Previsão de Preço ApeBond - Projeção ABOND
Previsão de Preço ApeBond até $0.00129 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000432 | $0.00129 |
| 2027 | $0.000416 | $0.001092 |
| 2028 | $0.00075 | $0.001838 |
| 2029 | $0.001649 | $0.005425 |
| 2030 | $0.0014026 | $0.004055 |
| 2031 | $0.001658 | $0.0037022 |
| 2032 | $0.002531 | $0.006867 |
| 2033 | $0.005882 | $0.018292 |
| 2034 | $0.004729 | $0.010593 |
| 2035 | $0.005591 | $0.012482 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em ApeBond hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.96, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de ApeBond para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'ApeBond'
'name_with_ticker' => 'ApeBond <small>ABOND</small>'
'name_lang' => 'ApeBond'
'name_lang_with_ticker' => 'ApeBond <small>ABOND</small>'
'name_with_lang' => 'ApeBond'
'name_with_lang_with_ticker' => 'ApeBond <small>ABOND</small>'
'image' => '/uploads/coins/abond.jpg?1717233311'
'price_for_sd' => 0.00125
'ticker' => 'ABOND'
'marketcap' => '$476.53K'
'low24h' => '$0.001218'
'high24h' => '$0.001265'
'volume24h' => '$83.79K'
'current_supply' => '380.97M'
'max_supply' => '427.29M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00125'
'change_24h_pct' => '1.5839%'
'ath_price' => '$0.05405'
'ath_days' => 740
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 de dez. de 2023'
'ath_pct' => '-97.68%'
'fdv' => '$534.47K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.061674'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001261'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001105'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000432'
'current_year_max_price_prediction' => '$0.00129'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0014026'
'grand_prediction_max_price' => '$0.004055'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0012745223810687
107 => 0.001279280984988
108 => 0.0012900023625985
109 => 0.0011983893647792
110 => 0.0012395209111837
111 => 0.0012636818411917
112 => 0.0011545218804335
113 => 0.0012615240997435
114 => 0.0011967945863076
115 => 0.0011748244172428
116 => 0.0012044043555389
117 => 0.0011928770248175
118 => 0.0011829665027708
119 => 0.0011774362611844
120 => 0.0011991565032503
121 => 0.0011981432279967
122 => 0.0011626046962594
123 => 0.001116246130344
124 => 0.0011318055867332
125 => 0.0011261526903563
126 => 0.0011056658646483
127 => 0.0011194715115868
128 => 0.0010586784293479
129 => 0.0009540870911053
130 => 0.0010231833328677
131 => 0.0010205232027221
201 => 0.0010191818444754
202 => 0.0010711057604799
203 => 0.0010661144740446
204 => 0.0010570552402898
205 => 0.0011054994847161
206 => 0.0010878166838334
207 => 0.0011423109095618
208 => 0.0011782043310921
209 => 0.0011691005983615
210 => 0.0012028585347986
211 => 0.0011321640451828
212 => 0.0011556459188625
213 => 0.0011604855004835
214 => 0.0011049016902597
215 => 0.0010669311102337
216 => 0.0010643989054423
217 => 0.00099856315234562
218 => 0.0010337320802422
219 => 0.0010646792814021
220 => 0.0010498579736464
221 => 0.0010451659903849
222 => 0.0010691363153009
223 => 0.0010709990148388
224 => 0.0010285292679741
225 => 0.0010373600731893
226 => 0.0010741859989356
227 => 0.001036432154346
228 => 0.000963082601364
301 => 0.00094489089808755
302 => 0.00094246378953086
303 => 0.00089312644744293
304 => 0.0009461065546875
305 => 0.00092297931809664
306 => 0.00099603798138031
307 => 0.00095430726473415
308 => 0.00095250833694566
309 => 0.00094978899374803
310 => 0.00090732230531302
311 => 0.00091661981118144
312 => 0.00094752613673821
313 => 0.00095855386188154
314 => 0.0009574035798016
315 => 0.0009473746788821
316 => 0.00095196585836676
317 => 0.00093717606957367
318 => 0.000931953487328
319 => 0.00091546958117623
320 => 0.00089124279292843
321 => 0.00089461167642581
322 => 0.00084661206962294
323 => 0.00082045933630479
324 => 0.00081322060440981
325 => 0.00080354066959241
326 => 0.00081431397880476
327 => 0.0008464760927677
328 => 0.00080768175975528
329 => 0.00074117159691154
330 => 0.00074516897102626
331 => 0.00075414988383099
401 => 0.00073741401223405
402 => 0.00072157491430279
403 => 0.00073534572488739
404 => 0.00070716449210251
405 => 0.00075755545117561
406 => 0.00075619251695171
407 => 0.00077497515033815
408 => 0.00078672031645313
409 => 0.00075965151110079
410 => 0.00075284377975651
411 => 0.00075672177292435
412 => 0.00069262718419645
413 => 0.00076973725502218
414 => 0.00077040410611675
415 => 0.00076469412218803
416 => 0.00080575285439639
417 => 0.00089239958589576
418 => 0.000859799600149
419 => 0.00084717590032807
420 => 0.00082317823774061
421 => 0.00085515369829818
422 => 0.00085269848182225
423 => 0.00084159506180488
424 => 0.0008348796787336
425 => 0.00084725297794732
426 => 0.00083334649003178
427 => 0.00083084850267742
428 => 0.00081571341714702
429 => 0.00081031088021518
430 => 0.00080631105695204
501 => 0.00080190764455384
502 => 0.00081162047504227
503 => 0.00078960992332623
504 => 0.00076306735567767
505 => 0.00076086062837226
506 => 0.00076695359647996
507 => 0.00076425791166043
508 => 0.00076084772247045
509 => 0.00075433674259701
510 => 0.00075240507395363
511 => 0.0007586820599322
512 => 0.00075159570873341
513 => 0.00076205200594075
514 => 0.00075920847167367
515 => 0.00074332472040755
516 => 0.00072352768541206
517 => 0.00072335145027491
518 => 0.00071908621155877
519 => 0.00071365378877084
520 => 0.00071214261302824
521 => 0.00073418598562987
522 => 0.00077981510721262
523 => 0.00077085701883359
524 => 0.00077733015574927
525 => 0.00080917158267531
526 => 0.00081929301478999
527 => 0.00081210906201425
528 => 0.00080227522436791
529 => 0.00080270786331678
530 => 0.00083631306345942
531 => 0.00083840897857134
601 => 0.00084370467989132
602 => 0.00085051115265251
603 => 0.0008132682337575
604 => 0.00080095372518602
605 => 0.00079511842784193
606 => 0.00077714797056641
607 => 0.00079652756806749
608 => 0.00078523590652072
609 => 0.00078675953744146
610 => 0.00078576727080552
611 => 0.00078630911548552
612 => 0.00075754136587557
613 => 0.00076802282184503
614 => 0.00075059536838399
615 => 0.00072726196452311
616 => 0.00072718374277162
617 => 0.00073289456031016
618 => 0.00072949754257393
619 => 0.00072035625519103
620 => 0.00072165473191811
621 => 0.00071027870946746
622 => 0.00072303598701315
623 => 0.00072340182008543
624 => 0.00071848957333673
625 => 0.00073814391956093
626 => 0.00074619632124541
627 => 0.00074296297520489
628 => 0.00074596946106776
629 => 0.00077122926784908
630 => 0.00077534771851707
701 => 0.00077717686225422
702 => 0.00077472605196155
703 => 0.00074643116396564
704 => 0.00074768616256742
705 => 0.00073847781553226
706 => 0.00073069773263926
707 => 0.00073100889515382
708 => 0.00073500886910081
709 => 0.00075247698992265
710 => 0.00078923762039025
711 => 0.00079063265944483
712 => 0.00079232348747513
713 => 0.0007854460401338
714 => 0.00078337173620735
715 => 0.00078610827850961
716 => 0.00079991363853112
717 => 0.00083542477262511
718 => 0.00082287276612739
719 => 0.00081266778946113
720 => 0.0008216203052394
721 => 0.00082024213560747
722 => 0.00080860899697312
723 => 0.00080828249351702
724 => 0.00078595478113829
725 => 0.00077770073424929
726 => 0.00077080303486414
727 => 0.00076327092720455
728 => 0.00075880564130541
729 => 0.00076566634988264
730 => 0.00076723547510776
731 => 0.000752234415899
801 => 0.00075018982695967
802 => 0.00076244001572989
803 => 0.00075704916438519
804 => 0.0007625937886799
805 => 0.00076388018907718
806 => 0.0007636730489849
807 => 0.0007580443810457
808 => 0.00076163192614085
809 => 0.00075314631249214
810 => 0.00074391948214712
811 => 0.00073803333923885
812 => 0.00073289689886782
813 => 0.00073574689451733
814 => 0.00072558718041546
815 => 0.00072233688339963
816 => 0.00076041654658493
817 => 0.00078854640320529
818 => 0.00078813738394938
819 => 0.00078564758442027
820 => 0.00078194824735739
821 => 0.00079964300898322
822 => 0.00079347850785071
823 => 0.00079796369748592
824 => 0.00079910536649089
825 => 0.00080256085472025
826 => 0.000803795894753
827 => 0.00080006274598358
828 => 0.0007875338427477
829 => 0.00075631300709627
830 => 0.00074177962382149
831 => 0.00073698336526817
901 => 0.00073715770015719
902 => 0.00073234876565276
903 => 0.00073376521238564
904 => 0.00073185618328387
905 => 0.00072824094400885
906 => 0.00073552366367958
907 => 0.0007363629292784
908 => 0.00073466305548523
909 => 0.00073506343729985
910 => 0.00072098920831802
911 => 0.00072205924137989
912 => 0.00071610116131817
913 => 0.00071498409313232
914 => 0.00069992258556567
915 => 0.00067323894171091
916 => 0.00068802427065043
917 => 0.00067016567242335
918 => 0.00066340235067283
919 => 0.00069541886392744
920 => 0.00069220529399653
921 => 0.00068670505918007
922 => 0.00067856906553715
923 => 0.00067555134635313
924 => 0.00065721663988484
925 => 0.00065613332761484
926 => 0.00066522050321924
927 => 0.00066102708434843
928 => 0.0006551379360819
929 => 0.00063380803803389
930 => 0.00060982617054139
1001 => 0.00061055003237634
1002 => 0.0006181782182272
1003 => 0.00064035819738959
1004 => 0.00063169209581331
1005 => 0.00062540473968766
1006 => 0.00062422730688256
1007 => 0.00063896534356096
1008 => 0.00065982275317505
1009 => 0.00066960858310775
1010 => 0.00065991112284452
1011 => 0.00064877120264247
1012 => 0.00064944923796775
1013 => 0.00065395990322165
1014 => 0.00065443391036246
1015 => 0.00064718296751323
1016 => 0.00064922406545265
1017 => 0.00064612345104076
1018 => 0.00062709498611831
1019 => 0.00062675082152777
1020 => 0.00062208092936036
1021 => 0.00062193952688146
1022 => 0.00061399487534549
1023 => 0.00061288336367683
1024 => 0.00059710877584628
1025 => 0.0006074916573262
1026 => 0.00060052736555521
1027 => 0.00059003053514598
1028 => 0.00058822087762694
1029 => 0.00058816647713669
1030 => 0.00059894437491863
1031 => 0.00060736571131541
1101 => 0.00060064851239224
1102 => 0.00059911913640486
1103 => 0.00061544887077619
1104 => 0.0006133707632286
1105 => 0.00061157113549475
1106 => 0.00065795520091018
1107 => 0.00062123859374011
1108 => 0.00060522805730329
1109 => 0.00058541197814431
1110 => 0.00059186419343982
1111 => 0.00059322377000534
1112 => 0.00054556967174475
1113 => 0.00052623641001537
1114 => 0.00051960196314845
1115 => 0.00051578374517922
1116 => 0.00051752375505396
1117 => 0.00050012155193209
1118 => 0.00051181612023586
1119 => 0.00049674728330393
1120 => 0.00049422094375406
1121 => 0.00052116589085903
1122 => 0.00052491512283859
1123 => 0.00050891973441872
1124 => 0.00051919136320244
1125 => 0.00051546672781914
1126 => 0.00049700559526295
1127 => 0.0004963005157902
1128 => 0.00048703736841369
1129 => 0.00047254233646823
1130 => 0.00046591771791552
1201 => 0.0004624675590557
1202 => 0.00046389116184351
1203 => 0.00046317134471103
1204 => 0.00045847405101849
1205 => 0.00046344058808703
1206 => 0.00045075313819171
1207 => 0.00044570089341367
1208 => 0.00044341891165862
1209 => 0.00043215806961415
1210 => 0.00045007907702608
1211 => 0.00045360974124913
1212 => 0.00045714736197138
1213 => 0.00048793993512231
1214 => 0.0004864016251866
1215 => 0.00050030719781811
1216 => 0.00049976685283636
1217 => 0.00049580075826651
1218 => 0.0004790684576672
1219 => 0.00048573765446151
1220 => 0.00046521090335194
1221 => 0.00048059094096663
1222 => 0.00047357213408501
1223 => 0.00047821787529967
1224 => 0.00046986441370612
1225 => 0.00047448756425796
1226 => 0.00045444699271542
1227 => 0.00043573338898745
1228 => 0.00044326428941173
1229 => 0.00045145123943586
1230 => 0.00046920263308424
1231 => 0.00045863004947308
]
'min_raw' => 0.00043215806961415
'max_raw' => 0.0012900023625985
'avg_raw' => 0.00086108021610631
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000432'
'max' => '$0.00129'
'avg' => '$0.000861'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00081866193038585
'max_diff' => 3.9182362598458E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0004624323503333
102 => 0.00044969527894904
103 => 0.00042341506251875
104 => 0.00042356380568972
105 => 0.00041952116693755
106 => 0.00041602773682076
107 => 0.00045984443788272
108 => 0.00045439513846612
109 => 0.00044571239303246
110 => 0.00045733459283401
111 => 0.00046040768693065
112 => 0.00046049517359932
113 => 0.00046897443056213
114 => 0.00047349981152318
115 => 0.00047429742953169
116 => 0.00048763972356915
117 => 0.00049211188454139
118 => 0.00051053208266215
119 => 0.00047311586456571
120 => 0.00047234530217644
121 => 0.00045749814101937
122 => 0.00044808183668922
123 => 0.00045814288343286
124 => 0.00046705559737787
125 => 0.00045777508388574
126 => 0.00045898692302548
127 => 0.00044652859190809
128 => 0.00045098185906359
129 => 0.00045481761265778
130 => 0.00045269973497825
131 => 0.00044952916958554
201 => 0.00046632485647363
202 => 0.00046537717799658
203 => 0.00048101770775794
204 => 0.00049321061917193
205 => 0.00051506249616943
206 => 0.00049225892335843
207 => 0.0004914278705292
208 => 0.00049955154523995
209 => 0.00049211064084912
210 => 0.00049681303557283
211 => 0.0005143048676807
212 => 0.00051467444252987
213 => 0.00050848358763595
214 => 0.00050810687355303
215 => 0.00050929589495594
216 => 0.00051626003045118
217 => 0.00051382654752288
218 => 0.00051664263557576
219 => 0.00052016419680736
220 => 0.00053473086717229
221 => 0.00053824284208205
222 => 0.00052971056380157
223 => 0.00053048093299842
224 => 0.00052728962670525
225 => 0.00052420686481299
226 => 0.00053113646334557
227 => 0.00054380044086545
228 => 0.00054372165891856
301 => 0.00054665945555063
302 => 0.00054848967851438
303 => 0.00054063302174885
304 => 0.00053551862709176
305 => 0.00053747981144068
306 => 0.00054061578792363
307 => 0.00053646285653289
308 => 0.00051082904016429
309 => 0.00051860470255599
310 => 0.00051731045212355
311 => 0.00051546728212151
312 => 0.00052328577078379
313 => 0.00052253165847899
314 => 0.00049994306718634
315 => 0.00050138911551239
316 => 0.00050003100617451
317 => 0.00050441933528823
318 => 0.00049187365667571
319 => 0.00049573262292049
320 => 0.00049815293037365
321 => 0.00049957851005724
322 => 0.00050472868140351
323 => 0.00050412436823908
324 => 0.00050469111644872
325 => 0.00051232746096041
326 => 0.00055094947102357
327 => 0.00055305158181664
328 => 0.00054270001946064
329 => 0.00054683526444632
330 => 0.00053889649835247
331 => 0.00054422584521638
401 => 0.00054787204898994
402 => 0.00053139555526191
403 => 0.00053041992423489
404 => 0.0005224483920294
405 => 0.00052673184190597
406 => 0.0005199165651614
407 => 0.00052158879568625
408 => 0.00051691309335632
409 => 0.00052532842662716
410 => 0.00053473807683454
411 => 0.00053711532607527
412 => 0.00053086180679305
413 => 0.00052633384670572
414 => 0.00051838424039515
415 => 0.00053160461285817
416 => 0.0005354706526499
417 => 0.00053158430619696
418 => 0.00053068375480547
419 => 0.00052897721154585
420 => 0.00053104580602535
421 => 0.00053544959736692
422 => 0.00053337285069549
423 => 0.00053474457845954
424 => 0.00052951696674252
425 => 0.00054063562262915
426 => 0.00055829472402738
427 => 0.00055835150092593
428 => 0.00055627474306006
429 => 0.00055542497848572
430 => 0.0005575558580843
501 => 0.00055871177285328
502 => 0.00056560264673861
503 => 0.0005729968289621
504 => 0.00060750225106467
505 => 0.00059781326661395
506 => 0.00062842852984009
507 => 0.00065264122815759
508 => 0.00065990155769003
509 => 0.00065322239614509
510 => 0.00063037334530105
511 => 0.00062925226185949
512 => 0.00066339839044092
513 => 0.0006537505451249
514 => 0.00065260296462375
515 => 0.00064039464695935
516 => 0.00064761127472857
517 => 0.0006460328923739
518 => 0.00064354133860995
519 => 0.00065731016167896
520 => 0.00068308416931284
521 => 0.00067906704851598
522 => 0.00067606845419
523 => 0.00066292948673125
524 => 0.00067084207983604
525 => 0.00066802455698716
526 => 0.00068013042319013
527 => 0.00067295917622926
528 => 0.00065367745320771
529 => 0.00065674813115228
530 => 0.00065628400435831
531 => 0.00066583570088995
601 => 0.00066296851867883
602 => 0.00065572414101496
603 => 0.00068299607655674
604 => 0.00068122518875713
605 => 0.00068373590277566
606 => 0.00068484119673303
607 => 0.0007014411433119
608 => 0.00070824161028622
609 => 0.00070978543534832
610 => 0.00071624535300694
611 => 0.00070962470671213
612 => 0.00073611201233218
613 => 0.00075372452499238
614 => 0.00077418236477881
615 => 0.00080407676725574
616 => 0.00081531733912575
617 => 0.00081328683042789
618 => 0.0008359524252058
619 => 0.00087668199519384
620 => 0.00082151944102545
621 => 0.00087960574450991
622 => 0.00086121629146535
623 => 0.00081761522910884
624 => 0.00081480783471584
625 => 0.00084433498036241
626 => 0.00090982334752406
627 => 0.00089341925431297
628 => 0.00090985017874394
629 => 0.00089068263261528
630 => 0.00088973080239323
701 => 0.00090891925381124
702 => 0.00095375411645745
703 => 0.00093245475382393
704 => 0.0009019168946708
705 => 0.00092446557464776
706 => 0.0009049318212699
707 => 0.00086091680775626
708 => 0.00089340671041205
709 => 0.00087168163776528
710 => 0.00087802216893199
711 => 0.00092368504027484
712 => 0.0009181907627859
713 => 0.00092530086661299
714 => 0.00091275171946199
715 => 0.00090102883720409
716 => 0.00087914720691705
717 => 0.00087266913494039
718 => 0.00087445944097812
719 => 0.00087266824775363
720 => 0.00086042567671059
721 => 0.00085778189465947
722 => 0.00085337547541419
723 => 0.00085474120899129
724 => 0.00084645585166675
725 => 0.00086209203278034
726 => 0.00086499424578058
727 => 0.00087637295444575
728 => 0.00087755432972679
729 => 0.00090924387139353
730 => 0.0008917898043646
731 => 0.00090349949943925
801 => 0.00090245207409585
802 => 0.00081856019634009
803 => 0.00083011975691053
804 => 0.00084810280556819
805 => 0.00084000146652336
806 => 0.00082854806853535
807 => 0.00081929883556769
808 => 0.00080528530183905
809 => 0.00082500908145603
810 => 0.00085094375426224
811 => 0.00087821207582788
812 => 0.00091097317749779
813 => 0.00090366128098633
814 => 0.00087759962982031
815 => 0.00087876873645357
816 => 0.00088599569363388
817 => 0.00087663612744708
818 => 0.00087387580865816
819 => 0.00088561646821986
820 => 0.00088569731968971
821 => 0.00087492800765044
822 => 0.00086295988808209
823 => 0.0008629097412241
824 => 0.00086078012994524
825 => 0.00089106148573083
826 => 0.00090771316962252
827 => 0.00090962225834518
828 => 0.00090758467274067
829 => 0.00090836885857096
830 => 0.0008986796106092
831 => 0.00092082635819255
901 => 0.00094115040386136
902 => 0.00093570312546222
903 => 0.00092753688076564
904 => 0.00092103207352519
905 => 0.00093417079960211
906 => 0.00093358575281218
907 => 0.00094097289105276
908 => 0.00094063776779199
909 => 0.000938153751046
910 => 0.00093570321417428
911 => 0.00094541931587454
912 => 0.00094262123462068
913 => 0.00093981880717379
914 => 0.00093419810989887
915 => 0.00093496205600843
916 => 0.00092679722132914
917 => 0.00092301979520908
918 => 0.00086621636967603
919 => 0.00085103663826812
920 => 0.00085581249078097
921 => 0.00085738482543316
922 => 0.00085077858687109
923 => 0.00086025023596566
924 => 0.00085877408948723
925 => 0.00086451691191799
926 => 0.00086092904578761
927 => 0.0008610762930651
928 => 0.00087162744234083
929 => 0.00087469048586337
930 => 0.00087313259720601
1001 => 0.00087422368902032
1002 => 0.00089936743936013
1003 => 0.00089579280211369
1004 => 0.00089389384732167
1005 => 0.00089441987077675
1006 => 0.00090084463807666
1007 => 0.00090264322214134
1008 => 0.00089502249507501
1009 => 0.00089861647401439
1010 => 0.00091391918019443
1011 => 0.00091927426129929
1012 => 0.00093636510960123
1013 => 0.00092910461347696
1014 => 0.00094243156833997
1015 => 0.00098339408409514
1016 => 0.0010161177760709
1017 => 0.00098602371656622
1018 => 0.0010461166095426
1019 => 0.0010929075465382
1020 => 0.0010911116324419
1021 => 0.0010829525502829
1022 => 0.0010296823125148
1023 => 0.00098066224550608
1024 => 0.0010216696130609
1025 => 0.001021774149274
1026 => 0.0010182515800334
1027 => 0.00099637320501326
1028 => 0.0010174902600068
1029 => 0.0010191664551463
1030 => 0.0010182282316045
1031 => 0.0010014541327731
1101 => 0.00097584318422924
1102 => 0.00098084750227076
1103 => 0.0009890446773081
1104 => 0.00097352571485257
1105 => 0.00096856646602094
1106 => 0.00097778665313464
1107 => 0.0010074960171173
1108 => 0.001001879633951
1109 => 0.0010017329674889
1110 => 0.0010257622363914
1111 => 0.001008562465698
1112 => 0.00098091062274731
1113 => 0.00097392816771926
1114 => 0.00094914515631498
1115 => 0.00096626287056597
1116 => 0.00096687890662779
1117 => 0.00095750370947132
1118 => 0.0009816713683269
1119 => 0.00098144865909591
1120 => 0.001004392254298
1121 => 0.0010482517911035
1122 => 0.0010352803678734
1123 => 0.0010201960139436
1124 => 0.0010218361014595
1125 => 0.0010398238134284
1126 => 0.0010289480321525
1127 => 0.001032859038928
1128 => 0.0010398178936512
1129 => 0.0010440163434844
1130 => 0.001021232009139
1201 => 0.0010159198909024
1202 => 0.0010050531612904
1203 => 0.0010022182343718
1204 => 0.001011068958899
1205 => 0.0010087371056868
1206 => 0.0009668271311822
1207 => 0.00096244730566158
1208 => 0.00096258162865735
1209 => 0.00095156834913639
1210 => 0.00093477045437699
1211 => 0.00097891431885452
1212 => 0.00097536894874399
1213 => 0.00097145513453181
1214 => 0.00097193455444089
1215 => 0.0009910959098362
1216 => 0.00097998135603528
1217 => 0.0010095312189546
1218 => 0.0010034566554886
1219 => 0.00099722630239106
1220 => 0.00099636507781179
1221 => 0.000993966923418
1222 => 0.00098574275968775
1223 => 0.00097581158778785
1224 => 0.00096925416787616
1225 => 0.00089408573528429
1226 => 0.00090803655913869
1227 => 0.00092408571032556
1228 => 0.00092962581300233
1229 => 0.00092014908401028
1230 => 0.0009861169587097
1231 => 0.00099816992509954
]
'min_raw' => 0.00041602773682076
'max_raw' => 0.0010929075465382
'avg_raw' => 0.00075446764167949
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000416'
'max' => '$0.001092'
'avg' => '$0.000754'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.6130332793392E-5
'max_diff' => -0.00019709481606024
'year' => 2027
]
2 => [
'items' => [
101 => 0.00096166070370917
102 => 0.00095483131904871
103 => 0.00098656469203107
104 => 0.00096742558887564
105 => 0.00097604392585462
106 => 0.00095741579528434
107 => 0.00099526671844828
108 => 0.00099497835783141
109 => 0.00098025349381877
110 => 0.00099269884805074
111 => 0.00099053616148781
112 => 0.00097391182628327
113 => 0.00099579373952656
114 => 0.00099580459268252
115 => 0.0009816322312165
116 => 0.00096508201575305
117 => 0.00096212322812682
118 => 0.00095989417910765
119 => 0.0009754957164391
120 => 0.00098948400602574
121 => 0.0010155127449554
122 => 0.0010220569883499
123 => 0.0010475996059936
124 => 0.0010323902208342
125 => 0.0010391323442809
126 => 0.0010464518730137
127 => 0.0010499611242551
128 => 0.0010442429876742
129 => 0.0010839211866356
130 => 0.0010872712423366
131 => 0.0010883944870353
201 => 0.0010750152215923
202 => 0.0010868991407617
203 => 0.0010813390485364
204 => 0.0010958048638686
205 => 0.0010980732884215
206 => 0.0010961520135267
207 => 0.0010968720472845
208 => 0.0010630137041848
209 => 0.0010612579704781
210 => 0.0010373184168059
211 => 0.0010470739618796
212 => 0.0010288364379598
213 => 0.0010346197446621
214 => 0.0010371689711511
215 => 0.0010358373999006
216 => 0.0010476255257609
217 => 0.0010376032106246
218 => 0.0010111526731587
219 => 0.00098469492926154
220 => 0.00098436277383893
221 => 0.00097739691688878
222 => 0.00097236187817415
223 => 0.00097333180525819
224 => 0.00097674995481189
225 => 0.00097216320910824
226 => 0.00097314202385802
227 => 0.00098939687051299
228 => 0.00099265666408538
229 => 0.00098157861184283
301 => 0.00093709863353366
302 => 0.00092618313528701
303 => 0.00093402897896297
304 => 0.00093027917102291
305 => 0.00075080789632789
306 => 0.00079297201018244
307 => 0.00076791952548808
308 => 0.00077946486304464
309 => 0.00075389276348116
310 => 0.00076609710974142
311 => 0.00076384341261852
312 => 0.0008316420599698
313 => 0.0008305834773454
314 => 0.00083109016482875
315 => 0.00080690465108103
316 => 0.00084543283118941
317 => 0.00086441319813934
318 => 0.00086090043736302
319 => 0.00086178452357096
320 => 0.0008465929934008
321 => 0.00083123725204784
322 => 0.00081420537165576
323 => 0.00084584850022021
324 => 0.00084233032449006
325 => 0.00085039975381534
326 => 0.00087092258458693
327 => 0.0008739446493767
328 => 0.00087800633510091
329 => 0.00087655050989926
330 => 0.00091123417252693
331 => 0.00090703375213254
401 => 0.00091715555673959
402 => 0.00089633423671973
403 => 0.00087277293673942
404 => 0.00087725116958875
405 => 0.00087681987975369
406 => 0.00087132906514189
407 => 0.00086637220322126
408 => 0.00085812042471061
409 => 0.00088423027295175
410 => 0.00088317026079534
411 => 0.00090033062547825
412 => 0.00089729736433366
413 => 0.00087704050404515
414 => 0.00087776398177326
415 => 0.00088262971718635
416 => 0.00089947008300702
417 => 0.00090446945016213
418 => 0.00090215354410555
419 => 0.00090763512196135
420 => 0.00091196753759664
421 => 0.0009081792066621
422 => 0.00096181398381232
423 => 0.00093954108493593
424 => 0.00095039674087445
425 => 0.00095298575085055
426 => 0.00094635405623779
427 => 0.00094779223333611
428 => 0.00094997067976028
429 => 0.00096319777986426
430 => 0.00099790951782937
501 => 0.0010132831102833
502 => 0.0010595353217007
503 => 0.0010120065474408
504 => 0.0010091863866698
505 => 0.001017517806629
506 => 0.0010446727510249
507 => 0.0010666792829235
508 => 0.0010739801191415
509 => 0.0010749450451714
510 => 0.0010886418992669
511 => 0.0010964926806032
512 => 0.0010869787409166
513 => 0.0010789166731833
514 => 0.0010500393472632
515 => 0.0010533819763688
516 => 0.0010764093761806
517 => 0.0011089369347218
518 => 0.0011368489638659
519 => 0.001127075144092
520 => 0.0012016424897248
521 => 0.001209035537464
522 => 0.0012080140573123
523 => 0.0012248565202952
524 => 0.0011914276611821
525 => 0.0011771361762576
526 => 0.0010806597837356
527 => 0.0011077657148134
528 => 0.0011471657775104
529 => 0.0011419510314698
530 => 0.0011133376527725
531 => 0.0011368272580523
601 => 0.0011290608599589
602 => 0.0011229351795545
603 => 0.0011509981090086
604 => 0.0011201417653123
605 => 0.0011468579618782
606 => 0.0011125941634387
607 => 0.0011271197900775
608 => 0.0011188743418718
609 => 0.001124210157385
610 => 0.0010930170889235
611 => 0.0011098481114964
612 => 0.0010923168630492
613 => 0.0010923085509548
614 => 0.0010919215476737
615 => 0.0011125469837263
616 => 0.0011132195784555
617 => 0.0010979773500493
618 => 0.0010957807068076
619 => 0.0011039028481795
620 => 0.0010943939478252
621 => 0.0010988431024527
622 => 0.0010945287081864
623 => 0.0010935574471621
624 => 0.0010858182740734
625 => 0.0010824840255139
626 => 0.0010837914702871
627 => 0.0010793284872421
628 => 0.0010766393785244
629 => 0.0010913866162658
630 => 0.0010835077620424
701 => 0.0010901790688574
702 => 0.0010825762727557
703 => 0.0010562216690866
704 => 0.0010410648578217
705 => 0.00099128345456388
706 => 0.0010054013987742
707 => 0.0010147616103916
708 => 0.0010116680605079
709 => 0.0010183142027031
710 => 0.0010187222218561
711 => 0.0010165614932791
712 => 0.0010140596463933
713 => 0.0010128418856901
714 => 0.001021918076279
715 => 0.0010271871104063
716 => 0.0010157010328509
717 => 0.001013010005587
718 => 0.0010246230641592
719 => 0.0010317070231796
720 => 0.0010840109964534
721 => 0.0010801361491736
722 => 0.0010898612554454
723 => 0.0010887663577231
724 => 0.0010989598184268
725 => 0.0011156218185995
726 => 0.0010817433134799
727 => 0.0010876234505381
728 => 0.0010861817767237
729 => 0.0011019215934029
730 => 0.0011019707313925
731 => 0.0010925339250311
801 => 0.0010976497708543
802 => 0.0010947942460617
803 => 0.0010999545653093
804 => 0.0010800843982258
805 => 0.0011042841168815
806 => 0.0011180037979638
807 => 0.001118194295749
808 => 0.0011246973156959
809 => 0.0011313047605915
810 => 0.0011439871756814
811 => 0.001130951054918
812 => 0.0011075003427055
813 => 0.0011091934083819
814 => 0.001095444264392
815 => 0.0010956753899865
816 => 0.0010944416234496
817 => 0.0010981442497003
818 => 0.0010808969164711
819 => 0.0010849448311065
820 => 0.0010792777269124
821 => 0.0010876111313604
822 => 0.0010786457657355
823 => 0.0010861810815049
824 => 0.0010894330739913
825 => 0.0011014329962766
826 => 0.0010768733674571
827 => 0.0010267946217535
828 => 0.0010373217812465
829 => 0.0010217512854658
830 => 0.0010231923941314
831 => 0.0010261036629865
901 => 0.001016667288119
902 => 0.0010184674510694
903 => 0.0010184031365812
904 => 0.001017848909068
905 => 0.0010153941435148
906 => 0.0010118342478022
907 => 0.0010260157766431
908 => 0.0010284254947384
909 => 0.0010337819995633
910 => 0.0010497193245704
911 => 0.0010481268099742
912 => 0.0010507242673534
913 => 0.0010450540324787
914 => 0.0010234554200646
915 => 0.0010246283286327
916 => 0.0010100021399934
917 => 0.0010334079750357
918 => 0.0010278651643557
919 => 0.0010242916782522
920 => 0.0010233166194608
921 => 0.0010392934500139
922 => 0.0010440739681215
923 => 0.0010410950700455
924 => 0.0010349852631832
925 => 0.001046717898561
926 => 0.001049857056828
927 => 0.0010505597985963
928 => 0.0010713477789761
929 => 0.0010517216157738
930 => 0.0010564458283239
1001 => 0.0010933027860536
1002 => 0.0010598786113053
1003 => 0.0010775841421175
1004 => 0.0010767175485194
1005 => 0.0010857750989604
1006 => 0.0010759745650131
1007 => 0.0010760960543773
1008 => 0.0010841385455573
1009 => 0.0010728443171659
1010 => 0.001070047707385
1011 => 0.0010661842110026
1012 => 0.0010746200140105
1013 => 0.0010796768963953
1014 => 0.0011204316545453
1015 => 0.0011467610869531
1016 => 0.0011456180568533
1017 => 0.0011560632123024
1018 => 0.0011513575741059
1019 => 0.0011361618270849
1020 => 0.0011620991143259
1021 => 0.0011538914713806
1022 => 0.0011545680994927
1023 => 0.0011545429153606
1024 => 0.0011600002803946
1025 => 0.0011561332371079
1026 => 0.0011485108978458
1027 => 0.0011535709623676
1028 => 0.0011685975449912
1029 => 0.0012152405185267
1030 => 0.0012413425444544
1031 => 0.0012136691437912
1101 => 0.0012327578850071
1102 => 0.0012213114422915
1103 => 0.0012192312831479
1104 => 0.0012312204232784
1105 => 0.0012432305488115
1106 => 0.0012424655557362
1107 => 0.001233746821326
1108 => 0.0012288218294873
1109 => 0.0012661155176831
1110 => 0.0012935928718643
1111 => 0.0012917191005197
1112 => 0.0012999893178519
1113 => 0.0013242709317273
1114 => 0.001326490938193
1115 => 0.0013262112684046
1116 => 0.0013207087507457
1117 => 0.0013446171529721
1118 => 0.0013645619627376
1119 => 0.0013194350768907
1120 => 0.0013366188042669
1121 => 0.0013443331331112
1122 => 0.0013556600565928
1123 => 0.0013747704751192
1124 => 0.001395529458427
1125 => 0.0013984650062774
1126 => 0.0013963820945986
1127 => 0.0013826909870757
1128 => 0.0014054057143173
1129 => 0.0014187114688095
1130 => 0.0014266347411128
1201 => 0.0014467268413672
1202 => 0.0013443807741798
1203 => 0.001271935140895
1204 => 0.0012606217091299
1205 => 0.0012836280175029
1206 => 0.001289694597549
1207 => 0.0012872491667393
1208 => 0.0012057050200084
1209 => 0.0012601923960733
1210 => 0.0013188162312906
1211 => 0.0013210682115544
1212 => 0.0013504165292307
1213 => 0.0013599735444943
1214 => 0.0013836027869957
1215 => 0.0013821247714437
1216 => 0.0013878781159694
1217 => 0.001386555521697
1218 => 0.0014303237177067
1219 => 0.0014786065375455
1220 => 0.0014769346570245
1221 => 0.0014699934304162
1222 => 0.0014803023355845
1223 => 0.0015301353799595
1224 => 0.0015255475517917
1225 => 0.0015300042360665
1226 => 0.0015887602038519
1227 => 0.001665151319912
1228 => 0.0016296599769595
1229 => 0.0017066659788077
1230 => 0.0017551371750584
1231 => 0.0018389630969588
]
'min_raw' => 0.00075080789632789
'max_raw' => 0.0018389630969588
'avg_raw' => 0.0012948854966433
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00075'
'max' => '$0.001838'
'avg' => '$0.001294'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00033478015950713
'max_diff' => 0.00074605555042058
'year' => 2028
]
3 => [
'items' => [
101 => 0.0018284676786855
102 => 0.0018611004949383
103 => 0.0018096786895164
104 => 0.0016916038302063
105 => 0.001672918031748
106 => 0.0017103274734612
107 => 0.0018022949355531
108 => 0.0017074310907955
109 => 0.001726621923039
110 => 0.0017210949620619
111 => 0.0017208004537995
112 => 0.0017320406363237
113 => 0.0017157361653238
114 => 0.0016493088173522
115 => 0.0016797520794688
116 => 0.00166799647396
117 => 0.0016810401947104
118 => 0.0017514317759606
119 => 0.0017203099799642
120 => 0.0016875256960114
121 => 0.0017286444635032
122 => 0.0017810027844619
123 => 0.0017777262948332
124 => 0.0017713685354873
125 => 0.0018072068920391
126 => 0.0018664013574096
127 => 0.0018824013835366
128 => 0.0018942122757174
129 => 0.0018958407982025
130 => 0.0019126155919199
131 => 0.0018224132983092
201 => 0.0019655666548286
202 => 0.0019902852849678
203 => 0.0019856392069839
204 => 0.0020131129240646
205 => 0.0020050294595586
206 => 0.0019933177877459
207 => 0.0020368694731462
208 => 0.0019869409802746
209 => 0.0019160737704658
210 => 0.0018771946175702
211 => 0.0019283938223949
212 => 0.0019596593901754
213 => 0.0019803239416146
214 => 0.0019865770223943
215 => 0.0018294154455892
216 => 0.0017447140722719
217 => 0.0017990066814651
218 => 0.0018652474117565
219 => 0.0018220453277079
220 => 0.0018237387676102
221 => 0.0017621439490649
222 => 0.0018706971864576
223 => 0.0018548818928459
224 => 0.0019369316640801
225 => 0.0019173498276845
226 => 0.0019842582309722
227 => 0.0019666390060418
228 => 0.0020397754236504
301 => 0.002068951520724
302 => 0.0021179427286074
303 => 0.0021539808605565
304 => 0.0021751431409366
305 => 0.0021738726370003
306 => 0.0022577281348726
307 => 0.0022082814774653
308 => 0.0021461648220793
309 => 0.0021450413277589
310 => 0.0021772124237831
311 => 0.0022446342153407
312 => 0.0022621157049444
313 => 0.0022718854727642
314 => 0.0022569227332601
315 => 0.0022032519305183
316 => 0.0021800771500115
317 => 0.0021998227344413
318 => 0.0021756755814411
319 => 0.002217360342014
320 => 0.002274602421665
321 => 0.0022627821585768
322 => 0.0023022955258878
323 => 0.0023431877041273
324 => 0.0024016653555923
325 => 0.0024169535791064
326 => 0.0024422244312162
327 => 0.0024682364390796
328 => 0.0024765907949621
329 => 0.0024925418525461
330 => 0.002492457782599
331 => 0.0025405273682584
401 => 0.002593549609832
402 => 0.0026135642785582
403 => 0.0026595869056791
404 => 0.0025807747695599
405 => 0.0026405546801348
406 => 0.0026944776558617
407 => 0.0026301884612168
408 => 0.0027187961385736
409 => 0.002722236573896
410 => 0.0027741830625921
411 => 0.0027215253445556
412 => 0.0026902573596749
413 => 0.0027805268604293
414 => 0.0028242054283818
415 => 0.0028110490882465
416 => 0.0027109286902086
417 => 0.0026526543241847
418 => 0.0025001390680143
419 => 0.0026807999771169
420 => 0.0027687946359897
421 => 0.0027107008053001
422 => 0.0027399999543836
423 => 0.0028998466115024
424 => 0.0029607058692287
425 => 0.00294804756906
426 => 0.0029501866134151
427 => 0.0029830251642105
428 => 0.0031286493829576
429 => 0.0030413879755414
430 => 0.0031080960518886
501 => 0.0031434777750492
502 => 0.0031763422913657
503 => 0.0030956374262295
504 => 0.0029906415824772
505 => 0.0029573849913351
506 => 0.0027049245187422
507 => 0.0026917828547635
508 => 0.0026844060405391
509 => 0.0026378962703252
510 => 0.0026013523310353
511 => 0.0025722912337224
512 => 0.0024960262359953
513 => 0.0025217634339457
514 => 0.0024002129453108
515 => 0.0024779766404546
516 => 0.0022839791256542
517 => 0.0024455460206473
518 => 0.0023576125052478
519 => 0.0024166574958742
520 => 0.0024164514934643
521 => 0.0023077309454897
522 => 0.0022450232023579
523 => 0.0022849830169034
524 => 0.0023278231101101
525 => 0.0023347737711016
526 => 0.0023903170701849
527 => 0.0024058180110599
528 => 0.0023588494365391
529 => 0.0022799589583606
530 => 0.0022982834171412
531 => 0.0022446518577856
601 => 0.0021506646129231
602 => 0.0022181678930432
603 => 0.002241216480786
604 => 0.0022513960501822
605 => 0.0021589703893679
606 => 0.0021299282400814
607 => 0.0021144664434884
608 => 0.0022680279661812
609 => 0.0022764404130398
610 => 0.0022334011455109
611 => 0.0024279427158926
612 => 0.0023839119669705
613 => 0.0024331051013119
614 => 0.0022966206645748
615 => 0.0023018345538588
616 => 0.0022372206342473
617 => 0.0022734001117261
618 => 0.0022478296231631
619 => 0.0022704771674783
620 => 0.0022840520121616
621 => 0.0023486553292647
622 => 0.0024462836867549
623 => 0.0023390057480202
624 => 0.0022922632138652
625 => 0.002321262019165
626 => 0.0023984896590962
627 => 0.0025154934868022
628 => 0.0024462248658788
629 => 0.0024769651035872
630 => 0.0024836804779885
701 => 0.0024326043613832
702 => 0.0025173767360757
703 => 0.0025628069403629
704 => 0.0026094089295054
705 => 0.0026498721309198
706 => 0.0025907950702422
707 => 0.0026540159935312
708 => 0.0026030710893555
709 => 0.0025573682437226
710 => 0.0025574375560741
711 => 0.0025287674933965
712 => 0.0024732156342983
713 => 0.0024629710191621
714 => 0.0025162648008526
715 => 0.0025590013668284
716 => 0.0025625213550966
717 => 0.0025861825139048
718 => 0.0026001849439582
719 => 0.0027374277938623
720 => 0.0027926280034261
721 => 0.0028601257747942
722 => 0.0028864199607081
723 => 0.0029655560333214
724 => 0.0029016472275686
725 => 0.0028878201554387
726 => 0.0026958619284909
727 => 0.0027272950773999
728 => 0.002777622581651
729 => 0.0026966918104993
730 => 0.0027480237570994
731 => 0.0027581577707175
801 => 0.0026939418138641
802 => 0.0027282423310272
803 => 0.0026371503268365
804 => 0.0024482692435205
805 => 0.0025175870147159
806 => 0.0025686282264253
807 => 0.00249578612398
808 => 0.0026263527732345
809 => 0.0025500784321828
810 => 0.0025259031278834
811 => 0.0024315866466934
812 => 0.0024761003952408
813 => 0.0025363058775266
814 => 0.0024991058891126
815 => 0.0025763014506782
816 => 0.0026856309531593
817 => 0.0027635456673118
818 => 0.0027695269915936
819 => 0.002719433050274
820 => 0.0027997089109339
821 => 0.0028002936329397
822 => 0.0027097421341787
823 => 0.0026542798453805
824 => 0.0026416786966719
825 => 0.0026731588367467
826 => 0.002711381538352
827 => 0.0027716480855162
828 => 0.0028080658977726
829 => 0.002903024237622
830 => 0.0029287172417164
831 => 0.0029569460635839
901 => 0.0029946684750452
902 => 0.0030399639018322
903 => 0.0029408600866922
904 => 0.0029447976660204
905 => 0.0028525135655478
906 => 0.0027538947693141
907 => 0.002828734142649
908 => 0.0029265766678197
909 => 0.0029041314844391
910 => 0.0029016059427953
911 => 0.0029058532033134
912 => 0.0028889302680356
913 => 0.0028123884589675
914 => 0.0027739496416305
915 => 0.0028235455227833
916 => 0.0028499035263574
917 => 0.0028907824912412
918 => 0.002885743295969
919 => 0.0029910431194293
920 => 0.0030319594467246
921 => 0.0030214912992941
922 => 0.0030234176903514
923 => 0.003097494746501
924 => 0.003179883668048
925 => 0.0032570517652525
926 => 0.0033355504681757
927 => 0.0032409172179452
928 => 0.0031928682896456
929 => 0.0032424425187882
930 => 0.0032161377349973
1001 => 0.0033672928251653
1002 => 0.003377758475652
1003 => 0.0035289026355865
1004 => 0.0036723564412761
1005 => 0.0035822556761644
1006 => 0.0036672166394372
1007 => 0.0037591088481857
1008 => 0.0039363838278351
1009 => 0.0038766838512981
1010 => 0.0038309546048887
1011 => 0.003787740687994
1012 => 0.0038776619890359
1013 => 0.0039933443062984
1014 => 0.0040182611694453
1015 => 0.0040586360067176
1016 => 0.004016186802126
1017 => 0.0040673121934301
1018 => 0.0042478072903687
1019 => 0.0041990359219016
1020 => 0.0041297727382896
1021 => 0.0042722562823892
1022 => 0.0043238205231081
1023 => 0.0046857253688759
1024 => 0.0051426451862013
1025 => 0.0049534773815313
1026 => 0.0048360548207657
1027 => 0.004863651907846
1028 => 0.0050305035574213
1029 => 0.0050840910116583
1030 => 0.0049384218383391
1031 => 0.0049898746529853
1101 => 0.0052733847204149
1102 => 0.0054254787754989
1103 => 0.005218914619738
1104 => 0.0046490123064467
1105 => 0.0041235363464302
1106 => 0.0042629162335175
1107 => 0.0042471148797832
1108 => 0.0045517110786352
1109 => 0.0041978727408934
1110 => 0.0042038304710319
1111 => 0.0045147253967032
1112 => 0.0044317839606225
1113 => 0.0042974294565082
1114 => 0.0041245172829958
1115 => 0.003804873137818
1116 => 0.0035217554044975
1117 => 0.0040770144776589
1118 => 0.0040530706967511
1119 => 0.004018396553727
1120 => 0.0040955601068929
1121 => 0.0044702444178098
1122 => 0.0044616067317084
1123 => 0.0044066581797175
1124 => 0.0044483361721083
1125 => 0.004290123102932
1126 => 0.0043308982133033
1127 => 0.0041234531083534
1128 => 0.0042172269594636
1129 => 0.0042971411920841
1130 => 0.0043131851574331
1201 => 0.0043493330305895
1202 => 0.0040404534122265
1203 => 0.0041791312926423
1204 => 0.0042605915550265
1205 => 0.0038925511260252
1206 => 0.0042533165790853
1207 => 0.0040350765052659
1208 => 0.0039610025463557
1209 => 0.0040607333735263
1210 => 0.0040218681731865
1211 => 0.0039884541561755
1212 => 0.0039698085605577
1213 => 0.004043039873142
1214 => 0.0040396235448796
1215 => 0.0039198029039063
1216 => 0.0037635017622708
1217 => 0.0038159615558138
1218 => 0.0037969024210064
1219 => 0.0037278296577873
1220 => 0.0037743763603198
1221 => 0.0035694082391139
1222 => 0.003216771239895
1223 => 0.0034497340431424
1224 => 0.0034407652286321
1225 => 0.0034362427456527
1226 => 0.0036113078536742
1227 => 0.0035944793829771
1228 => 0.0035639355438772
1229 => 0.0037272686962295
1230 => 0.00366764989848
1231 => 0.0038513809851885
]
'min_raw' => 0.0016493088173522
'max_raw' => 0.0054254787754989
'avg_raw' => 0.0035373937964255
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001649'
'max' => '$0.005425'
'avg' => '$0.003537'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00089850092102427
'max_diff' => 0.0035865156785401
'year' => 2029
]
4 => [
'items' => [
101 => 0.0039723981618765
102 => 0.0039417042913729
103 => 0.0040555215309746
104 => 0.0038171701235031
105 => 0.0038963409000665
106 => 0.0039126578873902
107 => 0.003725253190483
108 => 0.0035972327289044
109 => 0.0035886952236572
110 => 0.0033667253855862
111 => 0.0034852998814058
112 => 0.003589640530781
113 => 0.0035396694568918
114 => 0.0035238501077418
115 => 0.0036046677317508
116 => 0.0036109479532924
117 => 0.003467758236595
118 => 0.003497531912925
119 => 0.0036216930926829
120 => 0.0034944033697599
121 => 0.0032471002307787
122 => 0.003185765633078
123 => 0.0031775824671238
124 => 0.0030112381736511
125 => 0.0031898643041791
126 => 0.003111889211321
127 => 0.0033582115953748
128 => 0.0032175135706567
129 => 0.0032114483600207
130 => 0.0032022799045714
131 => 0.0030591004995833
201 => 0.0030904476897498
202 => 0.0031946505241752
203 => 0.0032318312694271
204 => 0.0032279530130845
205 => 0.0031941398734388
206 => 0.0032096193556173
207 => 0.0031597545501113
208 => 0.003142146249441
209 => 0.0030865696089807
210 => 0.0030048873009429
211 => 0.0030162457268623
212 => 0.0028544117013009
213 => 0.0027662359349932
214 => 0.0027418300450171
215 => 0.0027091934689488
216 => 0.0027455164331267
217 => 0.0028539532458398
218 => 0.0027231554435546
219 => 0.0024989117859357
220 => 0.0025123892118512
221 => 0.0025426689863996
222 => 0.0024862428268493
223 => 0.0024328402023236
224 => 0.0024792694516568
225 => 0.0023842544577718
226 => 0.0025541510944711
227 => 0.0025495558665782
228 => 0.0026128828264022
301 => 0.0026524824739802
302 => 0.0025612181068511
303 => 0.0025382653653232
304 => 0.0025513402900415
305 => 0.0023352409092041
306 => 0.0025952228966463
307 => 0.0025974712316696
308 => 0.0025782196221956
309 => 0.0027166520044653
310 => 0.003008787509197
311 => 0.0028988743811934
312 => 0.0028563126958886
313 => 0.0027754029010117
314 => 0.0028832103987369
315 => 0.0028749324649706
316 => 0.002837496509166
317 => 0.0028148551262881
318 => 0.0028565725684633
319 => 0.0028096858735361
320 => 0.0028012637347669
321 => 0.0027502347372033
322 => 0.0027320197067445
323 => 0.0027185340233541
324 => 0.0027036876110171
325 => 0.002736435097137
326 => 0.0026622249852987
327 => 0.0025727348653287
328 => 0.0025652947301498
329 => 0.0025858375975223
330 => 0.0025767489079466
331 => 0.0025652512170007
401 => 0.0025432989937753
402 => 0.0025367862380794
403 => 0.0025579495345513
404 => 0.0025340574067314
405 => 0.0025693115428013
406 => 0.0025597243684906
407 => 0.0025061711921288
408 => 0.0024394241064566
409 => 0.0024388299173874
410 => 0.0024244493672665
411 => 0.0024061335745573
412 => 0.0024010385400342
413 => 0.0024753593097797
414 => 0.0026292010789195
415 => 0.0025989982585158
416 => 0.002620822891567
417 => 0.0027281784855456
418 => 0.0027623036005761
419 => 0.0027380824022251
420 => 0.0027049269320239
421 => 0.0027063856044458
422 => 0.0028196878829669
423 => 0.0028267544070989
424 => 0.0028446092338332
425 => 0.0028675577319603
426 => 0.0027419906306883
427 => 0.002700471405268
428 => 0.0026807972928649
429 => 0.0026202086415033
430 => 0.0026855483075184
501 => 0.0026474776822549
502 => 0.0026526147102807
503 => 0.0026492692140398
504 => 0.0026510960812088
505 => 0.0025541036048987
506 => 0.0025894425654916
507 => 0.0025306846894017
508 => 0.0024520144891986
509 => 0.0024517507591021
510 => 0.0024710051791499
511 => 0.00245955189668
512 => 0.0024287314080442
513 => 0.0024331093129863
514 => 0.0023947542590454
515 => 0.0024377663109754
516 => 0.0024389997427202
517 => 0.0024224377598449
518 => 0.0024887037603624
519 => 0.0025158529948423
520 => 0.0025049515429217
521 => 0.0025150881199146
522 => 0.0026002533220612
523 => 0.0026141389660293
524 => 0.0026203060518458
525 => 0.002612042973834
526 => 0.0025166447834698
527 => 0.0025208760988769
528 => 0.0024898295139416
529 => 0.0024635984212798
530 => 0.0024646475274224
531 => 0.0024781337188539
601 => 0.00253702870779
602 => 0.0026609697399567
603 => 0.0026656732115278
604 => 0.0026713739562818
605 => 0.0026481861624024
606 => 0.0026411925018911
607 => 0.0026504189453225
608 => 0.0026969646804944
609 => 0.0028166929484006
610 => 0.0027743729821404
611 => 0.0027399661908214
612 => 0.0027701502228125
613 => 0.0027655036276777
614 => 0.0027262816885722
615 => 0.0027251808593742
616 => 0.0026499014182182
617 => 0.0026220723228528
618 => 0.0025988162477938
619 => 0.0025734212209445
620 => 0.0025583661977793
621 => 0.0025814975557468
622 => 0.0025867879709961
623 => 0.0025362108525333
624 => 0.0025293173781756
625 => 0.0025706197448953
626 => 0.0025524441132094
627 => 0.0025711382011324
628 => 0.0025754753898854
629 => 0.0025747770026022
630 => 0.0025557995556641
701 => 0.0025678952144269
702 => 0.0025392853755636
703 => 0.0025081764728587
704 => 0.002488330931086
705 => 0.0024710130637603
706 => 0.002480622023073
707 => 0.0024463678376499
708 => 0.0024354092343325
709 => 0.002563797477399
710 => 0.0026586392529584
711 => 0.0026572602159803
712 => 0.0026488656830356
713 => 0.0026363931098487
714 => 0.002696052234079
715 => 0.002675268188119
716 => 0.00269039031812
717 => 0.0026942395348791
718 => 0.0027058899546988
719 => 0.002710053978397
720 => 0.0026974674066808
721 => 0.0026552253346809
722 => 0.002549962107513
723 => 0.0025009617911136
724 => 0.002484790870537
725 => 0.0024853786527871
726 => 0.0024691649943563
727 => 0.0024739406434094
728 => 0.0024675042185086
729 => 0.0024553151868849
730 => 0.002479869384718
731 => 0.0024826990272801
801 => 0.002476967784105
802 => 0.0024783176993468
803 => 0.0024308654537032
804 => 0.0024344731448787
805 => 0.0024143850619707
806 => 0.0024106187885909
807 => 0.0023598378642691
808 => 0.0022698720960202
809 => 0.0023197218648185
810 => 0.0022595103540484
811 => 0.0022367073425665
812 => 0.002344653252326
813 => 0.0023338184769396
814 => 0.0023152740512418
815 => 0.0022878429806377
816 => 0.0022776685297184
817 => 0.0022158517867722
818 => 0.0022121993238195
819 => 0.0022428373708161
820 => 0.002228698966318
821 => 0.0022088432917701
822 => 0.0021369280512954
823 => 0.0020560715106839
824 => 0.0020585120613988
825 => 0.0020842310225779
826 => 0.0021590123708806
827 => 0.0021297940043683
828 => 0.0021085957442215
829 => 0.0021046259473134
830 => 0.0021543162669515
831 => 0.0022246384796832
901 => 0.0022576320885261
902 => 0.0022249364241936
903 => 0.002187377405468
904 => 0.0021896634489061
905 => 0.0022048714717342
906 => 0.0022064696199036
907 => 0.0021820225598427
908 => 0.0021889042640504
909 => 0.0021784503260827
910 => 0.0021142945280717
911 => 0.0021131341531259
912 => 0.002097389285642
913 => 0.002096912537312
914 => 0.0020701265899806
915 => 0.0020663790507864
916 => 0.0020131939265692
917 => 0.0020482005363883
918 => 0.0020247199404511
919 => 0.0019893291438611
920 => 0.0019832277571894
921 => 0.0019830443421384
922 => 0.0020193827769991
923 => 0.0020477759006197
924 => 0.0020251283954704
925 => 0.0020199719975513
926 => 0.0020750288370899
927 => 0.0020680223524044
928 => 0.0020619547818537
929 => 0.0022183418968339
930 => 0.0020945492922883
1001 => 0.0020405686508716
1002 => 0.0019737573564726
1003 => 0.0019955114508207
1004 => 0.002000095358134
1005 => 0.0018394262387455
1006 => 0.0017742427970197
1007 => 0.0017518742962056
1008 => 0.0017390009077429
1009 => 0.0017448674725192
1010 => 0.0016861947297108
1011 => 0.0017256237832356
1012 => 0.001674818147447
1013 => 0.0016663004172712
1014 => 0.0017571471876718
1015 => 0.0017697879850539
1016 => 0.0017158584162339
1017 => 0.0017504899298204
1018 => 0.0017379320615799
1019 => 0.0016756890642516
1020 => 0.0016733118395821
1021 => 0.0016420804914699
1022 => 0.001593209479255
1023 => 0.0015708741152885
1024 => 0.0015592416638102
1025 => 0.0015640414400021
1026 => 0.0015616145262839
1027 => 0.0015457772726449
1028 => 0.001562522299124
1029 => 0.0015197456759925
1030 => 0.0015027116799869
1031 => 0.0014950178191768
1101 => 0.001457051104017
1102 => 0.0015174730317111
1103 => 0.0015293769126422
1104 => 0.0015413042478961
1105 => 0.0016451235581432
1106 => 0.0016399370387936
1107 => 0.0016868206477768
1108 => 0.0016849988369452
1109 => 0.0016716268721991
1110 => 0.0016152127525166
1111 => 0.001637698415137
1112 => 0.0015684910406391
1113 => 0.001620345911257
1114 => 0.0015966815138182
1115 => 0.0016123449546787
1116 => 0.001584180675696
1117 => 0.0015997679505596
1118 => 0.0015321997644159
1119 => 0.0014691055429049
1120 => 0.0014944964994761
1121 => 0.001522099373077
1122 => 0.0015819494361252
1123 => 0.001546303232326
1124 => 0.0015591229551444
1125 => 0.0015161790296985
1126 => 0.0014275734451776
1127 => 0.0014280749431634
1128 => 0.0014144449043625
1129 => 0.0014026665608202
1130 => 0.001550397627635
1201 => 0.001532024934194
1202 => 0.0015027504517545
1203 => 0.0015419355098215
1204 => 0.0015522966611249
1205 => 0.0015525916285364
1206 => 0.0015811800353894
1207 => 0.0015964376732515
1208 => 0.0015991268980551
1209 => 0.0016441113739317
1210 => 0.0016591895768859
1211 => 0.0017212945609072
1212 => 0.0015951431692781
1213 => 0.0015925451643837
1214 => 0.001542486923947
1215 => 0.0015107391964725
1216 => 0.0015446607180085
1217 => 0.00157471055534
1218 => 0.0015434206561565
1219 => 0.001547506456424
1220 => 0.0015055023232489
1221 => 0.0015205168243808
1222 => 0.0015334493354274
1223 => 0.0015263087629653
1224 => 0.001515618980382
1225 => 0.0015722468113626
1226 => 0.0015690516472124
1227 => 0.0016217847852898
1228 => 0.0016628940374039
1229 => 0.0017365691663503
1230 => 0.0016596853285234
1231 => 0.0016568833758875
]
'min_raw' => 0.0014026665608202
'max_raw' => 0.0040555215309746
'avg_raw' => 0.0027290940458974
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0014026'
'max' => '$0.004055'
'avg' => '$0.002729'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00024664225653193
'max_diff' => -0.0013699572445243
'year' => 2030
]
5 => [
'items' => [
101 => 0.0016842729123516
102 => 0.0016591853836906
103 => 0.0016750398358123
104 => 0.0017340147690047
105 => 0.0017352608164115
106 => 0.001714387916905
107 => 0.0017131177990731
108 => 0.0017171266677478
109 => 0.0017406067367905
110 => 0.0017324020791973
111 => 0.0017418967166806
112 => 0.0017537699062405
113 => 0.0018028824523883
114 => 0.0018147233209948
115 => 0.0017859561490675
116 => 0.0017885535026002
117 => 0.0017777937906229
118 => 0.0017674000436715
119 => 0.0017907636689332
120 => 0.0018334611533122
121 => 0.0018331955344779
122 => 0.0018431005209333
123 => 0.0018492712454377
124 => 0.0018227819786184
125 => 0.0018055384399564
126 => 0.0018121507099143
127 => 0.0018227238735735
128 => 0.0018087219754412
129 => 0.0017222957738586
130 => 0.0017485119624916
131 => 0.0017441483067969
201 => 0.0017379339304491
202 => 0.0017642945108434
203 => 0.0017617519685573
204 => 0.0016855929559291
205 => 0.0016904684088202
206 => 0.0016858894483674
207 => 0.0017006850063576
208 => 0.0016583863750042
209 => 0.0016713971491229
210 => 0.0016795573846817
211 => 0.0016843638261157
212 => 0.0017017279883832
213 => 0.0016996905043575
214 => 0.0017016013355154
215 => 0.0017273478041891
216 => 0.0018575646076196
217 => 0.0018646520209232
218 => 0.0018297510057169
219 => 0.0018436932728997
220 => 0.0018169271687474
221 => 0.0018348954337822
222 => 0.0018471888643745
223 => 0.0017916372154184
224 => 0.0017883478072944
225 => 0.001761471229909
226 => 0.0017759131802288
227 => 0.001752934998857
228 => 0.001758573040823
301 => 0.0017428085839705
302 => 0.001771181467633
303 => 0.001802906760268
304 => 0.0018109218220573
305 => 0.0017898376451905
306 => 0.001774571311624
307 => 0.0017477686589242
308 => 0.0017923420677001
309 => 0.0018053766907762
310 => 0.0017922736023741
311 => 0.0017892373304832
312 => 0.0017834836007364
313 => 0.0017904580114486
314 => 0.0018053057014196
315 => 0.0017983038050231
316 => 0.0018029286809506
317 => 0.0017853034230664
318 => 0.001822790747668
319 => 0.0018823296409512
320 => 0.0018825210682287
321 => 0.0018755191340893
322 => 0.0018726540934982
323 => 0.0018798385028381
324 => 0.0018837357501851
325 => 0.001906968812595
326 => 0.0019318988142068
327 => 0.0020482362539173
328 => 0.0020155691663783
329 => 0.0021187906638347
330 => 0.0022004254666888
331 => 0.0022249041746074
401 => 0.0022023849151345
402 => 0.002125347744944
403 => 0.0021215679338493
404 => 0.0022366939903681
405 => 0.0022041656062941
406 => 0.0022002964585129
407 => 0.0021591352631499
408 => 0.0021834666275227
409 => 0.0021781450012148
410 => 0.0021697445537449
411 => 0.0022161671020306
412 => 0.002303065968252
413 => 0.002289521965019
414 => 0.0022794119948937
415 => 0.0022351130487731
416 => 0.0022617909088656
417 => 0.0022522914338674
418 => 0.0022931072069753
419 => 0.0022689288471663
420 => 0.0022039191717922
421 => 0.0022142721768702
422 => 0.00221270734098
423 => 0.0022449115527146
424 => 0.0022352446477095
425 => 0.0022108197226295
426 => 0.0023027689573743
427 => 0.0022967982855185
428 => 0.0023052633331244
429 => 0.0023089899088709
430 => 0.0023649577877328
501 => 0.0023878860369302
502 => 0.0023930911509135
503 => 0.0024148712143165
504 => 0.0023925492430948
505 => 0.0024818530432774
506 => 0.0025412348593777
507 => 0.0026102098945384
508 => 0.0027110009596499
509 => 0.0027488993325013
510 => 0.0027420533306609
511 => 0.0028184719659159
512 => 0.0029557945547783
513 => 0.002769810152073
514 => 0.0029656521797271
515 => 0.0029036508548768
516 => 0.0027566468290128
517 => 0.0027471815028108
518 => 0.0028467343358777
519 => 0.003067532938015
520 => 0.0030122253924566
521 => 0.0030676234013461
522 => 0.003002998681338
523 => 0.0029997895192897
524 => 0.0030644847229404
525 => 0.0032156485926223
526 => 0.0031438363044293
527 => 0.0030408757802093
528 => 0.0031169002290502
529 => 0.0030510408157336
530 => 0.0029026411246423
531 => 0.0030121830998189
601 => 0.0029389355005941
602 => 0.0029603130441044
603 => 0.0031142686029167
604 => 0.0030957442627646
605 => 0.0031197164742292
606 => 0.0030774061484561
607 => 0.0030378816324581
608 => 0.0029641061882187
609 => 0.0029422649162649
610 => 0.0029483010580663
611 => 0.0029422619250528
612 => 0.0029009852420321
613 => 0.0028920715462638
614 => 0.002877214996132
615 => 0.0028818196622397
616 => 0.0028538850015548
617 => 0.0029066034778626
618 => 0.0029163884916189
619 => 0.0029547526023196
620 => 0.0029587356915606
621 => 0.0030655791937832
622 => 0.0030067315881911
623 => 0.0030462116426801
624 => 0.0030426801750059
625 => 0.0027598328520085
626 => 0.0027988067175345
627 => 0.0028594378216202
628 => 0.0028321235914131
629 => 0.0027935076604458
630 => 0.0027623232257345
701 => 0.0027150756183747
702 => 0.0027815757184237
703 => 0.0028690162784908
704 => 0.0029609533284628
705 => 0.00307140967005
706 => 0.0030467571004613
707 => 0.0029588884239887
708 => 0.0029628301486271
709 => 0.0029871963393306
710 => 0.0029556399084677
711 => 0.0029463333009516
712 => 0.0029859177543705
713 => 0.002986190350746
714 => 0.0029498808633162
715 => 0.0029095295126041
716 => 0.0029093604389713
717 => 0.0029021803058599
718 => 0.0030042760110678
719 => 0.003060418325892
720 => 0.0030668549518088
721 => 0.0030599850896835
722 => 0.0030626290269604
723 => 0.0030299610509757
724 => 0.0031046303566895
725 => 0.0031731542956414
726 => 0.0031547884162019
727 => 0.0031272553520584
728 => 0.0031053239402961
729 => 0.003149622072581
730 => 0.0031476495464821
731 => 0.0031725557988137
801 => 0.0031714259073424
802 => 0.0031630508714548
803 => 0.0031547887153008
804 => 0.0031875472305398
805 => 0.0031781133042366
806 => 0.0031686647244402
807 => 0.0031497141511532
808 => 0.0031522898487986
809 => 0.0031247615386268
810 => 0.0031120256827316
811 => 0.0029205089676584
812 => 0.0028693294434016
813 => 0.0028854315635881
814 => 0.0028907327996448
815 => 0.0028684594050999
816 => 0.0029003937313117
817 => 0.0028954168003984
818 => 0.0029147791271748
819 => 0.0029026823860194
820 => 0.002903178840496
821 => 0.0029387527769368
822 => 0.0029490800420279
823 => 0.0029438275116513
824 => 0.0029475062038809
825 => 0.0030322801136321
826 => 0.0030202279745825
827 => 0.0030138255159205
828 => 0.003015599040725
829 => 0.0030372605922396
830 => 0.0030433246439868
831 => 0.0030176308306205
901 => 0.0030297481815382
902 => 0.0030813423238251
903 => 0.0030993973536499
904 => 0.0031570203419448
905 => 0.0031325410723502
906 => 0.0031774738311291
907 => 0.0033155818129092
908 => 0.0034259120251006
909 => 0.0033244478023805
910 => 0.0035270551866022
911 => 0.0036848140975218
912 => 0.0036787590477595
913 => 0.0036512501326113
914 => 0.0034716458067669
915 => 0.0033063712283753
916 => 0.0034446304311292
917 => 0.0034449828822703
918 => 0.0034331062941377
919 => 0.0033593418252579
920 => 0.0034305394505144
921 => 0.0034361908594555
922 => 0.0034330275732794
923 => 0.0033764725279393
924 => 0.0032901234268243
925 => 0.0033069958344916
926 => 0.0033346331824385
927 => 0.0032823099170203
928 => 0.0032655894633408
929 => 0.0032966759679275
930 => 0.0033968431628365
1001 => 0.003377907134868
1002 => 0.0033774126386513
1003 => 0.003458428996426
1004 => 0.0034004387686836
1005 => 0.0033072086495853
1006 => 0.0032836668149587
1007 => 0.0032001091617146
1008 => 0.0032578227304325
1009 => 0.0032598997390251
1010 => 0.0032282906072567
1011 => 0.0033097735564204
1012 => 0.0033090226766991
1013 => 0.0033863786097935
1014 => 0.0035342541003084
1015 => 0.0034905200412522
1016 => 0.0034396620888219
1017 => 0.0034451917583891
1018 => 0.0035058385851542
1019 => 0.0034691701292596
1020 => 0.0034823563616609
1021 => 0.0035058186262122
1022 => 0.0035199739929512
1023 => 0.0034431550189541
1024 => 0.0034252448414391
1025 => 0.0033886069038615
1026 => 0.003379048749827
1027 => 0.0034088895855083
1028 => 0.0034010275795986
1029 => 0.0032597251744955
1030 => 0.0032449582869631
1031 => 0.0032454111663214
1101 => 0.0032082791254939
1102 => 0.003151643850521
1103 => 0.0033004779716332
1104 => 0.0032885245087757
1105 => 0.0032753288109056
1106 => 0.0032769452086011
1107 => 0.0033415490561195
1108 => 0.0033040755619863
1109 => 0.0034037049879243
1110 => 0.0033832241730861
1111 => 0.0033622181026285
1112 => 0.0033593144238307
1113 => 0.0033512288788583
1114 => 0.003323500536649
1115 => 0.0032900168972162
1116 => 0.0032679080981595
1117 => 0.0030144724795836
1118 => 0.0030615086562241
1119 => 0.0031156194899666
1120 => 0.003134298332939
1121 => 0.0031023468794982
1122 => 0.0033247621747772
1123 => 0.0033653995924718
1124 => 0.0032423062035617
1125 => 0.0032192804563666
1126 => 0.00332627173893
1127 => 0.0032617429163919
1128 => 0.0032908002412296
1129 => 0.0032279941984374
1130 => 0.0033556112285517
1201 => 0.0033546390005992
1202 => 0.0033049930935234
1203 => 0.0033469534742234
1204 => 0.0033396618254825
1205 => 0.0032836117186664
1206 => 0.0033573881169125
1207 => 0.0033574247090856
1208 => 0.0033096416029202
1209 => 0.003253841395986
1210 => 0.0032438656369283
1211 => 0.0032363502425329
1212 => 0.0032889519149104
1213 => 0.003336114409883
1214 => 0.0034238721204528
1215 => 0.0034459364939618
1216 => 0.0035320552126761
1217 => 0.0034807757087261
1218 => 0.0035035072486464
1219 => 0.0035281855508025
1220 => 0.0035400172363707
1221 => 0.0035207381396606
1222 => 0.0036545159577027
1223 => 0.0036658109043919
1224 => 0.0036695980023158
1225 => 0.0036244888747645
1226 => 0.0036645563379528
1227 => 0.0036458100988219
1228 => 0.0036945826051854
1229 => 0.0037022307569418
1230 => 0.003695753044495
1231 => 0.0036981806885804
]
'min_raw' => 0.0016583863750042
'max_raw' => 0.0037022307569418
'avg_raw' => 0.002680308565973
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001658'
'max' => '$0.0037022'
'avg' => '$0.00268'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00025571981418398
'max_diff' => -0.00035329077403283
'year' => 2031
]
6 => [
'items' => [
101 => 0.0035840249209057
102 => 0.0035781053421321
103 => 0.0034973914655203
104 => 0.0035302829668465
105 => 0.0034687938816478
106 => 0.0034882927039721
107 => 0.003496887599061
108 => 0.0034923981136225
109 => 0.0035321426029814
110 => 0.0034983516677636
111 => 0.0034091718339798
112 => 0.0033199677032098
113 => 0.0033188478180121
114 => 0.0032953619449641
115 => 0.0032783859604026
116 => 0.0032816561372845
117 => 0.0032931806671524
118 => 0.0032777161337762
119 => 0.0032810162760438
120 => 0.0033358206264181
121 => 0.003346811248039
122 => 0.0033094608214583
123 => 0.003159493469096
124 => 0.0031226911046617
125 => 0.0031491439143945
126 => 0.0031365011751214
127 => 0.0025314012422028
128 => 0.0026735604958679
129 => 0.0025890942946122
130 => 0.0026280202062539
131 => 0.0025418020871886
201 => 0.0025829498926854
202 => 0.0025753513954874
203 => 0.0028039392685826
204 => 0.0028003701833566
205 => 0.0028020785155825
206 => 0.0027205353674034
207 => 0.0028504358165904
208 => 0.002914429448929
209 => 0.0029025859307185
210 => 0.0029055666890935
211 => 0.0028543473844861
212 => 0.0028025744304109
213 => 0.0027451502565411
214 => 0.0028518372737488
215 => 0.0028399754986435
216 => 0.0028671821430032
217 => 0.0029363762998079
218 => 0.0029465654022405
219 => 0.0029602596592375
220 => 0.0029553512429276
221 => 0.0030722896330128
222 => 0.0030581276223892
223 => 0.0030922539933037
224 => 0.0030220534591586
225 => 0.0029426148912775
226 => 0.0029577135659893
227 => 0.0029562594421986
228 => 0.0029377467773785
229 => 0.0029210343713361
301 => 0.0028932129239667
302 => 0.0029812441002431
303 => 0.00297767019525
304 => 0.0030355275628769
305 => 0.0030253007111523
306 => 0.0029570032924008
307 => 0.0029594425480727
308 => 0.0029758477147328
309 => 0.0030326261838539
310 => 0.0030494818992621
311 => 0.0030416736603009
312 => 0.0030601551827533
313 => 0.0030747622245473
314 => 0.0030619896023086
315 => 0.0032428229981312
316 => 0.0031677283645253
317 => 0.0032043289664397
318 => 0.003213057994333
319 => 0.003190698772936
320 => 0.0031955476874333
321 => 0.0032028924716466
322 => 0.0032474885631339
323 => 0.0033645216111794
324 => 0.0034163547514878
325 => 0.0035722973115079
326 => 0.0034120507307374
327 => 0.0034025423618007
328 => 0.0034306323258745
329 => 0.0035221871168027
330 => 0.0035963836755458
331 => 0.003620998954583
401 => 0.0036242522700618
402 => 0.0036704321699284
403 => 0.0036969016273279
404 => 0.0036648247154327
405 => 0.0036376428911942
406 => 0.0035402809707041
407 => 0.0035515508781085
408 => 0.0036291893642956
409 => 0.003738858298919
410 => 0.0038329656539337
411 => 0.00380001253818
412 => 0.0040514215501066
413 => 0.0040763477267254
414 => 0.0040729037350765
415 => 0.0041296892749265
416 => 0.0040169815424982
417 => 0.0039687968032757
418 => 0.0036435199101213
419 => 0.0037349094492257
420 => 0.0038677495114332
421 => 0.0038501676310754
422 => 0.0037536956270752
423 => 0.0038328924712678
424 => 0.0038067075178635
425 => 0.0037860543586987
426 => 0.0038806704846443
427 => 0.0037766361675509
428 => 0.0038667116895381
429 => 0.0037511889008775
430 => 0.003800163065237
501 => 0.0037723629609328
502 => 0.0037903530354703
503 => 0.0036851834273218
504 => 0.0037419303950308
505 => 0.0036828225668984
506 => 0.0036827945420918
507 => 0.0036814897335097
508 => 0.0037510298311832
509 => 0.0037532975312718
510 => 0.0037019072940218
511 => 0.0036945011579677
512 => 0.0037218855246728
513 => 0.0036898256032381
514 => 0.0037048262386947
515 => 0.0036902799572047
516 => 0.0036870052828498
517 => 0.0036609121204496
518 => 0.0036496704686412
519 => 0.0036540786099769
520 => 0.0036390313510454
521 => 0.0036299648332559
522 => 0.0036796861749204
523 => 0.0036531220678223
524 => 0.0036756148445247
525 => 0.0036499814866576
526 => 0.0035611251003677
527 => 0.0035100228529731
528 => 0.0033421813762628
529 => 0.0033897810108511
530 => 0.0034213396178286
531 => 0.0034109094984108
601 => 0.0034333174308406
602 => 0.0034346930959021
603 => 0.0034274080486474
604 => 0.0034189728971987
605 => 0.0034148671319666
606 => 0.0034454681422162
607 => 0.0034632330586487
608 => 0.0034245069462385
609 => 0.0034154339599367
610 => 0.0034545881977106
611 => 0.0034784722601341
612 => 0.0036548187577734
613 => 0.0036417544396366
614 => 0.0036745433144171
615 => 0.0036708517903031
616 => 0.0037052197547503
617 => 0.0037613968516362
618 => 0.003647173106304
619 => 0.0036669983989337
620 => 0.0036621376950138
621 => 0.0037152055858667
622 => 0.0037153712580294
623 => 0.0036835544065253
624 => 0.0037008028378951
625 => 0.0036911752366904
626 => 0.0037085736133156
627 => 0.003641579957703
628 => 0.003723170998721
629 => 0.0037694278613676
630 => 0.0037700701379504
701 => 0.0037919955237277
702 => 0.0038142729855102
703 => 0.0038570326334437
704 => 0.0038130804421372
705 => 0.0037340147286363
706 => 0.0037397230177704
707 => 0.0036933668188738
708 => 0.0036941460749522
709 => 0.0036899863449344
710 => 0.0037024700078477
711 => 0.0036443194196952
712 => 0.0036579672465048
713 => 0.0036388602090497
714 => 0.0036669568639658
715 => 0.0036367295078196
716 => 0.0036621353510352
717 => 0.00367309967075
718 => 0.0037135582465425
719 => 0.0036307537432791
720 => 0.003461909755753
721 => 0.0034974028089665
722 => 0.0034449057953446
723 => 0.0034497645938256
724 => 0.0034595801400291
725 => 0.0034277647433366
726 => 0.0034338341184071
727 => 0.0034336172776201
728 => 0.0034317486608641
729 => 0.0034234722474155
730 => 0.0034114698104765
731 => 0.0034592838250862
801 => 0.0034674083578857
802 => 0.0034854681878821
803 => 0.0035392019918518
804 => 0.0035338327177049
805 => 0.0035425902266076
806 => 0.0035234726338443
807 => 0.0034506514041233
808 => 0.0034546059472506
809 => 0.0034052927310852
810 => 0.0034842071380735
811 => 0.0034655191648794
812 => 0.0034534709069887
813 => 0.0034501834281969
814 => 0.0035040504278734
815 => 0.0035201682784383
816 => 0.003510124715595
817 => 0.0034895250751857
818 => 0.0035290824745085
819 => 0.0035396663657746
820 => 0.0035420357087102
821 => 0.0036121238359313
822 => 0.0035459528564399
823 => 0.0035618808688864
824 => 0.0036861466751427
825 => 0.0035734547363773
826 => 0.0036331501696715
827 => 0.0036302283888518
828 => 0.0036607665525417
829 => 0.003627723368087
830 => 0.0036281329779602
831 => 0.0036552487984825
901 => 0.0036171695189229
902 => 0.0036077405537939
903 => 0.0035947145059996
904 => 0.00362315640481
905 => 0.0036402060368304
906 => 0.0037776135493397
907 => 0.0038663850689646
908 => 0.0038625312631794
909 => 0.0038977478340335
910 => 0.0038818824463169
911 => 0.0038306489243023
912 => 0.0039180982991188
913 => 0.0038904256578896
914 => 0.0038927069568103
915 => 0.0038926220467505
916 => 0.0039110219339837
917 => 0.0038979839275541
918 => 0.0038722846785575
919 => 0.0038893450393752
920 => 0.0039400082118131
921 => 0.0040972682535964
922 => 0.0041852730563968
923 => 0.0040919702539657
924 => 0.0041563292777084
925 => 0.0041177367969277
926 => 0.004110723395143
927 => 0.0041511456181479
928 => 0.0041916385949031
929 => 0.0041890593673397
930 => 0.0041596635455528
1001 => 0.0041430585917167
1002 => 0.0042687968652311
1003 => 0.0043614386832608
1004 => 0.0043551211323498
1005 => 0.0043830047474934
1006 => 0.0044648719039626
1007 => 0.0044723568107575
1008 => 0.0044714138845399
1009 => 0.0044528617620794
1010 => 0.004533470609417
1011 => 0.0046007159280437
1012 => 0.0044485674817522
1013 => 0.0045065036183306
1014 => 0.0045325130166264
1015 => 0.0045707025299653
1016 => 0.0046351346402738
1017 => 0.0047051250018419
1018 => 0.0047150224063729
1019 => 0.0047079997242238
1020 => 0.0046618391993277
1021 => 0.0047384234881142
1022 => 0.0047832847683628
1023 => 0.0048099986341187
1024 => 0.0048777405529122
1025 => 0.0045326736418156
1026 => 0.0042884181312032
1027 => 0.0042502741061287
1028 => 0.0043278414810573
1029 => 0.0043482953792378
1030 => 0.0043400504385282
1031 => 0.0040651186545945
1101 => 0.0042488266471847
1102 => 0.0044464810006051
1103 => 0.0044540737092927
1104 => 0.0045530236113725
1105 => 0.0045852457555833
1106 => 0.0046649133964177
1107 => 0.0046599301637924
1108 => 0.0046793279665465
1109 => 0.0046748687476164
1110 => 0.0048224362762613
1111 => 0.0049852251743465
1112 => 0.0049795883124428
1113 => 0.0049561854823123
1114 => 0.0049909426758317
1115 => 0.0051589582641742
1116 => 0.0051434900811946
1117 => 0.0051585161033826
1118 => 0.005356615950982
1119 => 0.005614173932236
1120 => 0.005494512391545
1121 => 0.0057541435031638
1122 => 0.0059175675254739
1123 => 0.0062001924737
1124 => 0.0061648064382248
1125 => 0.0062748302565716
1126 => 0.0061014580494359
1127 => 0.0057033604175484
1128 => 0.0056403599434457
1129 => 0.0057664884880254
1130 => 0.0060765632074313
1201 => 0.0057567231316491
1202 => 0.0058214263624192
1203 => 0.0058027918276046
1204 => 0.005801798872436
1205 => 0.0058396959325808
1206 => 0.005784724270263
1207 => 0.0055607598287672
1208 => 0.005663401412474
1209 => 0.0056237665677511
1210 => 0.0056677443829446
1211 => 0.005905074513713
1212 => 0.0058001452056566
1213 => 0.005689610703384
1214 => 0.0058282454988035
1215 => 0.0060047752334568
1216 => 0.0059937283199166
1217 => 0.0059722926903971
1218 => 0.0060931242116659
1219 => 0.006292702484488
1220 => 0.0063466476896614
1221 => 0.0063864689372592
1222 => 0.0063919596145174
1223 => 0.0064485170027143
1224 => 0.0061443936720828
1225 => 0.006627045208236
1226 => 0.0067103857955501
1227 => 0.0066947212192485
1228 => 0.00678735077454
1229 => 0.0067600968095882
1230 => 0.0067206100903892
1231 => 0.0068674476383977
]
'min_raw' => 0.0025314012422028
'max_raw' => 0.0068674476383977
'avg_raw' => 0.0046994244403003
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002531'
'max' => '$0.006867'
'avg' => '$0.004699'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00087301486719864
'max_diff' => 0.0031652168814559
'year' => 2032
]
7 => [
'items' => [
101 => 0.006699110238785
102 => 0.0064601764931241
103 => 0.006329092714681
104 => 0.0065017144083617
105 => 0.0066071284530257
106 => 0.0066768004309561
107 => 0.0066978831293809
108 => 0.0061680019005116
109 => 0.0058824253067113
110 => 0.006065476629195
111 => 0.0062888118761525
112 => 0.0061431530335095
113 => 0.0061488625843724
114 => 0.0059411913532339
115 => 0.0063071861720485
116 => 0.0062538638054482
117 => 0.0065305003376964
118 => 0.0064644788091285
119 => 0.0066900651622086
120 => 0.0066306607152207
121 => 0.0068772452534098
122 => 0.0069756145017033
123 => 0.0071407917795391
124 => 0.0072622968575075
125 => 0.0073336469633124
126 => 0.0073293633705874
127 => 0.0076120880362678
128 => 0.0074453751785635
129 => 0.0072359445380832
130 => 0.0072321565985421
131 => 0.007340623694902
201 => 0.0075679409723776
202 => 0.0076268810350952
203 => 0.0076598204894031
204 => 0.0076093725684999
205 => 0.00742841770988
206 => 0.00735028231939
207 => 0.0074168559358877
208 => 0.007335442123647
209 => 0.0074759852042556
210 => 0.0076689808723133
211 => 0.007629128030047
212 => 0.0077623501066713
213 => 0.0079002209406063
214 => 0.0080973824252999
215 => 0.0081489277382675
216 => 0.0082341301805102
217 => 0.0083218314811221
218 => 0.0083499987752624
219 => 0.0084037788795742
220 => 0.0084034954318778
221 => 0.0085655653960399
222 => 0.0087443335853998
223 => 0.00881181443839
224 => 0.008966982938925
225 => 0.0087012623195115
226 => 0.0089028144617152
227 => 0.0090846195391602
228 => 0.0088678640308867
301 => 0.0091666110014855
302 => 0.0091782106693787
303 => 0.0093533518828054
304 => 0.0091758127100009
305 => 0.0090703905159146
306 => 0.0093747404401235
307 => 0.0095220057815154
308 => 0.0094776482622031
309 => 0.0091400853500353
310 => 0.0089436092563993
311 => 0.0084293934219458
312 => 0.0090385042903269
313 => 0.0093351844263077
314 => 0.0091393170201558
315 => 0.0092381011468922
316 => 0.0097770353115056
317 => 0.0099822265479873
318 => 0.0099395482051941
319 => 0.0099467601425808
320 => 0.010057477609302
321 => 0.010548459829966
322 => 0.010254251902465
323 => 0.010479162839279
324 => 0.010598454789188
325 => 0.010709259800476
326 => 0.010437157713036
327 => 0.010083156895249
328 => 0.0099710299763129
329 => 0.0091198418667386
330 => 0.0090755338291127
331 => 0.0090506623849223
401 => 0.0088938514474376
402 => 0.0087706410047053
403 => 0.0086726594861341
404 => 0.0084155267216451
405 => 0.0085023014814487
406 => 0.008092485522632
407 => 0.0083546712500971
408 => 0.0077005950844733
409 => 0.008245329151183
410 => 0.0079488551646917
411 => 0.0081479294729783
412 => 0.0081472349214706
413 => 0.007780676003348
414 => 0.0075692524692644
415 => 0.0077039797739095
416 => 0.0078484181391559
417 => 0.0078718527779681
418 => 0.0080591208887371
419 => 0.0081113833931381
420 => 0.0079530255648999
421 => 0.0076870408097639
422 => 0.0077488230019156
423 => 0.0075680004551124
424 => 0.0072511158970785
425 => 0.007478707918932
426 => 0.0075564178417076
427 => 0.007590738970642
428 => 0.007279119402253
429 => 0.0071812017682752
430 => 0.007129071241554
501 => 0.0076468146366358
502 => 0.0076751777885581
503 => 0.0075300678931785
504 => 0.0081859783801791
505 => 0.0080375256360595
506 => 0.0082033837230465
507 => 0.0077432169155482
508 => 0.0077607959072914
509 => 0.0075429455661215
510 => 0.0076649272004116
511 => 0.0075787145129469
512 => 0.0076550722898069
513 => 0.0077008408264219
514 => 0.0079186554204945
515 => 0.0082478162439669
516 => 0.0078861211836167
517 => 0.0077285254662534
518 => 0.0078262969629536
519 => 0.0080866753428434
520 => 0.0084811619169006
521 => 0.0082476179252766
522 => 0.0083512607829251
523 => 0.0083739021365716
524 => 0.0082016954434165
525 => 0.0084875114233103
526 => 0.0086406825289002
527 => 0.0087978043889411
528 => 0.0089342288975601
529 => 0.008735046462857
530 => 0.0089482002196698
531 => 0.0087764359183819
601 => 0.0086223455834597
602 => 0.008622579274892
603 => 0.0085259161568946
604 => 0.0083386191854381
605 => 0.0083040787502504
606 => 0.0084837624560728
607 => 0.0086278517720321
608 => 0.0086397196582358
609 => 0.0087194949071272
610 => 0.0087667050776708
611 => 0.0092294289281121
612 => 0.009415540288612
613 => 0.0096431137373236
614 => 0.0097317664209335
615 => 0.0099985792148534
616 => 0.0097831062142875
617 => 0.0097364872752263
618 => 0.0090892867109765
619 => 0.0091952657671156
620 => 0.0093649484614521
621 => 0.0090920847161081
622 => 0.0092651539579523
623 => 0.0092993214924002
624 => 0.0090828129104539
625 => 0.009198459498855
626 => 0.0088913364468855
627 => 0.0082545106872294
628 => 0.0084882203924271
629 => 0.0086603094012887
630 => 0.0084147171672214
701 => 0.0088549317410551
702 => 0.0085977674748948
703 => 0.0085162587485837
704 => 0.0081982641472851
705 => 0.0083483453583634
706 => 0.0085513323453026
707 => 0.0084259099871443
708 => 0.0086861802125847
709 => 0.009054792263342
710 => 0.0093174871619389
711 => 0.0093376536143576
712 => 0.0091687583937511
713 => 0.0094394140626479
714 => 0.0094413854937143
715 => 0.0091360847935379
716 => 0.0089490898146013
717 => 0.0089066041619461
718 => 0.0090127416520816
719 => 0.0091416121591677
720 => 0.0093448050306077
721 => 0.0094675902272405
722 => 0.0097877488998226
723 => 0.0098743746569548
724 => 0.0099695501007546
725 => 0.010096733844691
726 => 0.010249450538529
727 => 0.0099153151065773
728 => 0.0099285909301952
729 => 0.0096174486423816
730 => 0.0092849484855353
731 => 0.009537274657852
801 => 0.0098671575626121
802 => 0.0097914820597719
803 => 0.0097829670197921
804 => 0.0097972869551629
805 => 0.0097402300973523
806 => 0.0094821640441007
807 => 0.0093525648877367
808 => 0.0095197808637172
809 => 0.009608648713024
810 => 0.009746474997208
811 => 0.0097294849985224
812 => 0.010084510705118
813 => 0.010222462959281
814 => 0.010187168869356
815 => 0.010193663831302
816 => 0.010443419798005
817 => 0.010721199799212
818 => 0.010981377426641
819 => 0.011246041284151
820 => 0.010926978673917
821 => 0.010764978357485
822 => 0.010932121332202
823 => 0.01084343291711
824 => 0.011353062856922
825 => 0.011388348528227
826 => 0.011897941615994
827 => 0.012381606137501
828 => 0.012077825117293
829 => 0.012364276936752
830 => 0.012674097934257
831 => 0.013271792905089
901 => 0.013070510266075
902 => 0.012916330919092
903 => 0.012770632181182
904 => 0.013073808125749
905 => 0.013463839135081
906 => 0.013547848078821
907 => 0.013683974661565
908 => 0.013540854204576
909 => 0.013713227030819
910 => 0.014321778851912
911 => 0.014157342778017
912 => 0.013923817118668
913 => 0.014404210335484
914 => 0.014578062773168
915 => 0.015798250228063
916 => 0.017338787293299
917 => 0.01670099483258
918 => 0.016305096470777
919 => 0.016398141976635
920 => 0.016960693962389
921 => 0.017141367805705
922 => 0.016650234017562
923 => 0.016823710774463
924 => 0.017779584760843
925 => 0.018292380486426
926 => 0.01759593501343
927 => 0.015674469574859
928 => 0.013902790688104
929 => 0.014372719708611
930 => 0.014319444341281
1001 => 0.015346411691938
1002 => 0.014153421032037
1003 => 0.014173507935155
1004 => 0.015221711883046
1005 => 0.014942069040514
1006 => 0.014489083449561
1007 => 0.013906097984221
1008 => 0.012828395431913
1009 => 0.011873844227374
1010 => 0.013745938959488
1011 => 0.013665210830456
1012 => 0.013548304536379
1013 => 0.013808466843265
1014 => 0.015071741157144
1015 => 0.01504261859539
1016 => 0.014857355715967
1017 => 0.014997875977177
1018 => 0.014464449568365
1019 => 0.01460192569981
1020 => 0.013902510045116
1021 => 0.014218675131215
1022 => 0.014488111545929
1023 => 0.014542204895257
1024 => 0.014664079973368
1025 => 0.01362267077477
1026 => 0.014090232930773
1027 => 0.014364881892775
1028 => 0.013124007890635
1029 => 0.014340353803467
1030 => 0.013604542157549
1031 => 0.013354796633405
1101 => 0.013691046080194
1102 => 0.013560009343767
1103 => 0.013447351652522
1104 => 0.013384486725103
1105 => 0.013631391208328
1106 => 0.013619872819071
1107 => 0.01321588916242
1108 => 0.012688908950798
1109 => 0.012865780807354
1110 => 0.012801521603685
1111 => 0.012568637959985
1112 => 0.01272557341736
1113 => 0.012034509086298
1114 => 0.010845568823102
1115 => 0.011631019179194
1116 => 0.01160078019489
1117 => 0.011585532327775
1118 => 0.012175776562125
1119 => 0.012119038198244
1120 => 0.012016057512216
1121 => 0.012566746638928
1122 => 0.012365737699864
1123 => 0.012985199886397
1124 => 0.01339321774675
1125 => 0.013289731219369
1126 => 0.013673473989152
1127 => 0.012869855577698
1128 => 0.013136785378409
1129 => 0.013191799240386
1130 => 0.012559951220585
1201 => 0.01212832129627
1202 => 0.01209953650126
1203 => 0.011351149694764
1204 => 0.011750931886027
1205 => 0.012102723670227
1206 => 0.01193424270574
1207 => 0.011880906665609
1208 => 0.012153388927462
1209 => 0.012174563132861
1210 => 0.011691789005829
1211 => 0.011792173034307
1212 => 0.012210791120517
1213 => 0.011781624932598
1214 => 0.010947825133369
1215 => 0.010741031254976
1216 => 0.010713441139631
1217 => 0.0101525997404
1218 => 0.010754850210754
1219 => 0.010491951741135
1220 => 0.011322444856653
1221 => 0.010848071643093
1222 => 0.010827622361974
1223 => 0.010796710274306
1224 => 0.010313970913921
1225 => 0.010419660154159
1226 => 0.010770987285634
1227 => 0.010896344764127
1228 => 0.010883268952097
1229 => 0.010769265591024
1230 => 0.010821455745931
1231 => 0.010653333072718
]
'min_raw' => 0.0058824253067113
'max_raw' => 0.018292380486426
'avg_raw' => 0.012087402896569
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.005882'
'max' => '$0.018292'
'avg' => '$0.012087'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0033510240645085
'max_diff' => 0.011424932848029
'year' => 2033
]
8 => [
'items' => [
101 => 0.010593965457636
102 => 0.010406584934087
103 => 0.010131187329661
104 => 0.010169483055668
105 => 0.0096238483395968
106 => 0.0093265575872551
107 => 0.009244271425236
108 => 0.0091342349304087
109 => 0.0092567003401227
110 => 0.0096223026250016
111 => 0.0091813087025861
112 => 0.0084252555547316
113 => 0.0084706956371695
114 => 0.008572786011126
115 => 0.0083825412746535
116 => 0.0082024905976128
117 => 0.0083590300533265
118 => 0.0080386803677081
119 => 0.0086114987401443
120 => 0.0085960056084748
121 => 0.0088095168748685
122 => 0.0089430298514367
123 => 0.0086353256657864
124 => 0.008557938895216
125 => 0.0086020219167655
126 => 0.0078734277666953
127 => 0.0087499751887193
128 => 0.0087575556072244
129 => 0.0086926474617783
130 => 0.0091593819036407
131 => 0.010144337154093
201 => 0.0097737573691398
202 => 0.0096302576755726
203 => 0.0093574646532036
204 => 0.0097209451586633
205 => 0.0096930355270232
206 => 0.0095668175883331
207 => 0.0094904805851894
208 => 0.009631133854102
209 => 0.0094730520886303
210 => 0.0094446562597552
211 => 0.0092726084317384
212 => 0.0092111951848139
213 => 0.0091657272617227
214 => 0.0091156715459852
215 => 0.009226081981795
216 => 0.0089758774085476
217 => 0.0086741552210681
218 => 0.0086490702858585
219 => 0.0087183319974623
220 => 0.0086876888460056
221 => 0.0086489235782386
222 => 0.0085749101249789
223 => 0.0085529519144439
224 => 0.0086243054460732
225 => 0.0085437514690331
226 => 0.008662613250158
227 => 0.0086302894226144
228 => 0.0084497311495471
301 => 0.0082246886900707
302 => 0.0082226853401388
303 => 0.0081742003113882
304 => 0.0081124473375015
305 => 0.0080952690728829
306 => 0.0083458467369904
307 => 0.0088645350025345
308 => 0.0087627040848499
309 => 0.0088362873589293
310 => 0.0091982442393563
311 => 0.009313299447221
312 => 0.0092316359859106
313 => 0.009119850003286
314 => 0.0091247680191981
315 => 0.0095067745617444
316 => 0.0095305998412242
317 => 0.0095907986361433
318 => 0.0096681710997918
319 => 0.0092448128510379
320 => 0.0091048278837537
321 => 0.0090384952401842
322 => 0.0088342163719537
323 => 0.0090545136177937
324 => 0.0089261558467113
325 => 0.0089434756953562
326 => 0.0089321961212049
327 => 0.008938355531413
328 => 0.0086113386257351
329 => 0.0087304863986616
330 => 0.0085323801170807
331 => 0.0082671380445177
401 => 0.0082662488600846
402 => 0.0083311664815762
403 => 0.0082925509400862
404 => 0.008188637510833
405 => 0.0082033979230009
406 => 0.0080740811807748
407 => 0.0082190993168623
408 => 0.0082232579181054
409 => 0.0081674180365205
410 => 0.0083908384838097
411 => 0.0084823740233579
412 => 0.0084456190170925
413 => 0.0084797951941369
414 => 0.0087669356192188
415 => 0.0088137520373222
416 => 0.0088345447977247
417 => 0.0088066852532982
418 => 0.0084850435939963
419 => 0.0084993097693123
420 => 0.0083946340405997
421 => 0.008306194080294
422 => 0.0083097312148998
423 => 0.008355200850887
424 => 0.0085537694180018
425 => 0.0089716452612387
426 => 0.0089875033440262
427 => 0.0090067238029777
428 => 0.0089285445369934
429 => 0.0089049649222978
430 => 0.0089360725204963
501 => 0.009093004716348
502 => 0.0094966769307542
503 => 0.0093539922098224
504 => 0.0092379873106848
505 => 0.0093397548819247
506 => 0.0093240885620129
507 => 0.0091918490559303
508 => 0.0091881375334319
509 => 0.0089343276417317
510 => 0.0088404999037418
511 => 0.008762090422993
512 => 0.0086764693169465
513 => 0.0086257102552368
514 => 0.008703699243604
515 => 0.0087215362479821
516 => 0.008551011961903
517 => 0.0085277701318193
518 => 0.0086670239448539
519 => 0.0086057435336428
520 => 0.0086687719562545
521 => 0.0086833950909482
522 => 0.0086810404294631
523 => 0.0086170566421484
524 => 0.0086578380001588
525 => 0.0085613779309562
526 => 0.0084564920935322
527 => 0.0083895814638743
528 => 0.0083311930650907
529 => 0.0083635903422895
530 => 0.0082480999645848
531 => 0.0082111522683951
601 => 0.0086440221936745
602 => 0.0089637878616143
603 => 0.0089591383421613
604 => 0.0089308355882508
605 => 0.0088887834369438
606 => 0.0090899283395532
607 => 0.0090198534775034
608 => 0.0090708387945953
609 => 0.0090838166976422
610 => 0.0091230969014709
611 => 0.0091371361980921
612 => 0.0090946996927845
613 => 0.0089522775977897
614 => 0.0085973752781491
615 => 0.0084321672903159
616 => 0.0083776459025743
617 => 0.0083796276514678
618 => 0.008324962170067
619 => 0.0083410636042746
620 => 0.0083193627483447
621 => 0.0082782665772145
622 => 0.0083610527695282
623 => 0.0083705931069856
624 => 0.0083512698204783
625 => 0.0083558211539639
626 => 0.0081958325947667
627 => 0.0082079961774456
628 => 0.0081402678034162
629 => 0.0081275695497635
630 => 0.0079563581180014
701 => 0.0076530322491411
702 => 0.0078211042250443
703 => 0.0076180969126494
704 => 0.0075412149673827
705 => 0.0079051621386796
706 => 0.0078686319370046
707 => 0.0078061081110339
708 => 0.0077136223413162
709 => 0.0076793184696842
710 => 0.007470899004934
711 => 0.007458584471082
712 => 0.0075618827856111
713 => 0.0075142141677339
714 => 0.007447269374717
715 => 0.0072048021204945
716 => 0.0069321886485994
717 => 0.0069404171357288
718 => 0.0070271304089846
719 => 0.0072792609458541
720 => 0.0071807491831966
721 => 0.0071092777690964
722 => 0.0070958933216582
723 => 0.0072634277035855
724 => 0.0075005239535506
725 => 0.0076117642093047
726 => 0.0075015284942692
727 => 0.0073748956403489
728 => 0.0073826031954069
729 => 0.0074338781061621
730 => 0.0074392663742943
731 => 0.0073568414044599
801 => 0.0073800435506613
802 => 0.0073447973689327
803 => 0.0071284916167236
804 => 0.0071245793315791
805 => 0.0070714944115856
806 => 0.0070698870213055
807 => 0.0069795763297426
808 => 0.0069669412397046
809 => 0.0067876238801394
810 => 0.0069056511092282
811 => 0.0068264846406631
812 => 0.0067071620990534
813 => 0.0066865908479045
814 => 0.0066859724512544
815 => 0.0068084900214555
816 => 0.0069042194200872
817 => 0.0068278617752779
818 => 0.0068104766196855
819 => 0.0069961045981356
820 => 0.0069724817458412
821 => 0.0069520245081054
822 => 0.0074792945848607
823 => 0.0070619191757117
824 => 0.0068799196743672
825 => 0.0066546607306856
826 => 0.0067280061786025
827 => 0.0067434611421474
828 => 0.0062017539885695
829 => 0.0059819834638282
830 => 0.0059065665016145
831 => 0.0058631629736212
901 => 0.005882942506355
902 => 0.0056851232575764
903 => 0.005818061064384
904 => 0.0056467663161866
905 => 0.0056180481942099
906 => 0.0059243444233343
907 => 0.0059669637542604
908 => 0.0057851364477416
909 => 0.0059018990136937
910 => 0.0058595592841584
911 => 0.0056497026729987
912 => 0.0056416876940531
913 => 0.0055363890233897
914 => 0.0053716169936419
915 => 0.0052963117546234
916 => 0.0052570921323125
917 => 0.0052732749128532
918 => 0.0052650924038106
919 => 0.005211695997445
920 => 0.0052681530233198
921 => 0.0051239286518635
922 => 0.0050664973450548
923 => 0.0050405569561655
924 => 0.0049125495252529
925 => 0.0051162662729978
926 => 0.0051564010386595
927 => 0.0051966148822078
928 => 0.0055466489351389
929 => 0.0055291622230404
930 => 0.0056872335840364
1001 => 0.0056810912216227
1002 => 0.0056360067088804
1003 => 0.0054458025656629
1004 => 0.0055216145470865
1005 => 0.0052882770520623
1006 => 0.0054631093687418
1007 => 0.0053833232005814
1008 => 0.0054361335850291
1009 => 0.0053411757520717
1010 => 0.0053937293375431
1011 => 0.0051659184804995
1012 => 0.0049531919075775
1013 => 0.0050387992903971
1014 => 0.0051318643059138
1015 => 0.0053336529720788
1016 => 0.0052134693072313
1017 => 0.005256691897758
1018 => 0.0051119034548678
1019 => 0.0048131635404113
1020 => 0.0048148543758841
1021 => 0.0047688997484478
1022 => 0.0047291882408574
1023 => 0.005227273846877
1024 => 0.0051653290282003
1025 => 0.0050666280667763
1026 => 0.0051987432258626
1027 => 0.0052336765708745
1028 => 0.0052346710740965
1029 => 0.00533105888378
1030 => 0.0053825010750866
1031 => 0.0053915679842676
1101 => 0.0055432362854011
1102 => 0.0055940734993878
1103 => 0.0058034647890471
1104 => 0.0053781365645608
1105 => 0.0053693772096725
1106 => 0.0052006023570853
1107 => 0.0050935626773496
1108 => 0.0052079314555332
1109 => 0.0053092465801088
1110 => 0.0052037505004207
1111 => 0.0052175260612841
1112 => 0.0050759061936492
1113 => 0.0051265286324945
1114 => 0.0051701314964071
1115 => 0.0051460565578125
1116 => 0.0051100152094961
1117 => 0.0053009398952761
1118 => 0.0052901671762645
1119 => 0.0054679606330024
1120 => 0.0056065633466616
1121 => 0.0058549641877376
1122 => 0.0055957449606461
1123 => 0.0055862979817078
1124 => 0.005678643716173
1125 => 0.005594059361737
1126 => 0.0056475137539878
1127 => 0.0058463518587443
1128 => 0.0058505529945728
1129 => 0.0057801785565873
1130 => 0.0057758962656403
1201 => 0.0057894124462674
1202 => 0.0058685771383706
1203 => 0.0058409145624645
1204 => 0.0058729263956338
1205 => 0.0059129576831946
1206 => 0.0060785440614604
1207 => 0.0061184663766703
1208 => 0.0060214758480576
1209 => 0.0060302330068344
1210 => 0.0059939558866837
1211 => 0.0059589126431692
1212 => 0.0060376847369352
1213 => 0.006181642286562
1214 => 0.0061807467341172
1215 => 0.0062141420874958
1216 => 0.0062349471159885
1217 => 0.0061456367034859
1218 => 0.0060874989089815
1219 => 0.0061097926387984
1220 => 0.00614544079827
1221 => 0.0060982324211357
1222 => 0.0058068404484151
1223 => 0.0058952301587473
1224 => 0.005880517788912
1225 => 0.0058595655851812
1226 => 0.0059484421224176
1227 => 0.0059398697635854
1228 => 0.0056830943352569
1229 => 0.0056995322650726
1230 => 0.0056840939802131
1231 => 0.0057339782369702
]
'min_raw' => 0.0047291882408574
'max_raw' => 0.010593965457636
'avg_raw' => 0.0076615768492466
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.004729'
'max' => '$0.010593'
'avg' => '$0.007661'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.001153237065854
'max_diff' => -0.0076984150287905
'year' => 2034
]
9 => [
'items' => [
101 => 0.0055913654481659
102 => 0.0056352321814903
103 => 0.0056627449854063
104 => 0.0056789502382761
105 => 0.0057374947236879
106 => 0.0057306252040427
107 => 0.0057370677047015
108 => 0.005823873721396
109 => 0.006262908765609
110 => 0.0062868044743893
111 => 0.0061691332649103
112 => 0.0062161405921352
113 => 0.0061258968032357
114 => 0.0061864780633048
115 => 0.0062279262228468
116 => 0.006040629959899
117 => 0.0060295394907499
118 => 0.0059389232336322
119 => 0.0059876152774401
120 => 0.0059101427346599
121 => 0.0059291517867837
122 => 0.0058760008198662
123 => 0.0059716619780656
124 => 0.0060786260171737
125 => 0.0061056493575903
126 => 0.0060345625832338
127 => 0.0059830910737529
128 => 0.0058927240588738
129 => 0.006043006418578
130 => 0.0060869535603275
131 => 0.0060427755829513
201 => 0.0060325385802854
202 => 0.0060131394787313
203 => 0.0060366541913855
204 => 0.0060867142147554
205 => 0.0060631068321976
206 => 0.0060786999242856
207 => 0.0060192751367731
208 => 0.0061456662689486
209 => 0.0063464058045257
210 => 0.0063470512149568
211 => 0.0063234437051465
212 => 0.006313784020763
213 => 0.0063380067584519
214 => 0.0063511465999794
215 => 0.0064294784919748
216 => 0.0065135317329661
217 => 0.0069057715333706
218 => 0.00679563216699
219 => 0.0071436506523589
220 => 0.0074188880897413
221 => 0.0075014197625378
222 => 0.0074254945069803
223 => 0.0071657583091198
224 => 0.0071530144121158
225 => 0.0075411699495136
226 => 0.0074314982315488
227 => 0.0074184531296694
228 => 0.0072796752857201
301 => 0.0073617101794645
302 => 0.0073437679448233
303 => 0.0073154452496781
304 => 0.0074719621123421
305 => 0.0077649477068926
306 => 0.0077192831543804
307 => 0.0076851966842477
308 => 0.0075358396945484
309 => 0.0076257859624387
310 => 0.0075937578192502
311 => 0.0077313710479498
312 => 0.0076498520197744
313 => 0.0074306673604201
314 => 0.0074655732398644
315 => 0.0074602972864073
316 => 0.0075688760346967
317 => 0.0075362833895504
318 => 0.0074539330493492
319 => 0.007763946313982
320 => 0.0077438157769611
321 => 0.0077723562759753
322 => 0.0077849206862856
323 => 0.0079736202974211
324 => 0.0080509244903892
325 => 0.0080684738955934
326 => 0.0081419068999923
327 => 0.008066646815548
328 => 0.0083677408128559
329 => 0.0085679507517439
330 => 0.0088005048984714
331 => 0.0091403290115023
401 => 0.0092681060215507
402 => 0.0092450242483731
403 => 0.0095026750125141
404 => 0.0099656677084208
405 => 0.0093386083096836
406 => 0.009998903379173
407 => 0.0097898615836459
408 => 0.0092942272469522
409 => 0.0092623142388142
410 => 0.009597963566056
411 => 0.010342401468828
412 => 0.010155928217528
413 => 0.010342706472265
414 => 0.010124819716804
415 => 0.010113999802901
416 => 0.010332124198885
417 => 0.010841783739441
418 => 0.010599663596025
419 => 0.010252525000143
420 => 0.010508846737267
421 => 0.010286797127113
422 => 0.0097864572076632
423 => 0.010155785624947
424 => 0.0099088262301772
425 => 0.0099809021106547
426 => 0.010499974026024
427 => 0.010437517919873
428 => 0.010518341904512
429 => 0.010375689687156
430 => 0.010242430021955
501 => 0.0099936909608648
502 => 0.0099200515875635
503 => 0.0099404028610769
504 => 0.009920041502483
505 => 0.0097808742838331
506 => 0.0097508211362158
507 => 0.0097007312401952
508 => 0.0097162561934647
509 => 0.0096220725346299
510 => 0.009799816558188
511 => 0.0098328074152354
512 => 0.0099621546929595
513 => 0.0099755839564259
514 => 0.010335814283744
515 => 0.010137405472882
516 => 0.010270515233001
517 => 0.010258608643178
518 => 0.0093049691459232
519 => 0.0094363722546124
520 => 0.0096407942551658
521 => 0.009548702421004
522 => 0.0094185061136696
523 => 0.0093133656148127
524 => 0.0091540670078766
525 => 0.0093782767380804
526 => 0.0096730886912518
527 => 0.0099830608740722
528 => 0.010355472141549
529 => 0.010272354281993
530 => 0.0099760989044706
531 => 0.0099893887042915
601 => 0.010071541017441
602 => 0.0099651463075876
603 => 0.0099337684305803
604 => 0.010067230178981
605 => 0.010068149256693
606 => 0.0099457292847757
607 => 0.0098096818886084
608 => 0.009809111845051
609 => 0.009784903524965
610 => 0.010129126323168
611 => 0.010318414057329
612 => 0.010340115590998
613 => 0.010316953371204
614 => 0.010325867590328
615 => 0.01021572522849
616 => 0.010467478005948
617 => 0.010698511250313
618 => 0.010636589405518
619 => 0.010543759757461
620 => 0.010469816471502
621 => 0.010619170717298
622 => 0.010612520207838
623 => 0.010696493376473
624 => 0.010692683868491
625 => 0.01066444685027
626 => 0.010636590413951
627 => 0.010747038035206
628 => 0.010715230894019
629 => 0.010683374347556
630 => 0.010619481166633
701 => 0.010628165311074
702 => 0.010535351691364
703 => 0.010492411864024
704 => 0.0098466998878849
705 => 0.009674144548613
706 => 0.0097284339710358
707 => 0.0097463074585216
708 => 0.0096712111537347
709 => 0.0097788799641412
710 => 0.0097620998940888
711 => 0.0098273813306499
712 => 0.009786596323277
713 => 0.009788270154206
714 => 0.0099082101646091
715 => 0.0099430292598905
716 => 0.0099253199870058
717 => 0.0099377229546959
718 => 0.010223544110148
719 => 0.010182909481888
720 => 0.010161323145504
721 => 0.010167302708206
722 => 0.010240336141499
723 => 0.010260781515343
724 => 0.010174153029694
725 => 0.010215007524319
726 => 0.010388960777227
727 => 0.010449834570844
728 => 0.010644114498988
729 => 0.010561580932462
730 => 0.01071307486579
731 => 0.011178715568753
801 => 0.011550701582166
802 => 0.011208607871259
803 => 0.011891712812759
804 => 0.0124236079953
805 => 0.012403192972276
806 => 0.012310444744243
807 => 0.011704896220085
808 => 0.011147661439935
809 => 0.011613811994969
810 => 0.011615000308598
811 => 0.011574957562512
812 => 0.011326255505613
813 => 0.011566303270025
814 => 0.011585357389839
815 => 0.011574692149643
816 => 0.011384012865731
817 => 0.01109288084262
818 => 0.011149767343065
819 => 0.011242948591245
820 => 0.011066537048794
821 => 0.011010162871829
822 => 0.011114973192434
823 => 0.01145269388352
824 => 0.011388849743152
825 => 0.011387182514633
826 => 0.011660334821252
827 => 0.01146481671967
828 => 0.011150484864011
829 => 0.011071111924929
830 => 0.010789391463208
831 => 0.010983976789573
901 => 0.010990979569055
902 => 0.010884407174419
903 => 0.011159132626482
904 => 0.011156600983077
905 => 0.011417411912323
906 => 0.011915984452931
907 => 0.011768532019409
908 => 0.011597060882001
909 => 0.011615704549016
910 => 0.011820179559681
911 => 0.011696549300523
912 => 0.011741007603697
913 => 0.011820112266714
914 => 0.011867838073971
915 => 0.011608837539811
916 => 0.01154845212587
917 => 0.011424924761348
918 => 0.011392698777692
919 => 0.011493309238612
920 => 0.011466801936779
921 => 0.010990391012556
922 => 0.010940603420249
923 => 0.010942130334625
924 => 0.010816937066498
925 => 0.010625987282778
926 => 0.011127791913375
927 => 0.011087489978787
928 => 0.011042999762123
929 => 0.011048449559807
930 => 0.011266265942212
1001 => 0.011139921440426
1002 => 0.01147582900588
1003 => 0.011406776508729
1004 => 0.011335953075584
1005 => 0.011326163119789
1006 => 0.011298902140399
1007 => 0.01120541409871
1008 => 0.011092521670609
1009 => 0.011017980311002
1010 => 0.010163504428664
1011 => 0.010322090182168
1012 => 0.010504528636029
1013 => 0.010567505659225
1014 => 0.01045977910317
1015 => 0.011209667799744
1016 => 0.011346679690715
1017 => 0.010931661735899
1018 => 0.010854028821624
1019 => 0.011214757400679
1020 => 0.010997193970233
1021 => 0.011095162769642
1022 => 0.01088340781139
1023 => 0.011313677538356
1024 => 0.011310399603936
1025 => 0.011143014962063
1026 => 0.011284487315173
1027 => 0.011259903012357
1028 => 0.011070926163933
1029 => 0.011319668441523
1030 => 0.01131979181459
1031 => 0.011158687736043
1101 => 0.010970553442519
1102 => 0.01093691947437
1103 => 0.010911580797458
1104 => 0.01108893100841
1105 => 0.01124794265299
1106 => 0.011543823901224
1107 => 0.011618215476995
1108 => 0.011908570749758
1109 => 0.011735678321969
1110 => 0.011812319295876
1111 => 0.01189552391458
1112 => 0.011935415268535
1113 => 0.011870414447953
1114 => 0.012321455701551
1115 => 0.012359537402901
1116 => 0.012372305867959
1117 => 0.012220217295001
1118 => 0.012355307544561
1119 => 0.012292103290511
1120 => 0.012456543200903
1121 => 0.012482329478526
1122 => 0.012460489418753
1123 => 0.012468674390279
1124 => 0.012083790249463
1125 => 0.012063831976336
1126 => 0.011791699506076
1127 => 0.011902595499209
1128 => 0.011695280755431
1129 => 0.011761022396261
1130 => 0.01179000068513
1201 => 0.011774864071528
1202 => 0.011908865392273
1203 => 0.011794936894979
1204 => 0.011494260859039
1205 => 0.011193502904115
1206 => 0.011189727132983
1207 => 0.01111054287227
1208 => 0.011053307155096
1209 => 0.01106433278477
1210 => 0.011103188541836
1211 => 0.011051048787859
1212 => 0.011062175447923
1213 => 0.011246952141527
1214 => 0.011284007789663
1215 => 0.011158078218723
1216 => 0.010652452819847
1217 => 0.010528371078698
1218 => 0.010617558573588
1219 => 0.010574932695441
1220 => 0.0085347960248777
1221 => 0.0090140958738515
1222 => 0.0087293121790762
1223 => 0.0088605536078965
1224 => 0.0085698631999111
1225 => 0.0087085958989914
1226 => 0.0086829770351782
1227 => 0.0094536770088145
1228 => 0.0094416435887893
1229 => 0.0094474033501609
1230 => 0.0091724749329144
1231 => 0.0096104433667082
]
'min_raw' => 0.0055913654481659
'max_raw' => 0.012482329478526
'avg_raw' => 0.0090368474633462
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.005591'
'max' => '$0.012482'
'avg' => '$0.009036'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00086217720730856
'max_diff' => 0.0018883640208905
'year' => 2035
]
10 => [
'items' => [
101 => 0.0098262023660305
102 => 0.0097862711174957
103 => 0.009796320952467
104 => 0.0096236314909652
105 => 0.0094490753616287
106 => 0.0092554657501989
107 => 0.0096151684773644
108 => 0.0095751756744339
109 => 0.0096669047754001
110 => 0.0099001977060489
111 => 0.0099345509762806
112 => 0.0099807221198485
113 => 0.0099641730515652
114 => 0.010358438998115
115 => 0.010310690790537
116 => 0.010425750232703
117 => 0.010189064230588
118 => 0.0099212315527532
119 => 0.0099721377886996
120 => 0.0099672351088159
121 => 0.0099048183668619
122 => 0.0098484713230669
123 => 0.0097546693708294
124 => 0.010051472627786
125 => 0.01003942295758
126 => 0.010234493112006
127 => 0.010200012567401
128 => 0.0099697430517064
129 => 0.0099779671725077
130 => 0.010033278337274
131 => 0.010224710910062
201 => 0.010281541131389
202 => 0.010255215108578
203 => 0.010317526851865
204 => 0.010366775513104
205 => 0.010323711725471
206 => 0.010933404144871
207 => 0.010680217344729
208 => 0.010803618829456
209 => 0.010833049356439
210 => 0.010757663680428
211 => 0.010774012134196
212 => 0.010798775586968
213 => 0.010949134423017
214 => 0.011343719515489
215 => 0.011518478566913
216 => 0.012044249795583
217 => 0.011503967260456
218 => 0.011471909130733
219 => 0.011566616405786
220 => 0.011875299775552
221 => 0.012125458653592
222 => 0.01220845078545
223 => 0.012219419565726
224 => 0.012375118322304
225 => 0.012464361945965
226 => 0.012356212397972
227 => 0.012264566979777
228 => 0.011936304467253
229 => 0.011974301746907
301 => 0.012236065323633
302 => 0.012605821793556
303 => 0.012923111311354
304 => 0.012812007580877
305 => 0.013659650617404
306 => 0.013743690962165
307 => 0.013732079303868
308 => 0.013923535716113
309 => 0.013543533727228
310 => 0.013381075514788
311 => 0.012284381759411
312 => 0.012592507971115
313 => 0.013040387515445
314 => 0.012981108978291
315 => 0.012655846881344
316 => 0.012922864570886
317 => 0.012834580172308
318 => 0.012764946604227
319 => 0.013083951478739
320 => 0.012733192515215
321 => 0.013036888426467
322 => 0.012647395278954
323 => 0.012812515093359
324 => 0.012718785100756
325 => 0.012779439893086
326 => 0.012424853216506
327 => 0.012616179580084
328 => 0.012416893410758
329 => 0.012416798923166
330 => 0.012412399669933
331 => 0.012646858964374
401 => 0.012654504673548
402 => 0.012481238900708
403 => 0.012456268595922
404 => 0.012548596900183
405 => 0.012440504636714
406 => 0.012491080326467
407 => 0.012442036522835
408 => 0.012430995729616
409 => 0.012343020810818
410 => 0.012305118796879
411 => 0.012319981153159
412 => 0.012269248269105
413 => 0.012238679871374
414 => 0.012406318846229
415 => 0.012316756104501
416 => 0.012392592071549
417 => 0.012306167415836
418 => 0.012006581905704
419 => 0.011834287110769
420 => 0.011268397853722
421 => 0.011428883345037
422 => 0.011535285391813
423 => 0.011500119515988
424 => 0.011575669424647
425 => 0.011580307575448
426 => 0.011555745530003
427 => 0.01152730582797
428 => 0.011513462953835
429 => 0.011616636396386
430 => 0.011676532052445
501 => 0.011545964260683
502 => 0.011515374053911
503 => 0.011647385300227
504 => 0.01172791208422
505 => 0.01232247661313
506 => 0.01227842935241
507 => 0.012388979332979
508 => 0.012376533101694
509 => 0.012492407093323
510 => 0.012681812097633
511 => 0.012296698765399
512 => 0.012363541123657
513 => 0.012347152921028
514 => 0.01252607502012
515 => 0.012526633595384
516 => 0.012419360859156
517 => 0.012477515149766
518 => 0.012445055020127
519 => 0.012503714861635
520 => 0.012277841074389
521 => 0.012552930965686
522 => 0.01270888920765
523 => 0.012711054687991
524 => 0.012784977656921
525 => 0.012860087674683
526 => 0.013004254813074
527 => 0.01285606693144
528 => 0.012589491358181
529 => 0.012608737253536
530 => 0.01245244409247
531 => 0.012455071408744
601 => 0.012441046588566
602 => 0.01248313612966
603 => 0.012287077361759
604 => 0.012333091962709
605 => 0.012268671251918
606 => 0.012363401085613
607 => 0.01226148744396
608 => 0.01234714501814
609 => 0.012384111987563
610 => 0.012520520900575
611 => 0.012241339736597
612 => 0.011672070444342
613 => 0.011791737751297
614 => 0.011614740404646
615 => 0.011631122182955
616 => 0.01166421598228
617 => 0.011556948151051
618 => 0.011577411472852
619 => 0.011576680378999
620 => 0.011570380207144
621 => 0.011542475701361
622 => 0.011502008647237
623 => 0.011663216935762
624 => 0.011690609365332
625 => 0.011751499343062
626 => 0.011932666614721
627 => 0.011914563732064
628 => 0.011944090284759
629 => 0.01187963398601
630 => 0.011634112125789
701 => 0.01164744514404
702 => 0.0114811821928
703 => 0.011747247625589
704 => 0.011684239819212
705 => 0.011643618276551
706 => 0.01163253431228
707 => 0.011814150662563
708 => 0.011868493121056
709 => 0.01183463054771
710 => 0.011765177421849
711 => 0.011898547955476
712 => 0.011934232283823
713 => 0.011942220688952
714 => 0.012178527703275
715 => 0.01195542762601
716 => 0.012009130032031
717 => 0.012428100873786
718 => 0.012048152134339
719 => 0.012249419455492
720 => 0.012239568467466
721 => 0.012342530018453
722 => 0.012231122615063
723 => 0.012232503643348
724 => 0.012323926525405
725 => 0.01219553957576
726 => 0.012163749161518
727 => 0.01211983093193
728 => 0.012215724779519
729 => 0.012273208804243
730 => 0.012736487826154
731 => 0.013035787202399
801 => 0.01302279382713
802 => 0.013141528954507
803 => 0.013088037692135
804 => 0.012915300295652
805 => 0.013210141968367
806 => 0.01311684172642
807 => 0.013124533285007
808 => 0.013124247004812
809 => 0.013186283509258
810 => 0.013142324960296
811 => 0.013055678148039
812 => 0.013113198345653
813 => 0.013284012768717
814 => 0.013814225979135
815 => 0.014110940316075
816 => 0.013796363403485
817 => 0.014013354345437
818 => 0.013883237102044
819 => 0.013859590928267
820 => 0.013995877275317
821 => 0.014132402173577
822 => 0.014123706127771
823 => 0.014024596062266
824 => 0.013968611301087
825 => 0.014392546669006
826 => 0.014704895026539
827 => 0.014683594962565
828 => 0.014777606517793
829 => 0.015053627351611
830 => 0.01507886323745
831 => 0.015075684095875
901 => 0.015013134319731
902 => 0.01528491267646
903 => 0.015511634963128
904 => 0.014998655853791
905 => 0.015193991583237
906 => 0.015281684085509
907 => 0.015410442696038
908 => 0.015627680054449
909 => 0.015863657445047
910 => 0.015897027235438
911 => 0.015873349772264
912 => 0.015717716339752
913 => 0.01597592561634
914 => 0.016127178554813
915 => 0.016217246218312
916 => 0.016445642827114
917 => 0.015282225644549
918 => 0.014458701137144
919 => 0.014330095893475
920 => 0.014591619713628
921 => 0.014660581459389
922 => 0.014632783066143
923 => 0.013705831361486
924 => 0.014325215684587
925 => 0.01499162113693
926 => 0.015017220484376
927 => 0.0153508369877
928 => 0.015459476196585
929 => 0.015728081209875
930 => 0.01571127989316
1001 => 0.015776680939457
1002 => 0.015761646371502
1003 => 0.016259180597164
1004 => 0.016808034732616
1005 => 0.016789029659155
1006 => 0.016710125383436
1007 => 0.016827311688057
1008 => 0.017393787974627
1009 => 0.017341635915757
1010 => 0.017392297198648
1011 => 0.018060204665719
1012 => 0.018928579381641
1013 => 0.018525132142699
1014 => 0.019400496562387
1015 => 0.019951492063506
1016 => 0.020904381808694
1017 => 0.020785075319516
1018 => 0.02115602830469
1019 => 0.020571491803871
1020 => 0.019229277843673
1021 => 0.019016867346683
1022 => 0.019442118540747
1023 => 0.02048755710595
1024 => 0.019409193959929
1025 => 0.019627345419906
1026 => 0.019564517784757
1027 => 0.01956116996708
1028 => 0.019688942551246
1029 => 0.019503601753743
1030 => 0.018748490002542
1031 => 0.019094553268216
1101 => 0.018960921622016
1102 => 0.019109195896374
1103 => 0.01990937100212
1104 => 0.019555594514078
1105 => 0.019182919722393
1106 => 0.019650336614322
1107 => 0.020245518939618
1108 => 0.020208273499347
1109 => 0.020136001777834
1110 => 0.020543393687979
1111 => 0.021216285768909
1112 => 0.021398165794485
1113 => 0.021532425910992
1114 => 0.021550938112715
1115 => 0.021741625295731
1116 => 0.020716252253294
1117 => 0.022343545605089
1118 => 0.022624534213872
1119 => 0.022571720001205
1120 => 0.02288402701406
1121 => 0.022792138368414
1122 => 0.02265900613776
1123 => 0.023154079182741
1124 => 0.022586517887005
1125 => 0.021780936081687
1126 => 0.021338977970689
1127 => 0.021920984062996
1128 => 0.022276394874354
1129 => 0.022511298812288
1130 => 0.022582380601975
1201 => 0.020795849043716
1202 => 0.019833007619397
1203 => 0.020450177933386
1204 => 0.021203168311272
1205 => 0.020712069353726
1206 => 0.020731319503088
1207 => 0.020031141448162
1208 => 0.021265118532738
1209 => 0.021085338450896
1210 => 0.022018037833517
1211 => 0.021795441640474
1212 => 0.02255602177982
1213 => 0.022355735539314
1214 => 0.023187112525801
1215 => 0.023518771314345
1216 => 0.024075678038877
1217 => 0.024485340892461
1218 => 0.024725902755688
1219 => 0.024711460323745
1220 => 0.025664686273292
1221 => 0.025102602234022
1222 => 0.024396492207662
1223 => 0.024383720905034
1224 => 0.024749425293342
1225 => 0.025515841365137
1226 => 0.025714561901653
1227 => 0.025825619571611
1228 => 0.025655530884125
1229 => 0.025045428944423
1230 => 0.024781990020147
1231 => 0.025006447616191
]
'min_raw' => 0.0092554657501989
'max_raw' => 0.025825619571611
'avg_raw' => 0.017540542660905
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.009255'
'max' => '$0.025825'
'avg' => '$0.01754'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0036641003020329
'max_diff' => 0.013343290093085
'year' => 2036
]
11 => [
'items' => [
101 => 0.02473195526409
102 => 0.025205806072767
103 => 0.02585650444215
104 => 0.025722137802013
105 => 0.02617130533462
106 => 0.026636146477066
107 => 0.027300890188086
108 => 0.027474678809535
109 => 0.027761944792201
110 => 0.028057635850323
111 => 0.028152603849095
112 => 0.028333927225589
113 => 0.028332971561891
114 => 0.028879401761427
115 => 0.02948213119305
116 => 0.029709647600269
117 => 0.030232809033342
118 => 0.029336913412968
119 => 0.030016460532329
120 => 0.03062942904416
121 => 0.02989862271463
122 => 0.030905868983851
123 => 0.030944978074016
124 => 0.031535478903053
125 => 0.030936893186553
126 => 0.030581454898849
127 => 0.031607591917352
128 => 0.032104107297593
129 => 0.031954552824288
130 => 0.030816435898025
131 => 0.030154003030808
201 => 0.028420288443545
202 => 0.030473948263055
203 => 0.03147422605506
204 => 0.030813845420193
205 => 0.031146903000372
206 => 0.032963957163548
207 => 0.033655773743341
208 => 0.033511880730907
209 => 0.033536196281328
210 => 0.033909487950425
211 => 0.035564868786678
212 => 0.034572926218167
213 => 0.035331229144415
214 => 0.035733430282232
215 => 0.036107017113949
216 => 0.035189605928582
217 => 0.033996067455866
218 => 0.033618023720221
219 => 0.030748183580735
220 => 0.030598795938391
221 => 0.030514940127834
222 => 0.029986241103914
223 => 0.029570828493964
224 => 0.02924047696325
225 => 0.028373535895339
226 => 0.028666103056437
227 => 0.02728437993885
228 => 0.028168357424222
301 => 0.025963093965682
302 => 0.027799702903711
303 => 0.026800120159103
304 => 0.027471313088416
305 => 0.027468971359516
306 => 0.026233092374739
307 => 0.025520263168456
308 => 0.025974505682427
309 => 0.02646148971522
310 => 0.02654050123613
311 => 0.027171888746229
312 => 0.027348095428669
313 => 0.026814180954573
314 => 0.02591739478217
315 => 0.026125697756504
316 => 0.02551604191533
317 => 0.024447643503745
318 => 0.025214985895392
319 => 0.025476990325563
320 => 0.02559270640799
321 => 0.024542059276583
322 => 0.024211923137236
323 => 0.024036161426759
324 => 0.025781769430967
325 => 0.025877397777924
326 => 0.025388149634403
327 => 0.027599597635533
328 => 0.027099078844094
329 => 0.027658280964213
330 => 0.026106796444912
331 => 0.0261660652429
401 => 0.02543156760782
402 => 0.025842837204315
403 => 0.025552165109351
404 => 0.025809610685164
405 => 0.025963922501818
406 => 0.026698299613064
407 => 0.027808088310676
408 => 0.026588608161962
409 => 0.02605726319789
410 => 0.026386906625203
411 => 0.027264790512039
412 => 0.028594829538646
413 => 0.027807419665365
414 => 0.02815685879604
415 => 0.028233195700628
416 => 0.027652588811569
417 => 0.028616237342815
418 => 0.029132664419376
419 => 0.029662411740402
420 => 0.030122376496066
421 => 0.029450819010991
422 => 0.030169481784006
423 => 0.029590366450013
424 => 0.029070840127579
425 => 0.029071628034559
426 => 0.028745721583427
427 => 0.028114236767505
428 => 0.027997781278733
429 => 0.028603597438029
430 => 0.029089404626781
501 => 0.029129418033706
502 => 0.029398385855073
503 => 0.02955755824117
504 => 0.03111766400928
505 => 0.031745151455086
506 => 0.032512431226088
507 => 0.032811329938411
508 => 0.033710907901386
509 => 0.032984425636134
510 => 0.032827246628259
511 => 0.03064516473979
512 => 0.031002480526785
513 => 0.031574577577608
514 => 0.030654598409442
515 => 0.031238113441628
516 => 0.03135331166952
517 => 0.030623337869342
518 => 0.031013248416323
519 => 0.029977761603962
520 => 0.027830659093526
521 => 0.028618627681691
522 => 0.029198837789939
523 => 0.028370806426078
524 => 0.029855020596559
525 => 0.028987973318564
526 => 0.028713160957048
527 => 0.027641019957096
528 => 0.028147029238582
529 => 0.028831414037146
530 => 0.028408543799906
531 => 0.029286063036465
601 => 0.030528864301265
602 => 0.031414558492657
603 => 0.031482551094963
604 => 0.030913109066801
605 => 0.031825643551061
606 => 0.031832290368543
607 => 0.030802947742484
608 => 0.030172481115426
609 => 0.030029237771246
610 => 0.030387087729521
611 => 0.030821583641613
612 => 0.031506662594146
613 => 0.031920641457183
614 => 0.033000078774558
615 => 0.033292143562746
616 => 0.033613034216454
617 => 0.034041843088821
618 => 0.034556738084436
619 => 0.033430177147019
620 => 0.033474937513235
621 => 0.032425899566611
622 => 0.031304852073384
623 => 0.032155587380201
624 => 0.033267810625288
625 => 0.033012665383968
626 => 0.032983956332175
627 => 0.033032236994063
628 => 0.032839865814372
629 => 0.031969778098238
630 => 0.031532825494233
701 => 0.032096605831898
702 => 0.032396229990391
703 => 0.032860920930241
704 => 0.032803637963468
705 => 0.034000631920358
706 => 0.034465747576788
707 => 0.034346751088452
708 => 0.034368649306116
709 => 0.035210718985261
710 => 0.036147273653309
711 => 0.037024480689209
712 => 0.037916813363045
713 => 0.036841071496399
714 => 0.03629487611905
715 => 0.036858410327856
716 => 0.036559391144345
717 => 0.03827764406765
718 => 0.038396612172019
719 => 0.040114740846081
720 => 0.041745449548721
721 => 0.040721230629774
722 => 0.041687022938508
723 => 0.042731606062606
724 => 0.044746776386496
725 => 0.044068137915957
726 => 0.043548311483145
727 => 0.04305707801592
728 => 0.044079256880098
729 => 0.045394273659156
730 => 0.045677515678291
731 => 0.046136475956069
801 => 0.045653935342979
802 => 0.046235102361341
803 => 0.04828687731389
804 => 0.047732469610193
805 => 0.046945121545457
806 => 0.048564800815934
807 => 0.049150956447575
808 => 0.053264903642523
809 => 0.058458931914828
810 => 0.056308570104265
811 => 0.054973771136707
812 => 0.055287480555938
813 => 0.057184163852031
814 => 0.057793318329017
815 => 0.056137426472428
816 => 0.056722315470078
817 => 0.059945111352149
818 => 0.061674037943208
819 => 0.059325923406729
820 => 0.052847568528156
821 => 0.04687422946679
822 => 0.048458627968828
823 => 0.048279006348306
824 => 0.051741498471617
825 => 0.047719247169815
826 => 0.047786971566099
827 => 0.051321064359676
828 => 0.050378228992039
829 => 0.048850956445697
830 => 0.046885380246559
831 => 0.043251830848661
901 => 0.040033494817921
902 => 0.046345392912724
903 => 0.046073212389435
904 => 0.045679054656817
905 => 0.046556210038436
906 => 0.050815427586676
907 => 0.050717238836448
908 => 0.050092612103833
909 => 0.050566385975314
910 => 0.048767901595363
911 => 0.049231411970804
912 => 0.046873283259364
913 => 0.047939255921089
914 => 0.048847679604745
915 => 0.049030059108681
916 => 0.049440969443579
917 => 0.04592978562164
918 => 0.047506204074749
919 => 0.048432202225517
920 => 0.044248508892246
921 => 0.048349504059918
922 => 0.045868663722979
923 => 0.04502662925165
924 => 0.046160317737688
925 => 0.045718518232131
926 => 0.04533868496059
927 => 0.045126731468706
928 => 0.04595918717222
929 => 0.045920352118652
930 => 0.044558293015013
1001 => 0.042781542438948
1002 => 0.043377878252125
1003 => 0.04316122386052
1004 => 0.04237604039637
1005 => 0.042905159247794
1006 => 0.040575187607045
1007 => 0.036566592500523
1008 => 0.03921479321448
1009 => 0.039112840367681
1010 => 0.039061431119131
1011 => 0.041051480764778
1012 => 0.040860183409606
1013 => 0.04051297683678
1014 => 0.042369663675377
1015 => 0.041691948003327
1016 => 0.043780508014691
1017 => 0.045156168717768
1018 => 0.044807256665506
1019 => 0.046101072205895
1020 => 0.043391616624832
1021 => 0.044291589084371
1022 => 0.044477072160974
1023 => 0.042346752447995
1024 => 0.040891482022727
1025 => 0.040794432076659
1026 => 0.038271193707861
1027 => 0.039619087277604
1028 => 0.040805177839352
1029 => 0.040237132504621
1030 => 0.040057306321516
1031 => 0.040975999291456
1101 => 0.041047389603294
1102 => 0.039419682927792
1103 => 0.039758134688396
1104 => 0.041169534793035
1105 => 0.039722571027038
1106 => 0.036911356789896
1107 => 0.036214136791006
1108 => 0.036121114790841
1109 => 0.034230198856638
1110 => 0.036260728365219
1111 => 0.035374347819916
1112 => 0.03817441334206
1113 => 0.036575030932864
1114 => 0.036506084753849
1115 => 0.036401862492061
1116 => 0.03477427303474
1117 => 0.035130611687187
1118 => 0.036315135639831
1119 => 0.036737787130752
1120 => 0.036693701117568
1121 => 0.036309330826249
1122 => 0.03648529357732
1123 => 0.035918456246632
1124 => 0.035718294187468
1125 => 0.035086527669832
1126 => 0.034158005418863
1127 => 0.034287122132818
1128 => 0.032447476592585
1129 => 0.031445140064887
1130 => 0.031167706524603
1201 => 0.03079671079979
1202 => 0.031209611478903
1203 => 0.032442265107909
1204 => 0.030955423309272
1205 => 0.028406337335336
1206 => 0.028559541745801
1207 => 0.028903746569317
1208 => 0.028262323157837
1209 => 0.027655269729457
1210 => 0.028183053433632
1211 => 0.027102972102468
1212 => 0.029034269238039
1213 => 0.028982033062919
1214 => 0.029701901204446
1215 => 0.030152049526524
1216 => 0.029114603381384
1217 => 0.028853688481434
1218 => 0.029002317466366
1219 => 0.026545811420586
1220 => 0.029501152252526
1221 => 0.029526710162764
1222 => 0.029307867818651
1223 => 0.030881495575748
1224 => 0.034202340970028
1225 => 0.032952905352003
1226 => 0.032469086116313
1227 => 0.031549345395595
1228 => 0.032774845297151
1229 => 0.032680746025488
1230 => 0.032255193432939
1231 => 0.031997817897161
]
'min_raw' => 0.024036161426759
'max_raw' => 0.061674037943208
'avg_raw' => 0.042855099684983
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.024036'
'max' => '$0.061674'
'avg' => '$0.042855'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.01478069567656
'max_diff' => 0.035848418371597
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00075446764167949
]
1 => [
'year' => 2028
'avg' => 0.0012948854966433
]
2 => [
'year' => 2029
'avg' => 0.0035373937964255
]
3 => [
'year' => 2030
'avg' => 0.0027290940458974
]
4 => [
'year' => 2031
'avg' => 0.002680308565973
]
5 => [
'year' => 2032
'avg' => 0.0046994244403003
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00075446764167949
'min' => '$0.000754'
'max_raw' => 0.0046994244403003
'max' => '$0.004699'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0046994244403003
]
1 => [
'year' => 2033
'avg' => 0.012087402896569
]
2 => [
'year' => 2034
'avg' => 0.0076615768492466
]
3 => [
'year' => 2035
'avg' => 0.0090368474633462
]
4 => [
'year' => 2036
'avg' => 0.017540542660905
]
5 => [
'year' => 2037
'avg' => 0.042855099684983
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0046994244403003
'min' => '$0.004699'
'max_raw' => 0.042855099684983
'max' => '$0.042855'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.042855099684983
]
]
]
]
'prediction_2025_max_price' => '$0.00129'
'last_price' => 0.00125082
'sma_50day_nextmonth' => '$0.001192'
'sma_200day_nextmonth' => '$0.001464'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001221'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001218'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00128'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.001248'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001175'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001291'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001497'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001234'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001239'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001253'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.001242'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001227'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00130039'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001594'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001404'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001464'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.007276'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.001234'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.00122'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.001237'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.001365'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.002958'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.00790039'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.00458'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '52.06'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 16.07
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001281'
'vwma_10_action' => 'SELL'
'hma_9' => '0.001182'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 35.49
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -4.36
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.63
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000010'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -64.51
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 39.45
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000062'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 18
'sell_pct' => 43.75
'buy_pct' => 56.25
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767707905
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de ApeBond para 2026
A previsão de preço para ApeBond em 2026 sugere que o preço médio poderia variar entre $0.000432 na extremidade inferior e $0.00129 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, ApeBond poderia potencialmente ganhar 3.13% até 2026 se ABOND atingir a meta de preço prevista.
Previsão de preço de ApeBond 2027-2032
A previsão de preço de ABOND para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000754 na extremidade inferior e $0.004699 na extremidade superior. Considerando a volatilidade de preços no mercado, se ApeBond atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de ApeBond | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000416 | $0.000754 | $0.001092 |
| 2028 | $0.00075 | $0.001294 | $0.001838 |
| 2029 | $0.001649 | $0.003537 | $0.005425 |
| 2030 | $0.0014026 | $0.002729 | $0.004055 |
| 2031 | $0.001658 | $0.00268 | $0.0037022 |
| 2032 | $0.002531 | $0.004699 | $0.006867 |
Previsão de preço de ApeBond 2032-2037
A previsão de preço de ApeBond para 2032-2037 é atualmente estimada entre $0.004699 na extremidade inferior e $0.042855 na extremidade superior. Comparado ao preço atual, ApeBond poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de ApeBond | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002531 | $0.004699 | $0.006867 |
| 2033 | $0.005882 | $0.012087 | $0.018292 |
| 2034 | $0.004729 | $0.007661 | $0.010593 |
| 2035 | $0.005591 | $0.009036 | $0.012482 |
| 2036 | $0.009255 | $0.01754 | $0.025825 |
| 2037 | $0.024036 | $0.042855 | $0.061674 |
ApeBond Histograma de preços potenciais
Previsão de preço de ApeBond baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para ApeBond é Altista, com 18 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de ABOND foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de ApeBond
De acordo com nossos indicadores técnicos, o SMA de 200 dias de ApeBond está projetado para aumentar no próximo mês, alcançando $0.001464 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para ApeBond é esperado para alcançar $0.001192 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 52.06, sugerindo que o mercado de ABOND está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de ABOND para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001221 | BUY |
| SMA 5 | $0.001218 | BUY |
| SMA 10 | $0.00128 | SELL |
| SMA 21 | $0.001248 | BUY |
| SMA 50 | $0.001175 | BUY |
| SMA 100 | $0.001291 | SELL |
| SMA 200 | $0.001497 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.001234 | BUY |
| EMA 5 | $0.001239 | BUY |
| EMA 10 | $0.001253 | SELL |
| EMA 21 | $0.001242 | BUY |
| EMA 50 | $0.001227 | BUY |
| EMA 100 | $0.00130039 | SELL |
| EMA 200 | $0.001594 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.001404 | SELL |
| SMA 50 | $0.001464 | SELL |
| SMA 100 | $0.007276 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.001365 | SELL |
| EMA 50 | $0.002958 | SELL |
| EMA 100 | $0.00790039 | SELL |
| EMA 200 | $0.00458 | SELL |
Osciladores de ApeBond
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 52.06 | NEUTRAL |
| Stoch RSI (14) | 16.07 | BUY |
| Estocástico Rápido (14) | 35.49 | NEUTRAL |
| Índice de Canal de Commodities (20) | -4.36 | NEUTRAL |
| Índice Direcional Médio (14) | 15.63 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000010 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -64.51 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 39.45 | NEUTRAL |
| VWMA (10) | 0.001281 | SELL |
| Média Móvel de Hull (9) | 0.001182 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000062 | NEUTRAL |
Previsão do preço de ApeBond com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do ApeBond
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de ApeBond por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.001757 | $0.002469 | $0.00347 | $0.004876 | $0.006852 | $0.009628 |
| Amazon.com stock | $0.0026099 | $0.005445 | $0.011362 | $0.0237092 | $0.04947 | $0.103223 |
| Apple stock | $0.001774 | $0.002516 | $0.003569 | $0.005063 | $0.007181 | $0.010186 |
| Netflix stock | $0.001973 | $0.003114 | $0.004913 | $0.007752 | $0.012232 | $0.01930091 |
| Google stock | $0.001619 | $0.002097 | $0.002716 | $0.003517 | $0.004555 | $0.005899 |
| Tesla stock | $0.002835 | $0.006427 | $0.014571 | $0.033032 | $0.074882 | $0.169752 |
| Kodak stock | $0.000937 | $0.0007033 | $0.000527 | $0.000395 | $0.000296 | $0.000222 |
| Nokia stock | $0.000828 | $0.000548 | $0.000363 | $0.00024 | $0.000159 | $0.0001057 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para ApeBond
Você pode fazer perguntas como: 'Devo investir em ApeBond agora?', 'Devo comprar ABOND hoje?', 'ApeBond será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para ApeBond regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como ApeBond, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre ApeBond para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de ApeBond é de $0.00125 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de ApeBond com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se ApeBond tiver 1% da média anterior do crescimento anual do Bitcoin | $0.001283 | $0.001316 | $0.00135 | $0.001386 |
| Se ApeBond tiver 2% da média anterior do crescimento anual do Bitcoin | $0.001315 | $0.001384 | $0.001456 | $0.001531 |
| Se ApeBond tiver 5% da média anterior do crescimento anual do Bitcoin | $0.001413 | $0.001597 | $0.0018046 | $0.002039 |
| Se ApeBond tiver 10% da média anterior do crescimento anual do Bitcoin | $0.001575 | $0.001985 | $0.0025017 | $0.003151 |
| Se ApeBond tiver 20% da média anterior do crescimento anual do Bitcoin | $0.001901 | $0.002889 | $0.004391 | $0.006674 |
| Se ApeBond tiver 50% da média anterior do crescimento anual do Bitcoin | $0.002876 | $0.006614 | $0.015211 | $0.034982 |
| Se ApeBond tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0045021 | $0.0162045 | $0.058325 | $0.209931 |
Perguntas Frequentes sobre ApeBond
ABOND é um bom investimento?
A decisão de adquirir ApeBond depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de ApeBond experimentou uma escalada de 1.5839% nas últimas 24 horas, e ApeBond registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em ApeBond dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
ApeBond pode subir?
Parece que o valor médio de ApeBond pode potencialmente subir para $0.00129 até o final deste ano. Observando as perspectivas de ApeBond em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.004055. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de ApeBond na próxima semana?
Com base na nossa nova previsão experimental de ApeBond, o preço de ApeBond aumentará 0.86% na próxima semana e atingirá $0.001261 até 13 de janeiro de 2026.
Qual será o preço de ApeBond no próximo mês?
Com base na nossa nova previsão experimental de ApeBond, o preço de ApeBond diminuirá -11.62% no próximo mês e atingirá $0.001105 até 5 de fevereiro de 2026.
Até onde o preço de ApeBond pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de ApeBond em 2026, espera-se que ABOND fluctue dentro do intervalo de $0.000432 e $0.00129. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de ApeBond não considera flutuações repentinas e extremas de preço.
Onde estará ApeBond em 5 anos?
O futuro de ApeBond parece seguir uma tendência de alta, com um preço máximo de $0.004055 projetada após um período de cinco anos. Com base na previsão de ApeBond para 2030, o valor de ApeBond pode potencialmente atingir seu pico mais alto de aproximadamente $0.004055, enquanto seu pico mais baixo está previsto para cerca de $0.0014026.
Quanto será ApeBond em 2026?
Com base na nossa nova simulação experimental de previsão de preços de ApeBond, espera-se que o valor de ABOND em 2026 aumente 3.13% para $0.00129 se o melhor cenário ocorrer. O preço ficará entre $0.00129 e $0.000432 durante 2026.
Quanto será ApeBond em 2027?
De acordo com nossa última simulação experimental para previsão de preços de ApeBond, o valor de ABOND pode diminuir -12.62% para $0.001092 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.001092 e $0.000416 ao longo do ano.
Quanto será ApeBond em 2028?
Nosso novo modelo experimental de previsão de preços de ApeBond sugere que o valor de ABOND em 2028 pode aumentar 47.02%, alcançando $0.001838 no melhor cenário. O preço é esperado para variar entre $0.001838 e $0.00075 durante o ano.
Quanto será ApeBond em 2029?
Com base no nosso modelo de previsão experimental, o valor de ApeBond pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.005425 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.005425 e $0.001649.
Quanto será ApeBond em 2030?
Usando nossa nova simulação experimental para previsões de preços de ApeBond, espera-se que o valor de ABOND em 2030 aumente 224.23%, alcançando $0.004055 no melhor cenário. O preço está previsto para variar entre $0.004055 e $0.0014026 ao longo de 2030.
Quanto será ApeBond em 2031?
Nossa simulação experimental indica que o preço de ApeBond poderia aumentar 195.98% em 2031, potencialmente atingindo $0.0037022 sob condições ideais. O preço provavelmente oscilará entre $0.0037022 e $0.001658 durante o ano.
Quanto será ApeBond em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de ApeBond, ABOND poderia ver um 449.04% aumento em valor, atingindo $0.006867 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.006867 e $0.002531 ao longo do ano.
Quanto será ApeBond em 2033?
De acordo com nossa previsão experimental de preços de ApeBond, espera-se que o valor de ABOND seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.018292. Ao longo do ano, o preço de ABOND poderia variar entre $0.018292 e $0.005882.
Quanto será ApeBond em 2034?
Os resultados da nossa nova simulação de previsão de preços de ApeBond sugerem que ABOND pode aumentar 746.96% em 2034, atingindo potencialmente $0.010593 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.010593 e $0.004729.
Quanto será ApeBond em 2035?
Com base em nossa previsão experimental para o preço de ApeBond, ABOND poderia aumentar 897.93%, com o valor potencialmente atingindo $0.012482 em 2035. A faixa de preço esperada para o ano está entre $0.012482 e $0.005591.
Quanto será ApeBond em 2036?
Nossa recente simulação de previsão de preços de ApeBond sugere que o valor de ABOND pode aumentar 1964.7% em 2036, possivelmente atingindo $0.025825 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.025825 e $0.009255.
Quanto será ApeBond em 2037?
De acordo com a simulação experimental, o valor de ApeBond poderia aumentar 4830.69% em 2037, com um pico de $0.061674 sob condições favoráveis. O preço é esperado para cair entre $0.061674 e $0.024036 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Biometric Financial
Previsão de Preço do CSP DAO Network
Previsão de Preço do Bonsai3
Previsão de Preço do xFund
Previsão de Preço do AsMatch
Previsão de Preço do Bondly
Previsão de Preço do Orchai
Previsão de Preço do Wefi
Previsão de Preço do Degen Zoo
Previsão de Preço do NFTb
Previsão de Preço do GulfCoin
Previsão de Preço do Crypterium
Previsão de Preço do HeadStarter
Previsão de Preço do Quint
Previsão de Preço do Garden
Previsão de Preço do Bware
Previsão de Preço do MintMe.com Coin
Previsão de Preço do Kommunitas
Previsão de Preço do Verasity (Old)
Previsão de Preço do Ignis
Previsão de Preço do Verse
Previsão de Preço do Level
Previsão de Preço do Levana
Previsão de Preço do SoonVerse
Previsão de Preço do Timeless
Como ler e prever os movimentos de preço de ApeBond?
Traders de ApeBond utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de ApeBond
Médias móveis são ferramentas populares para a previsão de preço de ApeBond. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ABOND em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ABOND acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ABOND.
Como ler gráficos de ApeBond e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de ApeBond em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ABOND dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de ApeBond?
A ação de preço de ApeBond é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ABOND. A capitalização de mercado de ApeBond pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ABOND, grandes detentores de ApeBond, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de ApeBond.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


