789135375
710 => 0.0025545638361521
711 => 0.0025590792269885
712 => 0.0025645520124054
713 => 0.0025422914437132
714 => 0.0025355774431906
715 => 0.0025444349429104
716 => 0.0025891194239145
717 => 0.0027040600407751
718 => 0.0026634323501509
719 => 0.0026304014052657
720 => 0.0026593784490088
721 => 0.0026549176602541
722 => 0.0026172641139855
723 => 0.0026162073043508
724 => 0.0025439381104945
725 => 0.0025172218350157
726 => 0.0024948957155471
727 => 0.0024705161759255
728 => 0.0024560631676282
729 => 0.0024782695571476
730 => 0.0024833484211689
731 => 0.0024347937623835
801 => 0.0024281759418067
802 => 0.002467826724296
803 => 0.0024503778932526
804 => 0.0024683244486909
805 => 0.0024724882034953
806 => 0.0024718177430724
807 => 0.0024535991594776
808 => 0.0024652111413749
809 => 0.0024377453424894
810 => 0.0024078804114309
811 => 0.0023888284460666
812 => 0.0023722030794097
813 => 0.0023814277991029
814 => 0.0023485433577639
815 => 0.0023380229631465
816 => 0.002461277263186
817 => 0.0025523265398322
818 => 0.0025510026472903
819 => 0.0025429437919189
820 => 0.0025309699675162
821 => 0.0025882434640791
822 => 0.0025682905230963
823 => 0.0025828079547853
824 => 0.0025865032504448
825 => 0.0025976877974544
826 => 0.002601685311666
827 => 0.0025896020472663
828 => 0.0025490491360947
829 => 0.00244799513711
830 => 0.0024009542277925
831 => 0.0023854299441895
901 => 0.0023859942224136
902 => 0.0023704289099424
903 => 0.0023750135920535
904 => 0.0023688345446037
905 => 0.0023571329236059
906 => 0.0023807052569806
907 => 0.0023834217488106
908 => 0.0023779196845325
909 => 0.0023792156198476
910 => 0.0023336608775877
911 => 0.002337124305702
912 => 0.0023178394978503
913 => 0.0023142238288599
914 => 0.0022654735139311
915 => 0.0021791052645635
916 => 0.002226961658682
917 => 0.0021691578642142
918 => 0.0021472666913789
919 => 0.0022508960988056
920 => 0.0022404945805323
921 => 0.0022226917026797
922 => 0.0021963575358909
923 => 0.0021865899372666
924 => 0.0021272451000715
925 => 0.0021237386904976
926 => 0.0021531515942569
927 => 0.0021395785512082
928 => 0.0021205168582544
929 => 0.0020514773386288
930 => 0.0019738540603701
1001 => 0.0019761970192182
1002 => 0.0020008875397999
1003 => 0.0020726785583613
1004 => 0.0020446285654121
1005 => 0.0020242779736909
1006 => 0.0020204669195981
1007 => 0.0020681702405522
1008 => 0.002135680433857
1009 => 0.0021673547061002
1010 => 0.0021359664642691
1011 => 0.0020999093421166
1012 => 0.0021021039720694
1013 => 0.0021167038619339
1014 => 0.0021182381039273
1015 => 0.0020947686241381
1016 => 0.0021013751452255
1017 => 0.0020913392355808
1018 => 0.0020297488766159
1019 => 0.0020286349023274
1020 => 0.0020135196349587
1021 => 0.00201306195067
1022 => 0.0019873471101957
1023 => 0.0019837494262551
1024 => 0.0019326910497142
1025 => 0.0019662978277724
1026 => 0.001943756165486
1027 => 0.0019097805633798
1028 => 0.0019039231567705
1029 => 0.0019037470760548
1030 => 0.0019386324226122
1031 => 0.0019658901721866
1101 => 0.0019441482873524
1102 => 0.0019391980816243
1103 => 0.0019920533280054
1104 => 0.0019853270161172
1105 => 0.001979502073402
1106 => 0.0021296356365048
1107 => 0.0020107932062409
1108 => 0.0019589711233571
1109 => 0.0018948314550417
1110 => 0.0019157156544655
1111 => 0.0019201162621368
1112 => 0.0017658719218825
1113 => 0.0017032950122513
1114 => 0.0016818209750269
1115 => 0.001669462363006
1116 => 0.0016750943376936
1117 => 0.0016187677794861
1118 => 0.0016566201581568
1119 => 0.0016078461199145
1120 => 0.0015996689936787
1121 => 0.0016868830159999
1122 => 0.0016990183377089
1123 => 0.0016472452851492
1124 => 0.0016804919661884
1125 => 0.0016684362574801
1126 => 0.0016086822108102
1127 => 0.0016064000457484
1128 => 0.0015764175655858
1129 => 0.0015295007898834
1130 => 0.0015080585644422
1201 => 0.0014968912672625
1202 => 0.0015014991117251
1203 => 0.0014991692445625
1204 => 0.0014839652853432
1205 => 0.0015000407177078
1206 => 0.0014589746308434
1207 => 0.0014426217841621
1208 => 0.0014352355826993
1209 => 0.0013987870669314
1210 => 0.0014567928642467
1211 => 0.0014682207370555
1212 => 0.0014796711263041
1213 => 0.0015793389472001
1214 => 0.0015743598245265
1215 => 0.001619368668565
1216 => 0.0016176197076516
1217 => 0.0016047824562369
1218 => 0.0015506242041436
1219 => 0.0015722107181499
1220 => 0.0015057707833275
1221 => 0.0015555520999729
1222 => 0.0015328339859734
1223 => 0.0015478710827773
1224 => 0.0015208330268835
1225 => 0.0015357970033891
1226 => 0.0014709307096447
1227 => 0.0014103594772395
1228 => 0.0014347351093438
1229 => 0.0014612342091329
1230 => 0.0015186910093207
1231 => 0.0014844702131372
]
'min_raw' => 0.0013987870669314
'max_raw' => 0.0041754134609236
'avg_raw' => 0.0027871002639275
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001398'
'max' => '$0.004175'
'avg' => '$0.002787'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0026498029330686
'max_diff' => 0.00012682346092363
'year' => 2026
]
1 => [
'items' => [
101 => 0.0014967773054763
102 => 0.0014555506063225
103 => 0.0013704881501437
104 => 0.0013709695944079
105 => 0.0013578845887112
106 => 0.0013465772333471
107 => 0.0014884008832347
108 => 0.001470762870471
109 => 0.0014426590055382
110 => 0.001480277145554
111 => 0.0014902239788543
112 => 0.0014905071512148
113 => 0.0015179523751056
114 => 0.0015325998960159
115 => 0.0015351815850624
116 => 0.0015783672378478
117 => 0.001592842499029
118 => 0.0016524640512185
119 => 0.0015313571562032
120 => 0.001528863039397
121 => 0.0014808065099292
122 => 0.001450328299197
123 => 0.0014828933790933
124 => 0.0015117415943046
125 => 0.0014817029043899
126 => 0.0014856253231414
127 => 0.001445300836182
128 => 0.0014597149428265
129 => 0.0014721303132586
130 => 0.0014652752754478
131 => 0.0014550129520573
201 => 0.001509376369638
202 => 0.0015063089725661
203 => 0.0015569334368268
204 => 0.0015963988269082
205 => 0.0016671278612163
206 => 0.0015933184267278
207 => 0.0015906285175691
208 => 0.0016169228110703
209 => 0.0015928384735096
210 => 0.0016080589434849
211 => 0.0016646756081957
212 => 0.0016658718291057
213 => 0.0016458335876202
214 => 0.0016446142588047
215 => 0.0016484628222763
216 => 0.0016710039787374
217 => 0.0016631274060501
218 => 0.0016722423753743
219 => 0.0016836407840875
220 => 0.0017307894353505
221 => 0.001742156815549
222 => 0.0017145399749775
223 => 0.0017170334664685
224 => 0.0017067040099955
225 => 0.0016967258844704
226 => 0.0017191552534627
227 => 0.0017601453661466
228 => 0.001759890368783
301 => 0.0017693992781917
302 => 0.0017753232499773
303 => 0.0017498932264612
304 => 0.0017333392162401
305 => 0.0017396870771179
306 => 0.0017498374448999
307 => 0.0017363954496494
308 => 0.0016534252280254
309 => 0.0016785930931079
310 => 0.0016744039297124
311 => 0.0016684380516176
312 => 0.0016937445345754
313 => 0.0016913036625585
314 => 0.0016181900692186
315 => 0.0016228705642477
316 => 0.0016184747056236
317 => 0.0016326786241462
318 => 0.0015920714152961
319 => 0.0016045619192447
320 => 0.00161239584623
321 => 0.0016170100894075
322 => 0.0016336798997805
323 => 0.0016317238899355
324 => 0.0016335583114622
325 => 0.0016582752395786
326 => 0.0017832849801661
327 => 0.0017900889845278
328 => 0.0017565835786029
329 => 0.001769968327405
330 => 0.0017442725366278
331 => 0.0017615222931234
401 => 0.0017733241384213
402 => 0.0017199938688843
403 => 0.0017168359964329
404 => 0.0016910341499866
405 => 0.0017048986007756
406 => 0.0016828392626811
407 => 0.0016882518526466
408 => 0.001673117779242
409 => 0.0017003560982063
410 => 0.0017308127712153
411 => 0.0017385073295879
412 => 0.0017182662592254
413 => 0.0017036103903314
414 => 0.0016778795124969
415 => 0.0017206705357857
416 => 0.0017331839350281
417 => 0.0017206048082266
418 => 0.0017176899496873
419 => 0.0017121662980224
420 => 0.0017188618185
421 => 0.0017331157843685
422 => 0.0017263938772943
423 => 0.0017308338153415
424 => 0.0017139133499497
425 => 0.0017499016448571
426 => 0.0018070597182248
427 => 0.001807243490777
428 => 0.0018005215474693
429 => 0.001797771073094
430 => 0.0018046681948494
501 => 0.0018084096004669
502 => 0.0018307136275079
503 => 0.0018546467371546
504 => 0.0019663321170416
505 => 0.0019349713092856
506 => 0.0020340652225143
507 => 0.002112435642144
508 => 0.0021359355042678
509 => 0.0021143167368679
510 => 0.0020403601014154
511 => 0.0020367314360513
512 => 0.0021472538731034
513 => 0.0021160262223879
514 => 0.0021123117927008
515 => 0.0020727965364586
516 => 0.0020961549469575
517 => 0.0020910461199342
518 => 0.0020829815865455
519 => 0.0021275478066163
520 => 0.002210971792135
521 => 0.0021979693816467
522 => 0.0021882636853817
523 => 0.0021457361496341
524 => 0.0021713472250231
525 => 0.0021622276116249
526 => 0.0022014112582333
527 => 0.0021781997340065
528 => 0.0021157896422205
529 => 0.0021257286550438
530 => 0.00212422639325
531 => 0.0021551428345134
601 => 0.0021458624862394
602 => 0.0021224142563053
603 => 0.0022106866580218
604 => 0.0022049547392512
605 => 0.0022130812895689
606 => 0.0022166588483406
607 => 0.0022703887037313
608 => 0.0022924001063212
609 => 0.002297397080073
610 => 0.0023183062101105
611 => 0.0022968768418699
612 => 0.0023826095937129
613 => 0.0024396168710437
614 => 0.0025058337572311
615 => 0.0026025944253721
616 => 0.0026389773316793
617 => 0.0026324050853057
618 => 0.0027057679195759
619 => 0.0028375993019953
620 => 0.0026590519768961
621 => 0.0028470627437724
622 => 0.002787540705668
623 => 0.0026464150240784
624 => 0.0026373281939465
625 => 0.0027329001440219
626 => 0.0029448695308297
627 => 0.0028917736035712
628 => 0.0029449563767456
629 => 0.0028829158468684
630 => 0.0028798350116413
701 => 0.0029419432066865
702 => 0.0030870623897511
703 => 0.0030181217055884
704 => 0.0029192783298918
705 => 0.0029922627403329
706 => 0.0029290368896205
707 => 0.0027865713521641
708 => 0.0028917330021163
709 => 0.0028214144016246
710 => 0.0028419371075905
711 => 0.0029897363467216
712 => 0.0029719527512411
713 => 0.0029949663705095
714 => 0.002954347934872
715 => 0.0029164039110472
716 => 0.0028455785728181
717 => 0.0028246106818154
718 => 0.0028304054525428
719 => 0.0028246078102148
720 => 0.002784981684394
721 => 0.0027764244262959
722 => 0.0027621619545635
723 => 0.002766582490934
724 => 0.0027397648714439
725 => 0.0027903752602246
726 => 0.0027997689943595
727 => 0.0028365990147579
728 => 0.0028404228296546
729 => 0.0029429939122217
730 => 0.0028864994835808
731 => 0.0029244008238074
801 => 0.0029210105711963
802 => 0.002649473645529
803 => 0.0026868890380953
804 => 0.0027450956473316
805 => 0.0027188736487679
806 => 0.0026818018778014
807 => 0.0026518644350834
808 => 0.0026065061481049
809 => 0.0026703470659984
810 => 0.0027542910843036
811 => 0.0028425517884876
812 => 0.0029485912414942
813 => 0.0029249244700184
814 => 0.0028405694546731
815 => 0.0028443535590401
816 => 0.0028677454032468
817 => 0.002837450839626
818 => 0.0028285163813941
819 => 0.0028665179458837
820 => 0.002866779641773
821 => 0.002831922085107
822 => 0.0027931842897381
823 => 0.0027930219769611
824 => 0.0027861289604379
825 => 0.0028841420991949
826 => 0.0029380394152652
827 => 0.0029442186556928
828 => 0.0029376235031508
829 => 0.002940161715612
830 => 0.002908800054937
831 => 0.0029804835112285
901 => 0.0030462673394806
902 => 0.0030286358682425
903 => 0.0030022037863953
904 => 0.0029811493600625
905 => 0.0030236761145178
906 => 0.0030217824650852
907 => 0.0030456927751293
908 => 0.0030446080653531
909 => 0.0030365679273975
910 => 0.0030286361553812
911 => 0.0030600847348591
912 => 0.0030510280490182
913 => 0.0030419572956427
914 => 0.0030237645110851
915 => 0.0030262372126566
916 => 0.002999809694681
917 => 0.0029875831156246
918 => 0.0028037247022806
919 => 0.0027545917264882
920 => 0.0027700499608664
921 => 0.0027751392129966
922 => 0.0027537564789661
923 => 0.0027844138267922
924 => 0.0027796359116077
925 => 0.0027982239846037
926 => 0.0027866109635961
927 => 0.002787087566029
928 => 0.0028212389846554
929 => 0.0028311532867731
930 => 0.0028261107926978
1001 => 0.0028296423827016
1002 => 0.0029110263837475
1003 => 0.0028994561813126
1004 => 0.0028933097418718
1005 => 0.0028950123476024
1006 => 0.0029158077047623
1007 => 0.0029216292693827
1008 => 0.0028969628910121
1009 => 0.0029085956976463
1010 => 0.0029581267118717
1011 => 0.002975459763638
1012 => 0.0030307785445391
1013 => 0.0030072781431994
1014 => 0.003050414146932
1015 => 0.0031829995162587
1016 => 0.0032889178834866
1017 => 0.0031915109757222
1018 => 0.0033860165685135
1019 => 0.0035374670726717
1020 => 0.0035316541500681
1021 => 0.0035052452515548
1022 => 0.0033328228790907
1023 => 0.0031741572412765
1024 => 0.0033068877846069
1025 => 0.0033072261420582
1026 => 0.0032958244706732
1027 => 0.0032250096689249
1028 => 0.0032933602690723
1029 => 0.0032987856914991
1030 => 0.0032957488976764
1031 => 0.0032414553552101
1101 => 0.0031585591509879
1102 => 0.0031747568708674
1103 => 0.0032012890664547
1104 => 0.0031510580850122
1105 => 0.0031350062428389
1106 => 0.0031648496714271
1107 => 0.0032610114164634
1108 => 0.0032428325955914
1109 => 0.003242357873112
1110 => 0.0033201345778225
1111 => 0.0032644632425132
1112 => 0.0031749611759874
1113 => 0.0031523607238024
1114 => 0.0030721443440345
1115 => 0.0031275500832611
1116 => 0.003129544037179
1117 => 0.0030991988800375
1118 => 0.0031774235182477
1119 => 0.0031767026644354
1120 => 0.0032509653162152
1121 => 0.0033929276146398
1122 => 0.0033509423774552
1123 => 0.0033021181145903
1124 => 0.0033074266657137
1125 => 0.0033656483689165
1126 => 0.0033304461980879
1127 => 0.0033431051441561
1128 => 0.0033656292080855
1129 => 0.0033792185350951
1130 => 0.0033054713706849
1201 => 0.0032882773789262
1202 => 0.003253104506059
1203 => 0.0032439285600607
1204 => 0.003272576131105
1205 => 0.0032650285082684
1206 => 0.0031293764530732
1207 => 0.0031152000585443
1208 => 0.0031156348283253
1209 => 0.0030799876102318
1210 => 0.0030256170463265
1211 => 0.0031684996419719
1212 => 0.0031570241699009
1213 => 0.0031443561368655
1214 => 0.0031459078986296
1215 => 0.0032079283906587
1216 => 0.0031719533731719
1217 => 0.0032675988533501
1218 => 0.0032479370179918
1219 => 0.0032277709307474
1220 => 0.0032249833632162
1221 => 0.0032172211401168
1222 => 0.0031906015889131
1223 => 0.0031584568812475
1224 => 0.0031372321609198
1225 => 0.002893930834984
1226 => 0.002939086145859
1227 => 0.0029910332149845
1228 => 0.0030089651350819
1229 => 0.0029782913449043
1230 => 0.0031918127771082
1231 => 0.0032308252003156
]
'min_raw' => 0.0013465772333471
'max_raw' => 0.0035374670726717
'avg_raw' => 0.0024420221530094
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001346'
'max' => '$0.003537'
'avg' => '$0.002442'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.2209833584367E-5
'max_diff' => -0.00063794638825195
'year' => 2027
]
2 => [
'items' => [
101 => 0.0031126540257031
102 => 0.0030905490238303
103 => 0.0031932619773509
104 => 0.0031313135102301
105 => 0.0031592089011815
106 => 0.0030989143239077
107 => 0.0032214282499821
108 => 0.0032204948991323
109 => 0.0031728342147869
110 => 0.0032131166988294
111 => 0.0032061166259237
112 => 0.0031523078306808
113 => 0.0032231340847683
114 => 0.0032231692137067
115 => 0.0031772968412568
116 => 0.0031237279529889
117 => 0.0031141511010073
118 => 0.0031069362295082
119 => 0.0031574344850723
120 => 0.0032027110631072
121 => 0.0032869595498145
122 => 0.0033081416210674
123 => 0.0033908166553377
124 => 0.0033415876978041
125 => 0.003363410257057
126 => 0.0033871017321155
127 => 0.0033984602964837
128 => 0.0033799521253799
129 => 0.0035083804840035
130 => 0.0035192237724145
131 => 0.0035228594332247
201 => 0.0034795541132908
202 => 0.0035180193731284
203 => 0.0035000227518859
204 => 0.0035468449607535
205 => 0.0035541872809599
206 => 0.0035479685969557
207 => 0.0035502991652799
208 => 0.0034407082175096
209 => 0.0034350253487294
210 => 0.0033575390296736
211 => 0.0033891152774388
212 => 0.0033300849957306
213 => 0.0033488041061396
214 => 0.0033570553116456
215 => 0.003352745350141
216 => 0.0033909005511108
217 => 0.0033584608356939
218 => 0.0032728470931258
219 => 0.0031872100251507
220 => 0.0031861349215207
221 => 0.0031635881931427
222 => 0.0031472910381647
223 => 0.0031504304483861
224 => 0.003161494139486
225 => 0.0031466479963252
226 => 0.0031498161736872
227 => 0.0032024290273502
228 => 0.0032129801599346
229 => 0.0031771232888191
301 => 0.0030331527771686
302 => 0.0029978220524869
303 => 0.0030232170767494
304 => 0.003011079890801
305 => 0.0024301764770264
306 => 0.0025666511174306
307 => 0.0024855625203433
308 => 0.0025229318765881
309 => 0.0024401614167524
310 => 0.0024796638185575
311 => 0.0024723691673408
312 => 0.0026918163505326
313 => 0.0026883899846068
314 => 0.0026900300046562
315 => 0.0026117475746472
316 => 0.0027364536112511
317 => 0.0027978882891663
318 => 0.0027865183653152
319 => 0.0027893799301931
320 => 0.0027402087647723
321 => 0.0026905060890203
322 => 0.0026353781724243
323 => 0.0027377990274432
324 => 0.0027264115767474
325 => 0.0027525302915682
326 => 0.0028189575372418
327 => 0.0028287392014998
328 => 0.0028418858574585
329 => 0.00283717371714
330 => 0.0029494360168136
331 => 0.0029358403115926
401 => 0.0029686020494239
402 => 0.002901208669066
403 => 0.0028249466621527
404 => 0.0028394415764741
405 => 0.0028380455996642
406 => 0.0028202732126468
407 => 0.0028042290963045
408 => 0.0027775201629964
409 => 0.0028620311801616
410 => 0.0028586001871999
411 => 0.0029141439751563
412 => 0.0029043260711115
413 => 0.0028387597050512
414 => 0.002841101420642
415 => 0.0028568505833801
416 => 0.0029113586154374
417 => 0.0029275403105418
418 => 0.0029200443046404
419 => 0.0029377867945999
420 => 0.0029518097352444
421 => 0.0029395478600439
422 => 0.0031131501548766
423 => 0.0030410583785523
424 => 0.0030761954087214
425 => 0.0030845753833773
426 => 0.003063110254508
427 => 0.0030677652723511
428 => 0.003074816355967
429 => 0.0031176291549389
430 => 0.0032299823274243
501 => 0.0032797427827041
502 => 0.0034294495675512
503 => 0.0032756108695921
504 => 0.0032664827179031
505 => 0.0032934494305658
506 => 0.0033813431613436
507 => 0.0034525727747007
508 => 0.0034762037467862
509 => 0.0034793269698521
510 => 0.0035236602444419
511 => 0.0035490712506701
512 => 0.0035182770188258
513 => 0.0034921821316282
514 => 0.0033987134847032
515 => 0.0034095327350914
516 => 0.0034840666413321
517 => 0.0035893501739223
518 => 0.0036796943977692
519 => 0.0036480589993921
520 => 0.0038894147578987
521 => 0.0039133441955048
522 => 0.003910037920959
523 => 0.0039645527410034
524 => 0.0038563519249653
525 => 0.0038100939798169
526 => 0.0034978241424299
527 => 0.0035855592294145
528 => 0.0037130873308476
529 => 0.0036962085084171
530 => 0.0036035941923205
531 => 0.0036796241415055
601 => 0.0036544862626286
602 => 0.0036346589745868
603 => 0.0037254916248151
604 => 0.0036256173946895
605 => 0.0037120910090023
606 => 0.0036011877041911
607 => 0.0036482035072271
608 => 0.0036215150635254
609 => 0.003638785757413
610 => 0.003537821633844
611 => 0.0035922994241563
612 => 0.0035355551786607
613 => 0.0035355282745
614 => 0.0035342756421356
615 => 0.0036010349953187
616 => 0.0036032120154293
617 => 0.0035538767525592
618 => 0.003546766770418
619 => 0.0035730561008866
620 => 0.0035422781800944
621 => 0.0035566789755191
622 => 0.0035427143655175
623 => 0.0035395706376664
624 => 0.003514520879288
625 => 0.0035037287546211
626 => 0.0035079606247818
627 => 0.0034935150702448
628 => 0.0034848111011177
629 => 0.0035325442036005
630 => 0.0035070423324918
701 => 0.0035286356761048
702 => 0.0035040273357606
703 => 0.003418724106784
704 => 0.0033696653177342
705 => 0.0032085354258109
706 => 0.0032542316632794
707 => 0.0032845283159971
708 => 0.0032745152724546
709 => 0.0032960271645173
710 => 0.0032973478199776
711 => 0.0032903540845803
712 => 0.0032822562349431
713 => 0.0032783146495789
714 => 0.0033076919976033
715 => 0.0033247465369276
716 => 0.0032875689904143
717 => 0.0032788588114353
718 => 0.0033164473635889
719 => 0.0033393763586884
720 => 0.0035086711758136
721 => 0.0034961292689459
722 => 0.0035276069939589
723 => 0.0035240630851875
724 => 0.0035570567557959
725 => 0.0036109874630751
726 => 0.0035013312559135
727 => 0.0035203637818504
728 => 0.0035156974460159
729 => 0.0035666432770782
730 => 0.0035668023244019
731 => 0.003536257753747
801 => 0.0035528164610281
802 => 0.0035435738448882
803 => 0.0035602765014675
804 => 0.0034959617641332
805 => 0.0035742901718595
806 => 0.0036186973316692
807 => 0.0036193139251262
808 => 0.003640362566439
809 => 0.0036617492050679
810 => 0.0037027989955323
811 => 0.0036606043486916
812 => 0.0035847002865913
813 => 0.0035901803147063
814 => 0.0035456777908691
815 => 0.0035464258863348
816 => 0.0035424324941094
817 => 0.0035544169647864
818 => 0.0034985916815016
819 => 0.0035116937639066
820 => 0.0034933507718139
821 => 0.003520323907768
822 => 0.0034913052723005
823 => 0.0035156951957675
824 => 0.0035262210781971
825 => 0.0035650618109683
826 => 0.0034855684644898
827 => 0.0033234761497937
828 => 0.0033575499195221
829 => 0.0033071521376569
830 => 0.0033118166442464
831 => 0.0033212396899079
901 => 0.0032906965158902
902 => 0.0032965231909667
903 => 0.0032963150211313
904 => 0.0032945211259521
905 => 0.0032865756667568
906 => 0.0032750531789623
907 => 0.0033209552239008
908 => 0.0033287548757959
909 => 0.0033460925357862
910 => 0.0033976776516704
911 => 0.0033925230821328
912 => 0.0034009303989097
913 => 0.0033825772735907
914 => 0.0033126679930919
915 => 0.0033164644033667
916 => 0.0032691231064068
917 => 0.0033448819123852
918 => 0.0033269412271621
919 => 0.0033153747506878
920 => 0.0033122187304191
921 => 0.0033639317158278
922 => 0.0033794050515639
923 => 0.0033697631071101
924 => 0.003349987197735
925 => 0.003387962789958
926 => 0.0033981234563752
927 => 0.0034003980548751
928 => 0.0034676835231967
929 => 0.003404158565106
930 => 0.0034194496539022
1001 => 0.0035387463636565
1002 => 0.00343056070973
1003 => 0.0034878690634428
1004 => 0.0034850641177469
1005 => 0.0035143811322974
1006 => 0.0034826592668542
1007 => 0.0034830524973947
1008 => 0.003509084020209
1009 => 0.0034725274412262
1010 => 0.0034634755181737
1011 => 0.0034509703513078
1012 => 0.0034782749256671
1013 => 0.0034946427831158
1014 => 0.0036265556932858
1015 => 0.0037117774492151
1016 => 0.0037080777480339
1017 => 0.0037418860912804
1018 => 0.0037266551229989
1019 => 0.0036774703086915
1020 => 0.0037614227892651
1021 => 0.0037348567116906
1022 => 0.0037370467868481
1023 => 0.0037369652721413
1024 => 0.0037546293912815
1025 => 0.003742112743978
1026 => 0.0037174411473351
1027 => 0.0037338193045618
1028 => 0.0037824565762269
1029 => 0.0039334281598488
1030 => 0.0040179138581511
1031 => 0.0039283420147277
1101 => 0.0039901274729064
1102 => 0.0039530782144089
1103 => 0.0039463452620199
1104 => 0.0039851510956657
1105 => 0.0040240248537862
1106 => 0.0040215487634498
1107 => 0.0039933284112439
1108 => 0.0039773874503477
1109 => 0.0040980977468673
1110 => 0.0041870350370967
1111 => 0.0041809701101462
1112 => 0.0042077387252858
1113 => 0.0042863322072576
1114 => 0.0042935178102835
1115 => 0.0042926125894614
1116 => 0.0042748023226215
1117 => 0.0043521878122761
1118 => 0.004416744149214
1119 => 0.0042706797604362
1120 => 0.0043262991675595
1121 => 0.0043512685113626
1122 => 0.0043879309161359
1123 => 0.0044497865383211
1124 => 0.0045169781504076
1125 => 0.0045264797810752
1126 => 0.0045197379194217
1127 => 0.0044754232450431
1128 => 0.0045489451087508
1129 => 0.004592012492211
1130 => 0.0046176581334819
1201 => 0.0046826912127173
1202 => 0.0043514227135293
1203 => 0.0041169344046914
1204 => 0.0040803156692141
1205 => 0.0041547813077678
1206 => 0.0041744173028021
1207 => 0.0041665020578252
1208 => 0.0039025641474838
1209 => 0.0040789260907394
1210 => 0.004268676712749
1211 => 0.0042759658069242
1212 => 0.0043709589358006
1213 => 0.0044018925924627
1214 => 0.0044783745122423
1215 => 0.0044735905473363
1216 => 0.0044922126777094
1217 => 0.004487931772427
1218 => 0.0046295984236503
1219 => 0.004785877777651
1220 => 0.0047804663205599
1221 => 0.0047579993144089
1222 => 0.0047913666497369
1223 => 0.0049526636909789
1224 => 0.0049378140441538
1225 => 0.0049522392111545
1226 => 0.0051424175130818
1227 => 0.0053896763581352
1228 => 0.0052747998002257
1229 => 0.0055240488760502
1230 => 0.005680937957156
1231 => 0.0059522614002946
]
'min_raw' => 0.0024301764770264
'max_raw' => 0.0059522614002946
'avg_raw' => 0.0041912189386605
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00243'
'max' => '$0.005952'
'avg' => '$0.004191'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0010835992436793
'max_diff' => 0.0024147943276229
'year' => 2028
]
3 => [
'items' => [
101 => 0.0059182903689175
102 => 0.006023914594268
103 => 0.0058574751327843
104 => 0.0054752964862529
105 => 0.0054148152525182
106 => 0.0055359002140838
107 => 0.0058335757767951
108 => 0.0055265253512767
109 => 0.0055886412524557
110 => 0.0055707518687374
111 => 0.005569798619504
112 => 0.0056061802655967
113 => 0.0055534067904002
114 => 0.005338398158683
115 => 0.0054369353475452
116 => 0.005398885406781
117 => 0.0054411046528698
118 => 0.0056689445114697
119 => 0.0055682110789588
120 => 0.0054620965907282
121 => 0.0055951877076595
122 => 0.0057646584345826
123 => 0.0057540532610599
124 => 0.0057334747918073
125 => 0.0058494745455307
126 => 0.006041072153943
127 => 0.0060928602175953
128 => 0.006131089107423
129 => 0.0061363602254479
130 => 0.0061906560170856
131 => 0.0058986938611484
201 => 0.0063620453007406
202 => 0.006442053294533
203 => 0.0064270151076916
204 => 0.0065159406255408
205 => 0.0064897764823669
206 => 0.0064518687439363
207 => 0.0065928346047273
208 => 0.0064312286206888
209 => 0.0062018492719737
210 => 0.0060760072246596
211 => 0.0062417261839513
212 => 0.006342924969596
213 => 0.0064098109294556
214 => 0.0064300505804955
215 => 0.0059213580522042
216 => 0.0056472009928362
217 => 0.005822932524674
218 => 0.0060373371218586
219 => 0.0058975028327855
220 => 0.0059029840721759
221 => 0.0057036171237624
222 => 0.0060549766729988
223 => 0.006003786542074
224 => 0.0062693610318656
225 => 0.0062059795485084
226 => 0.0064225452353911
227 => 0.0063655162321284
228 => 0.0066022404362234
301 => 0.0066966761302889
302 => 0.006855248358367
303 => 0.0069718947348463
304 => 0.0070403917182046
305 => 0.0070362794162495
306 => 0.0073076985893766
307 => 0.0071476521856472
308 => 0.0069465961825219
309 => 0.0069429597137489
310 => 0.0070470894667531
311 => 0.0072653168624473
312 => 0.0073219000510713
313 => 0.0073535223342916
314 => 0.0073050917067601
315 => 0.0071313728061409
316 => 0.0070563618656284
317 => 0.0071202733602212
318 => 0.0070421150943115
319 => 0.0071770381886079
320 => 0.0073623164150947
321 => 0.0073240571939947
322 => 0.007451952033989
323 => 0.0075843097384536
324 => 0.0077735872003945
325 => 0.00782307133787
326 => 0.0079048667354037
327 => 0.0079890610678543
328 => 0.0080161020183365
329 => 0.0080677315831213
330 => 0.0080674594698298
331 => 0.0082230486383792
401 => 0.0083946683094846
402 => 0.0084594507623224
403 => 0.0086084144404976
404 => 0.0083533193619325
405 => 0.0085468119093452
406 => 0.0087213470305441
407 => 0.0085132590638123
408 => 0.0088000598476741
409 => 0.0088111956722069
410 => 0.0089793334015923
411 => 0.0088088936015688
412 => 0.0087076869923779
413 => 0.0089998666809497
414 => 0.0091412432286757
415 => 0.0090986594619401
416 => 0.0087745948944626
417 => 0.0085859754164075
418 => 0.0080923218603573
419 => 0.0086770758217454
420 => 0.0089618924188307
421 => 0.0087738572882828
422 => 0.0088686912707808
423 => 0.0093860747292678
424 => 0.0095830608521615
425 => 0.0095420891156365
426 => 0.0095490126646571
427 => 0.0096553028010194
428 => 0.010126651800698
429 => 0.0098442085543062
430 => 0.010060125833226
501 => 0.010174647579417
502 => 0.010281021759646
503 => 0.010019800392909
504 => 0.0096799552328883
505 => 0.0095723120049804
506 => 0.0087551609003172
507 => 0.0087126246366121
508 => 0.0086887477428137
509 => 0.0085382073048686
510 => 0.0084199237571402
511 => 0.0083258602883999
512 => 0.0080790096566959
513 => 0.0081623144985197
514 => 0.0077688861133145
515 => 0.0080205876519229
516 => 0.0073926664494749
517 => 0.0079156178856529
518 => 0.0076309991946253
519 => 0.0078221129908552
520 => 0.0078214462128242
521 => 0.0074695451212807
522 => 0.0072665759156668
523 => 0.0073959157931636
524 => 0.0075345784088525
525 => 0.0075570759517309
526 => 0.0077368556524361
527 => 0.0077870283025512
528 => 0.0076350028303654
529 => 0.0073796541782424
530 => 0.0074389658462479
531 => 0.0072653739666078
601 => 0.0069611608746537
602 => 0.0071796520283461
603 => 0.0072542545145946
604 => 0.0072872032225318
605 => 0.0069880445857047
606 => 0.0068940424469636
607 => 0.0068439964970522
608 => 0.0073410365549013
609 => 0.0073682655312747
610 => 0.0072289582383588
611 => 0.0078586404119983
612 => 0.007716123942979
613 => 0.0078753497562562
614 => 0.0074335839340519
615 => 0.0074504599833766
616 => 0.0072413209635338
617 => 0.0073584248399714
618 => 0.0072756595945394
619 => 0.0073489640039983
620 => 0.0073929023647826
621 => 0.0076020070669702
622 => 0.0079180055254624
623 => 0.0075707737974907
624 => 0.0074194799611635
625 => 0.0075133418063121
626 => 0.007763308268912
627 => 0.0081420202552987
628 => 0.0079178151370687
629 => 0.0080173135612894
630 => 0.0080390495406048
701 => 0.0078737289869467
702 => 0.0081481158599228
703 => 0.0082951620142657
704 => 0.0084460009417073
705 => 0.0085769701559941
706 => 0.0083857525570681
707 => 0.008590382797885
708 => 0.0084254869458866
709 => 0.0082775583200243
710 => 0.0082777826666875
711 => 0.0081849848787916
712 => 0.0080051774714697
713 => 0.007972018226819
714 => 0.008144516805043
715 => 0.0082828443291025
716 => 0.0082942376465282
717 => 0.0083708228713724
718 => 0.0084161452185446
719 => 0.0088603658335756
720 => 0.0090390350397267
721 => 0.0092575083629733
722 => 0.0093426160348597
723 => 0.0095987596144486
724 => 0.0093919028709661
725 => 0.0093471481133238
726 => 0.0087258275731674
727 => 0.0088275687768109
728 => 0.0089904662604103
729 => 0.008728513692673
730 => 0.0088946623037327
731 => 0.0089274635590646
801 => 0.0087196126446587
802 => 0.0088306347987508
803 => 0.0085357928732569
804 => 0.0079244322737282
805 => 0.0081487964790368
806 => 0.0083140040543189
807 => 0.0080782324744442
808 => 0.0085008439057494
809 => 0.0082539630320516
810 => 0.0081757136474613
811 => 0.0078704349002546
812 => 0.0080145147176796
813 => 0.0082093847337711
814 => 0.0080889777198975
815 => 0.0083388403528894
816 => 0.008692712477136
817 => 0.0089449028263236
818 => 0.0089642628698741
819 => 0.0088021213707877
820 => 0.0090619541578469
821 => 0.0090638467560347
822 => 0.0087707543107839
823 => 0.0085912368200133
824 => 0.0085504500684022
825 => 0.0086523433706404
826 => 0.0087760606500989
827 => 0.0089711283178556
828 => 0.0090890036240731
829 => 0.0093963599064568
830 => 0.0094795217038746
831 => 0.0095708913061552
901 => 0.0096929892721439
902 => 0.0098395991855893
903 => 0.0095188250414779
904 => 0.0095315699962212
905 => 0.009232869554645
906 => 0.0089136652948444
907 => 0.0091559015386604
908 => 0.0094725932041126
909 => 0.0093999437861447
910 => 0.0093917692425303
911 => 0.0094055165574603
912 => 0.0093507412688207
913 => 0.0091029946683705
914 => 0.0089785778766002
915 => 0.0091391072800926
916 => 0.0092244215137071
917 => 0.0093567364498602
918 => 0.0093404258411498
919 => 0.0096812549070933
920 => 0.0098136907759829
921 => 0.0097798080134706
922 => 0.0097860432572071
923 => 0.01002581207187
924 => 0.010292484305993
925 => 0.01054225804375
926 => 0.010796338617828
927 => 0.010490034568844
928 => 0.010334512262977
929 => 0.010494971584353
930 => 0.010409829609802
1001 => 0.010899080650322
1002 => 0.010932955330855
1003 => 0.011422170992956
1004 => 0.011886494911007
1005 => 0.011594861377306
1006 => 0.011869858664123
1007 => 0.012167290650674
1008 => 0.012741085209331
1009 => 0.012547851388311
1010 => 0.01239983730977
1011 => 0.012259964720748
1012 => 0.012551017374355
1013 => 0.012925451963541
1014 => 0.013006101587762
1015 => 0.013136784789528
1016 => 0.012999387382053
1017 => 0.013164867425528
1018 => 0.013749084694611
1019 => 0.013591224031477
1020 => 0.013367036512457
1021 => 0.013828219937575
1022 => 0.013995120426321
1023 => 0.015166515462798
1024 => 0.016645450084267
1025 => 0.016033161439771
1026 => 0.015653094119701
1027 => 0.015742418955235
1028 => 0.016282475813898
1029 => 0.016455924936353
1030 => 0.015984430430023
1031 => 0.016150970260573
1101 => 0.017068621100738
1102 => 0.017560911334722
1103 => 0.016892315073572
1104 => 0.01504768450597
1105 => 0.013346850879258
1106 => 0.013797988546599
1107 => 0.013746843535554
1108 => 0.014732744884037
1109 => 0.013587459106869
1110 => 0.013606742782107
1111 => 0.01461303152639
1112 => 0.014344570941572
1113 => 0.013909699176
1114 => 0.013350025924405
1115 => 0.012315418155321
1116 => 0.011399037202071
1117 => 0.013196271281324
1118 => 0.013118771279768
1119 => 0.013006539792659
1120 => 0.013256298822505
1121 => 0.014469057776099
1122 => 0.014441099756901
1123 => 0.01426324510307
1124 => 0.014398146290462
1125 => 0.013886050345613
1126 => 0.014018029130808
1127 => 0.013346581458522
1128 => 0.013650103848527
1129 => 0.013908766136502
1130 => 0.013960696420374
1201 => 0.014077698001563
1202 => 0.013077932300576
1203 => 0.01352679774874
1204 => 0.013790464146532
1205 => 0.012599209769043
1206 => 0.013766916877664
1207 => 0.013060528603999
1208 => 0.012820769814322
1209 => 0.013143573438804
1210 => 0.013017776552407
1211 => 0.012909623776523
1212 => 0.012849272669279
1213 => 0.013086304024563
1214 => 0.013075246228525
1215 => 0.012687416925478
1216 => 0.012181509409597
1217 => 0.012351308577775
1218 => 0.0122896189481
1219 => 0.012066047772038
1220 => 0.012216707750617
1221 => 0.011553277452227
1222 => 0.010411880105952
1223 => 0.011165922154847
1224 => 0.011136892356205
1225 => 0.011122254215332
1226 => 0.011688895974886
1227 => 0.011634426444354
1228 => 0.011535563713073
1229 => 0.012064232080449
1230 => 0.011871261014764
1231 => 0.012465952369505
]
'min_raw' => 0.005338398158683
'max_raw' => 0.017560911334722
'avg_raw' => 0.011449654746703
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005338'
'max' => '$0.01756'
'avg' => '$0.011449'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0029082216816566
'max_diff' => 0.011608649934428
'year' => 2029
]
4 => [
'items' => [
101 => 0.012857654557963
102 => 0.012758306212732
103 => 0.013126704014238
104 => 0.012355220407663
105 => 0.012611476315217
106 => 0.012664290302609
107 => 0.012057708394859
108 => 0.011643338333185
109 => 0.011615704574236
110 => 0.010897243991006
111 => 0.011281039835357
112 => 0.011618764295834
113 => 0.011457020487742
114 => 0.011405817230059
115 => 0.01166740356893
116 => 0.011687731067796
117 => 0.011224261939445
118 => 0.011320631847387
119 => 0.011722510383672
120 => 0.011310505539387
121 => 0.01051004742755
122 => 0.010311522748616
123 => 0.01028503589691
124 => 0.0097466212224479
125 => 0.010324789116945
126 => 0.010072403337061
127 => 0.010869686991668
128 => 0.010414282844074
129 => 0.010394651281476
130 => 0.010364975295285
131 => 0.0099015395433458
201 => 0.010003002520142
202 => 0.010340280908261
203 => 0.010460625636854
204 => 0.010448072695707
205 => 0.010338628060157
206 => 0.010388731253864
207 => 0.010227331409823
208 => 0.010170337765645
209 => 0.009990450147282
210 => 0.009726065043511
211 => 0.0097628294137585
212 => 0.0092390133430627
213 => 0.0089536105467246
214 => 0.0088746148142467
215 => 0.0087689784193182
216 => 0.0088865467261415
217 => 0.0092375294379485
218 => 0.0088141698223732
219 => 0.0080883494566935
220 => 0.0081319724974086
221 => 0.0082299805180983
222 => 0.0080473432199309
223 => 0.007874492344802
224 => 0.0080247721568918
225 => 0.0077172324996325
226 => 0.00826714521639
227 => 0.0082522716185143
228 => 0.0084572450729472
301 => 0.0085854191804828
302 => 0.0082900193594733
303 => 0.0082157271033355
304 => 0.0082580473488264
305 => 0.0075585879603736
306 => 0.0084000843183936
307 => 0.0084073616138417
308 => 0.0083450489920412
309 => 0.0087931198244016
310 => 0.0097386890374792
311 => 0.009382927864086
312 => 0.0092451663848097
313 => 0.0089832817120025
314 => 0.0093322274893449
315 => 0.0093054338980471
316 => 0.0091842631170307
317 => 0.0091109786505962
318 => 0.0092460075270262
319 => 0.0090942470785081
320 => 0.009066986731856
321 => 0.008901818690694
322 => 0.0088428612146662
323 => 0.00879921144658
324 => 0.0087511573408547
325 => 0.0088571527237476
326 => 0.0086169532412583
327 => 0.0083272962124217
328 => 0.0083032143646064
329 => 0.0083697064637221
330 => 0.008340288659618
331 => 0.0083030735234782
401 => 0.0082320196936481
402 => 0.0082109395401624
403 => 0.0082794398123544
404 => 0.0082021069988636
405 => 0.0083162157777057
406 => 0.0082851845037873
407 => 0.0081118463301998
408 => 0.0078958027878984
409 => 0.0078938795472053
410 => 0.0078473333203989
411 => 0.0077880497022889
412 => 0.0077715583559561
413 => 0.0080121160102821
414 => 0.0085100631554522
415 => 0.00841230421599
416 => 0.0084829450684905
417 => 0.0088304281469717
418 => 0.0089408825684402
419 => 0.0088624846363382
420 => 0.0087551687115032
421 => 0.0087598900675584
422 => 0.0091266210694593
423 => 0.0091494936322065
424 => 0.0092072852193001
425 => 0.009281563740616
426 => 0.0088751345897077
427 => 0.0087407472911002
428 => 0.0086770671334965
429 => 0.0084809568953996
430 => 0.008692444973966
501 => 0.0085692199274078
502 => 0.0085858471961555
503 => 0.0085750186655708
504 => 0.0085809317754921
505 => 0.0082669915045784
506 => 0.0083813748390845
507 => 0.0081911903604556
508 => 0.0079365546927811
509 => 0.0079357010647362
510 => 0.0079980227836575
511 => 0.007960951386594
512 => 0.007861193210289
513 => 0.0078753633883878
514 => 0.0077512177176802
515 => 0.0078904369205417
516 => 0.0078944292291295
517 => 0.0078408222527066
518 => 0.0080553086432625
519 => 0.0081431838924776
520 => 0.0081078986322233
521 => 0.0081407081845548
522 => 0.0084163665412798
523 => 0.0084613108812433
524 => 0.0084812721881986
525 => 0.0084545266812449
526 => 0.0081457467132826
527 => 0.0081594424178955
528 => 0.0080589524246886
529 => 0.0079740489698033
530 => 0.0079774446627388
531 => 0.0080210960752263
601 => 0.0082117243536811
602 => 0.0086128903275383
603 => 0.0086281142829977
604 => 0.0086465661611286
605 => 0.0085715130995994
606 => 0.0085488763780812
607 => 0.0085787400567973
608 => 0.0087293969042732
609 => 0.0091169272189165
610 => 0.0089799481234421
611 => 0.0088685819866148
612 => 0.0089662801127072
613 => 0.0089512402519785
614 => 0.0088242886918474
615 => 0.0088207255843798
616 => 0.0085770649516191
617 => 0.0084869891635717
618 => 0.0084117150930233
619 => 0.0083295177730639
620 => 0.0082807884465129
621 => 0.0083556588391781
622 => 0.0083727825838211
623 => 0.008209077161748
624 => 0.0081867647176318
625 => 0.0083204500991236
626 => 0.0082616201470224
627 => 0.0083221282116711
628 => 0.0083361666016982
629 => 0.0083339060975723
630 => 0.0082724808710017
701 => 0.0083116314786912
702 => 0.0082190286201477
703 => 0.0081183369199812
704 => 0.0080541018885896
705 => 0.0079980483041599
706 => 0.008029150090655
707 => 0.007918277900762
708 => 0.0078828076557989
709 => 0.0082983681337225
710 => 0.0086053471267927
711 => 0.0086008835306564
712 => 0.0085737125371206
713 => 0.0085333419521612
714 => 0.0087264435445306
715 => 0.0086591708109373
716 => 0.0087081173454514
717 => 0.0087205762927649
718 => 0.0087582857738877
719 => 0.0087717636721497
720 => 0.0087310241025997
721 => 0.0085942971312706
722 => 0.0082535865183288
723 => 0.0080949848082736
724 => 0.008042643602235
725 => 0.0080445461056644
726 => 0.0079920665679322
727 => 0.0080075241437623
728 => 0.007986691053878
729 => 0.0079472382217028
730 => 0.0080267139894433
731 => 0.0080358728313074
801 => 0.0080173222374521
802 => 0.0080216915738463
803 => 0.0078681005797864
804 => 0.0078797777694827
805 => 0.0078147576933883
806 => 0.0078025672129493
807 => 0.0076382021225285
808 => 0.0073470055397472
809 => 0.0075083567137442
810 => 0.0073134671849641
811 => 0.0072396595673569
812 => 0.0075890533496702
813 => 0.0075539839046009
814 => 0.0074939602589637
815 => 0.0074051727770424
816 => 0.0073722406363287
817 => 0.007172155374401
818 => 0.007160333269713
819 => 0.0072595009282808
820 => 0.0072137384660025
821 => 0.0071494706373641
822 => 0.0069166990767608
823 => 0.0066549867746276
824 => 0.0066628862239641
825 => 0.0067461320379422
826 => 0.006988180469311
827 => 0.0068936079596948
828 => 0.0068249945188738
829 => 0.0068121452839205
830 => 0.0069729803610568
831 => 0.0072005956911951
901 => 0.00730738771149
902 => 0.0072015600626996
903 => 0.0070799909579345
904 => 0.0070873903060446
905 => 0.0071366148540545
906 => 0.0071417876580527
907 => 0.0070626586683565
908 => 0.0070849330154552
909 => 0.0070510962454032
910 => 0.0068434400500517
911 => 0.0068396842079627
912 => 0.006788722028715
913 => 0.006787178914181
914 => 0.0067004795341692
915 => 0.006688349691581
916 => 0.0065162028102914
917 => 0.006629510408865
918 => 0.0065535096206577
919 => 0.0064389585060559
920 => 0.0064192098507216
921 => 0.006418616182295
922 => 0.0065362345638306
923 => 0.006628135969596
924 => 0.0065548316869074
925 => 0.006538141722683
926 => 0.0067163468760923
927 => 0.0066936686459449
928 => 0.0066740294448962
929 => 0.007180215234888
930 => 0.0067795296839397
1001 => 0.0066048079133946
1002 => 0.0063885565435807
1003 => 0.0064589690800262
1004 => 0.0064738060360306
1005 => 0.0059537604738674
1006 => 0.0057427780540653
1007 => 0.005670376838294
1008 => 0.0056287089150147
1009 => 0.0056476975108859
1010 => 0.0054577885872945
1011 => 0.0055854105247516
1012 => 0.0054209654495231
1013 => 0.0053933956975105
1014 => 0.0056874438628548
1015 => 0.005728358947258
1016 => 0.0055538024858736
1017 => 0.0056658959922065
1018 => 0.0056252493285939
1019 => 0.0054237843883519
1020 => 0.0054160899095105
1021 => 0.0053150018843321
1022 => 0.0051568186994268
1023 => 0.0050845247393036
1024 => 0.0050468734171865
1025 => 0.0050624090865016
1026 => 0.0050545537766965
1027 => 0.0050032925666822
1028 => 0.0050574920092504
1029 => 0.0049190348302445
1030 => 0.0048639000659391
1031 => 0.0048389969720192
1101 => 0.0047161082563537
1102 => 0.0049116788518374
1103 => 0.0049502087228812
1104 => 0.0049888145096733
1105 => 0.0053248515264092
1106 => 0.0053080640666839
1107 => 0.0054598145267768
1108 => 0.0054539177829487
1109 => 0.0054106360935358
1110 => 0.0052280377653948
1111 => 0.0053008182044896
1112 => 0.0050768113255474
1113 => 0.005244652510238
1114 => 0.0051680568027607
1115 => 0.0052187554244916
1116 => 0.005127594731309
1117 => 0.005178046822849
1118 => 0.0049593455846696
1119 => 0.0047551254456672
1120 => 0.0048373095911593
1121 => 0.0049266531562062
1122 => 0.005120372769545
1123 => 0.0050049949659925
1124 => 0.0050464891870678
1125 => 0.0049074904925144
1126 => 0.0046206964826366
1127 => 0.0046223197055868
1128 => 0.0045782026953142
1129 => 0.0045400791572498
1130 => 0.0050182474946569
1201 => 0.0049587797031775
1202 => 0.0048640255604073
1203 => 0.0049908577458852
1204 => 0.005024394188823
1205 => 0.0050253489242068
1206 => 0.0051178824127189
1207 => 0.0051672675521254
1208 => 0.0051759718969932
1209 => 0.0053215753404854
1210 => 0.0053703796941882
1211 => 0.005571397920039
1212 => 0.0051630775680815
1213 => 0.0051546684791356
1214 => 0.0049926425348352
1215 => 0.0048898831194311
1216 => 0.0049996785599225
1217 => 0.0050969423316256
1218 => 0.0049956647913437
1219 => 0.005008889500019
1220 => 0.0048729326768697
1221 => 0.0049215308437824
1222 => 0.0049633901320078
1223 => 0.004940277893425
1224 => 0.0049056777536216
1225 => 0.0050889678115274
1226 => 0.0050786258681408
1227 => 0.0052493097838829
1228 => 0.0053823701019278
1229 => 0.0056208379792411
1230 => 0.005371984317653
1231 => 0.005362915101121
]
'min_raw' => 0.0045400791572498
'max_raw' => 0.013126704014238
'avg_raw' => 0.0088333915857437
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00454'
'max' => '$0.013126'
'avg' => '$0.008833'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00079831900143316
'max_diff' => -0.0044342073204847
'year' => 2030
]
5 => [
'items' => [
101 => 0.0054515681474693
102 => 0.0053703661218687
103 => 0.0054216829990496
104 => 0.0056125700369714
105 => 0.0056166031792869
106 => 0.005549042849093
107 => 0.0055449317968608
108 => 0.0055579074973036
109 => 0.0056339065800855
110 => 0.0056073501653455
111 => 0.0056380819208087
112 => 0.0056765124515968
113 => 0.0058354774211436
114 => 0.005873803337128
115 => 0.0057806912309951
116 => 0.0057890982116469
117 => 0.0057542717279687
118 => 0.0057206297811101
119 => 0.0057962519646364
120 => 0.0059344529913883
121 => 0.0059335932499735
122 => 0.0059656532019359
123 => 0.0059856262864094
124 => 0.0058998871866575
125 => 0.005844074185433
126 => 0.005865476441576
127 => 0.0058996991152291
128 => 0.0058543784897519
129 => 0.0055746385947507
130 => 0.0056594938090404
131 => 0.0056453697521746
201 => 0.0056252553776537
202 => 0.0057105779517879
203 => 0.0057023483813669
204 => 0.0054558407967932
205 => 0.0054716214125657
206 => 0.0054568004683053
207 => 0.0055046899712904
208 => 0.0053677799315475
209 => 0.0054098925376692
210 => 0.0054363051694476
211 => 0.0054518624124765
212 => 0.0055080658419982
213 => 0.0055014710182414
214 => 0.0055076558984939
215 => 0.0055909907473193
216 => 0.0060124698156112
217 => 0.0060354099913572
218 => 0.0059224441760089
219 => 0.0059675717910884
220 => 0.0058809366384603
221 => 0.0059390953968246
222 => 0.0059788861422252
223 => 0.0057990794150804
224 => 0.0057884324276349
225 => 0.0057014397009141
226 => 0.0057481846647339
227 => 0.0056738100662147
228 => 0.0056920589911783
301 => 0.0056410334060674
302 => 0.0057328693001744
303 => 0.0058355560996412
304 => 0.0058614988404111
305 => 0.0057932546584976
306 => 0.0057438413732815
307 => 0.00565708792219
308 => 0.0058013608447819
309 => 0.0058435506439854
310 => 0.0058011392397274
311 => 0.0057913115906534
312 => 0.0057726882134162
313 => 0.0057952626281726
314 => 0.0058433208692782
315 => 0.0058206574902692
316 => 0.005835627051382
317 => 0.0057785785209643
318 => 0.0058999155698671
319 => 0.0060926280048757
320 => 0.0060932476068659
321 => 0.0060705841056928
322 => 0.0060613106893047
323 => 0.0060845648168445
324 => 0.0060971792271006
325 => 0.0061723788114868
326 => 0.0062530709616168
327 => 0.00662962601753
328 => 0.006523890864639
329 => 0.0068579929116057
330 => 0.0071222242530352
331 => 0.0072014556788937
401 => 0.0071285664952305
402 => 0.0068792165353152
403 => 0.0068669822366949
404 => 0.0072396163496461
405 => 0.0071343301450138
406 => 0.0071218066859907
407 => 0.006988578240703
408 => 0.007067332752532
409 => 0.007050107985536
410 => 0.0070229178481684
411 => 0.0071731759706513
412 => 0.0074544457623041
413 => 0.0074106072275436
414 => 0.007377883794956
415 => 0.0072344992390051
416 => 0.0073208487677876
417 => 0.0072901013545044
418 => 0.0074222117547594
419 => 0.007343952480252
420 => 0.0071335324984619
421 => 0.0071670425741153
422 => 0.0071619775935932
423 => 0.0072662145338296
424 => 0.0072349251916905
425 => 0.0071558678473645
426 => 0.0074534844127342
427 => 0.0074341588484094
428 => 0.0074615580801829
429 => 0.0074736200693589
430 => 0.0076547740281073
501 => 0.0077289870087264
502 => 0.007745834654608
503 => 0.0078163312463582
504 => 0.0077440806351843
505 => 0.0080331345936926
506 => 0.0082253386093345
507 => 0.0084485934642308
508 => 0.0087748288124822
509 => 0.0088974963212704
510 => 0.0088753375337621
511 => 0.0091226854515337
512 => 0.009567164161534
513 => 0.0089651793891858
514 => 0.0095990708162017
515 => 0.0093983881090369
516 => 0.008922573020477
517 => 0.0088919361382651
518 => 0.0092141636405647
519 => 0.0099288332274173
520 => 0.0097498166016261
521 => 0.0099291260344861
522 => 0.0097199520564736
523 => 0.0097095648054085
524 => 0.0099189669212591
525 => 0.010408246378859
526 => 0.01017580804892
527 => 0.0098425507067345
528 => 0.010088622742145
529 => 0.0098754523721806
530 => 0.0093951198660203
531 => 0.0097496797109861
601 => 0.0095125956399405
602 => 0.009581789375954
603 => 0.010080104829698
604 => 0.010020146195924
605 => 0.010097738220047
606 => 0.0099607903284069
607 => 0.0098328594029145
608 => 0.0095940668302077
609 => 0.0095233721217607
610 => 0.0095429095958463
611 => 0.0095233624399589
612 => 0.0093897601901464
613 => 0.0093609087970198
614 => 0.0093128218778002
615 => 0.0093277260248052
616 => 0.009237308548348
617 => 0.0094079450076267
618 => 0.0094396166381121
619 => 0.0095637916232753
620 => 0.0095766838821696
621 => 0.0099225094483288
622 => 0.0097320345378509
623 => 0.009859821552612
624 => 0.0098483910792337
625 => 0.0089328853762436
626 => 0.0090590339845405
627 => 0.0092552816314363
628 => 0.0091668723325171
629 => 0.0090418822684353
630 => 0.008940946090146
701 => 0.0087880174587836
702 => 0.009003261570692
703 => 0.0092862846891921
704 => 0.009583861815514
705 => 0.0099413812347642
706 => 0.0098615870623724
707 => 0.0095771782386565
708 => 0.0095899366107276
709 => 0.0096688038466369
710 => 0.0095666636102904
711 => 0.0095365404605775
712 => 0.0096646653884388
713 => 0.0096655477144007
714 => 0.0095480230284242
715 => 0.0094174158467517
716 => 0.0094168685978916
717 => 0.0093936283114287
718 => 0.0097240864518067
719 => 0.0099058050159282
720 => 0.0099266387564506
721 => 0.0099044027391965
722 => 0.0099129604997216
723 => 0.0098072224711547
724 => 0.01004890824882
725 => 0.010270703018653
726 => 0.010211257282383
727 => 0.010122139673007
728 => 0.010051153204652
729 => 0.010194535126422
730 => 0.010188150555149
731 => 0.010268765834828
801 => 0.010265108660085
802 => 0.010238000773623
803 => 0.010211258250491
804 => 0.010317289331871
805 => 0.010286754083241
806 => 0.010256171404935
807 => 0.01019483316162
808 => 0.010203170047607
809 => 0.010114067825642
810 => 0.01007284506072
811 => 0.0094529535835468
812 => 0.0092872983253077
813 => 0.0093394168417735
814 => 0.0093565756106507
815 => 0.009284482229972
816 => 0.0093878456185952
817 => 0.0093717365439672
818 => 0.0094344075298513
819 => 0.0093952534187288
820 => 0.0093968603171068
821 => 0.0095120042093814
822 => 0.0095454309711659
823 => 0.0095284298503353
824 => 0.0095403368526007
825 => 0.0098147286941765
826 => 0.0097757189488616
827 => 0.0097549957991561
828 => 0.009760736253249
829 => 0.0098308492517991
830 => 0.0098504770633653
831 => 0.0097673126465374
901 => 0.0098065334662812
902 => 0.0099735307388872
903 => 0.010031970333072
904 => 0.010218481465114
905 => 0.010139248221252
906 => 0.010284684269496
907 => 0.010731705098996
908 => 0.011088816269089
909 => 0.010760402078828
910 => 0.011416191264871
911 => 0.011926817213577
912 => 0.011907218539173
913 => 0.011818179094025
914 => 0.011236845027117
915 => 0.010701892751545
916 => 0.011149403045335
917 => 0.011150543841105
918 => 0.011112102309991
919 => 0.010873345261765
920 => 0.011103794082249
921 => 0.011122086272751
922 => 0.011111847510356
923 => 0.010928793041277
924 => 0.010649302701113
925 => 0.010703914444576
926 => 0.010793369594417
927 => 0.010624012333469
928 => 0.010569892426877
929 => 0.010670511629964
930 => 0.010994727667153
1001 => 0.010933436503378
1002 => 0.010931835943395
1003 => 0.011194065533522
1004 => 0.011006365739679
1005 => 0.010704603273552
1006 => 0.010628404271097
1007 => 0.010357949146181
1008 => 0.010544753464289
1009 => 0.010551476219136
1010 => 0.010449165403202
1011 => 0.010712905232398
1012 => 0.010710474823441
1013 => 0.01096085653877
1014 => 0.011439492339399
1015 => 0.011297936180916
1016 => 0.011133321769866
1017 => 0.011151219920609
1018 => 0.011347518457867
1019 => 0.011228831881181
1020 => 0.01127151240167
1021 => 0.011347453855788
1022 => 0.011393271220577
1023 => 0.011144627506905
1024 => 0.011086656763245
1025 => 0.010968068966682
1026 => 0.010937131624104
1027 => 0.01103371890999
1028 => 0.011008271572638
1029 => 0.010550911197623
1030 => 0.010503114493705
1031 => 0.010504580350376
1101 => 0.010384393265764
1102 => 0.010201079113526
1103 => 0.010682817760489
1104 => 0.01064412740521
1105 => 0.010601416247377
1106 => 0.010606648120505
1107 => 0.010815754539514
1108 => 0.010694462256362
1109 => 0.011016937670536
1110 => 0.01095064641988
1111 => 0.010882655048785
1112 => 0.010873256570231
1113 => 0.010847085693111
1114 => 0.01075733601771
1115 => 0.010648957891544
1116 => 0.010577397265096
1117 => 0.0097570898579472
1118 => 0.0099093341412053
1119 => 0.010084477311591
1120 => 0.010144936032166
1121 => 0.010041517207006
1122 => 0.010761419623272
1123 => 0.010892952731876
1124 => 0.010494530366222
1125 => 0.010420001809086
1126 => 0.01076630570307
1127 => 0.010557442121069
1128 => 0.010651493379255
1129 => 0.010448206002344
1130 => 0.010861270257753
1201 => 0.010858123400198
1202 => 0.010697432075365
1203 => 0.010833247282747
1204 => 0.010809646048216
1205 => 0.010628225938245
1206 => 0.010867021598832
1207 => 0.0108671400385
1208 => 0.010712478132079
1209 => 0.010531866885223
1210 => 0.010499577860133
1211 => 0.010475252417147
1212 => 0.010645510811457
1213 => 0.010798163955412
1214 => 0.011082213610387
1215 => 0.011153630442501
1216 => 0.01143237509273
1217 => 0.011266396225349
1218 => 0.011339972507473
1219 => 0.011419849969719
1220 => 0.011458146162516
1221 => 0.01139574457144
1222 => 0.011828749749121
1223 => 0.011865308653053
1224 => 0.011877566537308
1225 => 0.01173155962767
1226 => 0.011861247936771
1227 => 0.011800571071768
1228 => 0.011958435417988
1229 => 0.011983190563188
1230 => 0.011962223835893
1231 => 0.011970081509713
]
'min_raw' => 0.0053677799315475
'max_raw' => 0.011983190563188
'avg_raw' => 0.0086754852473678
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005367'
'max' => '$0.011983'
'avg' => '$0.008675'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00082770077429774
'max_diff' => -0.0011435134510494
'year' => 2031
]
6 => [
'items' => [
101 => 0.01160058797791
102 => 0.011581427789053
103 => 0.011320177254434
104 => 0.011426638778357
105 => 0.011227614062216
106 => 0.011290726849886
107 => 0.01131854636533
108 => 0.011304015029206
109 => 0.011432657953186
110 => 0.01132328518779
111 => 0.011034632477361
112 => 0.010745901123693
113 => 0.010742276336744
114 => 0.010666258467855
115 => 0.010611311472015
116 => 0.010621896212763
117 => 0.010659198219749
118 => 0.010609143411558
119 => 0.010619825142729
120 => 0.010797213052166
121 => 0.010832786932331
122 => 0.010711892987918
123 => 0.010226486356188
124 => 0.010107366351211
125 => 0.010192987448536
126 => 0.01015206607872
127 => 0.0081935096617979
128 => 0.0086536434402758
129 => 0.0083802475737709
130 => 0.0085062409673953
131 => 0.0082271745832103
201 => 0.0083603596888657
202 => 0.0083357652629925
203 => 0.0090756467624366
204 => 0.0090640945304965
205 => 0.0090696239725957
206 => 0.0088056892943155
207 => 0.0092261444034232
208 => 0.0094332757092464
209 => 0.0093949412171597
210 => 0.0094045891829337
211 => 0.0092388051656965
212 => 0.0090712291242684
213 => 0.0088853615045569
214 => 0.0092306805680488
215 => 0.0091922869829815
216 => 0.0092803480535501
217 => 0.009504312150141
218 => 0.0095372917141209
219 => 0.0095816165825556
220 => 0.0095657292724807
221 => 0.0099442294537339
222 => 0.0098983905843595
223 => 0.010008849070809
224 => 0.0097816275836769
225 => 0.0095245049029255
226 => 0.0095733755185626
227 => 0.0095686688852841
228 => 0.0095087480416263
229 => 0.0094546541832139
301 => 0.0093646031498075
302 => 0.0096495379445508
303 => 0.0096379701122363
304 => 0.0098252398712746
305 => 0.0097921381223232
306 => 0.0095710765414536
307 => 0.0095789717990613
308 => 0.0096320712008042
309 => 0.0098158488365146
310 => 0.0098704065513291
311 => 0.009845133244078
312 => 0.0099049532877178
313 => 0.009952232611151
314 => 0.0099108908428157
315 => 0.010496203100369
316 => 0.010253140643205
317 => 0.010371607593609
318 => 0.010399861263233
319 => 0.010327490082602
320 => 0.010343184800263
321 => 0.010366958020965
322 => 0.010511304361793
323 => 0.010890110927076
324 => 0.011057881776216
325 => 0.011562628653522
326 => 0.011043950742678
327 => 0.011013174541951
328 => 0.011104094696449
329 => 0.011400434546311
330 => 0.011640590160837
331 => 0.011720263633085
401 => 0.011730793797708
402 => 0.011880266528238
403 => 0.011965941509876
404 => 0.011862116607229
405 => 0.011774135873155
406 => 0.011458999804275
407 => 0.011495477662335
408 => 0.011746773931016
409 => 0.012101744711805
410 => 0.012406346570138
411 => 0.012299685615796
412 => 0.013113433406522
413 => 0.013194113176111
414 => 0.013182965840643
415 => 0.013366766362526
416 => 0.013001959756914
417 => 0.01284599786522
418 => 0.011793158306485
419 => 0.012088963277722
420 => 0.012518933175432
421 => 0.012462025047165
422 => 0.012149769414321
423 => 0.012406109696239
424 => 0.012321355582535
425 => 0.012254506496605
426 => 0.012560755118583
427 => 0.012224022178719
428 => 0.012515574006769
429 => 0.012141655771577
430 => 0.012300172834051
501 => 0.012210190882783
502 => 0.012268420233027
503 => 0.011928012641324
504 => 0.01211168831488
505 => 0.011920371129434
506 => 0.011920280420178
507 => 0.011916057082706
508 => 0.012141140902952
509 => 0.012148480878249
510 => 0.011982143595005
511 => 0.011958171793812
512 => 0.01204680810695
513 => 0.011943038198153
514 => 0.011991591485359
515 => 0.011944508827761
516 => 0.011933909529823
517 => 0.011849452520531
518 => 0.011813066118735
519 => 0.011827334164441
520 => 0.011778629968763
521 => 0.01174928392916
522 => 0.0119102194168
523 => 0.011824238077873
524 => 0.011897041543463
525 => 0.011814072805893
526 => 0.011526467013717
527 => 0.011361061881261
528 => 0.010817801200911
529 => 0.010971869255946
530 => 0.011074016535828
531 => 0.011040256860436
601 => 0.011112785706438
602 => 0.011117238388528
603 => 0.011093658521349
604 => 0.011066356055923
605 => 0.011053066725675
606 => 0.0111521145056
607 => 0.011209615075642
608 => 0.011084268381919
609 => 0.011054901405366
610 => 0.011181633833301
611 => 0.01125894054113
612 => 0.011829729836854
613 => 0.011787443922202
614 => 0.011893573269788
615 => 0.011881624733937
616 => 0.011992865197938
617 => 0.012174696342852
618 => 0.011804982784454
619 => 0.011869152274459
620 => 0.0118534193974
621 => 0.012025186823751
622 => 0.012025723062907
623 => 0.01192273991039
624 => 0.01197856874808
625 => 0.011947406622466
626 => 0.012003720795265
627 => 0.011786879168031
628 => 0.012050968863395
629 => 0.012200690703102
630 => 0.012202769590992
701 => 0.012273736554747
702 => 0.012345843100052
703 => 0.012484245334608
704 => 0.012341983136848
705 => 0.012086067292024
706 => 0.012104543589417
707 => 0.011954500223233
708 => 0.011957022479326
709 => 0.011943558478628
710 => 0.011983964958245
711 => 0.011795746118053
712 => 0.01183992070364
713 => 0.011778076025133
714 => 0.011869017836206
715 => 0.011771179480711
716 => 0.01185341181053
717 => 0.011888900558035
718 => 0.012019854800347
719 => 0.011751837432646
720 => 0.011205331876724
721 => 0.011320213970318
722 => 0.011150294330099
723 => 0.011166021039731
724 => 0.011197791496075
725 => 0.011094813052418
726 => 0.011114458094244
727 => 0.01111375623511
728 => 0.011107707992267
729 => 0.011080919321856
730 => 0.011042070449782
731 => 0.011196832399071
801 => 0.01122312946999
802 => 0.011281584601124
803 => 0.011455507420885
804 => 0.011438128429808
805 => 0.011466474285302
806 => 0.011404595441915
807 => 0.011168891421803
808 => 0.011181691284101
809 => 0.011022076796137
810 => 0.011277502899804
811 => 0.011217014626996
812 => 0.011178017444017
813 => 0.011167376701335
814 => 0.011341730642126
815 => 0.011393900073874
816 => 0.011361391584969
817 => 0.011294715725801
818 => 0.011422753086352
819 => 0.011457010482573
820 => 0.011464679450222
821 => 0.01169153710439
822 => 0.011477358273016
823 => 0.011528913246482
824 => 0.011931130432449
825 => 0.011566374946955
826 => 0.011759594062639
827 => 0.01175013699239
828 => 0.011848981353796
829 => 0.011742028869704
830 => 0.011743354673926
831 => 0.011831121770557
901 => 0.011707868712218
902 => 0.011677349521661
903 => 0.01163518747849
904 => 0.011727246757287
905 => 0.011782432131443
906 => 0.012227185717946
907 => 0.012514516818055
908 => 0.012502043017217
909 => 0.012616030206896
910 => 0.012564677933943
911 => 0.012398847898531
912 => 0.01268189954816
913 => 0.012592330162833
914 => 0.012599714154133
915 => 0.012599439321608
916 => 0.012658995132559
917 => 0.01261679438229
918 => 0.012533612371693
919 => 0.012588832472269
920 => 0.012752816429434
921 => 0.013261827664115
922 => 0.013546677094544
923 => 0.013244679370735
924 => 0.013452993356708
925 => 0.013328079194987
926 => 0.013305378575928
927 => 0.013436215153401
928 => 0.013567280742984
929 => 0.013558932431539
930 => 0.013463785543795
1001 => 0.013410039481171
1002 => 0.013817022673611
1003 => 0.014116880957023
1004 => 0.014096432632369
1005 => 0.014186684887237
1006 => 0.014451668298927
1007 => 0.014475895061212
1008 => 0.014472843046009
1009 => 0.014412794487886
1010 => 0.014673705069138
1011 => 0.014891361266304
1012 => 0.01439889498165
1013 => 0.014586419695989
1014 => 0.014670605581925
1015 => 0.014794215439306
1016 => 0.015002765988125
1017 => 0.015229307199443
1018 => 0.015261342610621
1019 => 0.015238611953355
1020 => 0.015089201934736
1021 => 0.015337086031359
1022 => 0.015482290721563
1023 => 0.01556875679163
1024 => 0.015788020358737
1025 => 0.014671125485296
1026 => 0.013880531780598
1027 => 0.013757069157298
1028 => 0.014008135256707
1029 => 0.014074339384906
1030 => 0.014047652583842
1031 => 0.013157767491569
1101 => 0.013752384096453
1102 => 0.014392141566524
1103 => 0.014416717256444
1104 => 0.014736993222659
1105 => 0.014841288205815
1106 => 0.015099152338148
1107 => 0.015083022866462
1108 => 0.015145808679171
1109 => 0.015131375308128
1110 => 0.015609014313577
1111 => 0.016135921066666
1112 => 0.016117675961268
1113 => 0.016041926881433
1114 => 0.016154427182125
1115 => 0.016698251418072
1116 => 0.016648184797032
1117 => 0.016696820254708
1118 => 0.017338019677481
1119 => 0.01817167013664
1120 => 0.017784355801223
1121 => 0.01862471646238
1122 => 0.019153678952974
1123 => 0.020068464884713
1124 => 0.019953929180644
1125 => 0.020310048630861
1126 => 0.019748886366036
1127 => 0.018460344376395
1128 => 0.018256427674193
1129 => 0.018664674075994
1130 => 0.019668308018719
1201 => 0.018633066071508
1202 => 0.018842494169127
1203 => 0.018782178862923
1204 => 0.018778964916579
1205 => 0.018901628176466
1206 => 0.018723698720315
1207 => 0.017998782107057
1208 => 0.018331007118953
1209 => 0.018202719087104
1210 => 0.018345064222946
1211 => 0.019113242213487
1212 => 0.018773612412793
1213 => 0.018415840007046
1214 => 0.018864565999905
1215 => 0.019435948387794
1216 => 0.019400192304833
1217 => 0.019330810559005
1218 => 0.019721911827528
1219 => 0.020367896541208
1220 => 0.020542503613538
1221 => 0.020671394984649
1222 => 0.020689166927087
1223 => 0.020872228979405
1224 => 0.019887858186516
1225 => 0.021450079915265
1226 => 0.021719832452316
1227 => 0.021669130155448
1228 => 0.021968948747458
1229 => 0.021880734512025
1230 => 0.021752925925272
1231 => 0.022228202166851
]
'min_raw' => 0.0081935096617979
'max_raw' => 0.022228202166851
'avg_raw' => 0.015210855914324
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008193'
'max' => '$0.022228'
'avg' => '$0.01521'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0028257297302503
'max_diff' => 0.010245011603663
'year' => 2032
]
7 => [
'items' => [
101 => 0.021683336308696
102 => 0.020909967819748
103 => 0.020485682571217
104 => 0.021044415612598
105 => 0.021385614383872
106 => 0.021611125067368
107 => 0.021679364463936
108 => 0.019964272089024
109 => 0.01903993242233
110 => 0.019632423551105
111 => 0.020355303619763
112 => 0.019883842551235
113 => 0.019902322932528
114 => 0.019230143346596
115 => 0.020414776597987
116 => 0.020242185497593
117 => 0.021137588431744
118 => 0.020923893335452
119 => 0.02165405966891
120 => 0.021461782402772
121 => 0.022259914584434
122 => 0.022578311120266
123 => 0.023112948458391
124 => 0.023506229860681
125 => 0.02373717222238
126 => 0.023723307309226
127 => 0.024638416001306
128 => 0.024098808377049
129 => 0.02342093402523
130 => 0.023408673416872
131 => 0.023759754149233
201 => 0.024495523049966
202 => 0.024686297220924
203 => 0.024792913956598
204 => 0.024629626714558
205 => 0.024043921312454
206 => 0.023791016689419
207 => 0.024006498755597
208 => 0.023742982705246
209 => 0.024197885337696
210 => 0.024822563814009
211 => 0.024693570178897
212 => 0.02512477656127
213 => 0.025571029802793
214 => 0.026209191980657
215 => 0.026376031205027
216 => 0.026651810098585
217 => 0.026935677168702
218 => 0.027026847621192
219 => 0.027200920303525
220 => 0.027200002854564
221 => 0.027724582599218
222 => 0.028303210302452
223 => 0.028521628865161
224 => 0.029023870306441
225 => 0.028163799438889
226 => 0.028816173071709
227 => 0.029404630418484
228 => 0.02870304731041
301 => 0.029670016176991
302 => 0.029707561386882
303 => 0.030274449480507
304 => 0.029699799795
305 => 0.029358574646094
306 => 0.030343678865448
307 => 0.030820339766701
308 => 0.030676765624049
309 => 0.029584159309333
310 => 0.028948215570079
311 => 0.027283828140065
312 => 0.029255366947102
313 => 0.030215645989435
314 => 0.029581672418599
315 => 0.029901411811689
316 => 0.031645806264537
317 => 0.032309958731005
318 => 0.032171819660756
319 => 0.032195162889665
320 => 0.032553527505352
321 => 0.034142713566303
322 => 0.033190436441536
323 => 0.033918416622277
324 => 0.034304534685214
325 => 0.034663182660664
326 => 0.033782456584816
327 => 0.032636644900575
328 => 0.032273718242273
329 => 0.029518636241233
330 => 0.029375222258364
331 => 0.029294719643892
401 => 0.028787162046962
402 => 0.028388360807502
403 => 0.028071219255343
404 => 0.027238945115992
405 => 0.027519813206359
406 => 0.026193341937347
407 => 0.027041971248006
408 => 0.024924891073894
409 => 0.026688058352271
410 => 0.025728446564029
411 => 0.026372800071157
412 => 0.026370551982473
413 => 0.025184092883384
414 => 0.0244997680358
415 => 0.024935846463002
416 => 0.025403357152912
417 => 0.025479209189455
418 => 0.0260853490022
419 => 0.026254509595006
420 => 0.025741945101452
421 => 0.024881019292945
422 => 0.025080992722634
423 => 0.02449571558063
424 => 0.023470039901627
425 => 0.024206698080866
426 => 0.024458225571832
427 => 0.024569314441048
428 => 0.023560680210396
429 => 0.023243745436611
430 => 0.023075012022388
501 => 0.024750817279655
502 => 0.024842621674564
503 => 0.024372937410373
504 => 0.026495954821804
505 => 0.026015450596324
506 => 0.026552291542579
507 => 0.025062847229913
508 => 0.025119746008459
509 => 0.024414619201439
510 => 0.02480944309678
511 => 0.024530394293321
512 => 0.024777545227762
513 => 0.024925686478825
514 => 0.025630697581474
515 => 0.026696108446589
516 => 0.025525392432787
517 => 0.025015294700611
518 => 0.025331756464755
519 => 0.026174535845511
520 => 0.027451389748441
521 => 0.026695466538827
522 => 0.027030932422845
523 => 0.027104216794664
524 => 0.026546827005694
525 => 0.027471941505012
526 => 0.027967717880814
527 => 0.028476281855921
528 => 0.028917853705867
529 => 0.028273150220702
530 => 0.028963075364443
531 => 0.02840711748677
601 => 0.027908365796629
602 => 0.027909122197067
603 => 0.027596247976241
604 => 0.026990014748703
605 => 0.026878216040259
606 => 0.027459807040207
607 => 0.027926187945293
608 => 0.02796460131045
609 => 0.028222813743022
610 => 0.028375621200818
611 => 0.029873342018888
612 => 0.030475737721712
613 => 0.031212335784358
614 => 0.031499282242151
615 => 0.032362888204109
616 => 0.031665456251181
617 => 0.031514562461112
618 => 0.02941973688076
619 => 0.029762764452188
620 => 0.030311984691283
621 => 0.029428793320212
622 => 0.029988974962526
623 => 0.030099566684988
624 => 0.029398782815381
625 => 0.029773101759221
626 => 0.028779021622213
627 => 0.026717776677068
628 => 0.027474236259875
629 => 0.028031245134363
630 => 0.027236324791769
701 => 0.028661188738202
702 => 0.027828812635858
703 => 0.027564989372514
704 => 0.026535720762426
705 => 0.027021495926206
706 => 0.027678513790848
707 => 0.027272553137024
708 => 0.028114982449008
709 => 0.029308087022468
710 => 0.030158364392122
711 => 0.030223638130628
712 => 0.0296769667461
713 => 0.030553011128616
714 => 0.030559392155543
715 => 0.029571210513319
716 => 0.028965954759675
717 => 0.028828439378978
718 => 0.029171979761437
719 => 0.029589101206796
720 => 0.030246785467828
721 => 0.030644210292531
722 => 0.031680483457518
723 => 0.031960869263683
724 => 0.032268928256994
725 => 0.032680590073933
726 => 0.033174895633091
727 => 0.032093383210484
728 => 0.032136353715226
729 => 0.031129264321853
730 => 0.030053044873805
731 => 0.030869761282225
801 => 0.031937509343003
802 => 0.031692566758104
803 => 0.03166500571358
804 => 0.031711355745673
805 => 0.031526677035736
806 => 0.030691382075203
807 => 0.030271902175247
808 => 0.030813138266926
809 => 0.031100781162007
810 => 0.031546890207181
811 => 0.031491897851144
812 => 0.032641026842898
813 => 0.033087543621236
814 => 0.032973305521807
815 => 0.032994328081395
816 => 0.033802725380156
817 => 0.034701829435963
818 => 0.035543959031456
819 => 0.036400609426298
820 => 0.035367883939681
821 => 0.03484352962723
822 => 0.035384529432164
823 => 0.035097467320542
824 => 0.036747011362072
825 => 0.036861222212543
826 => 0.038510646973263
827 => 0.040076147481034
828 => 0.039092884660958
829 => 0.04002005721316
830 => 0.041022869921853
831 => 0.04295745833742
901 => 0.042305957018698
902 => 0.041806917218885
903 => 0.041335327019403
904 => 0.042316631361688
905 => 0.043579063721318
906 => 0.043850979560155
907 => 0.044291587098917
908 => 0.043828342146835
909 => 0.04438626966686
910 => 0.046355998978321
911 => 0.045823760731083
912 => 0.045067896858436
913 => 0.046622808975021
914 => 0.047185525625445
915 => 0.05113496577512
916 => 0.056121297107319
917 => 0.054056923193771
918 => 0.052775499688703
919 => 0.053076664608166
920 => 0.054897504012717
921 => 0.055482299838905
922 => 0.053892623192117
923 => 0.054454123858255
924 => 0.057548047734207
925 => 0.059207838628692
926 => 0.056953619654323
927 => 0.05073431890766
928 => 0.04499983958679
929 => 0.046520881729654
930 => 0.046348442754086
1001 => 0.049672477983932
1002 => 0.045811067024909
1003 => 0.045876083282318
1004 => 0.049268856040503
1005 => 0.04836372243547
1006 => 0.046897521916069
1007 => 0.045010544473176
1008 => 0.041522292145702
1009 => 0.038432649782145
1010 => 0.044492149959221
1011 => 0.0442308532931
1012 => 0.043852456998559
1013 => 0.044694537005304
1014 => 0.048783438489473
1015 => 0.048689176075781
1016 => 0.048089526692974
1017 => 0.048544355464766
1018 => 0.046817788233309
1019 => 0.047262763922061
1020 => 0.044998931215967
1021 => 0.046022278145127
1022 => 0.046894376108258
1023 => 0.047069462685988
1024 => 0.047463941685756
1025 => 0.044093161823466
1026 => 0.045606543020737
1027 => 0.046495512689491
1028 => 0.042479115385064
1029 => 0.046416121428485
1030 => 0.044034484045372
1031 => 0.04322612054655
1101 => 0.044314475503921
1102 => 0.043890342518574
1103 => 0.043525697883697
1104 => 0.043322219912045
1105 => 0.044121387675385
1106 => 0.044084105544013
1107 => 0.042776511971411
1108 => 0.041070809460284
1109 => 0.041643299210794
1110 => 0.041435308317314
1111 => 0.040681522487981
1112 => 0.041189483124503
1113 => 0.038952681554255
1114 => 0.035104380711472
1115 => 0.037646686124857
1116 => 0.037548810131938
1117 => 0.037499456617985
1118 => 0.039409928871984
1119 => 0.039226281046856
1120 => 0.038892958445964
1121 => 0.040675400757021
1122 => 0.040024785336253
1123 => 0.042029828758788
1124 => 0.043350480034947
1125 => 0.04301552015272
1126 => 0.044257599061209
1127 => 0.041656488218379
1128 => 0.042520472901914
1129 => 0.042698538947759
1130 => 0.040653405695584
1201 => 0.039256328102258
1202 => 0.039163158954633
1203 => 0.036740818936957
1204 => 0.038034813421954
1205 => 0.039173475019622
1206 => 0.038628144478049
1207 => 0.038455509119873
1208 => 0.039337465724751
1209 => 0.039406001306397
1210 => 0.037843382781782
1211 => 0.038168300654742
1212 => 0.03952326219809
1213 => 0.038134159100323
1214 => 0.035435358690064
1215 => 0.034766018874485
1216 => 0.034676716604707
1217 => 0.032861413938846
1218 => 0.034810747361535
1219 => 0.033959811083644
1220 => 0.036647908589721
1221 => 0.035112481710806
1222 => 0.035046292526875
1223 => 0.03494623786752
1224 => 0.033383731873805
1225 => 0.033725821383993
1226 => 0.034862979017559
1227 => 0.035268729672213
1228 => 0.035226406554716
1229 => 0.03485740632478
1230 => 0.035026332740458
1231 => 0.034482161897696
]
'min_raw' => 0.01903993242233
'max_raw' => 0.059207838628692
'avg_raw' => 0.039123885525511
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.019039'
'max' => '$0.0592078'
'avg' => '$0.039123'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.010846422760532
'max_diff' => 0.036979636461841
'year' => 2033
]
8 => [
'items' => [
101 => 0.03429000384718
102 => 0.033683500182516
103 => 0.032792107346374
104 => 0.03291606098747
105 => 0.031149978533449
106 => 0.030187723079408
107 => 0.029921383452052
108 => 0.029565222971254
109 => 0.029961612726066
110 => 0.031144975443753
111 => 0.029717588941816
112 => 0.027270434903768
113 => 0.027417513031202
114 => 0.027747953915659
115 => 0.027132179513559
116 => 0.026549400719999
117 => 0.027056079598661
118 => 0.026019188172478
119 => 0.027873257290706
120 => 0.027823109917026
121 => 0.028514192229437
122 => 0.028946340181823
123 => 0.027950379061133
124 => 0.027699897532644
125 => 0.027842583195022
126 => 0.025484307032159
127 => 0.028321470754623
128 => 0.02834600666431
129 => 0.028135915309382
130 => 0.029646617403991
131 => 0.032834670023417
201 => 0.03163519638887
202 => 0.03117072394329
203 => 0.030287761484717
204 => 0.031464256535643
205 => 0.031373920071913
206 => 0.030965384323843
207 => 0.030718300628701
208 => 0.031173559913
209 => 0.030661888965245
210 => 0.030569978803251
211 => 0.030013103220809
212 => 0.029814323974101
213 => 0.029667155733469
214 => 0.029505137960986
215 => 0.029862508794771
216 => 0.029052659469366
217 => 0.028076060573435
218 => 0.027994866942185
219 => 0.028219049696684
220 => 0.028119865516261
221 => 0.027994392086488
222 => 0.027754829138396
223 => 0.027683755929149
224 => 0.027914709379381
225 => 0.027653976399492
226 => 0.028038702114179
227 => 0.027934078007629
228 => 0.027349656253294
301 => 0.026621250366746
302 => 0.026614766026473
303 => 0.026457832173041
304 => 0.026257953315533
305 => 0.026202351589983
306 => 0.027013408516742
307 => 0.028692272082243
308 => 0.028362670992535
309 => 0.028600841558727
310 => 0.02977240501832
311 => 0.030144809811983
312 => 0.029880485710332
313 => 0.029518662577192
314 => 0.029534580958767
315 => 0.030771040136017
316 => 0.03084815657823
317 => 0.031043004948996
318 => 0.031293440169574
319 => 0.029923135911309
320 => 0.029470039751432
321 => 0.029255337654065
322 => 0.028594138294341
323 => 0.029307185116854
324 => 0.028891723269085
325 => 0.028947783266547
326 => 0.028911274119657
327 => 0.028931210582596
328 => 0.027872739040601
329 => 0.028258390438878
330 => 0.027617170190924
331 => 0.026758648259265
401 => 0.026755770192713
402 => 0.02696589221922
403 => 0.026840903415778
404 => 0.026504561759472
405 => 0.026552337504263
406 => 0.026133771707898
407 => 0.02660315897032
408 => 0.026616619317458
409 => 0.026435879653728
410 => 0.027159035494449
411 => 0.027455313032432
412 => 0.027336346313946
413 => 0.027446966010322
414 => 0.028376367405872
415 => 0.028527900385973
416 => 0.028595201326026
417 => 0.02850502698202
418 => 0.027463953761706
419 => 0.027510129786012
420 => 0.027171320757928
421 => 0.026885062832012
422 => 0.026896511647824
423 => 0.02704368543267
424 => 0.027686401982722
425 => 0.029038961072095
426 => 0.029090289700829
427 => 0.029152501496216
428 => 0.028899454859233
429 => 0.028823133572189
430 => 0.028923821049996
501 => 0.029431771129786
502 => 0.030738356642109
503 => 0.030276522058142
504 => 0.029901043352493
505 => 0.030230439405679
506 => 0.030179731465183
507 => 0.029751705416726
508 => 0.02973969215113
509 => 0.028918173315936
510 => 0.028614476507643
511 => 0.028360684723322
512 => 0.028083550720245
513 => 0.027919256393605
514 => 0.02817168714976
515 => 0.028229421050365
516 => 0.027677476790298
517 => 0.027602248827155
518 => 0.02805297842447
519 => 0.027854629133585
520 => 0.028058636298086
521 => 0.028105967710192
522 => 0.028098346262708
523 => 0.027891246822753
524 => 0.028023245829986
525 => 0.027711028827081
526 => 0.0273715397299
527 => 0.027154966836817
528 => 0.026965978263376
529 => 0.027070840108001
530 => 0.026697026778928
531 => 0.026577436371581
601 => 0.027978527536407
602 => 0.029013528644132
603 => 0.02899847931812
604 => 0.028906870416396
605 => 0.028770758170621
606 => 0.029421813671217
607 => 0.029194998953075
608 => 0.029360025611527
609 => 0.02940203182225
610 => 0.029529171970648
611 => 0.029574613645635
612 => 0.029437257342552
613 => 0.028976272812743
614 => 0.027827543193554
615 => 0.027292806454886
616 => 0.02711633442438
617 => 0.027122748847521
618 => 0.026945810422052
619 => 0.026997926718177
620 => 0.026927686501112
621 => 0.026794668522925
622 => 0.027062626622683
623 => 0.027093506297477
624 => 0.027030961675133
625 => 0.027045693197844
626 => 0.02652785043799
627 => 0.026567220898326
628 => 0.026348001172217
629 => 0.026306900116305
630 => 0.025752731738347
701 => 0.024770942128804
702 => 0.025314948877114
703 => 0.02465786522408
704 => 0.024409017688233
705 => 0.025587023219198
706 => 0.025468784136676
707 => 0.025266410224693
708 => 0.024967057030452
709 => 0.024856024018787
710 => 0.02418142258869
711 => 0.024141563537342
712 => 0.024475914221868
713 => 0.024321622885264
714 => 0.024104939413973
715 => 0.023320133845807
716 => 0.022437752546996
717 => 0.022464386091956
718 => 0.02274505516582
719 => 0.023561138351462
720 => 0.023242280532449
721 => 0.023010945526284
722 => 0.022967623433533
723 => 0.023509890125245
724 => 0.024277311102401
725 => 0.024637367854806
726 => 0.024280562548259
727 => 0.02387068382386
728 => 0.023895631242619
729 => 0.024061595242982
730 => 0.024079035712816
731 => 0.023812246799445
801 => 0.023887346315834
802 => 0.023773263283196
803 => 0.023073135922476
804 => 0.023060472838648
805 => 0.022888650293249
806 => 0.022883447574861
807 => 0.022591134561993
808 => 0.022550237950829
809 => 0.021969832721649
810 => 0.022351857201124
811 => 0.022095615237478
812 => 0.021709398156894
813 => 0.021642814186628
814 => 0.021640812592079
815 => 0.022037371177279
816 => 0.022347223183168
817 => 0.022100072676142
818 => 0.022043801296504
819 => 0.02264463241311
820 => 0.022568171176824
821 => 0.022501956239323
822 => 0.024208596971044
823 => 0.02285765766105
824 => 0.022268571012973
825 => 0.021539464421457
826 => 0.021776865204129
827 => 0.021826889037181
828 => 0.020073519115926
829 => 0.019362177157241
830 => 0.019118071403377
831 => 0.018977585090879
901 => 0.0190416064676
902 => 0.018401315272694
903 => 0.01883160154511
904 => 0.018277163492789
905 => 0.018184210149019
906 => 0.019175614068265
907 => 0.01931356213193
908 => 0.01872503283523
909 => 0.01910296391795
910 => 0.018965920853721
911 => 0.018286667741862
912 => 0.018260725269237
913 => 0.017919899934607
914 => 0.017386574282702
915 => 0.017142830148743
916 => 0.017015886087494
917 => 0.017068265681256
918 => 0.017041780955808
919 => 0.016868950207301
920 => 0.017051687412004
921 => 0.016584869366214
922 => 0.016398978658972
923 => 0.016315016139142
924 => 0.01590068825446
925 => 0.016560068171436
926 => 0.01668997432173
927 => 0.01682013642727
928 => 0.01795310869055
929 => 0.017896508598023
930 => 0.018408145869105
1001 => 0.018388264585591
1002 => 0.018242337347905
1003 => 0.017626694335969
1004 => 0.017872078667745
1005 => 0.017116823835731
1006 => 0.017682712108212
1007 => 0.017424464332711
1008 => 0.017595398275542
1009 => 0.01728804363384
1010 => 0.01745814638292
1011 => 0.016720779889165
1012 => 0.016032237432324
1013 => 0.016309327016764
1014 => 0.016610555084088
1015 => 0.017263694285532
1016 => 0.016874689965433
1017 => 0.017014590628823
1018 => 0.016545946825557
1019 => 0.015579000797936
1020 => 0.015584473607442
1021 => 0.015435730027157
1022 => 0.015307193856872
1023 => 0.016919371791087
1024 => 0.016718871980206
1025 => 0.016399401772333
1026 => 0.016827025340812
1027 => 0.016940095799617
1028 => 0.016943314756621
1029 => 0.017255297873621
1030 => 0.017421803319091
1031 => 0.01745115062553
1101 => 0.017942062800972
1102 => 0.018106610086892
1103 => 0.018784357069993
1104 => 0.017407676495351
1105 => 0.017379324664866
1106 => 0.016833042881367
1107 => 0.016486582337899
1108 => 0.016856765331189
1109 => 0.017184696928225
1110 => 0.016843232630193
1111 => 0.016887820658811
1112 => 0.016429432737361
1113 => 0.016593284850123
1114 => 0.016734416362897
1115 => 0.01665649183687
1116 => 0.016539835049818
1117 => 0.017157810276951
1118 => 0.017122941692772
1119 => 0.017698414431467
1120 => 0.01814703658373
1121 => 0.018951047681387
1122 => 0.018112020186935
1123 => 0.018081442690205
1124 => 0.018380342625526
1125 => 0.018106564326869
1126 => 0.018279582761115
1127 => 0.018923171736776
1128 => 0.018936769757677
1129 => 0.018708985387517
1130 => 0.018695124687892
1201 => 0.018738873167869
1202 => 0.018995109381554
1203 => 0.018905572575149
1204 => 0.019009186834316
1205 => 0.019138758052002
1206 => 0.019674719545409
1207 => 0.01980393804698
1208 => 0.019490004080273
1209 => 0.019518348802497
1210 => 0.019400928881269
1211 => 0.01928750270863
1212 => 0.019542468180161
1213 => 0.020008422590742
1214 => 0.020005523912537
1215 => 0.020113616278933
1216 => 0.020180956927711
1217 => 0.019891881566785
1218 => 0.019703704136417
1219 => 0.019775863337261
1220 => 0.019891247470834
1221 => 0.019738445817852
1222 => 0.01879528323104
1223 => 0.019081378510419
1224 => 0.019033758266586
1225 => 0.018965941248548
1226 => 0.019253612264274
1227 => 0.019225865693029
1228 => 0.018394748161028
1229 => 0.018447953608873
1230 => 0.018397983760534
1231 => 0.018559446563386
]
'min_raw' => 0.015307193856872
'max_raw' => 0.03429000384718
'avg_raw' => 0.024798598852026
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0153071'
'max' => '$0.03429'
'avg' => '$0.024798'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0037327385654577
'max_diff' => -0.024917834781512
'year' => 2034
]
9 => [
'items' => [
101 => 0.01809784480564
102 => 0.018239830397387
103 => 0.018328882429499
104 => 0.018381334760543
105 => 0.018570828547173
106 => 0.018548593638441
107 => 0.018569446394027
108 => 0.018850415655095
109 => 0.020271461760571
110 => 0.02034880616473
111 => 0.019967934031262
112 => 0.020120084936212
113 => 0.019827988470453
114 => 0.020024074784793
115 => 0.020158232061012
116 => 0.019552001126739
117 => 0.019516104065217
118 => 0.01922280201344
119 => 0.019380405922588
120 => 0.019129646771012
121 => 0.019191174295626
122 => 0.019019137972932
123 => 0.019328769101691
124 => 0.019674984815457
125 => 0.019762452577227
126 => 0.019532362553249
127 => 0.019365762212217
128 => 0.01907326689493
129 => 0.019559693126262
130 => 0.019701938979874
131 => 0.019558945969349
201 => 0.019525811364351
202 => 0.019463021347753
203 => 0.0195391325632
204 => 0.019701164278407
205 => 0.019624753113771
206 => 0.019675224034204
207 => 0.0194828809309
208 => 0.019891977262758
209 => 0.020541720692142
210 => 0.020543809723511
211 => 0.020467398146991
212 => 0.020436132176189
213 => 0.020514535090741
214 => 0.020557065455629
215 => 0.020810606104655
216 => 0.021082665322564
217 => 0.02235224698381
218 => 0.021995753533645
219 => 0.023122201911253
220 => 0.024013076326926
221 => 0.02428021061097
222 => 0.024034459639289
223 => 0.023193758840376
224 => 0.023152510048406
225 => 0.024408871976704
226 => 0.024053892186938
227 => 0.024011668470482
228 => 0.023562479465482
301 => 0.023828005800577
302 => 0.023769931296056
303 => 0.023678257849566
304 => 0.024184863600204
305 => 0.025133184340391
306 => 0.024985379659738
307 => 0.024875050322091
308 => 0.024391619280913
309 => 0.024682752745934
310 => 0.024579085695335
311 => 0.025024505133448
312 => 0.024760648525558
313 => 0.024051202865899
314 => 0.024164184425563
315 => 0.024147107490107
316 => 0.024498549611705
317 => 0.024393055410131
318 => 0.024126508054128
319 => 0.025129943083197
320 => 0.025064785593808
321 => 0.025157164016686
322 => 0.025197831855334
323 => 0.02580860507502
324 => 0.026058819320562
325 => 0.026115622334917
326 => 0.026353306515917
327 => 0.026109708535968
328 => 0.027084274138182
329 => 0.027732303396174
330 => 0.028485022726613
331 => 0.029584947980267
401 => 0.029998530050519
402 => 0.029923820151357
403 => 0.030757770925405
404 => 0.032256361928683
405 => 0.030226728239477
406 => 0.032363937442547
407 => 0.031687321684121
408 => 0.030083077892693
409 => 0.029979783505317
410 => 0.031066196026526
411 => 0.033475754435236
412 => 0.03287218738284
413 => 0.033476741654712
414 => 0.032771496983782
415 => 0.032736475641602
416 => 0.033442489495181
417 => 0.03509212934688
418 => 0.034308447289163
419 => 0.033184846892701
420 => 0.03401449594029
421 => 0.033295777154874
422 => 0.03167630257461
423 => 0.03287172584649
424 => 0.032072380348278
425 => 0.0323056718602
426 => 0.033985777203771
427 => 0.033783622483825
428 => 0.034045229410458
429 => 0.033583500032397
430 => 0.033152171985247
501 => 0.032347066154401
502 => 0.032108714009125
503 => 0.032174585967067
504 => 0.032108681366254
505 => 0.0316582320532
506 => 0.031560957566934
507 => 0.031398829161464
508 => 0.031449079533665
509 => 0.031144230699043
510 => 0.031719543434958
511 => 0.031826326548382
512 => 0.032244991180481
513 => 0.032288458331452
514 => 0.033454433372527
515 => 0.032812233913317
516 => 0.033243076755389
517 => 0.033204538116344
518 => 0.030117846720146
519 => 0.030543165560433
520 => 0.031204828203516
521 => 0.03090675007967
522 => 0.03048533735209
523 => 0.030145023979849
524 => 0.029629414422074
525 => 0.030355124973238
526 => 0.031309357177304
527 => 0.03231265923487
528 => 0.03351806091808
529 => 0.03324902929481
530 => 0.032290125088862
531 => 0.032333140831061
601 => 0.032599047223264
602 => 0.032254674285218
603 => 0.03215311198283
604 => 0.032585094122511
605 => 0.032588068946094
606 => 0.032191826262012
607 => 0.031751475030301
608 => 0.031749629942562
609 => 0.031671273694167
610 => 0.032785436386302
611 => 0.033398113212423
612 => 0.033468355623159
613 => 0.033393385338518
614 => 0.033422238425612
615 => 0.033065735279905
616 => 0.033880595753267
617 => 0.034628392304973
618 => 0.034427966854773
619 => 0.034127500612766
620 => 0.033888164778592
621 => 0.034371586938444
622 => 0.034350060910642
623 => 0.034621860954457
624 => 0.034609530534476
625 => 0.034518134402658
626 => 0.034427970118816
627 => 0.034785461312542
628 => 0.034682509589882
629 => 0.03457939795476
630 => 0.034372591784923
701 => 0.034400700178091
702 => 0.034100285815817
703 => 0.033961300385803
704 => 0.031871292991071
705 => 0.031312774722237
706 => 0.0314884959393
707 => 0.031546347926557
708 => 0.0313032800602
709 => 0.031651776941544
710 => 0.031597464071736
711 => 0.031808763676193
712 => 0.031676752856891
713 => 0.031682170626962
714 => 0.032070386298856
715 => 0.032183086959994
716 => 0.032125766494133
717 => 0.032165911783592
718 => 0.033091043034891
719 => 0.032959518954988
720 => 0.032889649408912
721 => 0.032909003750672
722 => 0.033145394620417
723 => 0.033211571157483
724 => 0.032931176519793
725 => 0.03306341225187
726 => 0.033626455215838
727 => 0.033823488387755
728 => 0.034452323691226
729 => 0.034185183277655
730 => 0.034675531068331
731 => 0.036182693004988
801 => 0.037386718247662
802 => 0.036279446876051
803 => 0.038490485902533
804 => 0.04021209693936
805 => 0.040146018640273
806 => 0.039845815934422
807 => 0.037885807540392
808 => 0.036082178594127
809 => 0.037590990793808
810 => 0.037594837066395
811 => 0.037465228760343
812 => 0.036660242702764
813 => 0.037437216990448
814 => 0.037498890387848
815 => 0.037464369685584
816 => 0.036847188762628
817 => 0.035904867567375
818 => 0.036088994873329
819 => 0.036390599156578
820 => 0.035819599327144
821 => 0.03563713028354
822 => 0.035976374951756
823 => 0.037069491957179
824 => 0.036862844519299
825 => 0.036857448119568
826 => 0.037741573490969
827 => 0.037108730531243
828 => 0.036091317308315
829 => 0.035834407051494
830 => 0.034922548715265
831 => 0.035552372516026
901 => 0.035575038753362
902 => 0.035230090694328
903 => 0.036119307942188
904 => 0.036111113648705
905 => 0.036955293083028
906 => 0.038569047102135
907 => 0.038091780630673
908 => 0.037536771650806
909 => 0.037597116515647
910 => 0.038258950739138
911 => 0.03785879065941
912 => 0.038002691014095
913 => 0.038258732928717
914 => 0.038413209372971
915 => 0.037574889732577
916 => 0.037379437322937
917 => 0.036979610287288
918 => 0.036875302876813
919 => 0.037200953654684
920 => 0.037115156180126
921 => 0.035573133743882
922 => 0.035411983819562
923 => 0.035416926057672
924 => 0.03501170691071
925 => 0.034393650447853
926 => 0.036017865930006
927 => 0.035887418695908
928 => 0.035743415045278
929 => 0.035761054670807
930 => 0.036466071561839
1001 => 0.036057126160834
1002 => 0.037144374534239
1003 => 0.036920868954344
1004 => 0.03669163129969
1005 => 0.036659943673067
1006 => 0.036571706733662
1007 => 0.036269109436925
1008 => 0.035903705017837
1009 => 0.035662433369566
1010 => 0.032896709674329
1011 => 0.03341001190469
1012 => 0.03400051933175
1013 => 0.034204360129262
1014 => 0.033855676339765
1015 => 0.036282877598187
1016 => 0.036726350657194
1017 => 0.03538304183443
1018 => 0.035131763600629
1019 => 0.036299351357362
1020 => 0.035595153208253
1021 => 0.035912253591678
1022 => 0.03522685600735
1023 => 0.036619530983686
1024 => 0.036608921133735
1025 => 0.03606713911295
1026 => 0.036525049566955
1027 => 0.036445476356948
1028 => 0.035833805789831
1029 => 0.036638922031681
1030 => 0.036639321359292
1031 => 0.036117867943643
1101 => 0.035508924514995
1102 => 0.035400059812555
1103 => 0.035318044883181
1104 => 0.035892082946659
1105 => 0.036406763679403
1106 => 0.037364456922865
1107 => 0.037605243758502
1108 => 0.038545050808079
1109 => 0.03798544146843
1110 => 0.038233509040542
1111 => 0.03850282148137
1112 => 0.03863193976914
1113 => 0.038421548448088
1114 => 0.039881455636096
1115 => 0.040004716533164
1116 => 0.040046044845749
1117 => 0.039553772356028
1118 => 0.039991025544711
1119 => 0.039786449258029
1120 => 0.040318699923045
1121 => 0.040402163623437
1122 => 0.040331472838512
1123 => 0.040357965534401
1124 => 0.039112192294713
1125 => 0.039047592380258
1126 => 0.03816676796286
1127 => 0.038525710423675
1128 => 0.037854684697741
1129 => 0.038067473867766
1130 => 0.038161269306383
1201 => 0.038112275892093
1202 => 0.038546004491856
1203 => 0.038177246577159
1204 => 0.037204033810858
1205 => 0.03623055589339
1206 => 0.036218334671115
1207 => 0.035962035118758
1208 => 0.035776777486008
1209 => 0.035812464678443
1210 => 0.035938230999339
1211 => 0.035769467718807
1212 => 0.035805481921224
1213 => 0.03640355764272
1214 => 0.036523497463385
1215 => 0.036115895089252
1216 => 0.034479312740366
1217 => 0.034077691326893
1218 => 0.034366368834399
1219 => 0.034228399579024
1220 => 0.027624989877328
1221 => 0.029176363036981
1222 => 0.02825458978517
1223 => 0.028679385308353
1224 => 0.02773849351028
1225 => 0.028187536392684
1226 => 0.028104614568725
1227 => 0.030599176700977
1228 => 0.03056022754444
1229 => 0.030578870444531
1230 => 0.029688996249379
1231 => 0.031106590004974
]
'min_raw' => 0.01809784480564
'max_raw' => 0.040402163623437
'avg_raw' => 0.029250004214538
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.018097'
'max' => '$0.0404021'
'avg' => '$0.02925'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0027906509487675
'max_diff' => 0.0061121597762566
'year' => 2035
]
10 => [
'items' => [
101 => 0.031804947664002
102 => 0.031675700247503
103 => 0.03170822903771
104 => 0.031149276648924
105 => 0.030584282325464
106 => 0.029957616668743
107 => 0.031121884000714
108 => 0.030992437348105
109 => 0.031289341395754
110 => 0.032044451984084
111 => 0.032155644886602
112 => 0.032305089275193
113 => 0.032251524100059
114 => 0.033527663887193
115 => 0.03337311493873
116 => 0.033745533437759
117 => 0.032979440329796
118 => 0.03211253325991
119 => 0.032277303952568
120 => 0.032261435209863
121 => 0.032059407901931
122 => 0.031877026681581
123 => 0.031573413335289
124 => 0.032534090889278
125 => 0.032495089134989
126 => 0.033126482202344
127 => 0.033014877344664
128 => 0.032269552790736
129 => 0.032296172202989
130 => 0.032475200543247
131 => 0.03309481967299
201 => 0.033278764817585
202 => 0.033193554097662
203 => 0.033395241551295
204 => 0.033554647091187
205 => 0.033415260432855
206 => 0.035388681574394
207 => 0.034569179529985
208 => 0.034968599124371
209 => 0.035063858344115
210 => 0.034819853855826
211 => 0.03487276969219
212 => 0.03495292276558
213 => 0.035439596531621
214 => 0.0367167693139
215 => 0.037282420445163
216 => 0.038984209782301
217 => 0.037235450992955
218 => 0.037131686883479
219 => 0.037438230532212
220 => 0.038437361025808
221 => 0.039247062447313
222 => 0.039515687121622
223 => 0.039551190306842
224 => 0.040055148053675
225 => 0.040344007235905
226 => 0.039993954327805
227 => 0.039697321140258
228 => 0.03863481788193
229 => 0.038757805527181
301 => 0.039605068441987
302 => 0.040801877212686
303 => 0.041828863644676
304 => 0.041469248790284
305 => 0.044212856280773
306 => 0.044484873756823
307 => 0.044447289737011
308 => 0.045066986029082
309 => 0.043837015088277
310 => 0.043311178681518
311 => 0.039761456602335
312 => 0.040758783715304
313 => 0.042208457244971
314 => 0.042016587517322
315 => 0.040963795850194
316 => 0.04182806500779
317 => 0.041542310596094
318 => 0.041316924235627
319 => 0.042349462846221
320 => 0.041214144229524
321 => 0.042197131573296
322 => 0.040936440137207
323 => 0.041470891480647
324 => 0.041167511049608
325 => 0.041363835369397
326 => 0.040216127407472
327 => 0.040835402764691
328 => 0.040190363516623
329 => 0.040190057684033
330 => 0.040175818406881
331 => 0.04093470422169
401 => 0.040959451460867
402 => 0.040398633697109
403 => 0.040317811095732
404 => 0.040616654613864
405 => 0.040266787121372
406 => 0.04043048791907
407 => 0.04027174545177
408 => 0.040236009178753
409 => 0.039951256475328
410 => 0.039828577181253
411 => 0.039876682893516
412 => 0.039712473297369
413 => 0.03961353107597
414 => 0.040156136308705
415 => 0.039866244221487
416 => 0.040111706188701
417 => 0.039831971297291
418 => 0.038862288288975
419 => 0.03830461333668
420 => 0.036472972023633
421 => 0.03699242322787
422 => 0.037336819913689
423 => 0.03722299681108
424 => 0.037467532879178
425 => 0.037482545407719
426 => 0.037403044239231
427 => 0.037310992070851
428 => 0.037266186166088
429 => 0.037600132671402
430 => 0.037793999857859
501 => 0.037371384728545
502 => 0.03727237191676
503 => 0.037699659145718
504 => 0.037960304108546
505 => 0.039884760070316
506 => 0.039742190156757
507 => 0.040100012661857
508 => 0.040059727339017
509 => 0.040434782329957
510 => 0.041047838730079
511 => 0.039801323655366
512 => 0.040017675571088
513 => 0.039964631077648
514 => 0.040543756948009
515 => 0.040545564915763
516 => 0.040198350026999
517 => 0.040386580851116
518 => 0.040281515568936
519 => 0.040471382734259
520 => 0.039740286048641
521 => 0.040630682894714
522 => 0.041135480530532
523 => 0.041142489646195
524 => 0.041381759719251
525 => 0.041624871971064
526 => 0.042091504767804
527 => 0.041611857835628
528 => 0.040749019697331
529 => 0.040811313823966
530 => 0.040305432139183
531 => 0.040313936101699
601 => 0.04026854128332
602 => 0.040404774550438
603 => 0.039770181589712
604 => 0.039919119289188
605 => 0.039710605637744
606 => 0.040017222303132
607 => 0.039687353456725
608 => 0.039964605497987
609 => 0.040084258287946
610 => 0.040525779658832
611 => 0.039622140391255
612 => 0.037779558753664
613 => 0.038166891753029
614 => 0.037593995822618
615 => 0.037647019522146
616 => 0.037754135833852
617 => 0.037406936821337
618 => 0.037473171451427
619 => 0.037470805084354
620 => 0.037450413011336
621 => 0.037360093138719
622 => 0.037229111454181
623 => 0.037750902171342
624 => 0.037839564581947
625 => 0.038036650137773
626 => 0.038623043067501
627 => 0.038564448585724
628 => 0.038660018616564
629 => 0.038451389775842
630 => 0.037656697215706
701 => 0.037699852845102
702 => 0.037161701455004
703 => 0.038022888396799
704 => 0.037818947961869
705 => 0.037687466236759
706 => 0.037651590229894
707 => 0.038239436714274
708 => 0.038415329595765
709 => 0.038305724955752
710 => 0.038080922641407
711 => 0.038512609541788
712 => 0.038628110744921
713 => 0.038653967204782
714 => 0.039418833624504
715 => 0.038696714741039
716 => 0.038870535933533
717 => 0.040226639257928
718 => 0.038996840672169
719 => 0.039648292410827
720 => 0.039616407238211
721 => 0.039949667903783
722 => 0.039589070136484
723 => 0.039593540177982
724 => 0.039889453071977
725 => 0.039473896780532
726 => 0.039370999198789
727 => 0.039228846926578
728 => 0.039539231212415
729 => 0.0397252925543
730 => 0.0412248103229
731 => 0.042193567187734
801 => 0.042151510897317
802 => 0.042535826665651
803 => 0.042362688892087
804 => 0.041803581349815
805 => 0.042757909748573
806 => 0.04245592031241
807 => 0.04248081595461
808 => 0.042479889337564
809 => 0.042680685912238
810 => 0.042538403136345
811 => 0.042257949180034
812 => 0.042444127604472
813 => 0.042997010965046
814 => 0.044713177880802
815 => 0.045673567623046
816 => 0.044655361212418
817 => 0.045357706360142
818 => 0.044936549542672
819 => 0.044860012820608
820 => 0.045301137476277
821 => 0.045743034262261
822 => 0.045714887347367
823 => 0.045394092972393
824 => 0.045212884369827
825 => 0.046585056617796
826 => 0.047596049755756
827 => 0.047527106801531
828 => 0.047831398580029
829 => 0.048724808653092
830 => 0.048806490873593
831 => 0.048796200791254
901 => 0.048593742885084
902 => 0.049473421125972
903 => 0.050207264190987
904 => 0.048546879729377
905 => 0.049179132396329
906 => 0.049462970988433
907 => 0.049879730252757
908 => 0.050582872988634
909 => 0.051346672499196
910 => 0.051454682124625
911 => 0.051378044126646
912 => 0.050874297817398
913 => 0.051710056355878
914 => 0.05219962410677
915 => 0.052491150498868
916 => 0.053230412923861
917 => 0.049464723878947
918 => 0.046799182006068
919 => 0.046382919151727
920 => 0.047229406034758
921 => 0.047452617875207
922 => 0.047362641462206
923 => 0.044362331743816
924 => 0.046367123141988
925 => 0.048524110118772
926 => 0.048606968773157
927 => 0.049686801554206
928 => 0.050038439371557
929 => 0.050907846297219
930 => 0.050853464657305
1001 => 0.051065151408418
1002 => 0.051016488290241
1003 => 0.052626881544803
1004 => 0.054403384450299
1005 => 0.054341869803615
1006 => 0.054086476492321
1007 => 0.054465779110623
1008 => 0.056299320490715
1009 => 0.056130517382338
1010 => 0.056294495223511
1011 => 0.058456343844504
1012 => 0.061267054571175
1013 => 0.059961197247893
1014 => 0.062794531889092
1015 => 0.064577965857111
1016 => 0.067662230494285
1017 => 0.067276065371387
1018 => 0.06847674696126
1019 => 0.066584749206307
1020 => 0.062240339925101
1021 => 0.06155282052662
1022 => 0.062929251773144
1023 => 0.066313073682526
1024 => 0.062822683179218
1025 => 0.063528784632143
1026 => 0.063325427366198
1027 => 0.063314591321709
1028 => 0.063728159066492
1029 => 0.063128257482441
1030 => 0.060684150508779
1031 => 0.061804270331595
1101 => 0.061371738275434
1102 => 0.061851664839146
1103 => 0.064441630566727
1104 => 0.063296544981492
1105 => 0.062090290336646
1106 => 0.063603201350618
1107 => 0.065529656964032
1108 => 0.065409102833918
1109 => 0.06517517743378
1110 => 0.066493802666423
1111 => 0.068671785229806
1112 => 0.069260485164846
1113 => 0.069695051421453
1114 => 0.069754970766181
1115 => 0.070372177256555
1116 => 0.067053302401756
1117 => 0.072320442031073
1118 => 0.07322993154326
1119 => 0.073058985209447
1120 => 0.074069844525074
1121 => 0.073772424071391
1122 => 0.073341508497843
1123 => 0.074943935529054
1124 => 0.073106882246964
1125 => 0.070499416391614
1126 => 0.069068909053543
1127 => 0.070952716512051
1128 => 0.072103091991142
1129 => 0.072863417005199
1130 => 0.073093490895051
1201 => 0.067310937209109
1202 => 0.064194461487516
1203 => 0.06619208669459
1204 => 0.068629327315948
1205 => 0.067039763407045
1206 => 0.067102071302831
1207 => 0.064835770898782
1208 => 0.068829844614299
1209 => 0.068247941669396
1210 => 0.071266855176923
1211 => 0.070546367240057
1212 => 0.073008174011898
1213 => 0.072359897784743
1214 => 0.075050856159027
1215 => 0.076124352309319
1216 => 0.077926919421993
1217 => 0.079252895127845
1218 => 0.080031533424194
1219 => 0.07998478690148
1220 => 0.083070139747675
1221 => 0.081250814968292
1222 => 0.078965314263459
1223 => 0.078923976766371
1224 => 0.080107669967199
1225 => 0.082588366185765
1226 => 0.083231574622577
1227 => 0.083591040390646
1228 => 0.083040506053755
1229 => 0.081065759397916
1230 => 0.080213073804118
1231 => 0.080939586634714
]
'min_raw' => 0.029957616668743
'max_raw' => 0.083591040390646
'avg_raw' => 0.056774328529695
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.029957'
'max' => '$0.083591'
'avg' => '$0.056774'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.011859771863104
'max_diff' => 0.04318887676721
'year' => 2036
]
11 => [
'items' => [
101 => 0.080051123872854
102 => 0.081584859858446
103 => 0.083691006954994
104 => 0.083256095908165
105 => 0.084709938332206
106 => 0.086214512292404
107 => 0.088366120630133
108 => 0.088928630723442
109 => 0.089858438517337
110 => 0.090815516163205
111 => 0.091122903709092
112 => 0.091709801910944
113 => 0.091706708667719
114 => 0.093475365901806
115 => 0.095426249601758
116 => 0.096162663035429
117 => 0.09785600512008
118 => 0.094956216141898
119 => 0.097155739392224
120 => 0.099139764421656
121 => 0.096774327989816
122 => 0.1000345310351
123 => 0.10016111733157
124 => 0.10207242011809
125 => 0.10013494858265
126 => 0.09898448416953
127 => 0.10230583182286
128 => 0.10391292733084
129 => 0.10342885708486
130 => 0.099745058611459
131 => 0.097600929894389
201 => 0.091989331470277
202 => 0.09863651220665
203 => 0.10187416004242
204 => 0.099736673885722
205 => 0.10081469757301
206 => 0.10669604526052
207 => 0.10893528167087
208 => 0.10846953615096
209 => 0.108548239477
210 => 0.109756490799
211 => 0.11511454255693
212 => 0.11190387374491
213 => 0.11435830975023
214 => 0.11566013375733
215 => 0.11686934044656
216 => 0.11389991099151
217 => 0.11003672690007
218 => 0.10881309433288
219 => 0.099524143012687
220 => 0.0990406127566
221 => 0.098769192571392
222 => 0.097057926696805
223 => 0.095713340474551
224 => 0.09464407558933
225 => 0.091838005220984
226 => 0.092784971597241
227 => 0.0883126811025
228 => 0.091173894072792
301 => 0.084036010455956
302 => 0.089980652035414
303 => 0.086745253893401
304 => 0.088917736730009
305 => 0.088910157142052
306 => 0.084909927453546
307 => 0.08260267845188
308 => 0.084072947315216
309 => 0.0856491922468
310 => 0.085904932683825
311 => 0.087948575381826
312 => 0.088518912130886
313 => 0.086790765154759
314 => 0.083888093683459
315 => 0.084562318063355
316 => 0.082589015316341
317 => 0.079130878154193
318 => 0.08161457263733
319 => 0.08246261513421
320 => 0.082837159012748
321 => 0.079436478283513
322 => 0.078367910566016
323 => 0.077799014079373
324 => 0.083449108505234
325 => 0.08375863343225
326 => 0.082175060143223
327 => 0.089332961570205
328 => 0.087712908026264
329 => 0.089522904757601
330 => 0.084501139267765
331 => 0.08469297747218
401 => 0.08231559321193
402 => 0.083646769540796
403 => 0.082705937017369
404 => 0.083539223648365
405 => 0.084038692219214
406 => 0.086415686374101
407 => 0.090007793490445
408 => 0.08606064271313
409 => 0.084340812595214
410 => 0.085407785527678
411 => 0.088249275050877
412 => 0.092554277131695
413 => 0.09000562925361
414 => 0.091136675903056
415 => 0.091383759279198
416 => 0.08950448068997
417 => 0.092623568813855
418 => 0.094295113478872
419 => 0.096009772427748
420 => 0.097498562749404
421 => 0.095324899937408
422 => 0.097651030728568
423 => 0.095776579928254
424 => 0.09409500378321
425 => 0.094097554040097
426 => 0.093042676760404
427 => 0.090998719107907
428 => 0.09062178195685
429 => 0.092582656618563
430 => 0.094155092401735
501 => 0.094284605744296
502 => 0.095155186988528
503 => 0.095670388001165
504 => 0.10072005830682
505 => 0.10275107747681
506 => 0.10523456927266
507 => 0.10620202928907
508 => 0.10911373708485
509 => 0.10676229656241
510 => 0.10625354761413
511 => 0.099190696913919
512 => 0.10034723832041
513 => 0.10219897270185
514 => 0.099221231331833
515 => 0.10110992284952
516 => 0.10148279056307
517 => 0.099120048819526
518 => 0.1003820912728
519 => 0.097030480686416
520 => 0.090080849442333
521 => 0.092631305740087
522 => 0.094509300049542
523 => 0.091829170614922
524 => 0.096633198891145
525 => 0.093826784747448
526 => 0.092937286195533
527 => 0.089467035215379
528 => 0.091104860095802
529 => 0.093320041697967
530 => 0.091951317010331
531 => 0.094791626252221
601 => 0.098814261621544
602 => 0.1016810311378
603 => 0.10190110610444
604 => 0.10005796536413
605 => 0.10301161016325
606 => 0.10303312424104
607 => 0.099701400841642
608 => 0.097660738810624
609 => 0.097197096103587
610 => 0.098355366488272
611 => 0.099761720563789
612 => 0.10197914896791
613 => 0.10331909451171
614 => 0.10681296183774
615 => 0.10775830215914
616 => 0.10879694456308
617 => 0.1101848911202
618 => 0.11185147682422
619 => 0.10820508218261
620 => 0.10834996023945
621 => 0.10495448803696
622 => 0.10132593902862
623 => 0.10407955542093
624 => 0.10767954255563
625 => 0.1068537015293
626 => 0.10676077754343
627 => 0.10691704991269
628 => 0.10629439274828
629 => 0.10347813747042
630 => 0.10206383170056
701 => 0.10388864697156
702 => 0.10485845507491
703 => 0.10636254286705
704 => 0.10617713229923
705 => 0.11005150092455
706 => 0.11155696341752
707 => 0.11117180168945
708 => 0.11124268071685
709 => 0.11396824865012
710 => 0.11699964074771
711 => 0.11983893947452
712 => 0.12272719609016
713 => 0.11924529000944
714 => 0.11747739283576
715 => 0.11930141144949
716 => 0.11833356149813
717 => 0.12389511440163
718 => 0.12428018425794
719 => 0.12984133499787
720 => 0.13511952925957
721 => 0.13180439001247
722 => 0.13493041700534
723 => 0.13831147006684
724 => 0.14483406997858
725 => 0.14263748779614
726 => 0.14095494026922
727 => 0.13936494098629
728 => 0.14267347708879
729 => 0.14692985592949
730 => 0.14784663916469
731 => 0.14933217824386
801 => 0.14777031554519
802 => 0.1496514071322
803 => 0.1562924870279
804 => 0.15449800861765
805 => 0.1519495607983
806 => 0.15719205555986
807 => 0.15908929403438
808 => 0.17240510724012
809 => 0.18921687146116
810 => 0.18225669068166
811 => 0.17793628186818
812 => 0.17895168042082
813 => 0.18509076760021
814 => 0.18706244755734
815 => 0.18170274175502
816 => 0.18359588045363
817 => 0.19402726081226
818 => 0.19962336169592
819 => 0.19202310503929
820 => 0.17105429835421
821 => 0.15172010095533
822 => 0.15684840073577
823 => 0.15626701069034
824 => 0.16747422754449
825 => 0.15445521090104
826 => 0.15467441775219
827 => 0.16611338798224
828 => 0.16306166683846
829 => 0.15811826942045
830 => 0.15175619322718
831 => 0.1399953069631
901 => 0.12957836202242
902 => 0.15000838993023
903 => 0.14912740997725
904 => 0.14785162045142
905 => 0.15069075198631
906 => 0.16447676881817
907 => 0.16415895650921
908 => 0.1621371967489
909 => 0.16367068370812
910 => 0.15784944174219
911 => 0.15934970834403
912 => 0.15171703831968
913 => 0.15516732393915
914 => 0.15810766310978
915 => 0.15869797973075
916 => 0.16002799322011
917 => 0.14866317357407
918 => 0.15376564394157
919 => 0.15676286724565
920 => 0.14322130331787
921 => 0.15649519406625
922 => 0.14846533734847
923 => 0.14573988337406
924 => 0.14940934809935
925 => 0.14797935412723
926 => 0.14674992928207
927 => 0.14606388909427
928 => 0.14875833900448
929 => 0.1486326396956
930 => 0.1442239966723
1001 => 0.13847310156769
1002 => 0.1404032907315
1003 => 0.13970203491267
1004 => 0.13716059336143
1005 => 0.13887321811214
1006 => 0.13133168544955
1007 => 0.11835687047832
1008 => 0.12692843067765
1009 => 0.12659843493403
1010 => 0.12643203611599
1011 => 0.13287332670526
1012 => 0.13225414524096
1013 => 0.13113032482021
1014 => 0.13713995351809
1015 => 0.13494635820245
1016 => 0.14170650208919
1017 => 0.14615917007169
1018 => 0.14502982944261
1019 => 0.14921758520176
1020 => 0.1404477583914
1021 => 0.14336074307342
1022 => 0.14396110517916
1023 => 0.13706579563281
1024 => 0.13235545098607
1025 => 0.13204132469999
1026 => 0.12387423620801
1027 => 0.12823702895799
1028 => 0.13207610603334
1029 => 0.13023748603866
1030 => 0.12965543387556
1031 => 0.13262901214515
1101 => 0.13286008464367
1102 => 0.12759160718939
1103 => 0.12868709048312
1104 => 0.13325543792691
1105 => 0.12857197984871
1106 => 0.11947278584129
1107 => 0.11721605992125
1108 => 0.11691497108381
1109 => 0.11079455140547
1110 => 0.11736686513818
1111 => 0.1144978740668
1112 => 0.12356098248551
1113 => 0.11838418356317
1114 => 0.11816102210836
1115 => 0.11782368083876
1116 => 0.11255558279026
1117 => 0.11370896145779
1118 => 0.11754296781317
1119 => 0.11891098447394
1120 => 0.11876828912839
1121 => 0.11752417909039
1122 => 0.11809372629491
1123 => 0.11625901630575
1124 => 0.11561114202239
1125 => 0.11356627257224
1126 => 0.11056087939012
1127 => 0.11097879774524
1128 => 0.10502432744757
1129 => 0.10178001600174
1130 => 0.10088203335288
1201 => 0.099681213425532
1202 => 0.10101766915893
1203 => 0.10500745918136
1204 => 0.10019492593314
1205 => 0.091944175239017
1206 => 0.092440059414329
1207 => 0.093554163926921
1208 => 0.091478037538244
1209 => 0.089513158147441
1210 => 0.09122146136204
1211 => 0.087725509525217
1212 => 0.093976633004294
1213 => 0.093807557632756
1214 => 0.096137589898873
1215 => 0.097594606891951
1216 => 0.094236654437759
1217 => 0.093392138476398
1218 => 0.093873213149099
1219 => 0.085922120416422
1220 => 0.095487815991154
1221 => 0.095570540523709
1222 => 0.094862202852457
1223 => 0.099955640438285
1224 => 0.1107043824274
1225 => 0.10666027332395
1226 => 0.10509427204525
1227 => 0.1021173024697
1228 => 0.10608393767416
1229 => 0.10577936197961
1230 => 0.10440195518193
1231 => 0.10356889525293
]
'min_raw' => 0.077799014079373
'max_raw' => 0.19962336169592
'avg_raw' => 0.13871118788765
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.077799'
'max' => '$0.199623'
'avg' => '$0.138711'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.047841397410629
'max_diff' => 0.11603232130528
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0024420221530094
]
1 => [
'year' => 2028
'avg' => 0.0041912189386605
]
2 => [
'year' => 2029
'avg' => 0.011449654746703
]
3 => [
'year' => 2030
'avg' => 0.0088333915857437
]
4 => [
'year' => 2031
'avg' => 0.0086754852473678
]
5 => [
'year' => 2032
'avg' => 0.015210855914324
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0024420221530094
'min' => '$0.002442'
'max_raw' => 0.015210855914324
'max' => '$0.01521'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.015210855914324
]
1 => [
'year' => 2033
'avg' => 0.039123885525511
]
2 => [
'year' => 2034
'avg' => 0.024798598852026
]
3 => [
'year' => 2035
'avg' => 0.029250004214538
]
4 => [
'year' => 2036
'avg' => 0.056774328529695
]
5 => [
'year' => 2037
'avg' => 0.13871118788765
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.015210855914324
'min' => '$0.01521'
'max_raw' => 0.13871118788765
'max' => '$0.138711'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.13871118788765
]
]
]
]
'prediction_2025_max_price' => '$0.004175'
'last_price' => 0.00404859
'sma_50day_nextmonth' => '$0.003799'
'sma_200day_nextmonth' => '$0.007335'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.004024'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003985'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003749'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003933'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004473'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.00605'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008195'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004012'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003959'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0039045'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0040094'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.004626'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.005934'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.009696'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007194'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.012098'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.047274'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.004044'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0042074'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.004946'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.007095'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.018358'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.047926'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.059159'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '47.96'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 102.32
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003748'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004156'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 98.88
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 43.46
'cci_20_action' => 'NEUTRAL'
'adx_14' => 25.26
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000230'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -1.12
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.86
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.0012020'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767714149
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de AIPad para 2026
A previsão de preço para AIPad em 2026 sugere que o preço médio poderia variar entre $0.001398 na extremidade inferior e $0.004175 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, AIPad poderia potencialmente ganhar 3.13% até 2026 se AIPAD atingir a meta de preço prevista.
Previsão de preço de AIPad 2027-2032
A previsão de preço de AIPAD para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002442 na extremidade inferior e $0.01521 na extremidade superior. Considerando a volatilidade de preços no mercado, se AIPad atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de AIPad | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001346 | $0.002442 | $0.003537 |
| 2028 | $0.00243 | $0.004191 | $0.005952 |
| 2029 | $0.005338 | $0.011449 | $0.01756 |
| 2030 | $0.00454 | $0.008833 | $0.013126 |
| 2031 | $0.005367 | $0.008675 | $0.011983 |
| 2032 | $0.008193 | $0.01521 | $0.022228 |
Previsão de preço de AIPad 2032-2037
A previsão de preço de AIPad para 2032-2037 é atualmente estimada entre $0.01521 na extremidade inferior e $0.138711 na extremidade superior. Comparado ao preço atual, AIPad poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de AIPad | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.008193 | $0.01521 | $0.022228 |
| 2033 | $0.019039 | $0.039123 | $0.0592078 |
| 2034 | $0.0153071 | $0.024798 | $0.03429 |
| 2035 | $0.018097 | $0.02925 | $0.0404021 |
| 2036 | $0.029957 | $0.056774 | $0.083591 |
| 2037 | $0.077799 | $0.138711 | $0.199623 |
AIPad Histograma de preços potenciais
Previsão de preço de AIPad baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para AIPad é Altista, com 17 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de AIPAD foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de AIPad
De acordo com nossos indicadores técnicos, o SMA de 200 dias de AIPad está projetado para aumentar no próximo mês, alcançando $0.007335 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para AIPad é esperado para alcançar $0.003799 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 47.96, sugerindo que o mercado de AIPAD está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de AIPAD para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.004024 | BUY |
| SMA 5 | $0.003985 | BUY |
| SMA 10 | $0.003749 | BUY |
| SMA 21 | $0.003933 | BUY |
| SMA 50 | $0.004473 | SELL |
| SMA 100 | $0.00605 | SELL |
| SMA 200 | $0.008195 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.004012 | BUY |
| EMA 5 | $0.003959 | BUY |
| EMA 10 | $0.0039045 | BUY |
| EMA 21 | $0.0040094 | BUY |
| EMA 50 | $0.004626 | SELL |
| EMA 100 | $0.005934 | SELL |
| EMA 200 | $0.009696 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.007194 | SELL |
| SMA 50 | $0.012098 | SELL |
| SMA 100 | $0.047274 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.007095 | SELL |
| EMA 50 | $0.018358 | SELL |
| EMA 100 | $0.047926 | SELL |
| EMA 200 | $0.059159 | SELL |
Osciladores de AIPad
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 47.96 | NEUTRAL |
| Stoch RSI (14) | 102.32 | SELL |
| Estocástico Rápido (14) | 98.88 | SELL |
| Índice de Canal de Commodities (20) | 43.46 | NEUTRAL |
| Índice Direcional Médio (14) | 25.26 | SELL |
| Oscilador Impressionante (5, 34) | -0.000230 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -1.12 | SELL |
| Oscilador Ultimate (7, 14, 28) | 71.86 | SELL |
| VWMA (10) | 0.003748 | BUY |
| Média Móvel de Hull (9) | 0.004156 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0012020 | SELL |
Previsão do preço de AIPad com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do AIPad
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de AIPad por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.005688 | $0.007993 | $0.011232 | $0.015783 | $0.022179 | $0.031165 |
| Amazon.com stock | $0.008447 | $0.017626 | $0.036778 | $0.07674 | $0.160124 | $0.3341091 |
| Apple stock | $0.005742 | $0.008145 | $0.011553 | $0.016388 | $0.023245 | $0.032971 |
| Netflix stock | $0.006388 | $0.010079 | $0.0159035 | $0.025093 | $0.039593 | $0.062472 |
| Google stock | $0.005242 | $0.006789 | $0.008792 | $0.011386 | $0.014745 | $0.019094 |
| Tesla stock | $0.009177 | $0.0208054 | $0.047164 | $0.106918 | $0.242375 | $0.549447 |
| Kodak stock | $0.003036 | $0.002276 | $0.0017072 | $0.00128 | $0.00096 | $0.000719 |
| Nokia stock | $0.002682 | $0.001776 | $0.001177 | $0.000779 | $0.000516 | $0.000342 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para AIPad
Você pode fazer perguntas como: 'Devo investir em AIPad agora?', 'Devo comprar AIPAD hoje?', 'AIPad será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para AIPad regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como AIPad, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre AIPad para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de AIPad é de $0.004048 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para AIPad
com base no histórico de preços de 4 horas
Previsão de longo prazo para AIPad
com base no histórico de preços de 1 mês
Previsão do preço de AIPad com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se AIPad tiver 1% da média anterior do crescimento anual do Bitcoin | $0.004153 | $0.004261 | $0.004372 | $0.004486 |
| Se AIPad tiver 2% da média anterior do crescimento anual do Bitcoin | $0.004259 | $0.00448 | $0.004713 | $0.004958 |
| Se AIPad tiver 5% da média anterior do crescimento anual do Bitcoin | $0.004574 | $0.005169 | $0.005841 | $0.00660032 |
| Se AIPad tiver 10% da média anterior do crescimento anual do Bitcoin | $0.00510094 | $0.006426 | $0.008097 | $0.0102021 |
| Se AIPad tiver 20% da média anterior do crescimento anual do Bitcoin | $0.006153 | $0.009352 | $0.014214 | $0.0216034 |
| Se AIPad tiver 50% da média anterior do crescimento anual do Bitcoin | $0.00931 | $0.02141 | $0.049237 | $0.113229 |
| Se AIPad tiver 100% da média anterior do crescimento anual do Bitcoin | $0.014572 | $0.052449 | $0.188784 | $0.679494 |
Perguntas Frequentes sobre AIPad
AIPAD é um bom investimento?
A decisão de adquirir AIPad depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de AIPad experimentou uma queda de -0.4912% nas últimas 24 horas, e AIPad registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em AIPad dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
AIPad pode subir?
Parece que o valor médio de AIPad pode potencialmente subir para $0.004175 até o final deste ano. Observando as perspectivas de AIPad em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.013126. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de AIPad na próxima semana?
Com base na nossa nova previsão experimental de AIPad, o preço de AIPad aumentará 0.86% na próxima semana e atingirá $0.0040832 até 13 de janeiro de 2026.
Qual será o preço de AIPad no próximo mês?
Com base na nossa nova previsão experimental de AIPad, o preço de AIPad diminuirá -11.62% no próximo mês e atingirá $0.003578 até 5 de fevereiro de 2026.
Até onde o preço de AIPad pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de AIPad em 2026, espera-se que AIPAD fluctue dentro do intervalo de $0.001398 e $0.004175. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de AIPad não considera flutuações repentinas e extremas de preço.
Onde estará AIPad em 5 anos?
O futuro de AIPad parece seguir uma tendência de alta, com um preço máximo de $0.013126 projetada após um período de cinco anos. Com base na previsão de AIPad para 2030, o valor de AIPad pode potencialmente atingir seu pico mais alto de aproximadamente $0.013126, enquanto seu pico mais baixo está previsto para cerca de $0.00454.
Quanto será AIPad em 2026?
Com base na nossa nova simulação experimental de previsão de preços de AIPad, espera-se que o valor de AIPAD em 2026 aumente 3.13% para $0.004175 se o melhor cenário ocorrer. O preço ficará entre $0.004175 e $0.001398 durante 2026.
Quanto será AIPad em 2027?
De acordo com nossa última simulação experimental para previsão de preços de AIPad, o valor de AIPAD pode diminuir -12.62% para $0.003537 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.003537 e $0.001346 ao longo do ano.
Quanto será AIPad em 2028?
Nosso novo modelo experimental de previsão de preços de AIPad sugere que o valor de AIPAD em 2028 pode aumentar 47.02%, alcançando $0.005952 no melhor cenário. O preço é esperado para variar entre $0.005952 e $0.00243 durante o ano.
Quanto será AIPad em 2029?
Com base no nosso modelo de previsão experimental, o valor de AIPad pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.01756 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.01756 e $0.005338.
Quanto será AIPad em 2030?
Usando nossa nova simulação experimental para previsões de preços de AIPad, espera-se que o valor de AIPAD em 2030 aumente 224.23%, alcançando $0.013126 no melhor cenário. O preço está previsto para variar entre $0.013126 e $0.00454 ao longo de 2030.
Quanto será AIPad em 2031?
Nossa simulação experimental indica que o preço de AIPad poderia aumentar 195.98% em 2031, potencialmente atingindo $0.011983 sob condições ideais. O preço provavelmente oscilará entre $0.011983 e $0.005367 durante o ano.
Quanto será AIPad em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de AIPad, AIPAD poderia ver um 449.04% aumento em valor, atingindo $0.022228 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.022228 e $0.008193 ao longo do ano.
Quanto será AIPad em 2033?
De acordo com nossa previsão experimental de preços de AIPad, espera-se que o valor de AIPAD seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.0592078. Ao longo do ano, o preço de AIPAD poderia variar entre $0.0592078 e $0.019039.
Quanto será AIPad em 2034?
Os resultados da nossa nova simulação de previsão de preços de AIPad sugerem que AIPAD pode aumentar 746.96% em 2034, atingindo potencialmente $0.03429 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.03429 e $0.0153071.
Quanto será AIPad em 2035?
Com base em nossa previsão experimental para o preço de AIPad, AIPAD poderia aumentar 897.93%, com o valor potencialmente atingindo $0.0404021 em 2035. A faixa de preço esperada para o ano está entre $0.0404021 e $0.018097.
Quanto será AIPad em 2036?
Nossa recente simulação de previsão de preços de AIPad sugere que o valor de AIPAD pode aumentar 1964.7% em 2036, possivelmente atingindo $0.083591 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.083591 e $0.029957.
Quanto será AIPad em 2037?
De acordo com a simulação experimental, o valor de AIPad poderia aumentar 4830.69% em 2037, com um pico de $0.199623 sob condições favoráveis. O preço é esperado para cair entre $0.199623 e $0.077799 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Ref Finance
Previsão de Preço do HUSD
Previsão de Preço do SwissCheese
Previsão de Preço do Diverge Loop
Previsão de Preço do Force Protocol
Previsão de Preço do Energi
Previsão de Preço do Gains
Previsão de Preço do LayerAI
Previsão de Preço do Solama
Previsão de Preço do Gari Network
Previsão de Preço do Chirpley
Previsão de Preço do Mars Protocol
Previsão de Preço do Thena
Previsão de Preço do BEAM
Previsão de Preço do Areum
Previsão de Preço do SpaceChain
Previsão de Preço do Ooki
Previsão de Preço do AXEL
Previsão de Preço do Hum(AI)n Web3
Previsão de Preço do Tower
Previsão de Preço do XDEFI
Previsão de Preço do Zenon
Previsão de Preço do Gui Inu
Previsão de Preço do BIDZ Coin
Previsão de Preço do StakeWise
Como ler e prever os movimentos de preço de AIPad?
Traders de AIPad utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de AIPad
Médias móveis são ferramentas populares para a previsão de preço de AIPad. Uma média móvel simples (SMA) calcula o preço médio de fechamento de AIPAD em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de AIPAD acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de AIPAD.
Como ler gráficos de AIPad e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de AIPad em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de AIPAD dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de AIPad?
A ação de preço de AIPad é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de AIPAD. A capitalização de mercado de AIPad pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de AIPAD, grandes detentores de AIPad, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de AIPad.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


